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1. Introduction

The fame of the Russian number theorist Nikolăı Grigor′evich Chebotarëv* (1894–1947)

rests almost exclusively on his proof, in 1922, of a conjecture of Frobenius, nowadays known

as Chebotarëv’s density theorem. Algebraic number theorists have cherished the theorem

ever since, because of both its beauty and its importance.

In the present paper we introduce Chebotarëv and his theorem to the reader. Drawing

upon Russian sources, we describe his life and the circumstances under which he proved his

density theorem. Two characteristic examples are given to illustrate the nature of his other

work. Next we explain the content of his theorem, reducing to a minimum the specialized

terminology in which the theorem is usually couched. We shall see that the key idea of

Chebotarëv’s proof enabled Artin to prove his reciprocity law; in fact, had history taken a

slightly different course, then Chebotarëv would have proven it first. For the connoisseur

we give, in an appendix to this paper, a paraphrase of Chebotarëv’s proof of his density

theorem. It uses no class field theory, and it is appreciably more elementary than the

treatment found in current textbooks.

We shall not discuss the important role that Chebotarëv’s density theorem plays in

modern arithmetic algebraic geometry. The interested reader is referred to [34] and [35].

* The transliteration of Cyrillic names in this paper follows the current Mathematical Reviews standard.
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2. Life

Nikolăı Grigor′evich Chebotarëv was born in Kamenets-Podolsk on June 15, 1894; on June 3

according to the Julian calendar that was still in use in Russia. His father, Grigorĭı Niko-

laevich, served in the Russian court system in several Ukrainian cities, and was president

of a district court when the 1917 revolution interrupted his career. It left him stripped of

his status and reduced to poverty, and he died of cholera in Odessa in 1922. Nikolăı had

one younger brother, Grigorĭı, a doctor who was seen in the White Army during the civil

war following the revolution. He emigrated to Yugoslavia and never returned to the Soviet

Union.

Nikolăı received an upper-class education that was strictly controlled by his mother. It

is no coincidence that mathematics, a domain beyond her control, became Nikolăı’s favorite

pastime when he was fifteen or sixteen years old. He was often unable to attend school

during this time as he suffered from pleurisy, and in the winter of 1910–11 he was taken by

his mother to the Italian Riviera to recover from pneumonia. In 1912 he gained admission

as a student in mathematics to the university in Kiev, then known as the University of the

Holy Vladimir. He became a student of D. A. Grave, together with B. N. Delonè, who later

tried unsuccessfully to lure Chebotarëv to Leningrad, and Otto Shmidt, who would become

a renowned group theorist as well as vice-president of the Academy of Sciences. Grave was

a former student of Chebyshev and Korkin, and at that time the only true mathematician

in Kiev. In these years, Nikolăı’s mathematical interests took shape. Despite the difficulties

arising from World War I, which necessitated the temporary relocation of the university to

Saratov, he graduated in 1916 and became Privatdozent after his magister’s exam in 1918.

He continued to live like a student, earning money from private lessons and teaching in

high schools. In 1921 he moved to Odessa to assist his parents, who were subsisting there

under miserable conditions. Nikolăı’s father died shortly afterwards, and his mother eked

out a living by selling cabbage at the market.

Despite professional and economic support from local mathematicians such as Shatu-

novskĭı and Kagan, Nikolăı had difficulties finding a suitable position in Odessa: the mathe-

matics there was focused primarily on foundational issues, and these were alien to Nikolăı’s

interests.

Then came the summer of 1922. Chebotarëv recalls the circumstances in a 1945 letter

to M. I. Rokotovskĭı [8], who had tried to interest him in his plans for a thesis on the

working environment of scientists:

In real life, scientists come in as many varieties as there are species of plants. You describe a

tender rose, that needs a supporting stake, fertilized soil, regular watering, and so on, in order

to grow. Our harsh reality would more likely yield thistles, which produce somewhat crude but

beautiful flowers under all conditions. What would our science be like, if our scientists could

only work in silence or with ‘good, not too loud music’ in their offices? I belong to the older
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generation of Soviet scientists, who were shaped by the circumstances of a civil war. I invented

my best result while carrying water from the lower part of town (Peresypi in Odessa) to the

higher part, or buckets of cabbages to the market, which my mother sold to feed the entire

family.

This ‘best result’ was Chebotarëv’s density theorem. It was a spark from heaven, which

would secure Chebotarëv a comfortable position in Soviet mathematics and immortalize

his name in algebraic number theory.

The difficult financial situation of the Chebotarëv household improved considerably

in 1923, when Nikolăı married the teacher and assistant-physiologist Mariya Alexandrovna

Smirnitskaya. Working with a former student of the famous physiologist Pavlov, she made

a decent salary. The relationship with her mother-in-law, who had insisted in vain on a

religious marriage, seems to have been less than friendly.

In 1924, Nikolăı finally found a job at the Civil Engineering Institute in Moscow.

Here he became acquainted with the Kazan mathematician N. N. Parfent′ev—his first tie

to Kazan. Nikolăı was icily received by his Moscow colleagues; he found out that he oc-

cupied D. F. Egorov’s position, and resigned after seven months. Egorov, who had shaped

the Moscow school of pure mathematics together with his student N. N. Luzin, had been

dismissed for political reasons. Eventually, he would be arrested as a ‘religious sectarian’,

and go on a hunger strike. Mortally ill, he would be transported to a prison hospital in

Kazan in 1931, where Nikolăı’s wife happened to work as a doctor. He is purported to have

died at the Chebotarëv home.

Back in Odessa, Nikolăı got a badly paid and ill-defined position as secretary for scien-

tific research at an Educational Institute. His situation did not become more comfortable

in 1926, when his son, named Grigorĭı in accordance with family tradition, was born. Sci-

entifically, however, he did very well. A talented seventeen year old boy, Mark Krĕın, who

had come to Odessa, started working under Nikolăı’s supervision and assembled enough

students for a seminar on algebraic functions. When Nikolăı left Odessa in 1927, Krĕın

continued the seminar and founded a school in functional analysis. Before this, in 1925,

Nikolăı had been able to make his first scientific trip abroad, to the meeting of the German

Mathematical Society (DMV) in Danzig, where he met E. Noether, Hensel, and Hensel’s

student Hasse. He traveled on to Berlin, visiting I. Schur, and to Göttingen, where he met

his countryman A. M. Ostrovskĭı. Like Nikolăı, Ostrovskĭı was a student of Grave from

Kiev. Grave had sent him abroad to continue his education, as Jews could not attend

graduate schools in Russia. Nikolăı greatly impressed Ostrovskĭı by providing an original

solution to one of Ostrovskĭı’s problems. We will discuss it later in this section.

In 1927, Nikolăı finally defended his doctoral dissertation, which was based on his

1922 density theorem, at the Ukrainian Academy of Sciences. He had earlier been invited

by Delonè to do so in Leningrad, but this was no longer possible: the bourgeois custom
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of the doctoral degree had been abolished in the Russian republic in 1926. Shortly after

receiving his doctorate, Nikolăı was offered positions in both Leningrad, which already had

a strong group of algebraists, and in the provincial town of Kazan, some 800 kilometers

east of Moscow, where he would have to create his own school. At that time, the university

of Kazan boasted its own journal, in which Nikolăı had already published a few papers, and

a rich library. It had an international reputation because it regularly awarded a prestigious

prize in geometry named after Lobachevski, the famous geometer who had worked in Kazan

during the 19th century. Unfortunately, the independence of the provincial universities was

gradually suppressed during the Stalin era, and by 1945 both the journal and the prize were

abolished, as were most scientific contacts with capitalist countries. After some hesitation,

Nikolăı finally chose Kazan, where he was to stay for the rest of his life. He left Odessa in

December 1927. His wife and son followed in the spring of 1928. This put an end to the

difficulties of sharing accommodations with Nikolăı’s mother, who went to live with her

sisters in Krasnodar. She died in 1939.

In Kazan, Nikolăı was able to create his own school of algebra, and his students ob-

tained positions in several Soviet universities. During his Kazan period, his work gained am-

ple recognition in the Soviet Union. He was elected corresponding member of the Academy

of Sciences in 1929 and invited to speak at the All-Union congress in Leningrad in 1934.

In 1943, he became Honored Scientist of the Russian republic. He was nominated for the

Stalin Prize in 1943 and 1946, but received this coveted prize only posthumously, in 1948.

It was awarded for his work on Hilbert’s thirteenth problem concerning the impossibility of

solving the seventh degree equation by means of continuous functions of two arguments. In

1954 it turned out that one of his results on this problem was incorrect, a counterexample

being due to his own son Grigorĭı, who had also become a mathematician [22].

Chebotarëv’s reputation did not remain confined to the Soviet Union. In 1932, he

accepted the honorable invitation to deliver a plenary address at the international congress

in Zürich. His talk, Problems in contemporary Galois theory [7, vol. 3, pp. 5–46], marked

the 100th anniversary of the death of Galois.

Nikolăı remained productive during the twenty years he spent in Kazan. The research

papers in his collected works [7] address a wide range of problems—many in number theory

and in his ‘official’ specialty, Galois theory, but others in Lie groups, abelian integrals,

distributions of zeroes of polynomials, and approximation theory. Apart from this, he

produced course notes in advanced algebra, the calculus of variations, and topology. His

textbook Osnovy teorii Galua (Basic Galois theory) appeared in two volumes in 1934 and

1937, together with a 1936 monograph Teoriya Galua that included results on the inverse

problem and the theory of resolvents. A re-edited and extended German translation of the

first volume with inclusions from the monograph appeared in 1950, after a ten-year delay

caused by the war [9]. Nikolăı’s interest in resolvents led him to study Lie groups. The
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result was his Teoriya grupp Li, the first Russian textbook on Lie groups, which appeared

in 1940. It was followed by a posthumously published monograph Teoriya algebraicheskikh

funktsĭı. In addition, Nikolăı devoted a lot of energy to editing the collected works of

Zolotarëv. He initiated the publication of the collected works of Galois in Russian in 1936,

whose translation was carried out by his favorite student N. N. Mĕıman. Other projects of

his, such as the creation of an encyclopaedia of elementary mathematics, were to remain

unfinished when, during the spring of 1947, Nikolăı started suffering from a stomach cancer.

An operation became inevitable. In June 1947 he was hospitalized in the Sklifosovskĭı

Institute in Moscow. He survived the operation, but died from complications eleven days

later, on July 2.

The Chebotarëv family played an important role in the academic social life in Kazan.

The new spacious house they obtained in 1937 was a meeting place for students, scientific

visitors and other guests. Nikolăı had his working place in the house—somewhat surpris-

ingly not a desk but a bed—and an extensive library of reprints consisting largely of the

many papers he reviewed for the Zentralblatt. During the war, the universities and certain

Academic institutions of Moscow and besieged Leningrad were moved to Kazan, and flocks

of scientists crowded the university there. Housing was problematic. It was not uncommon

for the Chebotarëv residence to have as many as twenty overnight guests.

Despite his aversion to administrative duties, Nikolăı succeeded Parfent′ev as head of

Kazan’s department of mathematics and physics in 1943. During the 1930s he had been the

director of NIIMM, a scientific institute for mathematics and mechanics at the university.

This function caused frequent competency disputes between Nikolăı and the rector of the

university. Otherwise, it seems that his easy-going character and his thoughtful politeness

usually kept him out of conflict.

We illustrate the style of Chebotarëv’s mathematics by presenting two results that he was

particularly pleased with. The first is his solution to the problem posed to him by Ostro-

vskĭı in Göttingen. It held implications for the number of singularities of certain lacunary

complex power series on the boundary of their domain of convergence [32]. Chebotarëv

himself calls it [8, pp. 5–6] ‘a very modest result’, mentioning the compliments the ‘gloomy

and sombre’ Ostrovskĭı made to him on its account, and observing that it ‘does meet the

requirements of mathematical esthetics’.

Problem. Let p be a prime number and ζ ∈ C a primitive pth root of unity. Show that

all minors of the Vandermonde determinant |ζrs|p−1
r,s=0 are different from zero.

Ostrovskĭı tried in vain to deduce this from known results on determinants and from

elementary estimates on absolute values of complex numbers. Chebotarëv’s novel idea was

to show that such minors, which are clearly elements of Q(ζ), the pth cyclotomic field over

the field of rational numbers Q, do not vanish in the p-adic completion Qp(ζ) of Q(ζ). The
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advantage of replacing the well-known archimedean completion C by this p-adic completion

is that the element π = ζ − 1 is a uniformizer in Qp(ζ), so all of the determinant entries

can be expanded in convergent power series

ζrs = (1 + π)rs = 1 +

(

rs

1

)

π +

(

rs

2

)

π2 + . . .

in the uniformizer π. Using the linearity of determinants with respect to their columns, we

can expand a minor of size n× n correspondingly as

M = |ζrisj |ni,j=1 =

∣

∣

∣

∣

∣

∣

∑

k≥0

(

risj
k

)

πk

∣

∣

∣

∣

∣

∣

n

i,j=1

=
∑

k1,...,kn

∣

∣

∣

∣

∣

∣

∣

(

r1s1
k1

)

. . .
(

r1sn

kn

)

...
. . .

...
(

rns1
k1

)

. . .
(

rnsn

kn

)

∣

∣

∣

∣

∣

∣

∣

πk1+...+kn .

Write Dk1,...,kn
for the determinants occurring in the right hand side. If, for some d < n,

there are at least d + 1 values in the sequence k1, k2 . . . , kn that are smaller than d, then

Dk1,...,kn
vanishes since the entries of its jth column are the values in the ri’s of the

polynomial
(

sjX
kj

)

of degree kj , and d+ 1 polynomials of degree smaller than d are linearly

dependent. It follows that Dk1,...,kn
vanishes for k1 +k2 + . . .+kn < 0+1+ . . .+(n− 1) =

n(n − 1)/2, and that in the case of the equality sign k1 + k2 + . . . + kn = n(n − 1)/2 it

can only be non-zero if the sets {k1, k2, . . . , kn} and {0, 1, . . . , n− 1} coincide. In that case

Dk1,...,kn
is a Vandermonde determinant. We find M = C · πn(n−1)/2 + O(π1+n(n−1)/2),

where the constant C is given by

C =
∑

σ

sign(σ)
s
σ(0)
1 s

σ(1)
2 . . . s

σ(n−1)
n

0! 1! 2! . . . (n− 1)!

∏

1≤i<j≤n

(rj − ri).

Here σ ranges over the permutations of {0, 1, . . . , n− 1}. We recognize once more a Van-

dermonde determinant, obtaining

C =

∏

1≤i<j≤n(rj − ri)
∏

1≤i<j≤n(sj − si)

0! 1! 2! . . . (n− 1)!
.

As C is an integer coprime to p, it is not divisible by π and we find that M has π-adic

valuation n(n−1)/2. Note that this valuation depends only on the size of M . In particular,

M is non-zero. This finishes the proof.

The problem has a large number of published solutions: A. Danilevskĭı (1937), Yu. G.

Reshetnyak (1955) and M. Newman (1975) adapted Chebotarëv’s proof in various ways,

whereas Dieudonné reproved the theorem independently in 1970 (see [13]).
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The second problem we discuss is of a very classical nature. Chebotarëv took it up as a

suitable example to be included in his textbook on Galois theory. As with the previous

problem and the density theorem, he managed to ‘dig deeper’ with existing tools, and

find what others had failed to uncover. We start with an observation that goes back to

Hippocrates of Chios (∼ 430 B. C.). Let ABC be an isosceles right-angled triangle as in

figure 1. Then the area of the shaded lune that is bounded by the arcs on AB of the

circumscribed circle of ABC and the circle tangent to AC and BC is equal to the area of

the triangle ABC. The discovery that it was possible to square certain lunes caused some

excitement in antiquity, as it is clearly a promising step towards the solution of the famous

problem of squaring the circle.

A B

C D
E

O

M

N

BA

C

ν

µ

Figure 1 Figure 2

More generally, let m and n be positive integers, with m > n. Consider a lune that is

bounded by two arcs on AB such that the angles 6 AMB and 6 ANB at their respective

centers M and N have ratio m : n; thus, in figure 2, where m = 3 and n = 2, we have

2µ : 2ν = 3 : 2. Draw m equal chords in the outer arc and n equal chords in the inner arc,

as in figure 2: the chords AC, CD and DB have equal lengths, as have the chords AE and

EB. The m+ n angles subtended by these chords at the centers of the corresponding arcs

are then all equal, so the m+ n circle segments cut out by these chords are all similar. It

follows that the ratio of the area of an outer segment and the area of an inner segment

equals the square of the ratio of the radii of the two arcs. Suppose now that this square

happens to be n : m. Then the total area of the m outer segments equals the total area

of the n inner segments; in figure 2, the area of the three segments on AC, CD and DB

equals the area of the segments on AE and EB. Therefore the area of the lune equals

the area of the ‘rectified’ lune, i. e., the polygonal area (like AEBDC in figure 2) that is

bounded by the m+ n chords. Note that this area is nothing but the area of the tetragon

ANBM , as the total area of the m triangles with vertex M on the outer chords equals the
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total area of the n triangles with vertex N on the inner chords. In this case we say that

the lune can be squared.

If O is the midpoint of the interval AB and OB has unit length, the radii MB and

NB are the inverses of sinµ and sin ν, so if we set µ = mϑ and ν = nϑ, the corresponding

lune can be squared if and only if the identity

(∗)
(

sinmϑ

sinnϑ

)2

=
m

n

holds. This is an algebraic equation in x = cosϑ, and if it has a root that is constructible,

we find an example of a squarable lune that can be constructed. It clearly depends only

on the ratio m : n whether the corresponding lune can be squared. The problem of the

quadrature of lunes can be formulated as follows.

Problem. Find all ratios m : n of coprime positive integers for which the equation (∗)
has a constructible solution x = cosϑ.

The example in figure 1 corresponds to the case m : n = 2 : 1, which yields x = 1/
√

2. For

the ratio m : n = 3 : 2 in figure 2, already known to Hippocrates, equation (∗) is quadratic

in cosϑ and the corresponding lune is constructible. The constructible lune corresponding

to the ratio m : n = 3 : 1 also goes back to Hippocrates, and Clausen [10] published

the further examples m : n = 5 : 1 and 5 : 3 in 1840, not knowing that two of his ‘four

new lunar areas’ had already been known to Hippocrates, and the two others to the 18th

century mathematician Martin Johan Wallenius (see [19, p. 200]). Clausen concludes his

paper with the conjecture that there are no further examples:

Ich glaube schwerlich, daß sich die Größen, die die Winkel der, andern Verhältnissen entsprechen-

den Ausschnitte bestimmen, geometrisch finden lassen.

[I find it hard to believe that the quantities that determine the angles of the segments corre-

sponding to other ratios can be found geometrically.]

Partial results towards Clausen’s conjecture were obtained by Landau (1903) and the

Bulgarian mathematician Chakalov (1929–30), who wrote equation (∗) in terms of a new

variable y = e2iθ as

F (y) = (ym − 1)2 − m

n
ym−n(yn − 1)2 = 0

and determined in a few cases the Galois groups of the irreducible factors of F over Q.

Note that F is a difference of squares in Q(
√

m/n) in the easier case where m−n is even.

By a careful study of the arithmetical properties of the polynomial F , in particular the

ramification of the splitting field of F over Q, Chebotarëv showed in 1934 that Clausen’s

list is complete in this easier case [6]. The general case remained open, but shortly before

Chebotarëv’s untimely death in 1947, his student A. B. Dorodnov finished the work of his

teacher and proved Clausen’s conjecture in full [15].

8



3. The density theorem

Chebotarëv’s density theorem may be regarded as the least common generalization of

Dirichlet’s theorem on primes in arithmetic progressions (1837) and a theorem of Frobenius

(1880; published 1896).

Dirichlet’s theorem is easy to discover experimentally. Here are the prime numbers

below 100, arranged by final digit:

1 : 11, 31, 41, 61, 71

2 : 2

3 : 3, 13, 23, 43, 53, 73, 83

5 : 5

7 : 7, 17, 37, 47, 67, 97

9 : 19, 29, 59, 79, 89.

It does not come as a surprise that no prime numbers end in 0, 4, 6, or 8, and that only

two prime numbers end in 2 or 5. The table suggests that there are infinitely many primes

ending in each of 1, 3, 7, 9, and that, approximately, they keep up with each other. This

is indeed true; it is the special case m = 10 of the following theorem, proved by Dirichlet

(1805–1859) in 1837 (see [14]). Write ϕ(m) for the number of integers x with 1 ≤ x ≤ m

and gcd(x,m) = 1; so ϕ(10) = 4.

Theorem of Dirichlet. Let m be a positive integer. Then for each integer a with

gcd(a,m) = 1 the set of prime numbers p with p ≡ a mod m has density 1/ϕ(m).

Here we say that a set S of prime numbers has density δ if

(

∑

p∈S

1

ps

)/(

∑

p prime

1

ps

)

→ δ for s ↓ 1.

Clearly, the set of all prime numbers has density 1. Finite sets of prime numbers have

density 0, since
∑

p prime
1
p diverges. Thus, for m = 10, the ‘exceptional’ primes 2, 5 do

not count from a density point of view, and the other primes are ‘equidistributed’ over

the four residue classes 1, 3, 7, 9 modulo 10 in the sense that the four densities are equal.

Dirichlet’s original formulation of his theorem does not involve the notion of density, but

the above is what his proof gives.

The notion of density that we just defined is sometimes called analytic or Dirichlet

density. It would have been more intuitive to say that a set S of prime numbers has density

δ if
#{p ≤ x : p ∈ S}

#{p ≤ x : p prime} → δ for x→ ∞.
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With this concept of density, called natural density, Dirichlet’s theorem is also valid, but

the proof, which is much harder, was only given by De la Vallée-Poussin in 1896 (see [11]).

If a set of primes has a natural density then it has an analytic one, and the two densities are

equal; but the converse is false. The results below were originally proved for the analytic

density, which is easier to manipulate. They are also valid for the natural density, but in

this case the proofs require additional techniques, largely due to Hecke [20].

The theorem of Frobenius (1849–1917) that Chebotarëv generalized deserves to be

better known than it is. For many applications of Chebotarëv’s theorem it suffices to have

Frobenius’s theorem, which is both older (1880) and easier to prove than Chebotarëv’s

theorem (1922).

Again, Frobenius’s theorem can be discovered empirically. Consider a polynomial f

with integer coefficients, say f = X4 +3X2 +7X+4, and suppose that one is interested in

deciding whether or not f is irreducible over the ring Z of integers. A standard approach

is to factor f modulo several prime numbers p. Thus, we have

f ≡ X · (X3 +X + 1) mod 2,

where X and X3 +X + 1 are irreducible over the field F2 = Z/2Z of 2 elements. We say

that the decomposition type of f modulo 2 is 1, 3. It follows that if f is reducible over

Z, then its decomposition type will likewise be 1, 3: a product of a linear factor and an

irreducible cubic factor. However, the latter alternative is incompatible with the fact that

the decomposition type modulo 11 is 2, 2:

f ≡ (X2 + 5X − 1) · (X2 − 5X − 4) mod 11,

where the two factors are irreducible over F11. One concludes that f is irreducible over Z.

Could the irreducibility of f have been proven with a single prime? Modulo such a

prime number, f would have to be irreducible, with decomposition type equal to the single

number 4. Current computer algebra packages make it easy to do a numerical experiment.

There are 168 prime numbers below 1000. Two of these, p = 7 and p = 19, are special, in

the sense that f acquires repeated factors modulo p:

f ≡ (X − 3)2 · (X + 3)2 mod 7,

f ≡ (X − 3)3 · (X + 9) mod 19.

For no other prime does this happen, and the following types are found:

type 1, 3 : 112 primes (67.5%),

type 2, 2 : 44 primes (26.5%),

type 1, 1, 1, 1 : 10 primes (6.0%).
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It is suggested that the primes with type 1, 3 have density 2
3 ; that the primes with type

2, 2 have density 1
4 ; that no prime at all exists with the desired type 4 or with type 1,

1, 2; and, to make the densities add up to 1, that the primes with type 1, 1, 1, 1 have

density 1
12 .

The following table shows the results of similar experiments performed on several

fourth degree polynomials. For each polynomial f in the first column, the table gives the

apparent density of primes p for which f modulo p has a given decomposition type.

f 4 1, 3 2, 2 1, 1, 2 1, 1, 1, 1

X4 −X − 1 1
4

1
3

1
8

1
4

1
24

X4 −X2 + 1 0 0 3
4

0 1
4

X4 +X3 +X2 +X + 1 1
2 0 1

4 0 1
4

X4 −X2 − 1 1
4

0 3
8

1
4

1
8

X4 + 3X2 + 7X + 4 0 2
3

1
4 0 1

12

Frobenius’s theorem tells how to understand these fractions through the Galois group of

the polynomial.

Let, generally, f be a polynomial with integer coefficients and with leading coefficient 1,

and denote the degree of f by n. Assume that the discriminant ∆(f) of f does not vanish,

so that f has n distinct zeroes α1, α2, . . . , αn in a suitable extension field of the field Q of

rational numbers. Write K for the field generated by these zeroes: K = Q(α1, α2, . . . , αn).

The Galois group G of f is the group of field automorphisms ofK. Each σ ∈ G permutes the

zeroes α1, α2, . . . , αn of f , and is completely determined by the way in which it permutes

these zeroes. Hence, we may consider G as a subgroup of the group Sn of permutations

of n symbols. Writing an element σ ∈ G as a product of disjoint cycles (including cycles

of length 1), and looking at the lengths of these cycles, we obtain the cycle pattern of σ,

which is a partition n1, n2, . . . , nt of n.

If p is a prime number not dividing ∆(f), then we can write f modulo p as a prod-

uct of distinct irreducible factors over Fp. The degrees of these irreducible factors form

the decomposition type of f modulo p; this is also a partition of n. Frobenius’s theorem

asserts, roughly speaking, that the “number” of primes with a given decomposition type

is proportional to the number of σ ∈ G with the same cycle pattern.

Theorem of Frobenius. The density of the set of primes p for which f has a given

decomposition type n1, n2, . . . , nt exists, and it is equal to 1/#G times the number of

σ ∈ G with cycle pattern n1, n2, . . . , nt.

Consider, for example, the partition in which all ni are equal to 1. Only the identity

permutation has this cycle pattern. Hence the set of primes p for which f modulo p splits

completely into linear factors has density 1/#G. Thus, the last column of the table indicates

11



that the Galois groups of the five polynomials in the table have orders 24, 4, 4, 8, and 12,

respectively. In fact, these Galois groups are the full symmetric group S4, the Klein four

group V4, the cyclic group C4, the dihedral group D4 of order 8, and the alternating

group A4. This is a complete list of transitive subgroups of S4, so that every irreducible f

of degree 4 behaves as one of the five polynomials in the table. For reducible f there are

other possibilities.

The alternating group A4 contains, in addition to the identity element, eight elements

of type 1, 3, and three elements of type 2, 2. This explains the fractions 8
12 = 2

3 and 3
12 = 1

4

that we found for the polynomial f = X4 + 3X2 + 7X + 4.

With a little group theory one can deduce several charming consequences from Frobe-

nius’s theorem. For example, if f modulo p has a zero in Fp for every prime number p, then

f is either linear or reducible. Also, the number of irreducible factors of f over Z is equal

to the average number of zeroes of f modulo p in Fp, averaged over all p (in an obvious

way). Historically, the logic went in the opposite direction: the last statement was proved

by Kronecker in 1880 [23], and it formed the basis for Frobenius’s proof; it was Frobenius

who used group theory in his argument, not Kronecker.

In order to see a connection between the theorems of Dirichlet and Frobenius we

consider polynomials of the type f = Xm − 1, where m is a positive integer. We have

∆(Xm − 1) = (−1)m(m−1)/2mm, so we exclude the primes dividing m. For the remaining

primes p, one can determine the decomposition type of Xm − 1 modulo p by applying

elementary properties of finite fields (see [25, Theorem 2.47]). With m = 12 one finds in

this way that the decomposition type depends only on the residue class of p modulo 12,

as follows:

p ≡ 1 mod 12 : 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

p ≡ 5 mod 12 : 1, 1, 1, 1, 2, 2, 2, 2

p ≡ 7 mod 12 : 1, 1, 1, 1, 1, 1, 2, 2, 2

p ≡ 11 mod 12 : 1, 1, 2, 2, 2, 2, 2.

Notice that the four decomposition types corresponding to the four coprime residue classes

are pairwise distinct. Hence Frobenius’s theorem implies the special case m = 12 of Dirich-

let’s theorem. This does not work for all m. For example, with m = 10 we find in the same

way the following decomposition types:

p ≡ 1 mod 10 : 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

p ≡ 3 or 7 mod 10 : 1, 1, 4, 4

p ≡ 9 mod 10 : 1, 1, 2, 2, 2, 2.

The decomposition type depends only on p modulo 10, but Frobenius’s theorem does

not distinguish between the residue classes 3 mod 10 and 7 mod 10. Generally, Frobenius’s
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theorem for f = Xm − 1 is implied by Dirichlet’s theorem for the same m, but not

conversely.

One can formulate a sharper version of Frobenius’s theorem that for f = Xm − 1

does come down to Dirichlet’s theorem. To do this, one needs to answer a question that

is suggested by the connection between decomposition types and cycle patterns. Namely,

is it possible to associate in some natural manner, with each prime number p not dividing

∆(f), an element σp ∈ G such that the decomposition type of f modulo p is the same as

the cycle type of σp? The answer is almost affirmative: it can indeed be done, except that

σp, traditionally called the Frobenius substitution of p, is only well-defined up to conjugacy

in G. (Conjugate permutations have the same cycle pattern, so this should not bother us

too much.) Once the Frobenius substitution has been defined, one can wonder about the

density of the set of primes p for which σp is equal to a given element of G. This leads

to the desired common generalization of the theorems of Dirichlet and Frobenius. It was

formulated as a conjecture by Frobenius, and ultimately proved by Chebotarëv.

The construction of the Frobenius substitution is mildly technical, which forms the

main cause for the relative unpopularity of Chebotarëv’s theorem outside algebraic number

theory. In our exposition we shall take a few easily stated facts for granted.

Let first a prime number p be fixed, and denote by F̄p an algebraic closure of the

field Fp = Z/pZ. The fundamental tool in the theory of finite fields is the Frobenius map

Frob: F̄p → F̄p, which is defined by Frob(α) = αp. It clearly respects multiplication, and

it respects, miraculously, addition as well: it is a field automorphism of F̄p. It follows that

Frob permutes the zeroes of any polynomial g that has coefficients in Fp. Galois theory

for finite fields comes down to the statement that the cycle pattern of Frob, viewed as a

permutation of the zeroes of g, is the same as the decomposition type of g over Fp. This is

true for any polynomial g with coefficients in Fp that has no repeated factors. The proof

readily reduces to the case that g is irreducible, in which case one applies [25, Theorem

2.14]. The case of interest to us is g = (f mod p), with f as taken earlier.

The Frobenius map is an automorphism of the field F̄p of characteristic p, and the

Frobenius substitution σp is going to be an automorphism of the field K of characteristic

zero. To relate the two fields, we develop a way of taking elements of K = Q(α1, . . . , αn)

modulo p, so that the “zeroes of (f mod p)” can be regarded as the “(zeroes of f) mod p”.

By a place of K over p we mean a map ψ:K → F̄p ∪ {∞} for which

(i) ψ−1F̄p is a subring of K, and ψ: ψ−1F̄p → F̄p is a ring homomorphism;

(ii) ψx = ∞ if and only if ψ(x−1) = 0, for any non-zero x ∈ K.

Note that a new symbol like ∞ is forced upon us if we attempt to take elements of K

modulo p: we obviously want p mod p to be 0, which leads to (1/p) mod p = 1/0 = ∞.

The basic facts about places are as follows:

(a) a place of K over p exists, for any prime number p;

13



(b) if ψ, ψ′ are two places over p, then ψ′ = ψ ◦ τ for some τ ∈ G;

(c) if p does not divide ∆(f), then the element τ ∈ G in (b) is uniquely determined

by ψ and ψ′.

In the formulation we have chosen, these facts are hard to find in the textbooks. This

provides an attractive exercise for the reader who is not willing to take them for granted.

Let p be any prime number not dividing ∆(f), and let ψ be a place of K over p. It is

easily seen that ψ(α1), ψ(α2), . . . , ψ(αn) are the zeroes of (f mod p) in F̄p. Applying (b)

and (c) to ψ′ = Frob ◦ψ—which is also a place over p, with Frob(∞) = ∞—one finds that

there is a unique element Frobψ ∈ G for which

ψ ◦ Frobψ = Frob ◦ ψ.
This is going to be our Frobenius substitution. As an element of G, it is characterized by

ψ(Frobψ(x)) = Frob(ψ(x)) for all x ∈ K.

This shows that Frobψ permutes α1, α2, . . . , αn in the same way as Frob permutes the

zeroes ψ(α1), ψ(α2), . . . , ψ(αn) of (f mod p). Therefore the cycle pattern of Frobψ is

indeed equal to the decomposition type of f modulo p.

The Frobenius substitution Frobψ does in general depend on the choice of the place ψ

over p. By (b), any other place over p is of the form ψ ◦ τ , and one readily verifies from the

definition that Frobψ◦τ = τ−1 ◦ Frobψ ◦ τ ; that is, if ψ varies over the places over a fixed

prime p, then Frobψ ranges over a conjugacy class in G. We shall denote a typical element

of this conjugacy class by σp; it is well-defined only up to conjugacy, and it is called the

Frobenius substitution of p.

To illustrate the above, we consider again the polynomial f = Xm − 1. In this case

K is a cyclotomic field, obtained by adjoining a primitive mth root of unity ζ to Q. The

Galois group G has order ϕ(m), and it is naturally isomorphic to the group (Z/mZ)∗ of

units of the ring Z/mZ; here τ ∈ G corresponds to (a mod m) ∈ (Z/mZ)∗ if τ(ζ) = ζa.

Let p be a prime number not dividing m. Since the Galois group is abelian, the Frobenius

substitution σp is a well-defined element of G, not just up to conjugacy. To compute it, let

ψ be a place over p. Then η = ψ(ζ) is a primitive mth root of unity in F̄p. By definition

of σp, we have ψ(σp(x)) = ψ(x)p for all x ∈ K. Putting x = ζ, and letting a be such that

σp(ζ) = ζa, we find that ηa = ηp, so that a ≡ p mod m. In other words, if p is a prime

number not dividing m, then the Frobenius substitution σp is the element of G that under

the isomorphism G ∼= (Z/mZ)∗ corresponds to (p mod m).

The example just given allows us to reformulate Dirichlet’s theorem as follows: if

f = Xm − 1 for some positive integer m, then the set of prime numbers p for which σp

is equal to a given element of G has a density, and this density equals 1/#G; thus the

Frobenius substitution is equidistributed over the Galois group if p varies over all primes

not dividing m. Chebotarëv’s theorem extends this to all f .
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Chebotarëv’s density theorem. Let f be a polynomial with integer coefficients and

with leading coefficient 1. Assume that the discriminant ∆(f) of f does not vanish. Let

C be a conjugacy class of the Galois group G of f . Then the set of primes p not dividing

∆(f) for which σp belongs to C has a density, and this density equals #C/#G.

On first inspection, one might feel that Chebotarëv’s theorem is not much stronger than

Frobenius’s version. In fact, applying the latter to a well-chosen polynomial (with the same

splitting field as f), one finds a variant of the density theorem in which C is required to

be a division of G rather than a conjugacy class; here two elements of G belong to the

same division if the cyclic subgroups that they generate are conjugate in G. Frobenius

himself reformulated his theorem already in this way. The partition of G into divisions

is in general less fine than its partition into conjugacy classes, and Frobenius’s theorem

is correspondingly weaker than Chebotarëv’s. For example, (3 mod 10) and (7 mod 10)

belong to the same division of the group (Z/10Z)∗, and this is why Frobenius’s theorem

cannot distinguish between primes lying in these two residue classes.

We close this section with three typical elementary applications of Chebotarëv’s den-

sity theorem. For the proofs, it suffices to apply the theorem to appropriately constructed

fields, just as one obtains Dirichlet’s theorem by looking at cyclotomic fields.

The first is a result from algebraic number theory: the prime ideals of the ring of

integers of an algebraic number field are equidistributed over the ideal classes. The proof

requires the notion of a Hilbert class field.

The second has to do with quadratic forms: the set of primes p that can be written

as p = 3x2 + xy + 4y2, with x, y ∈ Z, has a density, which equals 1
5
. Results of this sort

depend on ring class fields.

The final one concerns base 10, like the result that we started with: the density of

the set of primes p for which 1
p
, when developed in the decimal system, has an odd period

length, exists and is equal to 1
3

(see [31]). This example depends, interestingly enough, on

infinitely many polynomials, namely those of the form f = X2k − 100 for all k ≥ 2.
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4. Class field theory and Chebotarëv’s theorem

The paper in which Frobenius proved his theorem, and formulated the conjecture that was

to become Chebotarëv’s density theorem, had already been written in 1880. He communi-

cated the results of his paper to Stickelberger and Dedekind, but delayed the publication

until Dedekind’s ideal theory had appeared in print. This occurred in 1894, and Frobenius’s

paper came out in 1896.

Frobenius’s conjecture was 42 years old when Chebotarëv proved it in 1922. During

these 42 years, algebraic number theory had gone through several developments: Dedekind

and Kronecker laid the foundations of the theory, Hilbert wrote his Zahlbericht, Weber

and Hilbert conceived the principal theorems of class field theory, and, shortly after World

War I, the Japanese mathematician Takagi supplied the proofs of these theorems (see [18]).

Class field theory describes all abelian extensions of a given algebraic number field.

It is, after more than 70 years, still considered to be a difficult theory. Its main results

are natural enough, but the proofs are long and winding; they have the character of a

verification rather than offering a satisfactory explanation of why the results are true.

One might think that class field theory provided Chebotarëv with a powerful tool for

his proof. Indeed, modern textbook treatments of Chebotarëv’s density theorem invariably

depend on class field theory (see for example [24, Chapter VIII, Section 4; 30, Chapter V,

Section 6]). Remarkably, the original proof did not. In fact, Chebotarëv was at the time

not yet familiar with class field theory; he proved his theorem essentially with his bare

hands. As we shall see, his proof was more important for class field theory than class field

theory was for his proof.

Chebotarëv’s argument was based on a new technique of his own invention, which

consisted of “crossing” arbitrary abelian extensions of number fields with cyclotomic ex-

tensions, obtained by adjoining a root of unity. Using no more than basic Galois theory,

Chebotarëv showed that this procedure reduced the general case of his theorem to the

case of (relative) cyclotomic extensions. He handled this case by way of a fairly standard

argument similar to the one Dirichlet had used. More details can be found in Schreier’s

lucid contemporary account [33] and in the appendix to this paper.

Chebotarëv published his density theorem first in Russian in 1923 [4], and next in

German in 1925 [5]. Also in 1923, Emil Artin published his reciprocity law [1, Satz 2].

This law is now considered to be the main result of class field theory, even though it is

missing from Weber’s and Hilbert’s original conception. Artin boldly formulated his law as

a theorem, but he admitted that he had no proof. He pointed out that his reciprocity law

would imply Frobenius’s conjecture [1, Abschnitt 7]. On February 10, 1925, Artin wrote

to Hasse [16, p. 23]:

Haben Sie die Arbeit von Tschebotareff in den Annalen Bd 95 gelesen? Ich konnte sie nicht

verstehen und mich auch aus Zeitmangel noch nicht richtig dahinterklemmen. Wenn die richtig
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ist, hat man sicher die allgemeinen Abelschen Reziprozitätsgesetze in der Tasche. Das Studium

der Arbeit haben wir hier auf das nächste Semester verschoben. Vielleicht haben Sie sie schon

gelesen und wissen also ob falsch oder richtig?

[Did you read Chebotarëv’s paper in the Annalen, vol. 95? I could not understand it, and lack

of time prevented me so far from properly concentrating on it. If it is correct, then one surely

has the general abelian reciprocity laws in one’s pocket. Here we postponed studying the paper

until the next semester. Perhaps you have read it already and know therefore whether it is right

or wrong?]

Artin’s intuition was correct. Chebotarëv himself writes [7, vol. 3, pp. 155–156]:

In the summer of 1927, when I studied class field theory, I became convinced that it was

possible to prove Artin’s reciprocity law by means of my device of taking composites with

cyclotomic extensions. When the outline of a proof began to dawn on me, albeit still rather

dimly, we returned from the dacha to the city [Odessa], and there I saw in the display case of

the library the issue of the Hamburger Abhandlungen with Artin’s paper [2]. My annoyance

was immediately mitigated when I saw that Artin mentions at the beginning of his paper that

a basic idea of his proof, that of taking composites with cyclotomic extensions, was borrowed

from my paper [5]. I was very touched by Artin’s meticulousness in matters of attribution, as

there is only an incomplete analogy between the ways in which the method of taking composites

with cyclotomic extensions is used in both papers.

Artin found his proof in July 1927 (see [16, pp. 31–32]). Chebotarëv was not far behind.

Chebotarëv’s technique is still a crucial ingredient of all known proofs of Artin’s

reciprocity law (e. g. [24, Chapter X, Section 2]). It is widely felt that it works for no

good reason, and that it is just as counter-intuitive as most proofs in class field theory.

To this complaint, Chebotarëv’s ghost might reply that it is our intuition and human

psychology that need to be replaced, and not his perfectly valid and effective argument.

Indeed, Neukirch [30] weaves Chebotarëv’s stratagem so closely through his presentation

of the theory that one can believe that one day it will be part of our way of thinking about

the reciprocity law.

On the other hand, Chebotarëv’s trick has disappeared from current treatments of his

density theorem: once the reciprocity law is available, one can deal directly with abelian

extensions, without the detour through cyclotomic extensions. The reader of the appendix

will agree that this approach, due to Deuring [12], is a very natural one; but it makes

Chebotarëv’s theorem appear harder than it actually is.
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Appendix

We give a proof of Chebotarëv’s theorem that follows his original strategy, if not his tactics. Refer-

ences are to [24]. We assume familiarity with basic algebraic number theory, including elementary

properties of zeta functions [VIII.1–3], but not including class field theory.

We prove a more general version of the theorem, in which the base field can be any algebraic

number field F instead of just Q. As in the case F = Q, a set of primes of F can have a density

[VIII.4]. Let K be a finite Galois extension of F , with Galois group G. There is again, for all

but finitely many primes p of F , a Frobenius substitution σp, which is an element of G that is

well-defined up to conjugacy.

Chebotarëv’s theorem. For any conjugacy class C of G, the density d(K/F,C) of the set of

primes p of F for which σp ∈ C exists and equals #C/#G.

The proof begins with a reduction to the abelian case. Let σ ∈ C, and put E = {x ∈ K : σx = x}.

Then K is a Galois extension of E with group 〈σ〉. A simple counting argument, carried out in

[VIII.4, proof of Theorem 10], shows that

(∗) the conclusion of the theorem holds for K, F , C if and only if it holds for K, E, {σ}.

Note that the Galois group 〈σ〉 of K over E is abelian.

Next one considers the case that K is cyclotomic over F , i. e., K = F (ζ) for some root of

unity ζ. This is the case that for F = Q yields Dirichlet’s theorem, and it is the proof of the

latter theorem that one imitates. Using the fact that the Frobenius substitution of a prime p

depends only on the norm of p modulo the order of ζ (cf. [VII.4, Example]), one expresses the

zeta function ζK(s) of K as a suitable product of L-functions of F . Then one looks at the order of

the pole in s = 1, and one finishes the proof with a traditional argument as in [VIII.4, Corollary

to Theorem 8].

One approach to deal with general abelian extensions is by showing that they share the

essential properties of cyclotomic extensions that are used. This is not easy—it is the content of

class field theory. It leads to Deuring’s proof of Chebotarëv’s theorem [VIII.4, Theorem 10].

Chebotarëv’s method does not need class field theory. It is as follows. Let K be abelian

over F , with group G and degree n. Let m be any prime number not dividing the discriminant

∆ of K over Q, and denote by ζ a primitive mth root of unity. Then the Galois group H of

F (ζ) over F is isomorphic to (Z/mZ)∗, and the Galois group of K(ζ) over F may be identified

with G × H. If a prime p of F has Frobenius substitution (σ, τ) in G × H, then it has Frobenius

substitution σ in G. Hence, writing dinf for lower density—defined as the density, but with lim

replaced by lim inf—we have dinf(K/F, {σ}) ≥
∑

τ∈H
dinf(K(ζ)/F, {(σ, τ)}). Now fix σ ∈ G and

τ ∈ H, and suppose that n divides the order of τ . Then the subgroups 〈(σ, τ)〉 and G × {1} of

G × H have trivial intersection. Therefore the field L of invariants of 〈(σ, τ)〉 satisfies L(ζ) =

K(ζ), so that the extension L ⊂ K(ζ) is cyclotomic. By what we proved in the cyclotomic case,

the density d(K(ζ)/L, {(σ, τ)}) exists and has the correct value. This is, by (∗), then also true

for d(K(ζ)/F, {(σ, τ)}), which consequently equals 1/(#G · #H). Summing over τ , one obtains

dinf(K/F, {σ}) ≥ #Hn/(#G ·#H), where Hn is the set of τ ∈ H of order divisible by n. Now it is

easy to see that as m ranges over all prime numbers not dividing ∆, the fraction #Hn/#H gets

arbitrarily close to 1 (use, for example, Dirichlet’s theorem to choose m ≡ 1 mod nk for large k).

Thus it follows that dinf(K/F, {σ}) ≥ 1/#G. Applying this to all other elements of the group,

one finds that the upper density dsup(K/F, {σ}) is at most 1/#G. Therefore the lower and the

upper density coincide, and the density equals 1/#G. This completes the proof of the theorem.
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