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1 Introduction

1.1 Motivation

Central in this thesis are countable state continuous time Markov decision
processes. Most problems treated here are related to the domain of queueing
theory. Queueing problems have been the main motivation for the conducted
research, in particular problems with unbounded transition rates. These rates
may be unbounded due to an infinite server pool (see Chapter 4), due to
reneging customers (see Chapter 5) or due to other reasons. Naturally, Markov
decision theory has a wider range of applications to which the results apply as
well.

Our interest is in structural properties of optimal policies in Markov decision
processes. In finite state problems the boundary can potentially break the
monotonicity of the structural properties. Therefore we focus on problems with
an infinitely countable state space, since optimal policies for these problems
exhibit better structural properties. Countable state problems can be seen as
a good approximation of problems with a large state space. Knowledge about
the structure of an optimal policy reduces the class of potentially optimal
policies.

There are several ways to derive such structures. One of the most powerful
methods is to use monotonicity properties of the value function and then show
the structure of an optimal policy via the optimality equation. This thesis
is concerned with the question of how to show such monotonicity properties.
For discrete time Markov decision processes the literature provides a satisfying
answer to this question, in the form of value iteration. However, this is not the
case for continuous time processes. Especially if a Markov decision process has
unbounded jump rates – so it does not allow uniformisation – there are serious
shortfalls in the theory. We refer to Section 2.1 for an extensive discussion of
the di�culties and the gaps in the literature.

Chapters 2 and 3 deal with some of these gaps, building towards a systematic
approach to derive structural properties. Chapters 4 and 5 use the developed
methods to analyse queueing models with unbounded transition rates. In
Chapter 6 we illustrate how di↵erent truncations can have an e↵ect on the
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1 Introduction

preservation of structural properties. In the framework of event based dynamic
programming, Chapter 7 provides a systematic overview of propagation results
that can be used for the analysis of rate truncated models.

1.2 Structure of the thesis

Below we provide a more detailed overview of this thesis.

Chapter 2 gives a systematic overview of the derivation of structural proper-
ties for both discrete and continuous time, and for both the ↵-discounted and
the average cost criteria. The emphasis in this chapter is to provide roadmaps
for such derivations. Essential to these roadmaps is the reduction to the ‘base
case’ model: discounted cost optimality in discrete time. We study conditions
justifying the vanishing discount approach for continuous time, a method to
obtain results for the average cost criterion by letting the discount factor van-
ish. Together with the results derived in Chapter 3 this makes the reduction
to the base case possible. This chapter is based on Blok and Spieksma [19].

Chapter 3 treats parametrised Markov processes in continuous time with a
discounted cost. Under mild drift conditions, we derive continuity of the value
function as a function of the parameter. The parameter may represent a per-
turbation of a Markov decision process, thus allowing that a Markov decision
process with unbounded rates may be a approximated by a sequence of uni-
formisable Markov decision processes. The framework of parametrised Markov
processes is illustrated by an application to the discounted cost version of the
server farm model of [1]. Chapter 3 is based on Blok and Spieksma [18].

In Chapter 4 we analyse the server farm model in more detail. The goal
is to reduce the cost for servers that are unnecessarily idle, while keeping the
penalty cost for not having any directly available servers upon customer arrival
low as well. The framework developed in Chapters 2 and 3 allows to extend
the results for the bounded rate server farm model of Adan et al. [1]. This
yields optimality of a switching curve under both the ↵-discounted and aver-
age cost criteria. The special structure of this problem allows to reduce the
problem to solving a nested sequence of finite rate and action space problems.
Using coupling methods additional properties of the model can be derived in-
cluding existence of a Blackwell optimal policy. This chapter is based on Blok
et al. [17].
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1.2 Structure of the thesis

Chapter 5 treats the K-competing queueing problem with customer aban-
donment. To analyse the model we use the truncation principle called smoothed
rate truncation invented by Bhulai et al. [11]. This advanced truncation tech-
nique has the ability to preserve structural properties after truncation. The
result of the analysis is optimality of a simple index policy that can be seen
as a generalisation of the classical cµ-rule. This chapter is based on Bhulai et
al. [10].

In Chapter 6 we discuss truncation techniques of a service allocation problem
in a tandem queue. A priority rule is proven to be optimal for certain para-
meter conditions. However, a numerical calculation using a straightforward
truncation exposes a strikingly di↵erent policy. We show how other trunca-
tions can preserve the optimal policy.

Chapter 7 provides a systematic list of propagation results in the frame-
work of event based dynamic programming. The propagation results form the
building blocks for propagation through value iteration. It requires the intro-
duction of operators describing the e↵ect of di↵erent events related to queues
with unbounded rates and to rate truncations. Most of the operators and
propagations have already appeared in Chapters 4 and 5 or in [16].

3





2 A roadmap to structures for
Markov decision processes

This chapter is based on Blok and Spieksma [19], submitted.

2.1 Introduction

The question how to rigorously prove structural results for continuous time
Markov decision problems (MDPs) with a countable state space and unboun-
ded jump rates (as a function of state) seems to be an assiduous task. As
a typical example one may consider the competing queues model with queue
dependent cost rates per customer and per unit time, where the objective is to
determine the server allocation that minimises the total expected discounted
cost or expected average cost per unit time. Both discounted and average
cost are known to be minimised by the cµ-rule, which prescribes to allocate
the server to the queue that yields the largest cost reduction per unit time.
A possible method to tackle this problem is to apply value iteration (VI) to
the uniformised discrete time MDP and show that optimality of the cµ-rule
propagates through the VI step.

If customer abandonment is allowed, the resulting MDP is a continuous
time MDP with unbounded jumps, since customers may renege at a rate that
is proportional to the number of customers present in each of the queues. In
order to apply VI, one needs to time-discretise the MDP. One way to associate
a discrete time MDP with this problem is by constructing the decision pro-
cess embedded on the jumps of the continuous time MDP. However, it is not
clear whether structural properties propagate through the VI step (cf. Sec-
tion 2.3.4). Another solution is to perturb or truncate the continuous time
MDP, so that it becomes uniformisable and then apply VI. A suitable trunca-
tion or perturbation needs to be invariant with respect to structural properties
of interest of the investigated MDP.

The first question is whether there exists generic truncation methods that
possess such an invariance property. Clearly, this can never be systematically
proved, since it depends on the properties that one wishes to prove. However,
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2 A roadmap to structures for MDPs

one might be able to formulate recommendations as to what kind of perturb-
ation methods perform well, with regard to such an invariance requirement.

The paper [27] studies two competing queues with abandonments, and a
problem-specific truncation is used. Later [11] has introduced a truncation
method, called smoothed rate truncation (SRT) that so far seems to work well
for problems where a simple bounded rate truncation (as in Section 2.3.4) does
not work. In addition, it can be used for numerical applications in bounded
rate optimisation problems (cf. Section 2.2.2). The SRT method has been
used in Chapter 5 for identifying conditions under which a simple index policy
is optimal in the competing queues problem with abandonments.

Consecutively, suppose that an application of the truncation method yields
truncated MDPs with optimal policies and a value function that have the
properties of interest. For instance, the above mentioned application of SRT to
the competing queues example with abandoning customers yields optimality
of an index policy for each truncated MDP. However, these properties still
have to be shown to apply to the original non-truncated problem. Thus,
convergence results are required that yield continuity of the optimal policy
and value function in the truncation parameter, in order to deduce the desired
results for the non-truncated MDP from the truncated ones.

A second question therefore is as to what kind of easily verifiable conditions
on the input parameters of the perturbed MDP guarantee convergence of the
value function and optimal policy to the corresponding ones of the original
unperturbed MDP. In [27], the authors had to prove a separate convergence
result apart from devising a suitable truncation and prove that VI propagates
the properties of interest. Apparently, theory based on a set of generic condi-
tions that can incorporate convergence within the optimisation framework was
lacking. This lack is precisely what has hampered the analysis of the server
farm model in [1], where the authors have restricted their analysis to show-
ing threshold optimality of a bounded rate perturbed variant of the original
model. Apparently no appropriate tools for deducing threshold optimality of
the original unbounded problem from the results for the perturbed one were
available to them.

A third major problem occurs in the context of the average cost criterion.
In particular, VI is not always guaranteed to converge. This is true under
weak assumptions in discounted cost problems, however, in average cost prob-
lems there are only limited convergence results (cf. Section 2.2.3). One of
these requires strong drift conditions, that do not allow transience under any
stationary deterministic policy. However, often this is not a convenient require-
ment. One may get around this di�culty by a vanishing discount approach,
which analyses the expected average cost as a limit of expected ↵-discounted
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2.1 Introduction

costs as the discount factor tends to 0 (or 1, depending on how the discount
factor is modelled).

For a model like the competing queues model with abandonments, a mul-
tistep procedure to obtain structural results for the average cost problem then
would be as follows. First, consider the ↵-discounted cost truncated problem.
Structural results for the ↵-discounted cost non-truncated problem follow, by
taking the limit for the truncation parameter to infinity. Finally, taking the
limit of the discount factor to 0 hopefully yields the final structural results for
the original continuous time average cost problem.

For some of these steps theoretical validation has been provided for in the
literature, but not for all, and not always under conditions that are easily
checked. The main focus of this chapter is to fill some gaps in the described
procedure, whilst requiring conditions that are formulated in terms of the input
parameters. Based on the obtained results, we aim to provide a systematic and
feasible approach for attacking the validation of structural properties, in the
spirit of the multistep procedure sketched above. We hope that this multistep
procedure will also be beneficial to other researchers as a roadmap for tackling
the problem of deriving structural results for problems modelled as MDPs.

We do not address the methods of propagating structures of optimal policies
and value function through the VI step. Such methods belong to the domain
of ‘event based dynamic programming’, and they have been discussed thor-
oughly in [45], with extensions to SRT and other rate truncations in [16] and
Chapter 7. Furthermore, we do not include an elaborate evaluation of closely
related results from the literature. Some detailed comments has been included
in this chapter, whenever we thought it relevant.

Another omission in this work is the study of perturbed MDPs with the
average cost criterion. However, the conditions required for achieving the
desired continuity results as a function of a perturbation parameter are quite
strong. Therefore a more recommendable approach would be the one we have
developed in this chapter, using the vanishing discount approach. As a last
remark: we generally restrict to the class of stationary policies, and not history-
dependent ones. Especially the results quoted for discrete time MDPs apply to
the larger policy class. In continuous time MDPs allowing history-dependent
policies causes extra technical complications that we do not want to address
in this work.

A short overview of the chapter content is provided next. In Section 2.2 we
discuss discrete time, countable state MDPs, with compact action sets. First,
the ↵-discount optimality criterion is discussed, cf. Section 2.2.1. This will be
the base case model, to which the MDP problems might have to be reduced
in order to investigate its structural properties. We therefore describe it quite
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2 A roadmap to structures for MDPs

elaborately. In addition, we have put it into a framework that incorporates
truncations or perturbations. We call this a parametrised Markov process. In-
terestingly enough, ‘standard’ but quite weak drift conditions introduced for
↵-discounted cost MDPs in discrete time, allowed this extension to paramet-
rised Markov processes, with no extra e↵ort and restriction. It incorporates
the finite state space case, elaborated on in the seminal book [26].

In Section 2.2.2 we provide a discussion of SRT, as a method for numerical
investigation of structural properties of a countable state MDP. The condi-
tions that we use are a weak drift condition on the parametrised process, plus
reasonable continuity conditions. This has been based on the work in [47, 75]
for MDPs.

In Section 2.2.3 we study the expected average cost criterion, whilst restrict-
ing to non-negative cost, i.e. negative dynamic programming. This restriction
allows transience, and the analysis follows [21], in the form presented by [63].
Basically, the conditions imposed require the existence of one ‘well-behaved’
policy, and a variant of inf-compact costs. The latter ensures that optimal
policies have a guaranteed drift towards a finite set of low cost states. The
contribution of these works is that they validate the vanishing discount ap-
proach, thus allowing to analyse the discrete time average cost problem via
the discrete time ↵-discounted cost problem.

Then we turn to studying continuous time MDPs in Section 2.3. First the
↵-discounted cost problem is considered. The drift conditions on parametrised
discrete time Markov processes have a natural extension to continuous time.
The results listed are based on Chapter 3, but the literature contains quite
some work in the same spirit within the framework of MDPs with more gen-
eral state spaces, cf. e.g. [35, 53], and references therein. A closely related
perturbation approach has been studied in [52]. Since perturbations are incor-
porated in the parametrised framework, the approach allows to study bounded
jump perturbations. Indeed, optimal policies and value functions are continu-
ous as a function of the perturbation parameter. In this way, Chapter 3 obtains
threshold optimality of the original unbounded ↵-discounted cost variant of the
server farm model studied in [1].

Finally, for the expected average cost criterion, we use the natural general-
isation of the discrete time conditions. Although closely related to analyses in
[35, 53] and references therein, as far as we know this form has not appeared
yet in the literature. The vanishing discount approach is validated in the
same way as was done for the discrete time MDP. This reduces the problem of
studying structural properties for average cost MDPs, satisfying the proposed
conditions, to analysing a continuous time ↵-discounted cost MDP, for which
the solution method has already been described. As a consequence, also aver-
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2.2 Discrete time Model

age cost threshold optimality for the above mentioned server farm model from
[1] follows from ↵-disount optimality of a threshold policy, cf. Chapter 4.

Dispersed through the chapter are roadmaps for attacking the validation of
structural properties. These are summarised in Section 2.3.4.

2.2 Discrete time Model

In this section we will set up a framework of parametrised Markov processes
in discrete time. With an extra assumption – the product property – a para-
metrised Markov process reduces to a discrete time MDP. However, treating
this in the parametrised framework allows for results on perturbations or ap-
proximations of MDPs as well. Notice that instead of the usual nomenclature
‘Markov chain’ for a Markov process in discrete time, we will consistently use
‘Markov process’, whether it be a process in discrete or continuous time.

Let � be a parameter space. Let S denote a countable space. Each para-
meter � 2 Phi is mapped to an S⇥S stochastic matrix P (�), and a cost vector
c(�) : S ! . We denote the corresponding elements by pxy(�), x, y 2 S and
cx(�), x 2 S. If f : S ! , then P (�)f is the function with value

P (�)fx =
X

y

pxy(�)fy

at point x 2 S, provided the integral is well-defined.
To transition matrix P (�) one can associate a Markov process on the path

space ⌦ = S

1. Given an initial distribution ⌫ on S, the Kolmogorov consist-
ency theorem (see e.g. [14]) provides the existence of a probability measure
P�

⌫
on ⌦, such that the canonical process {Xn}n on ⌦, defined by

Xn(!) = !n

is a Markov process with transition matrix P (�), and probability distribution
P�
⌫
. The corresponding expectation operator is denoted by E�

⌫ . To avoid
overburdened notation, we have put the dependence on the parameter � in
the probability and expectation operators, and not in the notation for the
Markov process. We further denote P

(n)(�) for the n-th iterate of P (�),
where P

(0)(�) = I equals the S⇥ S identity matrix.
We assume the following basic assumption.

Assumption 2.2.1. The following conditions hold:

i) the parameter space � is locally compact;
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2 A roadmap to structures for MDPs

ii) � 7! pxy(�) continuous on � for each x, y 2 S;

iii) � 7! cx(�) is continuous on � for each x 2 S.

To incorporate MDPs in this set up, we use the following concept.

Definition 2.2.1. Let �0
⇢ �, inheriting the topology on �. We say that

{P (�), c(�)}�2�

0 has the product property with respect to �0 if

i) there exist compact sets �0
x, x 2 S, such that �0 =

Q

x2S �x; then �0 is
compact in the product topology;

ii) for any �,�

0
2 �0, x 2 S with �x = �

0
x, it holds that

• ( P (�))x· = ( P (�0))x·, where ( P (�))x· stands for the x-row of
P (�);

• cx(�) = cx(�0).

For notational convenience we will simply say that �0 has the product prop-
erty. Under the product property, with a slight abuse of notation we may write
cx(�x) and pxy(�x) instead of cx(�) and pxy(�). In case the dependence on �

is expressed in the probability or expectation operators, we write cX
n

instead
cX

n

(�).

Remark 2.2.1. If � has the product property, then the parametrised Markov
process is an MDP. The set � may represent the collection of deterministic
stationary policies, and we will denote it by D. In this case Dx is the action
set in state x 2 S.

For any x 2 S, let ⇡x by a probability distribution on Dx. Then ⇡ = (⇡x)x is
a stationary, randomised policy. The collection ⇧ of all stationary randomised
policies can be viewed as a parameter set having the product property as well.
We will not consider this explicitly, but all discussed results cover this case as
well.

Next we define the various performance measures and optimality criteria
that we will study. Lateron we will provide conditions under which these are
well-defined, and optimal polices exist.

For 0 < ↵ < 1, define the expected total ↵-discounted cost value function
v

↵(�) under parameter � 2 � by

v

↵
x (�) = E�

x

h

1
X

n=0

(1� ↵)ncX
n

i

, x 2 S. (2.1)
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2.2 Discrete time Model

Notice that the discount factor is taken to be 1�↵. Usually the discount factor
is taken to equal ↵ instead. Our choice here allows a more direct analogy with
the continuous time case.

Next let �0
⇢ � have the product property. Define the minimum expected

total ↵-discounted cost v

↵ w.r.t. �0 by

v

↵
x = inf

�2�

0
{v

↵
x (�)} , x 2 S.

If for some � 2 �0 it holds that v

↵ = v

↵(�), then � is said to be ↵-discount
optimal (in �0).

The expected average cost g(�) under parameter � 2 � is given by

gx(�) = lim sup
N!1

1

N + 1
E�
x

h

N
X

n=0

cX
n

i

, x 2 S.

If �0
⇢ � has the product property, the minimum expected average cost

w.r.t. �0 is defined as

gx = inf
�

{gx(�)} , x 2 S.

If for � 2 �0 it holds that g(�) = g, then � is called average optimal (in �0).
A stronger notion of optimality, called Blackwell optimality, applies more

often than is generally noted. We define it next (see also [23]).
Let �0

⇢ � have the product property. The policy �

⇤
2 �0 is Blackwell

optimal w.r.t. �0, if for any x 2 S, � 2 �0, there exists ↵(x,�) > 0, such that
v

↵
x (�

⇤)  v

↵
x (�) for ↵ < ↵(x,�). Additionally, �⇤ is strongly Blackwell optimal

if infx2S,�2�

0
↵(x,�) > 0.

2.2.1 Discounted cost

To determine the discounted cost v↵ an important instrument is the (discrete
time) discount optimality equation (DDOE)

ux = inf
�
x

2�

x

n

cx(�x) + (1� ↵)
X

y2S

pxy(�x)uy

o

, x 2 S, (2.2)

for �0 =
Q

x2S �0
x having the product property. In this subsection we show that

mild conditions guarantee the existence of a unique solution to this equation
in a certain space of functions. Moreover, the inf is a min, and a minimising
policy in (2.2) is optimal in �0 (and even optimal within the larger set of
randomised and non-stationary policies generated by �0).

The condition used here has been taken from [47, 75].
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2 A roadmap to structures for MDPs

Definition 2.2.2. Let � 2 . The function V : S ! (0,1) is called a
(�,�)-drift function if P (�)V  �V for all � 2 �. Note that ‘’ stands for
component-wise ordering.

Definition 2.2.3. The Banach space of V -bounded functions on S is denoted
by `

1(S, V ). This means that f 2 `

1(S, V ) if f : S ! and

||f ||V = sup
x2S

|fx|

Vx
< 1.

Assumption 2.2.2 (↵). i) There exist a constant � < 1/(1 � ↵) and a
function V : S ! (0,1) such that V is (�,�)-drift function and that
� 7! P (�)V is component-wise continuous;

ii) cV := sup� ||c(�)||V < 1.

The above assumption allows to rewrite (2.1) as

v

↵(�) =
1
X

n=0

(1� ↵)n P

(n)(�)c(�).

The following lemma is quite straightforward to prove. For completeness we
give the details.

Lemma 2.2.1. Suppose that the Assumptions 2.2.1 and 2.2.2 (↵) hold, then
� 7! v

↵(�) is component-wise continuous and v

↵(�) is the unique solution in
`

1(S, V ) to
u = c(�) + (1� ↵) P (�)u. (2.3)

Proof. First notice that v↵(�) 2 `

1(S, V ), since

|v

↵(�)| = |

1
X

n=0

(1� ↵)n P

(n)(�)c(�)| 
1
X

n=0

(1� ↵)n P

(n)(�)cV · V

 (1� ↵)n�n
cV · V =

cV

1� (1� ↵)�
V.

Next, v↵(�) is a solution to Eq. (2.3), since

(1� ↵) P (�)v↵(�) = (1� ↵) P (�)
1
X

n=0

(1� ↵)n P

(n)(�)c(�)

=
1
X

n=1

(1� ↵)n P

(n)(�)c(�) = v

↵(�)� c(�).

12



2.2 Discrete time Model

Let f = (fx)x 2 `

1(S, V ) be any solution to Eq. (2.3), then

v

↵
x (�)� fx = (1� ↵)

X

y

pxy(�)(v
↵
y (�)� fy)

= (1� ↵)n
X

y

p

(n)
xy (�)(v↵y (�)� fy).

Hence,

|v

↵
x (�)� fx|  (1� ↵)n

X

y

p

(n)
xy (�)|v↵x (�)� fx|

 (1� ↵)n P

(n)(�)Vx · (cV + ||f ||V )

 (1� ↵)n�n
Vx · (cV + ||f ||V ) ! 0, n ! 1.

This implies f = v

↵, hence v

↵ is the unique solution to Eq. (2.3) in `

1(S, V ).
Finally, to show � 7! v

↵
x (�), x 2 S, is continuous, notice that by assumption

� 7! P (�)V is component-wise continuous. It follows that � 7! P

(n)(�)V
component-wise continuous. Since P

(n)(�)V  �

n
V , the dominated conver-

gence theorem yields that � 7!

P1
n=0

(1 � ↵)n P

(n)(�)V < 1 component-
wise continuous. Further, since � 7! c(�) is component-wise continuous and
|c(�)|  cV · V , an application of the generalised dominated convergence
theorem ([58, Proposition 11.18]) implies component-wise continuity of � 7!

P1
n=0

(1� ↵)n P

(n)(�)c(�) = v

↵(�).

The following theorem is a well-known result by Wessels [75].

Theorem 2.2.2 (cf. Wessels [75]). Suppose that �0 =
Q

x �
0
x has the product

property and that Assumptions 2.2.1 and 2.2.2 (↵) hold. Then v

↵ is the unique
solution in `

1(S, V ) to the discounted optimality equation (DDOE) (2.2).
Moreover, the infimum is attained as a minimum. For any �

⇤ = (�⇤
x)x 2 �0,

for which �

⇤
x achieves the minimum in Eq. (2.2) for all x 2 S, it holds that

v

↵(�⇤) = v

↵ and �

⇤ is (↵-discounted) optimal in �0.

The versatile applicability of (�,�)-drift functions is illustrated in Chapters 4
and 5, and the example below.

Example 2.2.1. First note for the bounded cost case, that the function Vx ⌘ 1
is an appropriate function satisfying Assumption 2.2.2(↵).

As a simple example, consider a discrete time single server queue, where the
probability of an arrival in the next time slot is p 2 (0, 1). The system state
represents the number of customers in the system, hence, the state space is

13



2 A roadmap to structures for MDPs

S = {0, 1, . . .}. The probability of a service completion in the next time slot
depends on a parameter � = {�x}

1
x=1

, where �x stands for the probability of
a service completion in the next time-slot, independent of arrivals, when the
system state is x. The parameter � stands for an a priori determined service
control. The parameter space � maybe any compact subset of {0}⇥ [0, 1]1.
To any fixed parameter �, one may associate a Markov process, representing

the system state at any time t, with transition probabilities given by

pxy(�) =

8

<

:

p(1� �x), y = x+ 1
(1� p)�x, y = (x� 1) {x 6=0}
1� p� �x + 2p�x, y = x.

As an appropriate (�,�)-drift function, we may choose Vx = e

✏x, with ✏ > 0
to be determined below:

X

y

pxy(�)e
✏y = (1� p)�xe

✏(x�1) + (1� (1� p)�x � p(1� �x))e
✏x

+p(1� �x)e
✏(x�1)

= e

✏x
⇣

1 + p(1� �x)(e
✏
� 1) + (1� p)�x(1� e

�✏)
⌘

 e

✏x
�

1 + p(e✏ � 1)
�

.

For ✏ = 0, the coe�cient of e✏x in the above equals 1. Since 1/(1 � ↵) > 1,
one can always choose ✏ small enough so that

� := e

✏x
�

1 + p(e✏ � 1)
�

<

1

1� ↵

.

As a consequence Assumption 2.2.2(↵),(i) is satisfied. The example shows, the
existence of a (�,�)-drift function does not impose any restrictions on the class
structure of the associated Markov processes and transience is allowed as well.
Moreover, it is often a good and simply checked choice to take V exponential.
Since generally cost structures are linear or quadratic as a function of state,
they are dominated by exponential functions. Thus, they fit in the framework
discussed here.
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2.2 Discrete time Model

Value Iteration A very important algorithm to calculate v

↵ is the value
iteration algorithm (VI), originally due to Bellman [9].

Algorithm 1 VI for an ↵-discounted cost ✏-optimal policy

1. Select v↵,0 2 `

1(S, V ), specify ✏ > 0, set n = 0.

2. For each x 2 S, compute v

↵,n+1

x by

v

↵,n+1

x = min
�
x

2�

0
x

n

cx(�x) + (1� ↵)
X

y2S

pxy(�x)v
↵,n
x

o

, (2.4)

and let
�

n+1

2 argmin
�2�

0
{c(�) + (1� ↵) P (�)v↵,n}.

3. If

||v

↵,n+1

� v

↵,n
||V 

1� (1� ↵)�

2(1� ↵)�
✏,

then put v

✏ := v

↵,n+1, �✏ := �

n+1, stop. Otherwise increment n by 1
and return to step 2.

Theorem 2.2.3 (cf. [75], [54, Theorem 6.3.1]). Suppose that �0 =
Q

x �
0
x ⇢ �

has the product property and that Assumptions 2.2.1 and 2.2.2 (↵) hold. Let
let v

↵,0
2 `

1(S, V ) and ✏ > 0. Let {v

↵,n
}n2 satisfy Eq. (2.4) for n � 1.

Then the following hold.

i) limn!1 ||v

↵
� v

↵,n
||V = 0, in particular,

||v

↵
� v

↵,n
||V 

1

1� (1� ↵)�
||v

↵,n+1

� v

↵,n
||V



((1� ↵)�)n

1� (1� ↵)�
||v

↵,1
� v

↵,0
||V .

Any limit point of the sequence {�

n
}n is an ↵-discount optimal policy.

ii) v

✏ is an ✏/2-approximation of v↵, in other words, ||v↵ � v

↵,n+1

||V 

✏
2

.

iii) �

✏ is an ✏-optimal policy, in other words, ||v↵ � v

↵(�✏)||V  ✏.
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2 A roadmap to structures for MDPs

Proof. The proof of Theorem 2.2.3 (i) is straightforward using that

v

↵
� v

↵,n = lim
N!1

N
X

k=n

(v↵,k+1

� v

↵,k).

The bounds are somewhat implicit in [75]. They are completely analogously
to the bounds of e.g. [54, Theorem 6.3.1] for the bounded reward case, with �

replaced by (1� ↵)�. The derivation is similar.

Remark 2.2.2. The reader may wish to point out that a solution to the ↵-
DDOE yielding an ↵-discount deterministic policy exists without any further
conditions in the case of non-negative cost (negative dynamic programming, cf.
[70]) and a finite action space per state. Also VI converges provided v

0

⌘ 0, al-
though no convergence bounds can be provided. If the action space is compact,
additional continuity and inf-compactness (cf. [30, Corollary 5.7]) properties
are necessary for the existence of a stationary deterministic policy attaining
the minimum in the ↵-DDOE. It is not clear to us how these conditions could
be extended in order to include parametrised Markov processes.

Notice further, that unfortunately in general there is no unique solution to
the ↵-DDOE (cf. [30], [63, Section 4.2]). Using norm conditions as in this
chapter, allows to identify the value function as the unique one in the Banach
space of functions bounded by V (cf. Theorem 2.2.2). In the non-negative
cost case, the value function is the minimum solution to the ↵-DDOE (see [63,
Theorem 4.1.4]).

In case of a finite state space, VI can be numerically implemented. In the
case of a countable space, its use is restricted to the derivation of structural
properties of the value function and ↵-discount optimal policy. Structural
properties such as non-decreasingness, convexity, etc. can be used to show for
instance that a threshold policy or an index policy is optimal.

To prove properties via VI, first select a function v

0

possessing the properties
of interest. Then show by induction that v

↵,n has this property for all n.
Under the assumptions of Theorem 2.2.3 one has v↵,n ! v

↵, for n ! 1, and
so we may conclude v

↵ has this property as well. The existence of an optimal
policy with desired properties can be directly derived from the structure of the
value function v

↵ in combination with the ↵-DDOE. Alternatively, this can be
deduced from the fact that since each �

n has these properties, any limit point
has.

The main reference on the propagation of structural properties through the
VI induction step Eq. (2.4) is [45]. The technique discussed in this mono-
graph is called event based dynamic programming, and it presents a systematic
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2.2 Discrete time Model

framework of propagations of the desired structural properties for operators
that represent events. We have developed new operators in [11, 16], as well
as in Chapters 4, 5 and 7, for special perturbations or truncations of non-
uniformisable MDPs, as described below. In Section 2.3.4 we present an ex-
ample.

2.2.2 Approximations/Perturbations

Next we focus our attention to parameters capturing a perturbation of the
MDP. This parameter set should capture the collection of deterministic policies
D, as well as a perturbation set N . This perturbation can have multiple inter-
pretations, depending on the context. It can be a finite state approximation,
or it can represent some uncertainty in the input parameters. Put � = N ⇥D.
Notice, that the set {N} ⇥ D ⇢ � need not automatically have the product
property, N 2 N .

The following continuity result follows directly from Lemma 2.2.1.

Corollary 2.2.4 (to Lemma 2.2.1 and Theorem 2.2.2)). Suppose that As-
sumptions 2.2.1, and 2.2.2 (↵) hold. Further assume that {N} ⇥ D has the
product property, for N 2 N . Then,

i) limN!N
0

v

↵(N) = v

↵(N
0

);

ii) any limit point of {�⇤N}N!N
0

is optimal in {N

0

}⇥D.

Without the existence of a (�,�)-drift function bounding the one-step cost
uniformly in the parameter, the above convergence result may fail to hold.

Example 2.2.2. (cf. [63, Example 4.6.1]) Let the parameter set be given by
N = {3, 4, . . . ,1}, and state space S = {0, 1, . . .} for N 2 N . The transition
probabilities are as follows.

pxy(1) =
1

2
y 2 {0, x+ 1},

and for N < 1

pxy(N) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1

2

, x 6= N � 1, N, y = 0
1

2

�

1

N , x 6= N � 1, N, y = x+ 1
1

N , x 6= N, y = N

1� 1

N , x = N � 1, y = 0

1, x = y = N.
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2 A roadmap to structures for MDPs

Further let ↵ <

1

2

and define cx(N) = x

2 for N  1. The calculations in [63,
Example 4.6.1] show that v↵

0

(1) < limN!1 v

↵
0

(N) = 1. It is simply checked
that any (�,�)-drift function can at most be linear. Indeed for 1 < N < 1,
it must hold that

1

2
V

0

+ (
1

2
�

1

N

)V
2

+
1

N

VN  �V

1

,

leading to the requirement that VN  N�V

1

, hence supN,x
c
x

(N)

V
x

= 1.

Literature related to Corollary 2.2.4 can be found in [54, Section 6.10.2] and
[63, Section 4.6]. Both consider finite space truncations. The first reference
further assumes the existence of a (�,�)-drift function without continuity, but
with an additional tail condition and a prescribed truncation method. These
conditions are implied by ours.

The second reference considers minimisation of non-negative costs, as well as
a finite action space per state. No assumption on the truncation method needs
to be made if there is a uniform bound on the costs. If the costs are allowed to
be unbounded as a function of state, then conditions on the truncation method
have to be made. A related setup to the one presented in the present paper is
discussed in [52, Theorem 3.1], but the conditions imposed are (slightly) more
restrictive (cf. Remark 3.5.2).

Example 2.2.3. The above example is a case where neither the conditions
from [63] are met, nor the ones presented in this paper.

However, the conditions in the approximating sequence method of [63] are
not even fulfilled, if we change the cost function to cx(N) = x for all N 

1, x 2 S. On the other hand, the function V defined by Vx = x, x 2

S, is a (�,N )-drift function, for which the conditions of Corollary 2.2.4 are
trivially met. Hence, the set-up in this paper can be applied and we find that
limN!1 v

↵
0

(N) = v

↵
0

(1) < 1.

Type of perturbations Although any perturbation satisfying the conditions
of Corollary 2.2.4 yields (component-wise) continuity of the value function as
a function the perturbation parameter, not any perturbation is desirable in
terms of structural properties.

To explain this, consider the following server allocation problem, see Fig-
ure 2.1. Customers arrive at a service unit according to a Poisson(�) process.
Their service time at unit 1 takes an exponentially distributed amount of time
with parameter µ

1

. After finishing service in unit 1, with probability p

1

an
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2.2 Discrete time Model

Figure 2.1: Tandem queue

additional exp(µ
2

) amount of service is requested in unit 2, and with probab-
ility 1 � p

1

the customer leaves the network, p
1

2 (0, 1). There is only one
server who has to be allocated to one of the units. We assume that idling
is not allowed. The goal is to determine an allocation policy that minimises
the ↵-discounted holding cost. The holding cost per unit time is given by the
number of customers in the system.

Clearly this problem can be modelled as a continuous time MDP. However,
it is equivalent to study the associated uniformised discrete time system (cf.
Section 2.3.1). The data of this discrete time MDP are as follows. Denote
by Xn the number of customers in unit 1 and unit 2 respectively, at time n,
n = 0, 1, . . .. Then S = Z

2

+

, where state (x
1

, x

2

) represents that x
1

customers
are present in unit 1 and x

2

in unit 2. By uniformisation we may assume that
�+µ

1

+µ

2

= 1, and so the rates represent probabilities. Independently of the
allocation decision, a cost cx(�) = x

1

+ x

2

is incurred.

Suppose that the state equals x. If both units are non-empty, then either
unit 1 is served (decision �x = 1) or unit 2 (decision �x = 2). If one of the
units is empty, but not both, the server will be allocated to the non-empty unit
during the next time-slot. This leads to the following transition probabilities:

pxy(�x) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

� y = (x
1

+ 1, x
2

)
p

1

µ

1

x

1

> 0, y = (x
1

� 1, x
2

+ 1), �x = 1
(1� p

1

)µ
1

x

1

> 0, y = (x
1

� 1, x
2

), �x = 1
µ

2

x

2

> 0, y = (x
1

, x

2

� 1), �x = 2

1�
X

w 6=x

pxw(�x) y = x.

Let the discount factor ↵ be given. It is easily verified that there exists a
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2 A roadmap to structures for MDPs

(�,D)-drift function V : S !

+

of the form

V (x, y) = e

✏
1

x
1

+✏
2

x
2

, (2.5)

with � < 1/(1�↵) and ✏

1

, ✏

2

> 0. Assumptions 2.2.1 and 2.2.2 (↵) are satisfied
for V and � = D and so the results of Theorem 2.2.2 apply.

Assume that (1� p

1

)µ
1

> µ

2

. By using VI, event based dynamic program-
ming yields that allocating the server to unit 1, when non-empty, is ↵-discount
optimal. Indeed, this gives a larger cost reduction per unit time due to cus-
tomer service completions than allocating to unit 2. Thus, noticing that the
cost rate per unit time and per server unit are equal to 1, this allocation policy
is a generalised cµ-rule. Let us refer to this policy as AP1 (allocation to unit 1
policy).

Since this is true for any 0 < ↵ < 1, AP1 is strongly Blackwell optimal. We
therefore expect to see this structure in numerical experiments. To perform
such an experiment, one needs truncate the state space.

Straightforward perturbation A straightforward truncation can be as fol-
lows. Choose M,N 2 Z

+

, N,M > 0. At the truncation boundary {x |x

1

=
N, and/or x

2

= M}, transitions leading out of the rectangle {x |x
1

 N, x

2



M} are redirected back as follows. New arrivals in states {x|x
1

= N} are re-
directed to the same state. A service completion of a type 1 customer in states
{x|x

2

= M} has a success probability of 1, that is, it remains in states with
x

2

 M . The perturbation set is N =
�

(N,M) |N,M 2 {1, 2, . . .}
 

. Also in
this case, one can easily check that there exist ✏

1

, ✏

2

> 0 and � 2 , such that
V from (2.5) is a (�,N ⇥D)-drift function for ✏

1

, ✏

2

small enough. Moreover,
Assumptions 2.2.1 and 2.2.2(↵) are satisfied for this V and for � = N ⇥ D.
Note that the states outside the rectangle {x |x

1

 N, x

2

 M} have be-
come transient, and so the choice of actions in those states does not a↵ect the
optimal actions within the rectangle.

Let �⇤ be ↵-discount optimal for D, and �

N,M for {(N,M)}⇥ D. Then by
virtue of Lemma 2.2.1

v

↵(�N,M ) ! v

↵(�⇤), (N,M) ! 1,

and any limit policy is optimal. However, choosing the following parameters:
� = 0.102, µ

1

= 0.870, µ

2

= 0.028, p

1

= 0.22 and N = M = 300 leads to
the optimal policy in the rectangle shown in the picture below. The grey color
stands for server allocation to unit 2.
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2.2 Discrete time Model

Figure 2.2: Standard Truncation

This optimal policy is very far from being the index policy AP1, although
the truncation size seems large enough to exhibit an optimal policy that is
‘closer’ to AP1. One starts to wonder what the e↵ect of such a straightforward
truncation has been on numerical approximations of other models studied in
the literature.

Smoothed rate truncation (SRT) SRT is a perturbation introduced in [11],
where ‘outward bound’ probabilities are linearly decreased as a function of
state. This creates a perturbed MDP with a finite closed class under any
policy. It is not meaningful to try and give a complete definition, but the
idea is best illustrated by specifying possible SRT’s for the above example.
The experience with SRT so far is that it leaves the structure of an optimal
policy intact (cf. [11] and 5). On the other hand, since it perturbs transition
probabilities from all states in the finite closed class, the value function itself
seems better approximated by a straightforward cut-o↵, such as the one as
described above.

One can apply SRT as follows. Fix N,M . Then we put

pxy(N,M, �x) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

�(1� x
1

N )+ y = (x
1

+ 1, x
2

)

p

1

µ

1

�

1� x
2

M

�

+

x

1

> 0, y = (x
1

� 1, x
2

+ 1), �x = 1
(1� p

1

)µ
1

+
p

1

µ

x
2

M {x
2

M} x

1

> 0, y = (x
1

� 1, x
2

), �x = 1
µ

2

x

2

> 0, y = (x
1

, x

2

� 1), �x = 2

1�
X

w 6=x

pxw(N,M, �x) y = x.
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2 A roadmap to structures for MDPs

Again, the function V from (2.5) is a (�,N ⇥ D)-drift function satisfying
Assumptions 2.2.1 and 2.2.2(↵).

The following picture illustrates the numerical results with N = M = 35.
This confirms the results in [11] and Chapter 5, suggesting that SRT allows to
obtain information on the structure of an optimal policy for an infinite state
MDP.

Figure 2.3: Smoothed Rate Trunction

Now in both the truncated and the non-truncated MDP AP1 is optimal. We
have not proven this result, but we did so for another SRT (cf. Chapter 6) that
is not based on a rectangle but on a triangle. Using a triangular truncation
requires less events to be truncated and so the proofs are simpler. Notice, that
the above also illustrates that smooth truncations are not uniquely defined,
but di↵erent choices may be possible.

Fix N . Then we put

pxy(N, �x) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�(1� x
1

+x
2

N )+, y = (x
1

+ 1, x
2

)
p

1

µ

1

x

1

> 0, y = (x
1

� 1, x
2

+ 1), �x = 1
(1� p

1

)µ
1

x

1

> 0, y = (x
1

� 1, x
2

), �x = 1
µ

2

x

2

> 0, y = (x
1

, x

2

� 1), �x = 2

1�
X

w 6=x

pxw(N, �x) y = x.

Using event based dynamic programming (with special SRT operators), Co-
rollary 6.3.5 shows that AP1 is optimal, for each N 2 .
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2.2 Discrete time Model

2.2.3 Average cost

Establishing a framework for the average cost optimality criterion is more dif-
ficult than for the discounted cost case. There are several cautionary examples
in the literature highlighting the complications. In our opinion, the most in-
tricate one is the Fisher-Ross example [31]. In this example, all action spaces
are finite, the Markov process associated with any stationary deterministic
policy is irreducible and has a stationary distribution. However, there is an
optimal non-stationary policy, but no stationary deterministic one is optimal.

In this chapter we provide conditions under which there exists a stationary
average optimal policy satisfying the average cost optimality equation. The
proof requires the vanishing discount approach. Our focus in this chapter are
non-negative cost functions, the analysis of which does not require a heavy drift
condition that imposes positive recurrence of the Markov process associated
with any parameter. However, below, we do touch upon benefits of using the
heavier conditions.

The conditions that we will focus on, are based on the work of Borkar [21],
in the form discussed in [63]. They resemble the conditions from the earlier
work in [74]. They imply conditions developed by Sennott in [61], requiring
(i) lower-bounded direct cost; (ii) the existence of a finite ↵-discounted value
function, (iii) the existence of a constant L and a function M : S ! , such
that �L  v

↵
x � v

↵
z  Mx for some state z, and all ↵ su�ciently small, and

(iv) for each x 2 S, there exists �x, such that
P

y pxy(�x)My < 1. Under
these conditions Sennott [61] proves the statement in Theorem 2.2.5 below,
with equality in (2.6) replaced by inequality, and without property (3) from
Theorem 2.2.5. It is appropriate to point out that the approach initiated in
[61] was based on a bounded cost average optimality result in [56].

The following definitions are useful. Define ⌧z := minn�1 {z}(Xn) to
denote the hitting time of z 2 S. Let mxz(�) = E�

x

⇥

⌧z

⇤

and cxz(�) =
E�
x

⇥

P⌧
z

n=0

cX
n

(�)
⇤

.

Assumption 2.2.3. Let �0 =
Q

x �
0
x ⇢ � have the product property. The

following holds.

i) Non-negative cost rates: cx(�) � 0 for all x 2 S,� 2 �0.

ii) There exist z 2 S and �

0

2 �0 such that mxz(�0

), cxz(�0

) < 1 for
all x 2 S, with the potential exception of x = z, that is allowed to be
absorbing. Note that this implies that gx(�0

) is independent of x 2 S and
hence we write g(�

0

) = gx(�0

), for all x 2 S.
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2 A roadmap to structures for MDPs

iii) There exists ✏ > 0 such that D = {x 2 S | cx(�)  g(�
0

) + ✏ for some � 2

�0
} is a finite set.

iv) For all x 2 D there exists �x
2 �0 such that mzx(�x), czx(�x) < 1.

Theorem 2.2.5. Suppose that Assumptions 2.2.1, 2.2.2 (↵), for ↵ 2 (0, 1),
and 2.2.3 hold. Then the following holds.

i) There exists a solution tuple (g⇤, v⇤), g⇤ 2

+

, v⇤ : S 7! , to the average
cost optimality equation (DAOE)

g + ux = min
�
x

2�

0
x

n

cx(�x) +
X

y2S

pxy(�x)uy

o

, (2.6)

with the property that (1) g

⇤ = g is the minimum expected average cost
(in �0), (2) any �

⇤
2 �0 with

�

⇤
x 2 arg min

�
x

2�

0
x

n

cx(�x) +
X

y2S

pxy(�x)vy
o

is (average cost) optimal in �0 and (3) there exists x

⇤
2 D with v

⇤
x⇤ =

infx v⇤x.

ii) Let x

0

2 S. Any sequence {↵n}n with limn ↵n = 0, has a subsequence,
again denoted {↵n}n, along which the following limits exist:

v

0
x = lim

n!1
(v↵n

x � v

↵
n

x
0

), x 2 S,

g

0 = lim
n!1

↵nv
↵

n

x , x 2 S

�

0 = lim
n!1

�

↵
n

.

Further, the tuple (g0, v0) is a solution to Eq. (2.6) with the properties
(1), (2) and (3), so that g0 = g. Moreover, �0 takes minimising actions
in Eq. (2.6) for g = g

0 and u = v

0.

Theorem 2.2.5 is a slight extension from [63, Theorem 7.5.6], where the
action space is assumed to be finite. Although the various necessary proof
parts are scattered over [63, Chapter 7], we will merely indicate the necessary
adjustments to allow for the compact parameter case. We would like to note
that we use a completely analogous reasoning in the proof of Theorem 2.3.4,
which contains all further details.
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2.2 Discrete time Model

Proof. A close examination of the proof of [63, Theorem 7.5.6] shows that
the assumption of a finite action space is not necessary. The proof can be
adjusted in such a way that the statement holds for a compact action space
as well. We briefly discuss the adjustments below. The existence of the limits
along a sequence {↵n}n, ↵n # 0, n ! 1, in assertion ii) is a direct result of
Sennott [63].
Obtaining the average cost optimality inequality (DAOI) for a limit point

of ↵-discount optimal policies, as ↵ ! 0, can be achieved by virtue of Fatou’s
lemma. This policy is shown to be optimal.
Further, one needs to show explicitly that there exists a policy realising the

infimum of Eq. (2.6). Since the limit policy satisfies the DAOI, a similar (very
ingenious) reasoning as in the proof of Sennott [63, Theorem 7.4.3] yields that
this policy satisfies the DAOE as well. In fact, any policy satisfying the DAOI
also satisfies the DAOE. It can then be shown by contradiction that this limit
policy must attain the infimum. As a consequence, the limit tuple (g0, v0) from
(ii) is a solution to Eq. (2.6). The rest directly follows from the proof of the
afore mentioned theorem in [63].

Remark 2.2.3. In the literature the formulation of statements similar to The-
orem 2.2.5 on the DAOE may sometimes have a misleading character. This
may occur when the existence of a solution to Eq. (2.6) is stated first, and a
subsequent claim is made that any minimising policy in Eq. (2.6) is average
cost optimal. Strictly speaking, this may not be true. Examples 2.2.4 and
2.2.5 below, at the end of this section, illustrate that other ‘wrong’ solutions
may exist. Unfortunately, Assumption 2.2.3 does not admit tools to select the
‘right’ solution among the set of all solutions. Thus, under Assumption 2.2.3
a solution to the DAOE should always be obtained via the vanishing discount
approach, as in Theorem 2.2.5 (ii).

The next issue to be discussed is how to verify Assumption 2.2.3 (ii) and
Assumption 2.2.3 (iv). This can be inferred from the following Lyapunov
function criterion, which is a direct application of [40, Lemma 3.1]. The proof
is a simple iteration argument.

Lemma 2.2.6. Let x

0

2 S be given. Let � 2 �. Suppose that there exist
functions f, h : S ! [0,1) with

i) fx � max{1, cx(�)}, x 2 S \ {x

0

};

ii) fx +
P

y 6=x
0

pxy(�)hy  hx, x 2 S.

Then mxx
0

(�), cxx
0

(�)  hx, x 2 S.
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2 A roadmap to structures for MDPs

To pave the way for developing a roadmap for obtaining structures of average
cost optimal policies, we will shortly discuss the applicability of VI. Let us first
state the algorithm. Again assume that �0

⇢ � has the product property.

Algorithm 2 VI for an expected average cost optimal policy

1. Select v0, set n = 0.

2. For each x 2 S, compute v

n+1

x by

v

n+1

x = min
�
x

2�

0
x

n

cx(�x) +
X

y2S

pxy(�x)v
n
y

o

,

and let
�

n+1

2 argmin
�2�

0
{c(�) + P (�)vn}.

3. Increment n by 1 and return to step 2.

To our knowledge there are relatively few non-problem specific papers on the
convergence of average cost VI for countable state space MDPs, cf. [41], [62],
[6], and [2], the latter of which is based on the thesis [65]. The conditions in the
first three papers are not restricted to conditions on the input parameters. In
our opinion, the easiest verifiable ones are contained in the paper [6], involving
properties of the set of policies {�n}n. In case of well-structured problems, say
�n are all equal, or have very specific structures, these conditions are easy to
verify.1 Here, we will restrict to the conditions from [65] and [2] that are, as far
as we know, the only ones formulated directly in terms of the input parameters
of the process. The notation e stands for the function on S identically equal
to 1.

Theorem 2.2.7. Let �0 have the product property. Suppose that the following
drift condition, called V -geometric recurrence, holds: there exist a function
V : S ! [1,1), a finite set M ⇢ S and a constant � < 1, such that

X

y 62M

pxy(�)Vy  �Vx, x 2 S,� 2 �0
.

Suppose further that the following holds as well:

1
we still have a suspicion that there is a gap in the proofs in [6]
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2.2 Discrete time Model

• Assumption 2.2.1;

• sup�2�

0 ||c(�)||V < 1;

• � 7! P (�)V is component-wise continuous on �0;

• the Markov process with transition matrix P (�) is aperiodic and has one
closed class, � 2 �0.

Let 0 2 S. There is a unique solution pair (g⇤, v⇤) with v

⇤
2 `

1(S, V ), and
v

⇤
0

= 0, to Eq. (2.6) with the properties in Theorem 2.2.5.
Furthermore, average cost VI converges, that is, limn!1(vn � v

n
0

e) ! v

⇤,
and any limit point of the sequence {�

n
}n is average cost optimal and a min-

imising policy in the DAOE (2.6) with solution tuple (g⇤, v⇤).

The V -uniform geometric recurrence condition in Theorem 2.2.7 has been
introduced in [24], and shown in [25] to imply the assertion in Theorem 2.2.7.
The paper [25], see also [65], has derived an equivalence of this condition (un-
der extra continuity conditions) with V -uniform geometric ergodicity. The
thesis [65] additionally shows a similar implication for bounded jump Markov
decision processes in continuous time, by uniformisation. Both properties have
been extensively used both in the case of a parameter space consisting of one
element only (cf. [49] and later works), and in the case of product para-
meter spaces in the context of optimal control. Together with the negative
dynamic programming conditions developed by [61], the V -uniform geometric
recurrence and ergodicity, developed in [23] and [24], have become ‘standard’
conditions in many papers and books. See for instance [36], [35], and [53], as
well as references therein, for a survey and two books using both types of con-
ditions. A parametrised version of [25] in both discrete and continuous time
is currently in preparation. The drawback of using V -geometric recurrence
is that it implies that each associated Markov process is positive recurrent.
This is a major disadvantage for many models and therefore our motivation
for using Assumption 2.2.3. Note that customer abandonment has a strong
stabilising e↵ect on the associated Markov processes, and then V -geometric
recurrence typically may apply.

Roadmap to structural properties Below we formulate a scheme for deriv-
ing the structure of an optimal policy and value function, if the optimisation
criterion is to minimise the expected average cost. Let �0 = � = D be the set
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2 A roadmap to structures for MDPs

of all stationary, deterministic policies.

Roadmap for average cost MDPs in discrete time

1. Check the conditions of Theorem 2.2.7.
If satisfied then:

• perform VI Algorithm 2.

2. If not satisfied, then check Assumptions 2.2.1, 2.2.2 (↵), for all ↵ 2 (0, 1),
and 2.2.3. If satisfied then:

a) perform VI Algorithm 1 for the ↵-discounted cost criterion. If there
exists ↵

0

> 0 such that the desired structural properties hold for
all ↵ 2 (0,↵

0

) then

b) apply the vanishing discount approach by taking the limit ↵ ! 0.
This is justified by Theorem 2.2.5.

3. If not satisfied, or if no structural properties are concluded, then the
outcome is inconclusive.

Note that the vanishing discount approach has the advantage of allowing a
conclusion on Blackwell optimality of the limiting policy. Next we provide
examples showing that the DAOE may have more than one solution.

Example 2.2.4. Consider a simple random walk on the state space S = Z

without any control. Thus � consists of one element �, say �x = 1 for all
x 2 S. The transition mechanism is given by

pxy(1) =

⇢

�, y = x+ 1
µ, y = x� 1,

where � < µ and � + µ = 1. The cost in state x 6= 0 is equal to cx = 1,
and c

0

= 0. This is a transient Markov process, and hence it does not satisfy
Assumption 2.2.3. However, it does satisfy the assumptions of [61], implying
the assertion of Theorem 2.2.5 to hold.

This implies that the vanishing discount approach yields solution tuple g = 1
and

vx =

(

1�(µ/�)x

µ�� , x < 0
0, x � 0,

if x
0

= 0 is chosen. This can be deduced from boundedness conditions that
will be discussed in a forthcoming paper [69].
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2.2 Discrete time Model

However, other solutions (g = 1, v0) exist, namely for any ✓ 2

v

0
x =

8

>

<

>

:

(1� ✓) 1�(µ/�)x

µ�� , x < 0
0, x = 0

✓

(µ/�)x�1

µ�� , x > 0.

There is no a priori tool to determine which solution is the one obtained from
the vanishing discount approach.

Example 2.2.5. Next we restrict the simple random walk to S = Z

+

, and
associate the corresponding transitions with �

1. In other words, putting �

1

x =
1, x 2 S, gives

pxy(1) =

⇢

�, y = x+ 1
µ, y = (x� 1)+,

where � < µ and � + µ = 1. Suppose that holding cost x is incurred per
(discrete) unit time, when the number of customers in the system is x, and
action 1 is used:

cx(�
1

x) = cx(1) = x, x 2 S.

In [12] it was shown that the equation v+g = c(�1)+ P (�1)v has the following
solutions: to any g 2 there is a solution tuple (g, vg) with v

g : S ! the
function given by

v

g
x = �

x� 1

µ� �

g +
(x� 1)(x� 2)

2(µ� �)
+ µ

x� 1

(µ� �)2
+

g

�

(2.7)

+ µ

(µ/�)x�1

� 1

µ� �

n

g

µ� �

+
g

�

�

µ

(µ� �)2

o

,

for x � 1 and v

g
0

= 0. The solution obtained from a vanishing discount
approach, is the one for which the expression between curly brackets is 0, i.e.
for which

g

µ� �

+
g

�

�

µ

(µ� �)2
= 0,

in other words

g =
�

µ� �

,

and

v

g = �

x� 1

µ� �

g +
(x� 1)(x� 2)

2(µ� �)
+ µ

x� 1

(µ� �)2
+

g

�

.

This can also be derived from boundedness conditions analysed in [13]. Thus,
g(�1) = �/(µ� �).
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2 A roadmap to structures for MDPs

Next, in state 1 there is a further option to choose action 2, with corres-
ponding transition probabilities

p

1,3(2) = � = 1� p

1,0(2).

This yields parameter �2, with �

2

1

= 2, and �

2

x = 1, x 6= 1. The corresponding
cost c

1

(2) is chosen small enough (possibly negative) so that g(�2) < g(�1).
This yields an MDP satisfying Assumption 2.2.3. Although the direct cost
possibly is not non-negative, it is bounded below.

We claim that we may choose a constant g in Eq. (2.7) so large that

v

g
1

+ g = c

1

(1) +
X

y

p

1y(1)v
g
y < c

1

(2) +
X

y

p

1y(2)v
g
y = c

1

(2) + �v

g
3

+ µv

g
0

,

in other words, the minimisation prescribes to choose action 1 in state 1.
Indeed, this choice is possible if

c

1

(2) + �v

g
3

> 1 + �v

g
2

,

or
1� c

1

(2) < �(vg
3

� v

g
2

). (2.8)

It can be checked that

v

g
3

� v

g
2

>

µ

2

�

2

⇣

g

�

�

µ

(µ� �)2

⌘

.

Therefore, one may choose g > g(�1) large enough for Eq. (2.8) to be true.
Hence, (g, vg) is a solution to Eq. (2.6) for the MDP with minimising policy
�

1. However, by construction g > g(�1) > g(�2). Thus, (g, vg) is a solution to
the DAOE, where g is not the minimum expected average cost, and the policy
choosing the minimising action is not the optimal policy.

2.3 Continuous time Model

In this section we will consider continuous time parametrised Markov pro-
cesses. The setup is analogous to the discrete time case. Again we consider
a parameter space � and a countable state space S. With each � 2 � we
associate an S ⇥ S generator matrix or q-matrix Q(�) and a cost rate vec-
tor c(�) : S ! . Following the construction in [44], see also [51], one can
define a measurable space (⌦,F), a stochastic process X : ⌦ ! {f : [0,1) !
S | f right-continuous}, a filtration {Ft}t ⇢ F to which X is adapted, and
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2.3 Continuous time Model

a probability distribution P�
⌫

on (⌦,F), such that X is the minimal Markov
process with q-matrix Q(�), for each initial distribution ⌫ on S and � 2 �. De-
note by P (�) = { pt,xy(�)}x,y2S, t � 0, the corresponding minimal transition

function and by E�
⌫ the expectation operator corresponding to P�

⌫
.

Assumption 2.3.1. i) Q(�) is a conservative, stable q-matrix, i.e. for x 2 S

and � 2 �

• 0  qx(�) = �qxx(�) < 1;

•

P

y qxy(�) = 0.

ii) { Pt(�)}t�0

is standard, i.e. limt#0 pt,xy(�) = �xy, with �xy the Kronecker
delta.

iii) � 7! qxy(�) and � 7! cx(�) are continuous, x, y 2 S;

iv) � is locally compact.

Let �0
⇢ �. The definition of the product property of {Q(�)}� and {c(�)}�

with respect to �0 is completely analogous to Definition 2.2.1. This entails
�0 to be compact in the product topology. Again, for easy reference, we
say that �0 has the product property if {Q(�)}� and {c(�)}� both have the
product property with respect to �0. If � has the product property, then the
parametrised Markov process is an MDP. Analogously to Remark 2.2.1, � may
represent the collection of stationary policies or the stationary, deterministic
ones.

Suppose furthermore, that a lump cost is charged, in addition to a cost rate
incurred per unit time. Say at the moment of a jump x to y lump cost dxy(�)
is charged, when the parameter is �. This can be modelled as a (marginal)
cost rate cx(�) =

P

y 6=x dxy(�)qxy(�).
Below we give the definitions of various performance measures and optim-

ality criteria. Later on we will provide conditions under which these exist.
For ↵ > 0, under parameter � 2 � the expected total ↵-discounted cost value

function v

↵ is given by

v

↵
x (�) = E�

x

h

Z 1

t=0

e

�↵t
cX

t

dt

i

, x 2 S.

Suppose that �0
⇢ � has the product property. The minimum expected total

↵-discounted cost w.r.t �0 is defined as

v

↵
x = inf

�2�

0
{v

↵
x (�)} , x 2 S.
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2 A roadmap to structures for MDPs

If v↵(�) = v

↵, then � is said to be optimal in �0.
The expected average cost under parameter � is given by

gx(�) = lim sup
T!1

1

T

E�
x

h

Z T

t=0

cX
t

dt

i

, x 2 S.

Suppose that �0
⇢ � has the product property. Theminimum expected average

cost is defined as
gx = inf

�2�

0
{gx(�)} , x 2 S.

If g(�) = g for some � 2 �0 then � is said to be average cost optimal in �0.

The notions of Blackwell optimality and strong Blackwell optimality are defined
completely analogously to the discrete time versions.
A well-known procedure to determine the structure of an optimal policy

in the continuous time case, is to reduce the continuous time MDP to a dis-
crete time MDP in order to be able to apply VI. There are di↵erent time-
discretisation methods. One is to consider the embedded jump process. Some-
times this is a viable method, see [35] where this approach has been taken. In
Section 2.3.4 we give an example where the embedded jump approach seems
to be less amenable to apply.
Instead, one may use uniformisation. However, applicability hinges on mod-

els, where the jumps are bounded as a function of parameter and state:

q := sup
x2S,�2�

qx(�) < 1. (2.9)

This property is violated in models with reneging customers, population mod-
els etc, and we will consider how to handle this next.
Let us first recall the uniformisation procedure.

2.3.1 Uniformisation

A detailed account of the uniformisation procedure and proofs can be found in
[64]. If a continuous time parametrised Markov process has bounded transition
rates (cf. Eq. (2.9)), it admits a transformation to an equivalent discrete time
parametrised Markov process. Below we list the transformations for the ↵-
discounted and average cost cases.
For the discounted cost criterion the equivalent discrete time process is given

by

P (�) = I +
1

q

Q(�), c

d(�) =
c(�)

↵+ q

, ↵

d =
↵

↵+ q

, � 2 �. (2.10)
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2.3 Continuous time Model

Denote the discrete time ↵

d-discounted cost under policy � as vd,↵
d

(�). Both
the discrete-time and continuous time processes have equal expected cost, i.e.
v

d,↵d

(�) = v

↵(�). If �0
⇢ � has the product property, then this implies that

the optimal ↵- and ↵

d-discounted value functions with respect to �0 are equal:

v

d,↵d

= v

↵
.

For the average cost criterion the equivalent discrete time process is given by

P (�) = I +
1

q

Q(�), c

d(�) =
c(�)

q

, � 2 �.

Denote the discrete time average cost under parameter � as gd(�) and the
value function as v

d(�). Under the same parameter, the discrete-time and
continuous time expected cost, relate to each other as follows

qgd(�) = g(�).

The corresponding value functions are identical:

v

d(�) = v(�).

These relations apply similarly to optimal parameters in a product set �0
⇢ �.

The main concern is how to proceed in the case of unbounded jump rates
q = 1, when the above procedure is not possible.

2.3.2 Discounted cost

First we treat the discounted cost criterion. This section summarises the
results of Chapter 3. That chapter only treats optimality within the class of
stationary Markov policies, as we do in the present chapter. We recall some
definitions. These definitions are closely related to the conditions used in the
discrete time analysis in Section 2.2.1.

Definition 2.3.1. • The function W : S ! (0,1) is said to be a moment
function, if there exists an increasing sequence {Kn}n ⇢ S of finite sets
with limn Kn = S, such that infx 62K

n

Wx ! 1, as n ! 1.

• The function V : S ! (0,1) is called a (�,�)-drift function if Q(�)V 

�V for all � 2 �, where QVx :=
P

y2S qxyVy.

Assumption 2.3.2 (↵). i) There exist a constant � < ↵ and function V :
S ! (0,1) such that V is a (�,�)-drift function;
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2 A roadmap to structures for MDPs

ii) sup� ||c(�)||V =: cV < 1 for all � 2 �;

iii) There exist a constant ✓ and a function W : S ! (0,1) such that W is a
(✓,�)-drift function and W/V is a moment function, where (W/V )x =
Wx/Vx, x 2 S.

Assumptions 2.3.2 (↵) (i) and 2.3.2 (↵)(ii) are the continuous time counter-
part of Assumption 2.2.2 (↵). Assumption 2.3.2(↵)(iii) is su�cient to guaran-
tee nonexplosiveness of the parametrised Markov process (cf. [67, Theorem
2.1]), and implies continuity properties of the map � 7! ( Pt(�)V )x, x 2 S.

Theorem 2.3.1 (Theorem 3.4.1). Suppose that Assumptions 2.3.1 and 2.3.2 (↵)
hold, then � 7! v

↵(�) is component-wise continuous and v

↵(�) is the unique
solution in `

1(S, V ) to
↵u = c(�) +Q(�)u.

Theorem 2.3.2 (Theorem 3.4.2). Assume that �0
⇢ � has the product prop-

erty. Suppose further that Assumptions 2.3.1, and 2.3.2(↵) hold. Then v

↵ is
the unique solution in `

1(S, V ) to the ↵-discount optimality equation (CDOE)

↵ux = inf
�
x

2�

0
x

{cx(ax) +
X

y

qxy(�x)uy}, x 2 S. (2.11)

There exists �

⇤
2 �0 with �

⇤
x 2 argmin�

x

2�

0
x

{cx(ax) +
P

y qxy(�x)uy}, x 2 S.
Any policy �

0
2 �0 that minimises Eq. (2.11) is optimal in �0, and it holds

that v↵(�0) = v

↵.

As discussed in Section 2.2.2, the parameter set may contain a perturbation
component. Introducing a perturbation yields a parameter set of the following
form � = N ⇥ D, where N is a perturbation parameter and D the set of
deterministic stationary (or merely stationary) policies.

Corollary 2.3.3 (cf. Theorem 3.5.1). Let � = N ⇥ D. Suppose Assump-
tions 2.3.1 and 2.3.2(↵) hold. Assume that {N}⇥D has the product property
for N 2 N . Then,

i) limN!N
0

v

↵(N) = v

↵(N
0

).

ii) Any limit point of (�⇤N )N!N
0

is optimal in {N

0

}⇥D.

iii) Suppose that the MDP with parameter set {N}⇥D is uniformisable, i.e.

q

N := sup
x2S,�2D

|qxx(N, �)| < 1.
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2.3 Continuous time Model

Consider the discount discrete-time uniformised MDP, with transition
matrices, cost and discount factor given by (cf. Eq. (2.10))

P (N, �) = I +
1

q

N
Q(N, �), c(N, �) =

c(N, �)

↵+ q

N
, ↵

d =
↵

↵+ q

N
.

Then the MDP satisfies Assumptions 2.2.1 and 2.2.2 (↵d), for the same
function V .

Proof. Assertions i) and ii) are in fact Theorem 3.5.1, but they follow easily
from Theorems 2.3.1 and 2.3.2. Assertion iii) is a direct verification.

Roadmap to structural properties We finally have collected the tools to
provide a scheme for the derivation of structural properties of an optimal
policy and value function for a continuous time MDP with unbounded jump
rates, provided the required conditions hold. Applications of this scheme are
discussed in Chapters 3 and 4.

Let �0 = D be the set of stationary, deterministic policies, and � = N ⇥D.
Each set {N}⇥D is assumed to have the product property, N 2 N .

Roadmap for ↵-discounted MDPs in continuous time

1. If Assumptions 2.3.1 and 2.3.2(↵) hold, and q < 1, do

a) perform a uniformisation;

b) use VI Algorithm 1 to verify the structural properties of an optimal
policy and value function;

c) use the equivalence of uniformised and non-uniformised systems to
obtain the structure of an optimal policy and value function of the
non-uniformised continuous time MDP.

2. If Assumptions 2.3.1 and 2.3.2(↵) hold, and q = 1, do

i) perform a bounded jump perturbation leaving the structural prop-
erties intact and satisfying Assumptions 2.3.1 and 2.3.2(↵). For
instance, one might apply SRT (see Section 2.2.2) or try a brute
force perturbation;

ii) do steps a,b,c. This potentially yields structural properties of an
optimal policy and the value function for each N -perturbed MDP;
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2 A roadmap to structures for MDPs

iii) take the limit for the perturbation parameter to vanish. Corol-
lary 2.3.3 gives the structural results for an optimal policy and
value function.

3. If the assumptions do not hold, or if no structural properties can be
derived, then the outcome is inconclusive.

As has been mentioned already, one might apply discounted VI directly to the
associated discrete time MDP, embedded on the jumps of the continuous time
MDP (cf. e.g. [35, Theorem 4.12]). In the example of Section 2.3.4 we discuss
some problems with the application of this procedure.

2.3.3 Average cost

We finally turn to studying the average cost criterion in continuous time. The
assumptions that we make, are Assumption 2.3.1 and the analog of Assump-
tion 2.2.3 that we used in Section 2.2.3 for analysing the average cost criterion
in discrete time. In fact, Assumption 2.2.3 can be used unaltered. However,
one has to use the continuous time definitions of the hitting time of a state,
and total expected cost incurred till the hitting time.

The hitting time ⌧z of a state z 2 S is defined by:

⌧z = inf
t>0

{Xt = z, 9s 2 (0, t) such that Xs 6= z}. (2.12)

Then, mxz(�) = E�
x⌧z and cxz = E�

x

R ⌧
z

0

cX
t

dt, where either expression may be
infinite.

The following theorem is completely analogous to the discrete time equi-
valent, with the only di↵erence that the CAOE below has a slightly di↵erent
form.

Theorem 2.3.4. Suppose, that Assumptions 2.3.1, 2.3.2(↵), ↵ > 0, and 2.2.3
hold.

i) There exists a solution tuple (g⇤, v⇤) to the average cost optimality equation
(CAOE)

g = min
�
x

2�

0
x

{cx(�x) +
X

y2S

qxy(�)uy}, (2.13)

with the property that (1) g

⇤ = g is the minimum expected average cost
(in �0), (2) �

⇤
2 �0 with

�

⇤
x 2 arg min

�
x

2�

0
x

{cx(�x) +
X

y2S

qxy(�x)uy}
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2.3 Continuous time Model

is (average cost) optimal in �0, and (3) there exists x

⇤
2 D with v

⇤
x⇤ =

infx v⇤x.

ii) Let x
0

2 S. Any sequence {↵n}n with limn!1 ↵n = 0, has a subsequence,
again denoted {↵n}n, along which the following limits exist:

v

0
x = lim

n!1
{v

↵
n

x � v

↵
n

x
0

}, x 2 S,

g

0 = lim
n!1

↵nv
↵

n

x , x 2 S,

�

0 = lim
n!1

�

↵
n

.

Furthermore, the tuple (g0, v0) is a solution to (2.13) with the properties
(1), (2) and (3), so that g0 = g. Moreover, �0 takes minimising actions
in (2.13) for g = g

0 and v = v

0.

We have not encountered the above result in this form. However, the deriv-
ations are analogous to the discrete time variant, cf. [63, Chapter 7], and to
the proofs in [35], where continuous time variants of Sennott’s discrete time
conditions have been assumed. In fact, Assumption 2.2.3 implies [35, Assump-
tion 5.4]. Although one could piece together the proof of Theorem 2.3.4 from
these references, we prefer to give it explicitly in Section 2.3.5.
For the verification of Assumption 2.2.3 (ii) and Assumption 2.2.3 (iv) one

may use the following lemma, that is analogous to Lemma 2.2.6. The proof is
similar to the proof of [72, Theorem 1].

Lemma 2.3.5. Let x

0

2 S be given. Let � 2 �0. Suppose that there exist
functions f, h : S ! [0,1) with

i) fx � max{1, cx(�)}, x 2 S \ {x

0

};

ii) fx +
X

y:y 6=x

0

if x 6=x

0

qxy(�)hy  0, x 2 S.

Then mxx
0

(�), cxx
0

(�)  hx, x 2 S.

2.3.4 Roadmap to structural properties

First we present a roadmap for determining structural properties of average
cost MDPs in continuous time. We illustrate it with a simple example. More
complicated examples can be found in Chapters 4 and 5. Then a table will
summarise the schematic approach that we have presented through the various
roadmaps, including references to the required conditions and results.
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2 A roadmap to structures for MDPs

Let �0 = D be the set of stationary, deterministic policies, and � = N ⇥D.
Assume that {N}⇥D has the product property for N 2 N .

Roadmap for average cost MDPs in continuous time

1. If Assumptions 2.3.1, 2.3.2(↵), for all ↵ > 0, and 2.2.3 hold then do

• apply the roadmap for ↵-discounted MDPs in continuous time; if
the outcome is that the ↵-discounted problem has the desired struc-
tural properties for all 0 < ↵ < ↵

0

, for some ↵

0

> 0, then do

• apply the vanishing discount approach of Theorem 2.3.4 (ii).

2. If the assumptions do not hold, or structural properties can not be shown,
the outcome is inconclusive.

v⇤

↵ # 0 ↵-discounted cost

v↵

N ! 1 perturbation

v↵(N)

conv. VI uniformise and VI

v↵,n
(N)

unbounded rates average

unbounded rates ↵-discounted

bounded rates ↵-discounted
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2.3 Continuous time Model

The picture uses the following, hitherto not explained notation. If the per-
turbation parameter is N , then the ↵-discounted value function is denoted by
v

↵(N). Applying discounted cost VI to the N -perturbation, yield the iterates
v

↵,n(N), for n = 0, 1, . . .. The limit as the perturbation parameter vanishes is
represented by N ! 1.

Arrival control of the M/M/1+M-queue As an application of this final
roadmap, we consider arrival control of the M/M/1+M-queue. Customers
arrive in a single server unit with infinite bu↵er size according to a Poisson
(�) process. Each customer requires an exponentially distributed service time
with parameter µ, but he may also renege after an exponentially distributed
amount of time with parameter � (service is not exempted from reneging).
Arrival process, service times and reneging times are all independent.

Due to reneging, the process associated with the number of customers in the
server unit is ergodic at exponential rate. However, having reneging customers
is not desirable from a customer service point of view. Therefore, the following
arrival control is exercised. Per unit time and per customer a holding cost of
size 1 is incurred. The controller can decide to accept (decision A) or reject
(decision R) an arriving customer. If he takes decision A, then a lump reward
of size K is incurred.

The goal is to select the control policy with minimum expected average cost.
We wish to show that a control-limit acceptance policy is optimal. In other
words, that there exists x

⇤
2 S, such that accepting in state x  x

⇤ and
rejecting in state x > x

⇤ is average cost optimal.
This leads to the following MDP on the state space S = Z

+

, where state
x corresponds to x customers being present in the system. The collection of
stationary, deterministic policies is given by D = {A,R}1. The transition
rates are as follows: for x 2 S

qxy(A) =

8

<

:

�, y = x+ 1
µ {x>0} + x�, y = x� 1
�(�+ µ {x>0} + x�), y = x,

qxy(R) =

⇢

µ {x>0} + x�, y = x� 1
�(µ {x>0} + x�), y = x.

The lump reward can be modelled as a cost rate, and we get for x 2 S

cx(A) = x� �K, cx(R) = x.

This is an unbounded-rate MDP. Denote the never accepting policy by �

0

, then
this generates a Markov process with absorbing state 0, and finite expected
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2 A roadmap to structures for MDPs

average cost g(�
0

) = 0. One can check for fx = x, x 2 S, that hx = e

✓x, x 2 S,
satisfies Lemma 2.3.5 (ii), if we choose ✓ > ln(1 + �

�1). Let ✏ > 0. It then
follows that Assumption 2.2.3 is satisfied with set D = {x |x� �K  0 + ✏}.

It is not di�cult to verify that Assumptions 2.3.1 and 2.3.2 (↵), ↵ > 0, are
satisfied. Indeed, for given ↵ > 0, there exists ↵ > 0, such that V ↵

x = e


↵

x,
x 2 S, is a (�↵,D)-drift function, for some �↵ > 0.

It follows that there exists a solution tuple (g⇤, v⇤) of the CAOE (2.13) with
the properties (1), (2), (3). This CAOE takes the form

g

⇤ = x+ (µ {x>0} + (x ^N)�
�

v

⇤
x�1

+ �min{�K + v

⇤
x+1

, v

⇤
x}

�

�

�+ µ {x>0} + (x ^N)�
�

v

⇤
x,

where we have already rearranged the terms in such a way that the equation
is amenable to analysis. It is easily deduced, that it is optimal to accept in
state x if

v

⇤
x+1

� v

⇤
x  K.

Hence, in order that a control-limit acceptance policy be average cost optimal,
it is su�cient to show that v⇤ is convex.

To this end, we will use the roadmap to show that there exists a solution
pair (g⇤, v⇤) to the CAOE (2.13) with properties (1), (2) and (3), and with
v

⇤ a convex function. Theorem 2.3.4 justifies using the vanishing discount
approach, and so it is su�cient to show convexity of the ↵-discount value
function v

↵, for all ↵ > 0 su�ciently small. Note that the imposed conditions
for the roadmap for ↵-discount MDPs are satisfied, since these are imposed as
well for the assertions in Theorem 2.3.4, and these have been checked to hold.

The roadmap for the verification of structural properties of v↵ prescribes
to choose suitable perturbations. We consider a simple perturbation, where
the reneging rates are truncated at N� in states x � N , N � 1. The value
N = 1 then corresponds to the original MDP. Thus, qxy(N, �x) = qNy(�x),
for x � N . A simple verification implies for � = {1, 2, . . . ,1}⇥D, that V ↵ is
a (�↵,�)-drift function and that Assumptions 2.3.1 and 2.3.2 (↵) are satisfied,
↵ > 0, for this extended parameter space.

Fix ↵ > 0 and N 2 {1, 2, . . .}. By virtue of Corollary 2.3.3 it is su�-
cient to check convexity of the ↵-discount value function v

↵(N), for the N -
perturbation. Finally, by Theorem 2.2.3 it is su�cient to check convexity
of v

↵,n(N), which is the n-horizon approximation of v

↵(N). Convexity of
v

↵,n(N) follows iteratively by putting v

↵,0(N) ⌘ 0, and checking that convex-
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2.3 Continuous time Model

ity is propagated through the iteration step: for x 2 S

v

↵,n+1

x (N) =x� ↵

�

µ {x>0} + (x ^N)�
�

v

↵,n
x�1

(N) (2.14)

+ ↵�min{�K + v

↵,n
x+1

(N), v↵,nx (N)}

+ ↵(1� �� µ {x>0} + (x ^N)�)v↵,nx (N).

Event based dynamic programming (cf. [45] and Chapter 7) applied to Eq. (2.14)
yields precisely the propagation of convexity.

Associated embedded jump MDP Instead of introducing a perturbation,
we could have applied discounted VI to the associated ↵-discounted embedded
jump MDP. The assumptions that we have made, imply convergence to the
↵-discounted value function (cf. [35, Theorem 4.14]). This yields the following
VI-scheme:

v̄

↵,n+1

x =min
n 1

↵+ µ {x>0} + x�

�

x+ (µ {x>0} + x�)v̄↵,nx�1

�

,

1

↵+ �+ µ {x>0} + x�

�

x� �K + �v̄

↵,n
x+1

+ (µ {x>0} + x�)v̄↵,nx�1

�

o

.

First note that starting the iterations with the simple function v̄

↵,0
⌘ 0, only

yields a convex function v̄

↵,1,

v̄

↵,1
x =

x� �K

↵+ �+ µ {x>0} + x�

, x = 0, 1, . . . ,

under restrictions on the input parameters. In the minimisation one has to
compare terms with di↵erent denominators. For showing convexity this is even
more complicated, since one has to show that

v̄

↵,n+1

x+2

� v̄

↵,n+1

x+1

� v̄

↵,n+1

x+1

� v̄

↵,n+1

x ,

given convexity of v̄↵,n, where each of these terms is a minimisation of two
terms with di↵erent denominators. Already for this simple example it is not
clear that this will work. Note that applying VI on the average cost embed-
ded jump MDP has the same disadvantages. Additionally, one needs extra
conditions (cf. Theorem 2.2.7) to ensure that average VI converges at all.

Summary The next table summarises the di↵erent roadmaps, with the ap-
propriate references to the results justifying the various steps.
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2 A roadmap to structures for MDPs

Summarising table

Time Criterion Roadmap
DT disc. VI1

Thm. 2.2.3
DT average VI2
Vgeo Thm. 2.2.7
DT average VDA then VI1

no Vgeo Thm. 2.2.5 Thm. 2.2.3
CT disc. UNI then VI1
bdd. § 2.3.1 Thm. 2.2.3
CT disc. PB then UNI then VI1
unb. Cor. 2.3.3 § 2.3.1 Thm. 2.2.3
CT average VDA then UNI then VI1
bdd. Thm. 2.3.4 § 2.3.1 Thm. 2.2.3
CT average VDA then PB then UNI then VI1
unb. Thm. 2.3.4 Cor. 2.3.3 § 2.3.1 Thm. 2.2.3

Abbreviations to summarising table
Discrete time DT
Continuous time CT
Bounded or unbounded rates bdd. or unb.
↵-discounted disc.
Value iteration algorithm 1 or 2 VI1 or VI2
Vanishing discount approach VDA
Uniformisation UNI
Perturbation PB
Conditions Theorem 2.2.7 Vgeo

2.3.5 Proofs

For the proof of Theorem 2.3.4 we will need a number of preparatory lemmas.

Lemma 2.3.6. Suppose that Assumptions 2.3.1, 2.3.2 (↵), ↵ > 0, and 2.2.3
hold. The following hold.

i) Let µ(�
0

) denote the stationary distribution under parameter �

0

, where �

0

has been specified in Assumption 2.2.3. Then �

0

has one closed class, R
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2.3 Continuous time Model

say, that is positive recurrent. It holds, that

g(�
0

) = ↵

X

R

µx(�0

)v↵x (�0

).

ii) Let � 2 �0. Let x 62 D, and put ⌧ := ⌧D to be the hitting time of D (cf.
Eq. (2.12)). Then

v

↵
x (�) � E�

x

h

{⌧=1}
g(�

0

) + ✏

↵

+ {⌧<1}
�

(1�e

�↵⌧ )
g(�

0

) + ✏

↵

+e

�↵⌧
v

↵
X

⌧

(�)
�

i

.

(2.15)

iii) There exists x↵ 2 D with v

↵
x
↵

= infx v↵x .

Proof. First we prove (i). By virtue of Assumption 2.2.3 (ii) the Markov
process associated with �

0

has one closed class, which is positive recurrent.
Furthermore, absorption into this class takes place in finite expected time and
with finite expected cost, for any initial state x 62 R, since necessarily x

0

2 R.
Then we get

X

x2R

µx(�0

)E�
0

x

⇥

cX
t

⇤

=
X

x2R

µx(�0

)
X

y2R

pt,xy(�0

)cy(�0

)

=
X

y2R

cy(�0

)
X

x2R

µx(�0

) pt,xy(�0

)

=
X

y2R

cy(�0

)µy(�0

) = g(�
0

),

where the interchange of summation is allowed by nonnegativity. This is used
as well to justify the next derivation

↵

X

x2R

µx(�0

)v↵x (�0

) = ↵

X

x2R

µx(�0

)E�
0

x

⇥

Z 1

t=0

e

�↵t
cX

t

dt

⇤

= ↵

Z 1

t=0

e

�↵t
X

x2R

µx(�0

)E�
0

x

⇥

cX
t

⇤

dt

= ↵

Z 1

t=0

e

�↵t
g(�

0

)dt = g(�
0

).

The proof of (ii) follows by splitting the ↵-discounted cost into three terms,
the first two of which represent the ↵-discounted cost till ⌧ , in the respective
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cases ⌧ = 1 and ⌧ < 1, and the third is the cost starting from ⌧ < 1:

v

↵
x (�) =E�

x

h

Z 1

t=0

e

�↵t
cX

t

dt

i

�E�
x

h

{⌧=1}

Z 1

t=0

e

�↵t
dt(g(�

0

) + ✏)

+ {⌧<1}

⇣

Z ⌧

t=0

e

�↵t
dt(g(�

0

) + ✏)

Z 1

t=⌧

e

�↵t
cX

t

dt

⌘i

=E�
x

h

{⌧=1}
g(�

0

) + ✏

↵

+ {⌧<1}
�

(1�e

�↵⌧ )
g(�

0

) + ✏

↵

+ e

�↵⌧
v

↵
X

⌧

(�)
�

i

.

The inequality is due to the definitions of D and ⌧ .
We finally prove (iii). Part (i) implies the existence of z↵ 2 R such that

g(�
0

) � ↵v

↵
z
↵

(�
0

). Then there also exists a y↵ 2 D with g(�
0

) � ↵v

↵
y
↵

(�
0

).

Indeed, suppose such y↵ 2 D does not exist. Then v

↵
y (�0

) >

g(�
0

)

↵ for all
y 2 D. This leads to a contradiction, since by virtue of part (ii)

g(�
0

)

↵

� v

↵
z
↵

(�
0

) � E�
z
↵

h

(1� e

�↵⌧ )
g(�

0

) + ✏

↵

+ e

�↵⌧
v

↵
X

⌧

(�
0

)
i

>

g(�
0

)

↵

.

Let x↵ = argminy2D v

↵
y , and so v↵x

↵

 v

↵
x
↵

(�
0

)  g(�
0

)

↵ . Then x↵ = argminy v
↵
y ,

because by Eq. (2.15) for any x /2 D(�
0

) and ↵-discount optimal policy �↵

v

↵
x = v

↵
x (�↵)

� E�
x

h

{⌧=1}
g(�

0

) + ✏

↵

+ {⌧<1}
�

(1� e

�↵⌧ )
g(�

0

) + ✏

↵

+ e

�↵⌧
v

↵
X

⌧

�

i

� E�
x

h

{⌧=1}v
↵
x
↵

+ {⌧<1}
�

(1� e

�↵⌧ )v↵x
↵

+ e

�↵⌧
v

↵
x
↵

�

i

= v

↵
x
↵

.

Lemma 2.3.7. Suppose that Assumptions 2.3.1, 2.3.2 (↵), ↵ > 0, and 2.2.3
hold. Let {↵n}n be a positive sequence converging to 0. The following hold.

i) There exist a subsequence, call it {↵n}n again, and x

0

2 D such that
↵nv

↵
n

x
0

 g(�
0

), n = 1, 2, . . ..

ii) There exist a constant L and a function M : S ! (0,1), such that �L 

v

↵
x � v

↵
z  Mx, ↵ > 0.

44
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Proof. To prove (i), note that Lemma 2.3.6 (iii) implies for all n the existence
of x↵

n

2 D, such that v

↵
n

x
↵

n

 v

↵
n

x , x 2 S. By Assumption 2.2.3 (iii) D is
finite, and so there exists x

0

2 D and a subsequence of {↵n}n, that we may
call {↵n}n again, such that x↵

n

= x

0

. Therefore by Lemma 2.3.6 (i), for all n

↵nv
↵

n

x
0

 ↵n

X

x

µx(�0

)v↵n

x  ↵n

X

x

µx(�0

)v↵n

x (�
0

) = g(�
0

).

For the proof of (ii), take

Mx = cxz(�0

), L = max
y2D

czy(�
y),

with z and �

y from Assumptions 2.2.3 (ii) and (iv). Let ↵ > 0. Let strategy
� follow �

0

until z is reached, from then onwards it follows the ↵-discount
optimal policy �↵. Then again by Assumption 2.2.3 (ii) we have

v

↵
x  v

↵
x (�)  cxz(�0

) + v

↵
z (�↵) = cxz(�0

) + v

↵
z .

Notice that Assumptions 2.2.3 (iii) and (iv) yield L < 1. According to
Lemma 2.3.6 (iv) there is a minimum cost starting state x↵ 2 D. Let �

0

be the policy that uses policy �

x
↵ of Assumption 2.2.3 (iv) until hitting x↵,

after which �

0 follows the ↵-discount optimal policy �↵. This yields,

v

↵
z � v

↵
x  v

↵
z �min

x
v

↵
x  v

↵
z (�

0)� v

↵
x
↵

 czx
↵

(�x
↵)  L.

Lemma 2.3.8. Suppose that Assumptions 2.3.1, 2.3.2 (↵), ↵ > 0, and 2.2.3
hold. Then,

lim sup
↵#0

↵v

↵
x  gx(�), x 2 S,� 2 �0

.

Proof. Let � 2 �0. We wish to apply Theorem 2.3.12 for s(t) =
P

y pt,xy(�)cy(�).
First, Assumption 2.3.1, Assumption 2.3.2 (↵) and the dominated convergence
theorem yield that t 7!

P

y pt,xy(�)cy(�) is continuous and |v

↵
x (�)| < 1 (cf.

Theorem 3.3.3). By Assumption 2.2.3 (i),
X

y

pt,xy(�)cy(�), v

↵
x (�) � 0, x 2 S.

Then, S(↵) = v

↵
x (�) and gx(�) = lim supT!1

1

T ST . Hence Theorem 2.3.12
(1c) implies

lim sup
↵#0

↵v

↵
x (�)  gx(�).
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2 A roadmap to structures for MDPs

Lemma 2.3.9 ([35, Theorem 5.2]). Suppose that Assumptions 2.3.1, 2.3.2 (↵),
↵ > 0, and 2.2.3 hold. Let (g, v) be a tuple, with g 2 and v : S ! [�L,1),
x 2 S, and � 2 �0 be such that

g � cx(�) +
X

y

qxy(�)vy, x 2 S.

Then gx(�)  g, x 2 S.

Proof. The proof is identical to the proof of [35, Theorem 5.2].

Now we have all results at hand to finish the proof of Theorem 2.3.4. The
most important di�culty is to obtain the CAOE from a continuous time av-
erage cost optimality inequality (CAOI). To achieve this we have translated a
very interesting argument used in [63, Chapter 7] for the discrete time case to
continuous time.

Proof of Theorem 2.3.4. Let {↵n}n > 0 be a positive sequence converging to
0. Lemma 2.3.7(ii) implies that �L  v

↵
n

x � v

↵
n

z  Mx, for a constant L and
a function M : S ! (0,1), and x 2 S. Note that [�L,Mx] is compact. By a
diagonalisation argument, the sequence has a convergent subsequence, denoted
{↵n}n again, along which the limit exists for any x 2 S, say v

↵
n

x � v

↵
n

z ! v

0
x,

x 2 S.
Lemma 2.3.7(i) implies that there exists a further subsequence, again de-

noted {↵n}n, such that 0  ↵nv
↵

n

x
0

 g(�
0

), for some x
0

2 D. Compactness of
[0, g(�

0

)] implies existence of a limit point, say g

0, along a subsequence, that
in turn is denoted by {↵n}n.

By the above, ↵n(v↵n

y � v

↵
n

x
0

) ! 0, and thus ↵nv
↵

n

y ! g

0 for all y 2 S.
Since �0 is compact, there is a final subsequence of {↵n}n, denoted likewise,

such that {�↵
n

}n, with �

↵
n an ↵-discount optimal policy, has a limit point �0

say. The tuple (g0, v0) has property (3) from part (i) of the Theorem.
We will next show that this tuple is a solution to the following inequality:

g

0
� cx(�

0) +
X

y

qxy(�
0)v0y � inf

�2�

0
{cx(�) +

X

y

qxy(�)v
0
y}. (2.16)

Indeed, the ↵-DDOE (2.11) yields for all x 2 S

↵v

↵
x = cx(�↵) +

X

y

qxy(�↵)v
↵
y .
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2.3 Continuous time Model

Then we use Fatou’s lemma and obtain

g

0 = lim inf
n!1

{↵nv
↵

n

x }

= lim inf
n!1

�

cx(�↵
n

) +
X

y 6=x

qxy(�↵
n

)[v↵n

y � v

↵
n

z ]� qx(�↵
n

)[v↵n

x � v

↵
n

z ]
 

�cx(�
0) +

X

y 6=x

lim inf
n!1

{qxy(�↵
n

)[v↵n

y � v

↵
n

z ]}� lim inf
n!1

�

qx(�↵
n

)[v↵n

x � v

↵
n

z ]}

=cx(�
0) +

X

y

qxy(�
0)v0y

� inf
�2�

0
{cx(�) +

X

y

qxy(�)v
0
y},

where subtraction of v↵n

z is allowed, since Q(�) has row sums equal to zero.
In the third equation we use continuity of � 7! cx(�) and � 7! qxy(�).
This allows to show that (g0, v0) has property (1) from the Theorem and

that �

0 is optimal in �0. Indeed, Lemma 2.3.8 and Lemma 2.3.9 yield for all
x 2 S

gx(�
0)  g

0 = lim
n!1

↵nv
↵

n

x  gx  gx(�
0). (2.17)

Hence gx(�0) = gx = g

0, x 2 S, and so �

0 is optimal in �0, and g

0 is the
minimum expected average cost.
The following step is to show that both inequalities in Eq. (2.16) are in

fact equalities. To this end, it is su�cient to show that (g0, v0) is a solution
tuple to the CAOE (2.13). Then Eq. (2.16) immediately implies that �0 takes
minimising actions in Eq. (2.13) for the solution (g0, v0).
Hence, let us assume the contrary. If g0 > inf�2�

0
{cx(�) +

P

y qxy(�)v
0
y}

then there exists �̄x 2 �0
x, such that g0 > cx(�̄x) +

P

y qxy(�̄x)v0y. Put dx � 0
to be the corresponding discrepancy

g

0 = cx(�̄x) + dx +
X

y

qxy(�̄x)v
0
y.

As a consequence, if the inequality in Eq. (2.16) is not an equality, then there
exists �̄ 2 �0 and a discrepancy function d : S ! [0,1), d 6⌘ 0, such that

g

0 = cx(�̄) + dx +
X

y

qxy(�̄)v
0
y, x 2 S. (2.18)

In other words

0 = cx(�̄) + dx � g

0 +
X

y

qxy(�̄)v
0
y, x 2 S.
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2 A roadmap to structures for MDPs

For x 62 D, cx(�̄)+dx�g

0
� g(�

0

)+✏�g

0
� ✏, and so v

0+Le is a non-negative
solution to the equation

X

y

qxy(�̄)(v
0
y + L)  �✏, y 62 D.

This is precisely the condition in [72, Theorem 1] with � = 02. Following
the proof of that theorem and using that qx(�̄) > 0 for x 62 D (otherwise
gx(�̄) = cx(�̄) > g

0), we can conclude that

v

0
x + L � mxD(�̄), x 62 D,

so that mxD(�̄) < 1, for x 62 D.

For x 2 D, either qx(�̄) = 0, or qx(�̄) > 0 and

mxD(�̄) =
1

qx(�̄)
+
X

y 62D

qxy(�̄)

qx(�̄)
myD(�̄) 

1

qx(�̄)
+
X

y

qxy(�̄)

qx(�̄)
(v0y + L) < 1,

by virtue of Eq. (2.18). We now will perform an iteration argument along the
same lines as the proof of [72, Theorem 1].

First consider the case that qx(�̄) > 0. Dividing Eq. (2.18) for state x by
qx(�̄) we get, after reordering,

v

0
x �

cx(�̄) + dx � g

0

qx(�̄)
+
X

y 6=x

qxy(�̄)

qx(�̄)
v

0
y.

Introduce the substochastic matrix P on S \D by

pxy =

8

<

:

qxy(�̄)

qx(�̄)
y /2 D [ {x}

0 otherwise.

Denote the n iterate by P

(n), where P

(0) is the S⇥ S identity matrix. Then,

2
The factor � in front of yi in that paper has been mistakenly omitted
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2.3 Continuous time Model

for x /2 D we get

v

0
x �

cx(�̄) + dx � g

0

qx(�̄)
+
X

y

pxyv
0
y +

X

y2D

qxy(�̄)

qx(�̄)
v

0
y

�

cx(�̄) + dx � g

0

qx(�̄
+
X

y2D

qxy(�̄)

qx(�̄)
v

0
y

+
X

y

pxy

h

cy(�̄) + dy � g

0

qy(�̄)
+
X

w

pywv
0
w +

X

w2D

qyw(�̄)

qy(�̄)
v

0
w

i

�

N�1

X

n=0

X

y

p

(n)
xy

cy(�̄) + dy � g

0

qy(�̄)
+

N�1

X

n=0

X

y

p

(n)
xy

X

w2D

qyw(�̄)

qy(�̄)
v

0
w +

X

y

p

(N)

xy v

0
y.

Taking the liminf N ! 1, we get

v

0
x �

1
X

n=0

X

y

p

(n)
xy

cy(�̄) + dy � g

0

qy(�̄)
+

1
X

n=0

X

y

p

(n)
xy

X

w2D

qyw(�̄)

qy(�̄)
v

0
w

+ lim inf
N!1

X

y

p

(N)

xy v

0
y.

Clearly

lim inf
N!1

X

y

p

(N)

xy v

0
y � lim inf

N!1

X

y

p

(N)

xy (�L).

However, since mxD(�̄) < 1, x 62 D, we get that lim infN!1
P

y p

(N)

xy = 0.
Hence, for ⌧ := ⌧D

v

0
x �

1
X

n=0

X

y

p

(n)
xy

cy(�̄) + dy � g

0

qy(�̄)
+

1
X

n=0

X

y

p

(n)
xy xy

X

w2D

qyw(�̄)

qy(�̄)
v

0
w

� E
¯�
x

h

Z ⌧

t=0

(cX
t

+ dX
t

� g

0)dt
i

+ E
¯�
x

h

v

0
X

⌧

i

= cxD(�̄) + E
¯�
x

h

Z ⌧

t=0

dX
t

dt

i

�mxD(�̄)g0 + E
¯�
x

h

v

0
X

⌧

i

, (2.19)

for x 62 D. For x 2 D we can derive the same inequality. Note that we assumed
qx(�̄) > 0. On the other hand, we have that

v

↵
x  cxD(�̄) + E

¯�
x

⇥

e

�↵⌧
v

↵
X

⌧

⇤

.
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2 A roadmap to structures for MDPs

This is equivalent to

v

↵
x � v

↵
z  cxD(�̄)� v

↵
z (1� E

¯�
x

⇥

e

�↵⌧
⇤

) + E
¯�
x

⇥

e

�↵⌧ (v↵X
⌧

� v

↵
z )
⇤

.

Hence, for the sequence {↵n}n we have

v

↵
n

x � v

↵
n

z  cxD(�̄)� ↵nv
↵

n

z

1� E
¯�
x

⇥

e

�↵
n

⌧
⇤

↵n
+ E

¯�
x

⇥

e

�↵
n

⌧ (v↵n

X
⌧

� v

↵
n

z )
⇤

.

Taking the limit of n to infinity yields

v

0
x  cxD(�̄)� g

0
·mxD(�̄) + lim

n!1

�

E
¯�
x

⇥

e

�↵
n

⌧ (v↵n

X
⌧

� v

↵
n

z )
⇤ 

(2.20)

= cxD(�̄)� g

0
·mxD(�̄) + E

¯�
x

⇥

v

0(X⌧ )
⇤

.

Taking the limit through the expectation is justified by the dominated conver-
gence theorem, since

|E
¯�
x

⇥

e

�↵
n

⌧ (v↵n

X
⌧

� v

↵
n

z )
⇤

|  E
¯�
xe

�↵
n

⌧
|v

↵
n

X
⌧

� v

↵
n

z |  E
¯�
x(MX

⌧

_ L) < 1.

Combining Eqs. (2.19) and (2.20) yields d ⌘ 0, for x with qx(�̄) > 0.
For x with qx(�̄) = 0, necessarily g

0 = cx(�̄) and then equality in Eq. (2.16)
immediately follows. Since there is equality for �

0, this also implies that the
inf is a min, and so we have obtained that (g0, v0) is a solution to the CAOE
(2.13).

The only thing left to prove, is that the solution tuple (g0, v0) has property
(2), that is, every minimising policy in Eq. (2.13) is average cost optimal. But
this follows in the same manner as the argument leading to Eq. (2.17) yielding
optimality of �0. This finishes the proof.

2.3.6 Tauberian Theorem

This section develops a Tauberian theorem that is used to provide the necessary
ingredients for proving Theorem 2.3.4. This theorem is the continuous time
counterpart of Theorem A.4.2 in Sennott [63]. A related assertion can be found
in [35, Proposition A.5], however, in a weaker variant (without the Karamata
implication, see Theorem 2.3.12, implication (i) =) (iii)). The continuous
time version seems deducible from Chapter 5 of the standard work on this
topic [76]. We give a direct proof here.

Let s : [0,1) ! be a function that is bounded below by �L say and
(B([0,1)),B)-measurable, where B denotes the Borel-�-algebra on , and
B([0,1)) the Borel-�-algebra on [0,1). Assume for any ↵ > 0 that

S(↵) =

Z 1

t=0

s(t)e�↵t
dt < 1.
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2.3 Continuous time Model

Furthermore, assume for any T > 0 that

ST =

Z T

t=0

s(t)dt < 1.

Lemma 2.3.10. Suppose that L = 0, i.e. s is a nonnegative function. Then
for all ↵ > 0 it holds that

1

↵

S(↵) =

Z 1

T=0

e

�↵T
ST dT. (2.21)

Furthermore, for all ↵ > 0, U � 0 the following inequalities hold true:

↵S(↵) � inf
T�U

⇢

ST

T

�

 

1� ↵

2

Z U

T=0

Te

�↵T
dT

!

, (2.22)

and

↵S(↵)  ↵

2

Z U

T=0

e

�↵T
ST dT + sup

T�U

⇢

ST

T

�

. (2.23)

Proof. We first prove Eq. (2.21). To this end, let ↵ > 0. Then,

1

↵

S(↵) =

Z 1

u=0

e

�↵u
du

Z 1

t=0

s(t)e�↵t
dt

=

Z 1

t=0

Z 1

u=0

s(t)e�↵(u+t)
dudt

=

Z 1

T=0

Z T

t=0

s(t)e�↵T
dudT

=

Z 1

T=0

e

�↵T

Z T

t=0

s(t)dudT

=

Z 1

T=0

e

�↵T
ST dT.

Interchange of integrals, change of variables are allowed, since the integrands
are non-negative and the integrals are finite.

Next, we prove Eq. (2.22). To this end, we use Eq. (2.21). Then, for all
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2 A roadmap to structures for MDPs

↵ > 0, U � 0

↵S(↵) = ↵

2

Z 1

T=0

ST e
�↵T

dT

� ↵

2

Z 1

T=U

ST

T

Te

�↵T
dT

� ↵

2 inf
t�U

⇢

ST

T

�

Z 1

T=U

Te

�↵T
dT

= ↵

2 inf
t�U

⇢

ST

T

�

 

Z 1

T=0

Te

�↵T
dT �

Z U

T=0

Te

�↵T
dT

!

= inf
T�U

⇢

ST

T

�

 

1� ↵

2

Z U

T=0

Te

�↵T
dT

!

.

The first inequality uses explicitly that the integrand is non-negative.
Similarly we expand from Eq. (2.21) to get Inequality (2.23) as follows. Let

↵ > 0, U � 0. Then,

↵S(↵) = ↵

2

Z 1

T=0

e

�↵T
ST dT

= ↵

2

Z U

T=0

e

�↵T
ST dT + ↵

2

Z 1

T=U

e

�↵T
T

ST

T

dT

 ↵

2

Z U

T=0

e

�↵T
ST dT + sup

T�U

⇢

ST

T

�

↵

2

Z 1

T=U

Te

�↵T
dT

 ↵

2

Z U

T=0

e

�↵T
ST dT + sup

T�U

⇢

ST

T

�

↵

2

Z 1

T=0

Te

�↵T
dT

= ↵

2

Z U

T=0

e

�↵T
ST dT + sup

T�U

⇢

ST

T

�

.

Let f : [0, 1] ! be an integrable function, and define

Sf (↵) =

Z 1

t=0

e

�↵t
f(e�↵t)s(t)dt.

Lemma 2.3.11. Assume that L = 0 and

W := lim inf
↵#0

↵S(↵) = lim sup
↵#0

↵S(↵) < 1.
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2.3 Continuous time Model

Let r : [0, 1] ! be given by

r(x) =

⇢

0 x < 1/e
1/x x � 1/e.

Then

lim
↵#0

↵Sr(↵) =

✓

Z

1

x=0

r(x)dx

◆

lim
↵#0

↵S(↵). (2.24)

Proof. We first prove Eq. (2.24) for polynomial functions, then for continuous
functions and finally for r. To show that Eq. (2.24) holds for polynomials, it
is su�cient to prove it for p(x) = x

k. Thus,

↵Sp(↵) = ↵

Z 1

t=0

e

�↵t(e�↵t)ks(t)dt

=
1

k + 1



↵(k + 1)

Z 1

t=0

e

�↵(k+1)t
s(t)dt

�

=

Z

1

x=0

p(x)dx [↵(k + 1)S(↵(k + 1))] .

Taking the limit of ↵ # 0 proves Eq. (2.24) for polynomials. This is allowed
because W is finite. Next we show Eq. (2.24) for continuous functions. The
Weierstrass approximation theorem (see [71, Section 13.33], [4]) yields that a
continuous function q on a closed interval can be arbitrary closely approxim-
ated by polynomials. Let p such that p(x)� ✏  q(x)  p(x)+ ✏ for 0  x  1.
Then,

Z

1

x=0

p(x)dx� ✏ 

Z

1

x=0

q(x)dx 

Z

1

x=0

p(x)dx+ ✏.

Sp�✏(↵) =

Z 1

t=0

e

�↵t(p(e�↵t)� ✏)s(t)dt

=

Z 1

t=0

e

�↵t
p(e�↵t)s(t)dt� ✏

Z 1

t=0

e

�↵t
s(t)dt

= Sp(↵)� ✏S(↵).

This implies
0  Sp+✏(↵)� Sp�✏(↵)  2✏S(↵),

As ✏ approaches 0, finiteness of W yields the result for continuous functions.
In a similar manner r can be approximated by continuous functions q, q0 with
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2 A roadmap to structures for MDPs

q

0
 r  q as follows

q(x) =

8

<

:

0 x <

1

e � �

e
�x+ e�

1

�+
1

e � �  x <

1

e
1

x x �

1

e ,

q

0(x) =

8

<

:

0 x <

1

e
e

�+�2ex+ 1

�+�2e
1

e � x >

1

e + �

1/x 1

e + � � x.

This proves Eq. (2.24).

Theorem 2.3.12. The following assertions hold.

1. lim inf
T!1

ST

T

(a)

 lim inf
↵#0

↵S(↵)
(b)

 lim sup
↵#0

↵S(↵)
(c)

 lim sup
T!1

ST

T

;

2. the following are equivalent

i) lim inf↵#0 ↵S(↵) = lim sup
↵#0

↵S(↵) < 1;

ii) lim infT!1
S
T

T = lim sup
T!1

ST

T

< 1;

iii) lim↵#0 ↵S(↵) = lim
T!1

ST

T

< 1.

Proof. This proof is based on Sennott [63]. Clearly inequality (b) holds. So
this leaves to prove inequalities (a) and (c).

Proof of inequality (a). First notice, that if we take s ⌘ M a constant
function, then

lim inf
T!1

ST

T

= lim inf
↵#0

↵S(↵) = lim sup
↵#0

↵S(↵) = lim sup
T!1

ST

T

.

Therefore adding a constant M to the function s does not influence the res-
ult. Hence, it is su�cient to prove the theorem for nonnegative functions
s. This means that the assumptions of Lemma 2.3.10 hold and we may use
Inequality (2.22). Thus,

inf
T�U

⇢

ST

T

�

 

1� ↵

2

Z U

T=0

Te

�↵T
dT

!

 ↵S(↵).
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2.3 Continuous time Model

Notice that lim↵#0 ↵
2

R U

T=0

Te

�↵T
dT = 0, hence taking the lim inf as ↵ # 0

gives

inf
T�U

ST

T

 lim inf
↵#0

↵S(↵).

Now taking the limit U ! 1 on both sides gives

lim inf
T!1

ST

T

 lim inf
↵#0

↵S(↵),

which yields the result. Using Inequality (2.23) of Lemma 2.3.10 and applying
the same reasoning proves inequality (c).

Next we prove part 2. Part 1 implies that i) (= ii) () iii). So it is
su�cient to prove that i) =) iii).
Assume that i) holds, then we may invoke Lemma 2.3.11. First notice that
R

1

x=0

r(x)dx = 1, hence Eq. (2.24) reduces to

lim
↵#0

↵Sr(↵) = lim
↵#0

↵S(↵).

Moreover,

↵Sr(↵) = ↵

Z 1

t=0

e

�↵t
s(t)e↵t {e�↵t�e�1}dt = ↵

Z

1/↵

t=0

s(t)dt = ↵S

1/↵

To complete the proof, we have

lim
↵#0

↵S(↵) = lim
↵#0

↵Sr(↵) = lim
↵#0

↵S

1/↵ = lim
T!1

ST

T

.
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3 Parametrised Markov processes
with discounted cost

This chapter is based on Blok and Spieksma [18], published.

3.1 Introduction

In this chapter we study convergence and continuity properties of a collection
of parametrised continuous time Markov processes in countable state space
with a discounted cost criterion. The parameter may represent a stationary or
deterministic policy in a Markov decision process (MDP). It may also represent
a perturbation of a Markov process. Or it can be a combination of both; i.e.
control in a perturbed MDP.

The motivation for this chapter is our interest in MDPs with unbounded
transition rates. In order to study structural properties the MDP has to be
uniformisable. Structural properties of optimal policies and the value function
follow from the propagation of these properties through a value iteration step.
Note that often value iteration is applicable to the associated jump MDP. How-
ever, it is not clear that the desired structural properties propagate through
the value iteration step in this case, since the expected sojourn times in the
states may not be equal and so they may a↵ect the resulting immediate costs
and transition probabilities in an undesirable manner.

Hence, we wish to perturb the MDP in such a manner that it allows uni-
formisation and the structural properties are preserved. Therefore continuity
in the parameter is necessary to infer properties of the original MDP from
properties of the perturbed MDPs.

The conditions we impose on the Markov processes boil down to the ex-
istence of a transformation of the process, such that the transformed process
is nonexplosive and moreover has a bounded cost function. These conditions
should hold uniformly in the parameter and are expressed as drift conditions
for the original Markov process as well as for the transformed process. Non-
explosiveness of the transformation guarantees continuity of the relevant per-
formance measures as a function of the parameter, provided some standard
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3 Parametrised Markov processes with discounted cost

continuity conditions hold.

The typical performance measure we have in mind is the discounted value
function. If the parameter space has a product property the parametrised
process is an MDP. The continuity of the value function implies the existence
of a solution of the continuous time discount optimality equation (CDOE). We
show that the solution provides a deterministic stationary optimal policy in
the class of stationary policies. We do not study history dependent policies.

As an illustration we apply our results to the server farm with unboun-
ded rates studied in [1]. In that paper it was shown that for bounded jump
perturbations of the model a switching curve policy is optimal. However the
unbounded jump case remained open, since till recently no theory was avail-
able to justify taking the limit of the perturbation parameter going to 0 – and
the jumps becoming unbounded. In the present chapter we take the parameter
space to be the product of the perturbation and control parameters. The ob-
tained continuity results allow us to take the limit and show that a switching
curve policy with the same structure is optimal.

The drift conditions that are used to show the existence of a solution of the
CDOE, are related to the conditions used in [34], [36], [37], [38], [51] and [53].
These papers do not study convergence results, to the best of the authors’
knowledge the only paper where convergence of perturbed MDPs is studied, is
[52]. We want to emphasise that our aim has been to give minimal conditions
for the drift criteria. In the one-parameter case our drift conditions are proven
to be necessary (cf. [68]). Furthermore, we have tried to highlight the role
that the various conditions play in the derivations. The conditions we impose
are weaker than those used in the above mentioned papers. More detailed
comparisons with the other drift conditions are given later in the chapter, in
Section 3.4 and Remark 3.5.2.

The chapter is organised as follows. Section 3.2 introduces a so-called V -
transformation and gives a characterisation of nonexplosiveness in terms of
drift conditions. In Section 3.3 we develop conditions implying the continuity
properties we will need. In Section 3.4 the two main theorems regarding the
solution to the Poisson and optimality equation are stated. In Section 3.5 the
translation to MDPs and perturbed MDPs is made. We provide an outline of
the approach to get results for unbounded MDPs. Finally, in Section 3.6 we
demonstrate this approach on the server farm model studied by [1]. See also
Chapter 4 for a more extensive treatment of this model.
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3.2 Basic settings

3.2 Basic settings

We will restrict our investigations to the following class of parametrised pro-
cesses.

Assumption 3.2.1. For each a 2 A, X(a) is a minimal, standard, stable
Markov process, with right-continuous sample paths (with respect to the dis-
crete topology), and with conservative q-matrix Q(a) = (qxy(a))x,y2S, i.e. for
all x 2 S, a 2 A

1. 0  qx(a) = �qx,x(a) < 1;

2.
P

y qxy(a) = 0.

With Pt(a) = { pt,xy(a)}xy, t � 0, we denote the minimal transition func-
tion. A basic role in the discussion of relevant continuity properties of a
parametrised Markov process is played by explosiveness properties. To this
end we will first review the definition of explosiveness and a characterisation
that is useful in this context. For the rest of this section we restrict to the
one-parameter case.
We will define this properly. To this end, let X be a Markov process on

S that satisfies Assumption 3.2.1 (for a parameter space consisting of one
element). Let ⌧

0

= 0 and ⌧n+1

= inf{t > ⌧n |Xt 6= Xt�} if X⌧
n

is not-
absorbing. Otherwise, put ⌧k = 1 and X⌧

k

= X⌧
n

for k > n. Let J1 =
limn!1 ⌧k. X is said to be explosive if there exists a state x 2 S with P{J1 <

1 |X

0

= x} > 0. Nonexplosiveness is strongly related to the existence of a
drift moment function, introduced below. First we need some notation. Let f :
S ! , then f can be viewed as a vector of dimension |S|. By Qf and Ptf we
mean the matrix times vector products with elements Qf(x) =

P

y2S qxyf(y),
and Ptf(x) =

P

y2S pt,xyf(y), x 2 S respectively.

Definition 3.2.1. Let � 2 and V : S !

+

= (0,1), then

• V is said to be a �-drift function for X if QV  �V , where we use
component-wise ordering;

• V is said to be a moment function, if there exists an increasing sequence
{Kn}n ⇢ S of finite sets with limn Kn = S, such that infx 62K

n

V (x) !
1, as n ! 1.

Note that since Q is conservative, V ⌘ 1 is always a 0-drift function. Fur-
thermore, the paper [67, Theorem 2.1] shows that nonexplosiveness of X is
equivalent to the existence of a �-drift moment function, for some constant
� 2 .
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3 Parametrised Markov processes with discounted cost

Definition 3.2.2. Let � 2 , V be a �-drift function for X. Define the
following associated transformation of X, denoted as X

V . Extend the state
space with a co�n state �, i.e. S

�

= S [ {�}. Then define

q

V
xy =

8

>

>

>

<

>

>

>

:

q
xy

V (y)
V (x) , x 6= y, x, y 6= �

qxx � �, x = y, x, y 6= �

� �

P
y2S q

xy

V (y)

V (x) , x 6= �, y = �

0, x = �, y 2 S

�

.

This makes Q

V = (qVxy)x,y2S
�

a conservative q-matrix, with � an absorb-
ing state. Denote by {P

V
t }t again the (minimum) transition function on the

enlarged state space S

�

.
Since we also need to take into account a cost or reward structure, the

validity of the Kolmogorov forward integral equation is an important tool in
guaranteeing the existence of solutions to CDOEs. The function f : S ! is
said to satisfy the Kolmogorov forward equation if for all x 2 S

Ptf(x) = f(x) +

Z t

0

Ps(Qf)(x)ds, t � 0, (3.1)

where Ptf(x) =
P

y pt,xyf(y).
The following result holds.

Theorem 3.2.1 (cf. [66, Theorem 3.2], [67, Theorem 2.1]). Let Assump-
tion 3.2.1 hold and let V be a �-drift function for X. The following are equi-
valent

i) V satisfies Eq. (3.1);

ii) X

V is nonexplosive;

iii) for some constant ✓ there exists a ✓-drift V -moment function W for X.

With W being a V -moment function we mean that W/V is a moment func-
tion. Then direct calculations yield that W being a ✓-drift V -moment function
forX is equivalent toW/V being a (✓��)-drift moment function forXV , where
(W/V )(x) = W (x)/V (x), x 2 S.

Under any of these three conditions, the functions bounded by V also satisfy
Eq. (3.1), under suitable integrability conditions. A discounted version is
needed later on, and so we make it precise in the theorem below. To do so, we
need some further notation.
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3.2 Basic settings

The Banach space of functions bounded by V (or V -bounded functions) on
S is denoted by `

1(S, V ). This means that f 2 `

1(S, V ) if f : S ! and

||f ||V := sup
x2S

|f(x)|

V (x)
< 1.

If V is a �-drift function, then [3] implies PtV  e

�t
V and [67] implies

t 7! PtV is continuous on
+

. This implies that t 7! Ptf is continuous for
each f 2 `

1(S, V ) and, hence, integrable. Additionally, Pt is a V -bounded
linear operator, mapping `

1(S, V ) into itself, with induced norm

|| Pt||V = sup
x

PtV (x)

V (x)
 e

�t
. (3.2)

Note that in general the q-matrix Q is not a V -bounded linear operator.

Theorem 3.2.2 (cf. [66, Theorem 3.4, Lemma 3.1]). Let Assumption 3.2.1
hold, and let V be a �-drift function for X.

i) If XV is nonexplosive and, either f 2 `

1(S, V ) and
R t

0

Ps|Qf |ds < 1 or
f = V , then for any k 2 , f satisfies

e

kt
Ptf(x) = f(x) +

Z t

0

e

ks
h

Ps(Qf)(x) + k Psf(x)
i

ds. (3.3)

ii) Conversely, if V satisfies Eq. (3.3) for some k 2 , then X

V is nonexplos-
ive.

Proof. The proof of Theorem 3.2.2(i) follows entirely from the proofs in the
referenced theorem and lemma. The conditions in the referenced results are
slightly di↵erent: f is assumed to be a �

0-drift function for some �

0
2 .

However, this is only used in the proofs to guarantee that
R t

0

Ps|Qf |(x)ds < 1.
The latter is assumed explicitly here.

For the proof of Theorem 3.2.2(ii), we assume that Eq. (3.3) holds for V .
By virtue of [3, Lemma 5.4.2] we have

pt,xy =
V (x)

V (y)
e

�t
p

V
t,xy, x, y 2 S, t � 0. (3.4)

Hence, we can rewrite Eq. (3.3) as

e

kt
X

y2S

pt,xyV (y) = V (x)+

Z t

0

e

ks
h

X

z2S

ps,xz

X

y2S

qzyV (y)+k

X

y2S

ps,xyV (y)
i

ds.

61



3 Parametrised Markov processes with discounted cost

Substituting Eq. (3.4) in the above expression, we have

e

(k+�)t
V (x)

X

y2S

p

V
t,xy

= V (x)
⇣

1 +

Z t

0

e

(k+�)s
h

X

z2S

p

V
s,xz

X

y2S

(qVzy + �zy�) + k

X

y2S

p

V
s,xy

i

ds

⌘

.

Dividing by V (x), we obtain

e

(k+�)t
X

y2S

p

V
t,xy = 1 +

Z t

0

e

(k+�)s
h

X

z2S

p

V
s,xz

X

y2S

q

V
zy +

X

y2S

(k + �) pVs,xy

i

ds.

Now for y = �, we directly have by the Kolmogorov forward equation:

e

(k+�)t
p

V
t,x� =

Z t

0

e

(k+�)s
h

p

V
s,xz

X

z2S

q

V
z� + (k + �) pVs,x�

i

ds.

Combining these, we obtain

e

(k+�)t
X

y2S
�

p

V
t,xy =1 +

Z t

0

e

(k+�)s
h

X

z2S
�

p

V
s,xz

X

y2S
�

q

V
zy +

X

y2S
�

(k + �) pVs,xy

i

ds

=1 +

Z t

0

e

(k+�)s
X

y2S
�

(k + �) pVs,xyds

�1 +

Z t

0

e

(k+�)s
X

y2S
�

(k + �) pVt,xyds

�1 + e

(k+�)t
X

y2S
�

p

V
t,xy � 1

=e

(k+�)t
X

y2S
�

p

V
t,xy.

The second equality is due to Q

V being conservative. The inequality is due to
non-increasingness of s 7!

P

y2S
�

p

V
s,xy (cf. [3, Proposition 1.1.2 (i)]). Since

the first and last expressions are equal, the inequality is actually an equality.
This yields that

P

y2S
�

p

V
s,xy is constant on (0, t). Because

P

y2S
�

p

V
s,xy is

continuous (cf. [3, Proposition 1.2.6]) it is also constant on [0, t]. Hence,
P

y2S
�

p

V
s,xy = 1 for 0  s  t. From [3, Proposition 1.1.2(ii)] it follows that

P

y2S
�

p

V
s,xy = 1 for all s � 0. Hence X

V is nonexplosive.
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3.3 Continuity for the parametrised processes

By virtue of the above theorem for the �-drift function V , requiring the
nonexplosiveness of XV is necessary and su�cient for Eq. (3.3) to hold. Hence,
Eq. (3.3) cannot hold for V under weaker conditions.

In the next section we develop, in our opinion, satisfactory conditions im-
plying the continuity properties on the parameter set A we will need.

3.3 Continuity for the parametrised processes

In order to address continuity aspects, we have to assume some structure on
the parameter set.

Assumption 3.3.1. The set A is a locally compact topological space, in other
words every point a 2 A has a compact neighbourhood.

In what follows we will assume that the above condition holds.

Definition 3.3.1. V : S !

+

is called an (A, �)-drift function if V is a
�-drift function for X(a) for each a 2 A. The notions (A, �)-drift moment
function and (A, ✓)-drift V -moment function are defined accordingly. If the
parameter space A consists of one element, we will drop the reference to A in
the notation.

Recall the construction of the minimal transition function. Define

f

(n)
t,xy(a) =

(

�xye
�q

x

(a)t
, n = 0

f

(0)

t,xy(a) +
R t

0

e

�q
x

(a)
P

k 6=x qxk(a)f
(n�1)

t�s,ky(a)ds, n � 1.

By minimality of X(a) [3, Theorem 2.2.2], one has

f

(n)
t,xy(a) " pt,xy(a), x, y 2 S, t � 0, a 2 A.

The interpretation is that f

(n)
t,xy(a) is the probability that the process X(a)

reaches y within t time units with at most n jumps when starting from state
x.

Theorem 3.3.1. Suppose that Assumptions 3.2.1 and 3.3.1 hold and that

i) a 7! qxy(a) is continuous on A for x, y 2 S;

ii) there exists an (A, �)-drift function V ;

iii) (a, t) 7! Pt(a)V (x) is continuous on A⇥ [0,1), for each x 2 S.
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3 Parametrised Markov processes with discounted cost

Then (a, t) 7! p

V
t,xy(a) continuous on A ⇥ [0,1) for each x, y 2 S. Hence,

(a, t) 7! pt,xy(a) is continuous on A⇥ [0,1) for each x, y 2 S.

Proof. Let fV,(n)
t,xy (a) be the above probabilities for the V -transformed process

X

V (a). Thus,

f

V,(n)
t,xy (a) =

(

�xye
�qV

x

(a)t
, n = 0

f

V,(0)
t,xy (a) +

R t

0

e

�qV
x

(a)
P

k 6=x q
V
xk(a)f

V,(n�1)

t�s,ky (a)ds, n � 1.

We will inductively show that (a, t) 7!
P

y2K f

V,(n)
t,xy (a) is continuous for each

n � 1, x 2 S

�

, K ⇢ S

�

. First we will show this statement for K = {y}. Note

that (a, t) 7! f

V,(0)
t,xy (a) = e

�qV
x

(a)t
�xy is continuous for x, y 2 S

�

.

Assume that (a, t) 7! f

V,(n�1)

t,xy (a) is continuous for each, x, y 2 S

�

. Be-

cause f

V,(n�1)

t,xy (a)  1, the generalised dominated convergence theorem [58,

Proposition 11.18] implies that (a, t) 7!
P

k 6=x q
V
xk(a)f

V,(n�1)

t,ky (a) is continuous
for each x, y 2 S

�

. For each (a, t) 2 A⇥ [0,1) this expression is bounded by
q

V
x (a). Applying the generalised dominated convergence theorem once more

yields that the integral
R t

0

e

�qV
x

(a)
P

k 6=x q
V
xk(a)f

V,(n�1)

t�s,ky (a)ds is a continuous

function of (a, t) 2 A ⇥ [0,1). This gives continuity of (a, t) 7! f

V,(n)
t,xy (a), for

x, y 2 S

�

.

An analogous argument shows continuity of (a, t) 7!

P

y2K f

V,(n)
t,xy (a) for

any subset K ⇢ S

�

, x 2 S

�

. By virtue of Eq. (3.4), Theorem 3.3.1(iii) is
equivalent to requiring continuity of (a, t) 7!

P

y2S p

V
t,xy(a).

Next, let x, y 2 S. We wish to show that (a, t) 7! p

V
t,xy(a) is continuous at

some arbitrary point (a
0

, t

0

) 2 A⇥ [0,1). Let B
0

⇢ A⇥ [0,1) be a compact

neighbourhood of (a
0

, t

0

). Hence, (a, t) 7!
P

y2S f

V,(n)
t,xy (a) is a nondecreasing

sequence of continuous functions on a compact set, converging to the (assumed)
continuous function (a, t) 7!

P

y2S p

V
t,xy(a). By Dini’s theorem on uniform

convergence [59, Theorem 7.13], the convergence is uniform. In other words,
for each ✏ > 0, there exists N✏ such that for (a, t) 2 B

0

, n � N✏

✏ � |

X

y2S

p

V
t,xy(a)�

X

y2S

f

V,(n)
t,xy (a)| =

X

y2S

�

p

V
t,xy(a)� f

V,(n)
t,xy (a)

�

.

As a consequence, fV,(n)
t,xy (a) converges uniformly in (a, t) 2 B

0

to p

V
t,xy(a), for

x, y 2 S, t � 0.
By virtue of the uniform limit theorem (cf. [50, Theorem 21.6, p. 132] and

[58, Exercise 2.42]), (a, t) 7! p

V
t,xy(a) is continuous in (a

0

, t

0

), for x, y 2 S.
Continuity of (a, t) 7! pt,xy(a) then follows by Eq. (3.4).
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3.3 Continuity for the parametrised processes

Corollary 3.3.2. Suppose that Assumptions 3.2.1 and 3.3.1 hold and that
X(a) is nonexplosive for all a 2 A. Furthermore, assume that a 7! qxy(a)
is continuous for each x, y 2 S. Then (a, t) 7! pt,xy(a) is continuous for
x, y 2 S.

Proof. It holds that V ⌘ 1 is always a 0-drift function. Furthermore, we have
Pt(a)V (x) = 1, x 2 S; hence, (a, t) 7! Pt(a)V is continuous on S ⇥ [0,1).
The result follows from the previous theorem.

Clearly, Theorem 3.3.1(iii) is not easily verified for general drift functions.
The next theorem provides verifiable conditions for the conditions of The-
orem 3.3.1 to hold.

Simultaneously with the preparation of this work, this question has been
addressed in [53, Proposition 2.20]. Due to the equivalence result of The-
orem 3.2.1, the result in [53] is close to ours. The book [53], however, restricts
to a product set parameter space, and requires compactness of the parameter
space. We will provide an alternative proof. The conditions required are the
existence of a �-drift function V and ✓-drift V -moment function W , uniform
in the parameter a 2 A.

Assumption 3.3.2. i) It holds that a 7! qxy(a) is continuous on A for x, y 2

S.

ii) There exists a (A, �)-drift function V .

iii) There exists a (A, ✓)-drift V -moment function W .

Theorem 3.3.3. Suppose that Assumptions 3.2.1, 3.3.1 and 3.3.2 hold. Then
for each x 2 S, (a, t) 7! Pt(a)V (x) is continuous on A ⇥ [0,1) and a 7!

Q(a)V (x) is continuous on A.

Proof. Denote by P

V
t (a), t � 0, the transition function of X

V (a). Since
X

V (a) is non-explosive by virtue of Theorem 3.2.1,

X

y2S
�

p

V
t,xy(a) = 1, for all (a, t) 2 A⇥ [0,1), x 2 S

�

.

Moreover Corollary 3.3.2 yields that (a, t) 7! p

V
t,xy(a) is continuous for x, y 2

S

�

. Combining this gives continuity of

(a, t) 7!
X

y2S

p

V
t,xy(a) (3.5)
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3 Parametrised Markov processes with discounted cost

on A ⇥ [0,1), for x 2 S. Inserting Eq. (3.4) in Eq. (3.5) yields continuity of
a 7!

P

y2S pt,xy(a)V (y) for each x 2 S.
The only thing left to prove is continuity of a 7! Q(a)V (x). To this end we

use a nice argument used to prove [53, Proposition 2.20]. Let x 2 S be given.
Let {Kn}n ⇢ S be an increasing sequence of finite sets with x 2 Kn for all n,
limn Kn = S, and infy 62K

n

W (y)/V (y) ! 1 as n ! 1. Then, for all a 2 A,

X

y 62K
n

qxy(a)V (y) =
X

y 62K
n

qxy(a)W (y)
V (y)

W (y)



1

infz 62K
n

W (z)/V (z)

X

y 62K
n

qxy(a)W (y)



1

infz 62K
n

W (z)/V (z)
(✓ + qx(a))W (x).

Let a
0

2 A. We wish to show that a 7!

P

y qxy(a)V (y) is continuous in a

0

. Let
A
0

be a compact neighbourhood of a
0

. Then b := supa2A
0

(✓ + qx(a))W (x) <
1. For any ✏ > 0 there exists N✏, such that

b

infz 62K
n

W (z)/V (z)
 ✏, n � N✏.

It follows that
P

y2K
n

qxy(a)V (y) converges to Q(a)V (x), uniformly in a 2 A
0

.
Since a 7!

P

y2K
n

qxy(a)V (y) is continuous by assumption, we may apply
the uniform limit theorem (cf. [50, Theorem 21.6, p. 132]) to obtain that
a 7! Q(a)V (x) is continuous.

Theorem 3.3.3 links continuity properties of the integrals (a, t) 7! Pt(a)f(x)
for f 2 `

1(S, V ), to continuity of the measures of compact sets and non-
explosiveness properties of X(a). The next example illustrates that if As-
sumption 3.3.2 (i,ii) hold but X

V (a) is explosive for some a 2 A, then a 7!

Pt(a)V (x) need not be continuous on A. This is the basic example from [66,
Section 4].

Example 3.3.1. Let S = Z

+

. Consider the q-matrix Q given by

qxy =

8

>

>

<

>

>

:

p2x, y = x+ 1, x 6= 0
�2x, y = x, x 6= 0
(1� p)2x, y = x� 1, x 6= 0
0, else,

where p < 1/2. 0 is an absorbing state. This is the q-matrix of a nonexplosive
Markov process.
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3.4 Poisson and optimality equation for the ↵-discounted cost criterion

Let V (x) = ↵

x, for ↵ = (1 � p)/p. Then QV = 0  0 · V . The q-matrix
Q

V of the associated V -transformation however defines an explosive Markov
process X (cf. [66]).

We define the following parametrised collection of Markov processes. Let
A = {1, 2, . . . ,1}. This is a compact set. Let X(0) be the Markov process
with q-matrix Q(1) = Q. For each a 2 A we define the perturbation X(a)
with q-matrix Q(a) given by

qxy(a) =

8

<

:

qxy, x  a

�2a, y = x > a

2a, y = x� 1, x > a.

Then Q(a)V  0 · V for every a 2 A. Also a 7! qxy(a) is trivially continuous
on A. Hence, Assumptions 3.3.2 (i) and 3.3.2 (ii) are satisfied. Note that due
to the boundedness of jumps, XV (a), a < 1, is nonexplosive.

Since X

V = X

V (1) is explosive, there exists a state x 2 S

�

such that

1 = lim
a!1

X

y

p

V
t,x,y(a) >

X

y

p

V
t,x,y(1).

By virtue of Eq. (3.4),
P

y pt,xy(a)V (y) 6!
P

y pt,xy(1)V (y) as a ! 1, for
t > 0. Hence, a 7! Pt(a)V (x) is not continuous on A.

3.4 Poisson and optimality equation for the
↵-discounted cost criterion

Suppose next that Assumptions 3.2.1 and 3.3.2 (ii) hold, in other words there
exists a �-drift function V . Assume that a cost cx(a) per unit time is incurred
when the process X(a) resides in state x under parameter a 2 A. Denote by
c(a) = (cx(a))x2S the associated cost vector.

Assumption 3.4.1. i) It holds that a 7! cx(a) is continuous on A.

ii) There is a finite constant cV such that supx,a |cx(a)|/V (x)  cV .

iii) For the discount factor ↵ it holds that ↵ > �.

Define the expected ↵-discount total cost associated with parameter a 2 A
by

v

↵(a) =

Z 1

0

e

�↵t
Pt(a)c(a)dt,
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3 Parametrised Markov processes with discounted cost

and the xth component by v

↵(x, a). Note that Assumptions 3.2.1, 3.3.2(ii) and
3.4.1(ii) imply that t 7! Pt(a)V is continuous. By Eq. (3.4) PtV (x)  e

�t
V (x).

Hence ↵ > � guarantees that v↵(a) is well-defined and finite.
If we further require nonexplosiveness of XV , then it can be shown that

v

↵(a) is the unique solution of the Poisson equation Eq. (3.6) in `

1(S, V ).

Theorem 3.4.1. Let Assumption 3.2.1 hold.

i) If Assumptions 3.3.2(ii) and 3.3.2(iii), and Assumptions 3.4.1(ii) and
3.4.1 (iii) hold, then v

↵(a) is the unique solution in `

1(S, V ) to the
↵-discounted equation

↵f = c(a) + Q(a)f. (3.6)

ii) If, additionally, Assumptions 3.3.1, 3.3.2(i) and 3.4.1(i) hold, then a 7!

v

↵(a) is component-wise continuous on A.

Proof. Let a 2 A. We first prove that v

↵(a) is a solution to Eq. (3.6) in the
space `

1(S, V ). Note that ||v↵(a)||V  cv/(↵ � �), so that v↵(a) 2 `

1(S, V ).
Moreover Q(a)|v↵(a)| is well defined and finite. We obtain

Q(a)v↵(x, a) =
X

y

qxy(a)

Z 1

0

e

�↵t
X

z

pt,yz(a)cz(a)dt

=
X

y

qxy(a)
X

z

Z 1

0

e

�↵t
pt,yz(a)dt cz(a)

=
X

z

Z 1

0

e

�↵t
p

0
t,xz(a)dt cz(a)

=
X

z

⇣

� �xz + ↵

Z 1

0

e

�↵t
pt,xz(a)dt

⌘

cz(a)

= �cx(a) + ↵v

↵(x, a).

The interchange of summation and integration in the second equality is
justified by Fubini’s theorem; in the third equality by the additional fact that
Q(a) has at most one negative element per row. The fourth equality is due
to partial integration. As a consequence, v↵(a) is a solution of Eq. (3.6) in
`

1(S, V ).
Suppose that f 2 `

1(S, V ) is another solution. Then ↵(v↵(a) � f) =
Q(a)(v↵(a) � f), and so v

↵(a) � f 2 `

1(S, V ) is an eigenvector of Q(a)
to eigenvalue ↵ > 0. Direct calculations show that g : S

�

! given by
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3.4 Poisson and optimality equation for the ↵-discounted cost criterion

g = (v↵(a)�f)/V on S and g(�) = 0 is a bounded eigenvector of QV (a) to ei-
genvalue ↵�� > 0. Nonexplosiveness of a Markov process can be characterised
by the nonexistence of a bounded (nonzero) eigenvector of the corresponding
q-matrix to positive eigenvalues (cf. [55, Theorem 7] and [67, Theorem 2.1]).
By Assumption 3.3.2, XV (a) is nonexplosive. Hence a nonzero eigenvector
cannot exist and so we conclude that f = v

↵(a).
We finally turn to proving component-wise continuity of v

↵(a). By vir-
tue of Theorem 3.3.3, a 7! Pt(a)V is component-wise continuous. Eq. (3.2)
yields that Pt(a)V  e

�t
V . Hence, the dominated convergence theorem im-

plies that a 7!

R1
0

e

�↵t
Pt(a)V dt is componentwise continuous. Another ap-

plication of the dominated convergence theorem implies that a 7! v

↵(a) =
R1
0

e

�↵t
Pt(a)c(a)dt is componentwise continuous.

We will next consider the special case that the sets {Q(a)}a2A and {c(a)}a2A

have the product property (cf. [39]) in the following sense.

Assumption 3.4.2. There exist compact metric sets Ax, x 2 S, such that
the following conditions hold:

i) A =
Q

x2S Ax, and A is equipped with the product topology;

ii) {Q(a)}a2A and {c(a)}a2A have the product property. In other words, for
any a, a

0
2 A, x 2 S such that that ax = a

0
x, it holds that (Q(a))x · =

(Q(a0))x ·, and cx(a) = cx(a0). Here (Q(a))x · stands for the x-row of
Q(a).

Note that A is compact and metrisable, and the product topology is the
topology of component-wise convergence. Hence A is sequentially compact.

Under Assumption 3.4.2 the xth row and xth component of Q(a) and c(a)
depend on the value ax only. Therefore, with a slight abuse of notation, we
may write qxy(ax) and cx(ax). Then infa2A{c(a)+Q(a)f} is well defined and
may also be written as infa

x

2A
x

{cx(ax) +
P

y qxy(ax)f(y)}, for all x 2 S. As
an application, the set A may represent the collection of stationary policies in
an MDP, or the set of deterministic policies.

We say that parameter a

⇤ is optimal in A if v↵(a⇤)  v

↵(a) for all a 2 A.
In this case we have the following result.

Theorem 3.4.2. Suppose that Assumption 3.2.1 holds.

i) Suppose that Assumptions 3.3.2(ii), 3.4.1(ii), 3.4.1(iii), and 3.4.2 hold.
Moreover suppose there exists a function m such that m(x) � supa qx(a).
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3 Parametrised Markov processes with discounted cost

Then the equation

↵f(x) = inf
a
x

2A
x

{cx(ax) +
X

y

qxy(ax)f(y)}, x 2 S, (3.7)

has a solution v

↵ in `

1(S, V ).

ii) If, moreover, Assumptions 3.3.2(i), 3.3.2(iii) and 3.4.1(i) hold, this solu-
tion is unique in `

1(S, V ) and the infimum is a minimum. For any
a

⇤ = (a⇤x)x 2 A for which a

⇤
x achieves the minimum in Eq. (3.7) , x 2 S,

one has v

↵(a⇤) = v

↵ and a

⇤ is optimal in A.

Proof of Theorem 3.4.2(i). We use the same line of reasoning as in the proof
of [53, Theorem 3.7]. Suppose that Assumptions 3.3.2(ii), 3.4.1(ii), and 3.4.2
hold. Let m : S !

+

be such that m(x) � supa
x

2A
x

qx(ax), for x 2 S.
Then define pxy(ax) = qxy(ax)/m(x) + �xy for x, y 2 S, ax 2 Ax, which is a
probability measure for each state action pair (x, ax). Furthermore, define the
operator T for f 2 `

1(S, V ) by

(Tf)(x) = inf
a
x

2A
x

8

<

:

cx(ax)

↵+m(x)
+

m(x)

↵+m(x)

X

y2S

pxy(ax)f(y)

9

=

;

, x 2 S.

Define the sequence {fn}n in `

1(S, V ) by f

0

(x) = (cV (↵ � �))V (x), and
fn = Tfn�1

for n � 1. First, nonnegativity of the coe�cients in the second
term between brackets implies that T is monotone (i.e. f � g implies that
Tf � Tg). Secondly, direct calculations show that f

0

� f

1

. This implies that
{fn}n is a monotone decreasing sequence. Further it is easy to show that

||fn||V 

cV

↵� �

.

Thus, {fn}n has a pointwise limit f

⇤
2 `

1(S, V ) with f

⇤
 fn for all n.

Hence, Tf⇤
 Tfn = fn+1

for all n, and, thus, Tf⇤
 limn!1 fn = f

⇤.
Next we prove that f⇤

 Tf

⇤. First note that

f

⇤
 fn+1

= Tfn, n = 1, . . . . (3.8)

For notational convenience, denote

(Ta
x

f)(x) =
cx(ax)

↵+m(x)
+

m(x)

↵+m(x)

X

y2S

pxy(ax)f(y), x 2 S,
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3.4 Poisson and optimality equation for the ↵-discounted cost criterion

so Tf(x) = infa
x

Ta
x

f(x). By monotone convergence Ta
x

fn(x) # Ta
x

f

⇤(x),
n ! 1, ax 2 Ax. Let ✏ > 0, x 2 S, and ax 2 Ax. Then there exists N✏,x,a

x

such that
Ta

x

fn(x)  Ta
x

f

⇤(x) + ✏, n � N✏,x,a
x

. (3.9)

Combining Eq. (3.9) with Eq. (3.8) yields

f

⇤(x)  Ta
x

f

⇤(x) + ✏, ax 2 Ax.

Taking the infimum on both sides gives

f

⇤(x)  Tf

⇤(x) + ✏.

Since ✏ > 0 and x 2 S were arbitrary, we get the desired inequality f

⇤
 Tf

⇤.
We conclude that Tf⇤ = f

⇤.
By direct calculations it is seen that this last equality is equivalent to

Eqn. (3.7); thus, we have proven that there is a solution and we call this
v

↵.

Proof of Theorem 3.4.2(ii). Suppose now that Assumptions 3.3.2(i), 3.3.2(iii),
and 3.4.1(i) hold as well. By Theorem 3.6, a 7! c(a) + Q(a)v↵ is component-
wise continuous on A. Since A is compact, this implies that the infimum is
attained. So there is an a

⇤
2 A such that

↵v

↵(x) = inf
a
x

2A
x

{cx(ax) +
X

y

qxy(ax)v
↵(y)}

= min
a
x

2A
x

{cx(ax) +
X

y

qxy(ax)v
↵(y)}

= cx(a
⇤
x) +

X

y

qxy(a
⇤
x)v

↵(y).

Then v

↵ = v

↵(a⇤) by Theorem 3.4.1. Next we will show that v↵ = v

↵(a⇤) 
v

↵(a) for any a 2 A in other words, a⇤ is optimal in A. To this end, let â 2 A.
Enumerate S = {s

1

, s

2

, . . .}. Define a

n
2 A by

a

n
x =

⇢

âx, x 2 {s

1

, . . . , sn}

a

⇤
x, x 2 {sn+1

, . . .}.

Then a

n
! â, n ! 1, in the product topology and, in particular,

↵v

↵
 c(an) + Q(an)v↵.
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3 Parametrised Markov processes with discounted cost

Define
d

n = c(an) + Q(an)v↵ � ↵v

↵
,

then d

n has at most n nonzero components and so d

n
2 `

1(S, V ). It fol-
lows that |Q(an)v↵| 2 `

1(S, V ). Hence, t 7! Pt(a
n)(Q(an)v↵) is finite and

continuous, and

↵ Pt(a
n)v↵  Pt(a

n)c(an) + Pt(a
n)(Q(an)v↵).

Multiplying both sides by e

�↵t, integrating over (0, T ), and rearranging terms,
we obtain, for any T > 0,

Z T

0

e

�↵t
⇥

↵ Pt(a
n)v↵ � Pt(a

n)(Q(an)v↵)
⇤

dt 

Z T

0

e

�↵t
Pt(a

n)c(an)dt.

By virtue of Theorem 3.2.2, Eq. (3.3) is applicable with k = �↵, thus yielding

v

↵
� e

�↵T
PT (a

n)v↵ 

Z T

0

e

�↵t
Pt(a

n)c(an)dt, T > 0.

Note that || PT (a
n)v↵||V  e

�T
||v

↵
||V  e

�T
cV /(↵ � �). Taking the limit

T ! 1, we obtain the desired result that v

↵
 v

↵(an). Since a 7! v

↵(a) is
component-wise continuous, we can finally take the limit n ! 1 and obtain
that v↵  v

↵(â). Uniqueness now follows immediately.

Remark 3.4.1. The question arises whether an optimal policy in A is optimal
in the class of Markov policies, as defined in [53], or even in more general
classes of policies. Notice that a Markov policy generates a nonhomogeneous
Markov process. Following the proof that a solution to the ↵-discount op-
timality equation dominates the expected ↵-discounted cost under a Markov
policy in [53, Lemma 3.5], one needs the result of Theorem 3.2.2 to hold for
a nonhomogeneous Markov process. To our knowledge, such a result has not
yet been formally proved.

Discussion on related conditions in the literature. In [34], [36] and [53] the
parametrised process X(a) as well as XV (a) are supposed to be nonexplosive
for all a 2 A. We only require X

V (a) to be nonexplosive uniformly in A. This
relaxation might be useful if the cost function goes to zero ‘fast enough’ as the
state grows large. See the example below, it is a variation on Example 3.3.1.
In [51] X(a) is not required to be nonexplosive either, however, the extra
condition that qx(a)V (x)  W (x) for x 2 S, a 2 A, is required there. In [67]
a detailed discussion on the relation between the various drift conditions used
in this context is presented.
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3.4 Poisson and optimality equation for the ↵-discounted cost criterion

Example 3.4.1. Let S = Z

+

. Define the following q-matrices Q(a) by

qxy(a) =

8

>

>

<

>

>

:

ax2x, y = x+ 1, x 6= 0
�2x, y = x, x 6= 0
(1� ax)2x, y = x� 1, x 6= 0
0, else,

for any ax 2 Ax = [p
0

, p

1

], with 1

2

< p

0

 p

1

 1. Hence A =
Q

x2S Ax is
a compact product set. Notice that clearly a 7! qxy(a) is continuous on A.
Notice also that since ax � p

0

> 1/2 for all ax, this is an explosive Markov
process, for every a 2 A.

Next define the reward structure r(a) (note that nowhere in the theory above
is it essential whether to maximise or minimise). We let the reward rate consist
of two parts: a fixed reward rate B for staying in the finite set {x  U}, and a
bonus depending on the current state for taking actions that move the system
to a higher state with larger probability. Therefore, put rx(a) = bx(a)+ cx(a),
with bx(a) = B {xU} and cx(a) = Cax(1 � ✏)x, where is the indicator
function.

We will make a transformation that makes the transformed process nonex-
plosive, take V (x) = �

x, with max ((1� p

0

)/p
0

, 1� ✏)  � < 1. Notice that
since � < 1, V is not a moment function. Then for all a 2 A, x 2 S

Q(a)V (x) =
�

ax�
x+1

� �

x + (1� ax)�
x�1

�

2x

=
�

ax�
2

� � + (1� ax)
�

�

x�12x

=

✓

ax

�

� �

1� ax

ax

�

(� � 1)

◆

�

x�12x

 0 · V,

the inequality holds because (1� ax)/ax < �  1. Hence, V is a (A, 0)-drift
function. Moreover, r(a) is uniformly V -bounded, since

sup
x2Z

+

,a2A

|bx(a)|

V (x)
= max

xU
B�

�x = B�

�U
,

and

sup
x2Z

+

,a2A

|cx(a)|

V (x)
= max

x2Z
+

Cp

1

✓

1� ✏

�

◆x

= Cp

1

.

Next take W ⌘ 1, then Q(a)W = 0  0 · W and limx!1 W (x)/V (x) =
limx!1 �

�x = 1. Hence W is a (A, 0)-drift V -moment function. Then The-
orem 3.3.3 yields the transformed process XV (a) is non-explosive for all a 2 A.
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3 Parametrised Markov processes with discounted cost

Now all assumptions of Theorem 3.4.2 hold, hence, (3.7) (with the infimum
replaced by a supremum) has a unique solution v

↵
2 `

1(S, V ) for any ↵ > 0
and there is a parameter a⇤ 2 A that achieves this supremum.

3.5 MDPs and perturbations

In this section we show how Theorem 3.4.2 can be applied to MDPs. In order to
do so, we take the parameter set A := D =

Q

x Dx, where D is the set of all de-
terministic (stationary) policies andDx = {set of actions available in state x},
x 2 S. Then A = D has the product property described in Assumption 3.4.2.
We use the notation � 2 D for a deterministic (stationary) policy and by
�(x) 2 Dx the corresponding action prescribed in state x by �. If we assume
that Dx is a compact, metric space for each x 2 S, then D is a compact,
metric space as well. Consequently, an MDP with compact action space and
deterministic policies D, can be identified with a parametrised collection of
Markov processes satisfying Assumption 3.4.2.

Remark 3.5.1. If Assumptions 3.2.1, 3.3.2, 3.4.1, and 3.4.2 hold for A = D, it
is a standard construction to show that these assumptions apply as well for
the parameter set equal to the set S of stationary, randomised policies. For an
example of this construction see [29]. Hence, the assertion of Theorem 3.4.2
then also applies for this larger parameter set. Furthermore, it is a simple
consequence that if A = S in Eq. (3.7) there exists a minimiser �

⇤
2 D for

which v

↵(�⇤) = v

↵. As a consequence, we may (and we will) restrict our
analysis to D.

Perturbation of MDPs. In this paragraph we will discuss how Theorems 3.4.1
and 3.4.2 can be applied to analyse MDPs by adding a perturbation.

The application we have in mind is the analysis of structural properties
of an MDP with unbounded transition rates (i.e. supx2S,�2D qx(�) = 1),
and, thus, the uniformisation technique is not applicable. In particular, we
are interested in the structure of optimal strategies and of the value function.
To this end we perturb the MDP to get bounded rates so that it can be
studied using the discrete time equivalent MDP. This perturbation is indexed
by an extra parameter N , typically N 2 N , where N := {1, 2, . . . ,1}, a
compact set. Thus we obtain a collection of extended parametrised processes,
{X(N, �)}

(N,�)2N⇥D. For fixed N the parametrised process {X(N, �)}�2D is
an MDP and for N = 1 this coincides with the original MDP. The theorems
in the previous section provide the framework that guarantees continuity in
the perturbation parameter. This induces convergence of the results for the
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3.5 MDPs and perturbations

perturbed models to the original model if the perturbation vanishes, i.e. the
parameter goes to infinity.

Theorem 3.5.1. Consider an MDP, in other words a parametrised collection
of processes {X(�)}�2D with cost function c(�)�2D. Furthermore, consider an
extended parametrised collection of processes {X(N, �)}

(N,�)2N⇥D with cost
function c(N, �)

(N,�)2N⇥D such that X(1, �) = X(�) and c(1, �) = c(�).
Suppose that Assumptions 3.2.1, 3.3.1, 3.3.2, and 3.4.1 hold for the collec-

tion {X(N, �)}
(N,�)2N⇥D. Suppose that additionally Assumption 3.4.2 holds

for {X(N, �)}�2D for all N 2 N . Let v↵N be the value function for the MDP
{X(N, �)}�2D and �

⇤
N an optimal policy, N 2 N . Then the following hold:

i) limN!1 v

↵
N = v

↵;

ii) any limit point of (�⇤N )N2N is optimal for {X(�)}�2D.

Proof. The assertions of Theorem 3.4.2 hold for {X(N, �)}�2D for fixed N 2

N . This yields the existence of a pair (v↵N , �

⇤
N ) satisfying Eq. (3.7), so that

v

↵
N = v

↵(N, �

⇤
N ), for fixed N 2 N .

The sequence {v

↵
N}N<1 is a bounded sequence in `

1(S, V ). Consider
any limit point of this sequence, say it is achieved along the subsequence
{v

↵
N

k

}k=1,.... By sequential compactness of N ⇥ D, we have that (�⇤N
k

)k has
a convergent subsequence that we denote by (�⇤N

k

)N
k

2N again, with limit �

⇤

say.
Since the assertions of Theorem 3.4.1 hold for {X(N, �)}

(N,�)2N⇥D, this
implies that (N, �) 7! v

↵(N, �) is continuous on N ⇥D. In particular, we have

lim
k!1

v

↵
N

k

= lim
k!1

v

↵(Nk, �
⇤
N

k

) = v

↵(1, �

⇤) = v

↵
1(�⇤).

Continuity of the map (N, �) 7! v

↵(N, �), the fact that v↵(Nk, �
⇤
N

k

) solves the
optimality equation for the Nk-perturbation by Theorem 3.4.2, and the con-
tinuity result of Theorem 3.3.3 together imply that v↵(�⇤) solves the optimality
equation for the 1-perturbation, in other words, for the original MDP. Hence,
v

↵(�⇤) = v

↵ and �

⇤ is optimal. This holds for any limit point of {v↵N}N . Since
the solution of the optimality equation is unique, any limit point is equal to
v

↵ and corresponding limit points of {�N}N are optimal. This proves (i). For
the proof of (ii), we consider a limit point of the sequence of policies {�N}N

(for any sequence of optimal policies for the N -perturbation, N = 1, 2, . . .).
Then choose a subsequence along which {v

↵
N}N converges and we apply the

same argument as in the above.
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3 Parametrised Markov processes with discounted cost

The approach of extended parametrisation

1. Start with a parametrised process {X(�)}�2D, the original MDP. Our
interest is in the structural properties of v↵ and �

⇤. The assumptions of
Theorem 3.4.2 must hold for this parametrised process.

2. Add a perturbation, parametrised by N 2 N . In this way we obtain
an extended parametrised process {X(N, �)}

(N,�)2N⇥D. The extended
parametrised process does not need to satisfy the product property of
Assumption 3.4.2. However, all other assumptions from Theorem 3.4.2
are assumed to be satisfied for the extended parametrised process.

3. Fixing N 2 N , the parametrised process {X(N, �)}�2D is a perturbed
process. It satisfies the product property of Assumption 3.4.2, and so all
assumptions of Theorem 3.4.2 hold. Hence, there exists a unique solution
v

↵
N satisfying Eq. (3.7) and any maximiser �⇤N is optimal.

4. If the perturbed process is uniformisable for allN < 1, we can determine
structural properties of (v↵N , �

⇤
N ) for all N < 1 by e.g. value iteration.

5. Now Theorem 3.5.1 implies that limN!1 v

↵
N = v

↵ and that any limit
point of (�⇤N )N is optimal for the original model. As a conclusion, both
the optimal policy and the minimum expected ↵-discounted cost of the
original model can be approximated by the corresponding quantities for
the perturbed model, for large perturbation parameters.

Remark 3.5.2. Theorem 3.5.1 is strongly related to [52, Theorem 3.1]. The
paper gives conditions for convergence of finite state MDP to infinite state
processes. However the drift conditions imposed are more restrictive (cf. [66,
Example 5.4]). In particular, the authors impose three extra conditions on the
rate matrix, namely that V is a moment function. Secondly, that

sup
�

qx(N, �)  V (x), for all N 2 N .

Thirdly, they require a particular V -moment function W , namely W = V

2.

The last part of the chapter is an illustration of the application of the ap-
proach to a server farm model.

3.6 Optimal control of a server farm

Consider the server farm model studied by [1]. This model has an infinite
server pool, implying that the transition rates are not bounded. To derive
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3.6 Optimal control of a server farm

structural properties of the optimal policy the authors bound the departure
rate. After uniformisation, analysis of the equivalent discrete time chain shows
that a specific switching curve is optimal for the bounded rate model. However,
this paper does not give any results on the original unbounded model.

We will demonstrate here that the same structural results apply for the
unbounded model by using the approach of extended parametrisation.

The mathematical set-up is as follows. There is a Poisson stream of arrivals
with rate �. Each customer requires an exponential service time with para-
meter µ. There is an infinite server pool, where servers can be in three states.
They can be either active (on), turned o↵ (o↵) or in standby modus (idle).
After service completion the controller has two options, either turn the server
o↵, or leave the server idle. A server in the idle state costs c per unit time, due
to energy consumption. Upon customer arrival, there are two possibilities.

i) There is an available idle server. Then the arriving customer is assigned
one of these, and the server changes from idle to on.

ii) There are no idle servers. Then an o↵-server is turned on, to which the
arriving customer is assigned, and instantaneous start-up costs K have
to be paid.

The goal is to minimise the total expected discounted cost over all stationary
policies.

We will model this as follows. Let i the number of idle servers and j the
number of busy servers. The state space S is given by

S = {(i, j)|i, j 2 Z

+

}.

Possible actions at service completion are either to turn the server o↵ (0), or
leave the server idle (1). The action space is

D

(i,j) = {0, 1}, for (i, j) 2 S.

Hence, the set of stationary deterministic policies is D = {0, 1}S. Then the
rate matrix Q(�) is given by

q

(i,j),(i0,j0)(�) =

8

>

>

>

>

<

>

>

>

>

:

jµ, (i0, j0) = (i, j � 1), �(i, j) = 0,
or (i0, j0) = (i+ 1, j � 1), �(i, j) = 1,

�, (i0, j0) = (i� 1, j + 1), i > 0,
or (i0, j0) = (i, j + 1), i = 0,

�(jµ+ �), (i0, j0) = (i, j).
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3 Parametrised Markov processes with discounted cost

The associated cost function c(�) is given by

c

(i,j)(�) = ci+ �K · {i=0}, (i, j) 2 S.

Notice that we have remodelled the instantaneous costs as a cost rate. This
can be done without loss of generality.

As pointed out in the above, the rates q

(i,j)(�) = jµ + � are not uniformly
bounded as a function of state. To analyse this system, [1] assumes that
the service rates are a concave, nondecreasing, bounded function µ(j) of the
number of busy servers j and thereby they make it uniformisable.

We will use this to define a suitable perturbation of the model, i.e. a uni-
formisable MDP, with the service rates a concave, nondecreasing and bounded
function of the number of busy servers. As the original MDP is denoted by
{X(�)}�2D, we define a collection of perturbed MDPs {X(N, �}N2N ,�,2D, with
N = {1, . . . ,1}. Let the rate matrix Q(N, �) be given by

q

(i,j),(i0,j0)(N, �)=

8

>

>

>

>

<

>

>

>

>

:

(j ^N)µ, (i0, j0) = (i, j � 1), �(i, j) = 0,
or (i0, j0) = (i+ 1, j � 1), �(i, j) = 1,

�, (i0, j0) = (i� 1, j + 1), i > 0,
or (i0, j0) = (i, j + 1), i = 0,

�((j ^N)µ+ �), (i0, j0) = (i, j).

The cost function remains unchanged.
Note that X(1, �) coincides with the original unbounded model. On the

other hand for each N < 1, the N -perturbation is uniformisable and satisfies
the service rate conditions of [1]. Hence, the structural properties of the value
function v

↵
N can be derived by value iteration. By virtue of the results in

[1] it follows that the optimal policy for the N -perturbation, N < 1, has the
switching curve structure shown in Table 3.1. For a definition of the properties
we refer to Section 7.3.

Table 3.1: If it is optimal to turn the server o↵ (respectively leave the server
idle) in state (i, j) then it is also optimal in the following states.

leave idle turn o↵ structural property of v↵N
1) #: (i, j � 1) ": (i, j + 1) Super(1, 2)
2) -: (i� 1, j + 1) &: (i+ 1, j � 1) SuperC(1, 2)
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3.6 Optimal control of a server farm

With the approach of ‘extended parametrisation’, we are able to extend
this result to the original unbounded model. The only thing remaining is to
check that the assumptions of Theorem 3.5.1 hold. If the conditions hold, by
virtue of the theorem we may conclude that a switching curve policy with the
structure given in Table 3.1 is optimal for the original unbounded MDP. This
yields the following result.

Theorem 3.6.1. For the server farm model {X(�)}� there exists a determin-
istic policy with the threshold structure described in Table 1, that is ↵-discount
optimal within the class S of stationary policies.

Proof. Note that the assumptions are of such nature that if they are satisfied
by the extended parametrised process they are also satisfied by the paramet-
rised process. As has been pointed out we have to verify the assumptions of
Theorems 3.4.1 and 3.4.2. We will do so in a systematic way.

• It is clear that Assumption 3.2.1 holds for both the parametrised as the
extended parametrised process, since there are no instantaneous jumps
and the rate matrix is conservative.

• For Assumption 3.3.2 there are three properties to check.

i) Continuity of � 7! q

(i,j),(i0,j0)(N, �) for fixed N 2 N is clear. Also, we
have limN!1 q

(i,j),(i0,j0)(N, �) = q

(i,j),(i0,j0)(1, �) (for largeN these
values are equal, for any fixed pair of states). As a consequence, it
follows that (N, �) 7! q

(i,j),(i0,j0)(N, �) is continuous on N ⇥D.

ii) Let 0 < � < ↵. Take V (i, j) = exp{✏(i+ j)}, with

✏ =
1

2
log(�/�+ 1) > 0.

Then V clearly is a moment function. Moreover it is an (N ⇥D, �)-
drift function. Indeed,
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3 Parametrised Markov processes with discounted cost

X

(i0,j0)

q

(i,j),(i0,j0)(N, �)V (i, j)

= e

✏(i+j)

8

>

>

<

>

>

:

min{j,N}µ(e�✏
� 1) + �(e✏ � 1), �(i, j) = 0, i = 0,

�(e✏ � 1), �(i, j) = 1, i = 0,
min{j,N}µ(e�✏

� 1), �(i, j) = 0, i > 0,
0, �(i, j) = 1, i > 0,

 �(e✏ � 1)e✏(i+j)

 �(e2✏ � 1)e✏(i+j)

= �e

✏(i+j) = �V (i, j).

Thus, V is an (N ⇥ D, �) drift function for X(N, �), uniformly on
N ⇥D.

iii) Take W (i, j) = exp{2✏(i+j)}, then W/V = V is a moment function.
Hence, W is a V -moment function, in particular, W is a (N ⇥D, ✓)-
drift V -moment function for ✓ = �(e4✏ � 1), since

X

(i0,j0)

q

(i,j),(i0,j0)(N, �)W (i, j)  �(e4✏ � 1)e2✏(i+j)

= ✓e

2✏(i+j) = ✓W (i, j).

• Consider Assumption 3.4.1.

i) (N, �) 7! c

(i,j)(N, �) is clearly continuous on N ⇥D, for any (i, j) 2 S.

ii) Take cV = c
�✏ + �K, then for any (i, j), (N, �)

|c

(i,j)(n, �)|

V (i, j)
=

ci/(�+ jµ) + �K1{i=0}

exp{✏(i+ j)}



(c/�)i+ �K

1 + ✏i



c

�✏

+ �K = cV .

Hence the supremum over all (i, j), (N, �) is also bounded by cV .

• Condition (i) of Assumption 3.4.2 holds for both the parametrised pro-
cess and the extended parametrised process.
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3.6 Optimal control of a server farm

i) The parameter set is a product space D =
Q

(i,j)2S D

(i,j), with D

(i,j)

a finite set, hence compact and metric for each state (i, j) 2 S. The
set N is compact; hence, N ⇥D is compact.

Condition (ii) of Assumption 3.4.2 only holds for the parametrised pro-
cess {X(N, �)}�, for N 2 N fixed, and not for the extended parametrised
process.

ii) {Q(�)}�2D and {c(�)}�2D both have the product property. In other
words, the transition rates and the cost rates in state (i, j) depend
only on the action in state (i, j).
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4 Power control of a server farm

This chapter is based on Blok et al. [17], in preparation.

4.1 Introduction

In recent years, awareness towards energy consumption in server farms and
data centres has become more and more important. Consequently, optimal
design of server farms has become an active area of research. One aspect in
server farm management that has drawn special attention, is how to decrease
the cost for servers that are unnecessarily idle. Server farms exhibit an in-
trinsic trade-o↵ between the heavy energy consumption in case of too many
idle servers and set-up or delay costs in case of lack of available idle servers.

We consider a server farm with ample service capacity. Servers that are not
active can be either idle or o↵. Idle servers consume energy, which is modelled
as a holding cost per idle server and per unit time. Many models include set
up times for switching on o↵ servers (cf. [32], [33] and [48]). Instead, we follow
[1] that models this phenomenon by instantanuous start up costs. We also
allow to incorparate nonnegative costs for switching o↵ a server upon finishing
service. Control is exercised at a moment of a service completion, where the
decision is made to turn a server o↵ or leave it idle at the moment it finishes
service. This can be modelled as a continuous time Markov decision process
(MDP) with unbounded jump rates, with the instantaneous switch on and
switch o↵ cost remodelled as cost rates.

We are interested in the policy that minimises the expected ↵-discounted
cost and average cost. In particular, our aim is to derive the structure of an
optimal policy.

This model was introduced and studied by Adan et al. [1]. In their paper
they show that a certain switching curve policy is optimal. However the results
are restricted to the case where the total server capacity is finite. This is due to
the fact that the standard techniques to analyse structural properties of MDPs
are limited to bounded jump rate MDPs. Similar monotonicity results have
been obtained in [48], however a good comparison is di�cult due to di↵erent
modelling choices.
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4 Power control of a server farm

This problem with unbounded jumps touches upon a gap in the literature,
for which so far no systematic solution has been given. MDPs with unboun-
ded rates are not uniformisable. This hampers applicability of the value itera-
tion (VI) algorithm, as a method for deriving structural properties of optimal
policies. Thus, a truncation should be used to make the MDP uniformisable.
Unfortunately, in the average cost criterion, this causes two problems. First,
due to the existence of transient policies in the server farm model under consid-
eration, the VI algorithm is not guaranteed to converge under the average cost
criterion. Secondly, one needs a continuity argument to transfer the results
from the truncated MDPs to the original MDP. To the best of our knowledge
no such theory exists that covers the present model. However, under the total
discounted cost criterion, convergence of VI holds under very mild conditions.
Hence for the bounded rate ↵-discounted cost problem structural properties
can be shown via VI. Moreover, these results can be transferred to unbounded
rate ↵-discounted MDPs via the limit theorem on parametrised Markov pro-
cesses from Chapter 3. This has been already shown in that chapter in case
of zero switch o↵ cost.

In this chapter we extend this result also to the case of non-zero switch o↵
cost, and thus we show that also in this case there exists a switching curve ↵-
discount optimal policy. Via the continuous time vanishing discount approach
of Chapter 2, switching curve optimality applies as well for the average cost
criterion.

A second focus of the chapter is on bounds for the switching curve. As a
function of the discount factor ↵, we determine bounds on the optimal switch-
ing curve. In the limit of discount factor to 0, the bounds converge to a bound
on the switching curve for the average optimality criterion, due to applicability
of the vanishing discount principle. This then can be exploited to show (strong)
Blackwell optimality of a switching curve policy. It can also be exploited for a
finite algorithm to compute an optimal policy, for both the ↵-discounted cost
and average cost criterion.

We introduce the mathematical model in Section 4.2.1. We then define
the various optimality criteria of interest and summarise our main results in
Section 4.2.2.

In Section 4.3, we prove switching curve optimality for both the ↵-discounted
and the average cost criteria. The section is supported by Section 4.5, which
consists of the propagation results in an event based dynamic programming
framework. The propagation results are similar to those in [1], but extended
to allow for non-zero switch o↵ cost. It is not necessary to use the more
refined smoothed rate truncation method, that has proven to be succesful for
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4.2 Model and main results

obtaining structural properties in similar models (cf. [11], [16] and Chapters 5
and 6).

This server farm model was also examined in Kappetein [42]. Coupling
techniques are used there to show optimality of a switching curve policy for
the average cost criterion. The ideas of this work were applied to the ↵-
discounted cost criterion in Van der Velde [73]. Moreover[42] and [73] localise
for which problems extreme policies are optimal and for which it is a true
switching curve. However, these works still used an instantaneous switch on
and switch o↵ cost model, instead of cost rates, as we do here. This complicates
the derivations. Moreover, rigorous proofs lack in these works. Section 4.4
remedies this and provides the coupling proofs in a more precise manner,
supported by Section 4.6.

This chapter can be seen as an example to the problem of deriving properties
for unbouded rate average cost MPDs. The method goes from truncated dis-
counted MDPs via unbounded jump discounted cost MDPs to the unbounded
jump average cost MDP. It remains a burning question whether it is possible to
take a directer approach, using truncated average cost MDPs. We would then
need a result regarding convergence of average cost VI that does not rely on
strong ergodicity assumptions. Moreover, we would need su�cient conditions
validating the continuity of performance measures of the truncated MDPs as
they approach the original Markov decision process, which so far seem to be
lacking.

4.2 Model and main results

4.2.1 Model description

The formal description of the power controlled server farm model is as follows.
Customers arrive according to a Poisson (�) process. Each customer requires
an exponentially distributed amount of service with parameter µ > 0. For
design reasons the server pool is assumed to be unbounded. Servers can be in
three states: active, turned o↵ or in standby modus. They will be referred to
as ‘busy’, ‘o↵’ and ‘idle’.

After a service completion the controller has to decide to either turn the
server o↵ incurring an instantaneous cost K

o↵ , or to leave the server idle.
Each idle server consumes power, which is assumed to cost c > 0 per unit
time.

Upon customer arrival, there are two possibilities. If an idle server is avail-
able, the arriving customer is assigned one of these, and the server changes
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4 Power control of a server farm

from idle to on, instantaneously. If no idle servers are available, an o↵ server is
instantaneously turned on, and an instantaneous start-up cost Kon is incurred.
The goal is to minimise the expected total ↵-discounted and the expected aver-
age cost.

This control problem can be modelled as a continuous time Markov decision
process on the state space S, with

S = Z

2

+

,

where state (x
1

, x

2

) corresponds to the presence of x
1

busy servers and x

2

idle
ones. Note that it is not necessary to keep track of the number of o↵ servers.

The possible control actions at a service completion are either to turn the
server o↵ (off), or leave the server idle (idle). A service completion can only
happen in the states of S⇤ = {x 2 S, x

2

� 1}. Hence, for x 2 S

⇤ the decision or
action set is Dx = {idle,off}. For x 2 S \ S

⇤ only one action is available, say
0, thus Dx = {0}, x 2 S \ S

⇤. As a consequence, the collection of stationary,
deterministic policies is

D =
Y

x2S

Dx.

We denote a stationary, deterministic policy by �, and by �x the corresponding
decision in state x.
Then, the rate matrix Q(�), � 2 D, is given by

qxy(�)=

8

<

:

x

2

µ y = x� e

2

, �x = off or y = x+ e

1

� e

2

, �x = idle;
� y = x� e

1

+ e

2

, x

1

> 0, or y = x+ e

2

, x

1

= 0;
�(x

2

µ+ �) y = x,

for x, y 2 S. The associated cost function c : S⇥D ! is given by

cx(�) = cx

1

+ �K

on

· {x
1

=0} + x

2

µK

o↵

· {�
x

=off}.

Notice that we have remodelled the instantaneous costs as a cost rate, incurred
before the moment the actual instantaneous cost is paid. This will turn out
to be a complicating factor in the derivation of bounds in Section 4.4.
One may also randomise between the actions in a state. In state x this yields

a collection of probability distributions, ⇧x say, over Dx. Then, ⇧ =
Q

x2S ⇧x

denotes the collection of stationary policies, and ⇡ = {⇡x}x2S denotes a generic
element. Thus, Q(⇡) is the q-matrix with elements

qxy(⇡x) = ⇡x(idle)qxy(idle) + ⇡x(off)qxy(off), x, y, x

2

6= 0 2 S,
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and c(⇡) is the corresponding cost rate vector with elements

cx(⇡x) = ⇡x(idle)cx(idle) + ⇡x(off)cx(off), x 2 S.

Each stationary policy ⇡ 2 ⇧ defines a probability distribution on an underly-
ing measurable space (⌦,F), where ⌦ is in fact an infinite sequence of potential
states, decisions, and sojourn times per state, cf. [44, 51]. On this space one
can define a stochastic process (X,D), with

(X,D) : ⌦ 7! {f : [0,1) ! S | f right-continuous}

⇥{g : [0,1) ! {idle,off} | g right-continuous},

a filtration {Ft}t ⇢ F , to which (X,D) is adapted, and a probability distribu-
tion P⇡

⌫
on (⌦,F), such that X is the minimal Markov process with q-matrix

Q(⇡), for each initial distribution ⌫ on S. Denote by Xt = (Xt,1, Xt,2), and Dt

the state and decision at time t respectively. Denote by P (⇡) = { pxy(⇡)}x,y2S

the corresponding transition probability matrix, and by E⇡
⌫ the corresponding

expectation operator. Furthermore,

P⇡
⌫
{Xt = y,Dt = d} =

X

x2S

⌫x pt,xy(⇡)⇡y(d).

We note that X is also a standard and stable Markov process under P⇡
⌫
. Occa-

sionally it may be convenient to use the notation X(⇡) to denote the Markov
process with distribution P⇡.

4.2.2 Optimality Criteria and Main results

The aim is to study the structure of an optimal policy for the following criteria.
Note that we restrict to optimality within the class ⇧ of stationary policies.
This can be extended to more general policy classes (cf. [35, 44, 51]). First
we give the definitions of the optimality criteria that we consider. The proof
of Theorem 4.2.1 provides the arguments showing that the server farm model
satisfies conditions guaranteeing these criteria to be well-defined and optimal
policies to exist within the class D.

For ↵ > 0, the expected total ↵-discounted cost v↵(⇡) associated with policy
⇡ 2 ⇧ is given by

v

↵
x (⇡) = E⇡

x

Z 1

0

e

↵t
cX

t

(Dt)dt, x 2 S.

The minimum expected total ↵-discounted cost value function v

↵ is defined by

v

↵
x = inf

⇡2⇧

v

↵
x (⇡).
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If for some ⇡ 2 ⇧ it holds that v

↵(⇡) = v

↵, then ⇡ is said to be ↵-discount
optimal.

The expected average cost g(⇡) associated with policy ⇡ 2 ⇧ is given by

gx(⇡) = lim sup
T!1

1

T

E⇡
x

Z T

0

cX
t

(Dt)dt.

The minimum expected average cost g is given by

gx = inf
⇡2⇧

gx(⇡).

If for some ⇡ 2 ⇧ it holds that g(⇡) = g, then ⇡ is said to be average optimal.
Suppose policy ⇡

⇤ is ↵-discounted optimal for all ↵ 2 (0,↵
0

) for some ↵

0

>

0. Then ⇡

⇤ is said to be strong Blackwell optimal. This notion has been
introduced by Blackwell [15].

In this chapter we will prove the following two main results. The first one
concerns average and ↵-discount optimality of a switching curve policy. The
second provides an explicit bound in terms of the input parameters of the
process on the region where the decision to idle a server finishing service can
be optimal. Denote by ei the i-th unit vector.

Definition 4.2.1. A deterministic policy ⇡ 2 ⇧ is called SC-policy (Switching
Curve-policy), if

i) ⇡x = off =) ⇡x+e
2

,⇡x+e
1

�e
2

= off;

ii) ⇡x = idle =) ⇡x�e
2

,⇡x�e
1

+e
2

= idle,

provided the resulting states belong to S

⇤.

Theorem 4.2.1. i) There exists an SC-policy that is ↵-discount optimal
policy within the class ⇧.

ii) There exists an SC-policy that is average optimal within the class ⇧.

Next, define B = {x 2 S

⇤
|x

1

= 0}, which is the x

2

-axis without the origin.
Further �(n) = {x 2 S |x

1

+ x

2

 n}. If c > ↵K

o↵ , define for ↵ � 0

n

1

(↵) = �

K

o↵ +K

on

c� ↵K

o↵

,

and

n

0

(↵) = max
n

4, 2 + k(⇢),

max{n
1

(↵), 2}+
(↵+ µ+ �)⌘(↵)k2(⇢)

µ(c� ↵K

o↵)

h

K

o↵(�+ 2µ) +K

on

· 2�
io
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where

⌘(↵) =
⇣

↵+ µ+ �

µ

⌘n
1

(↵)

, k(⇢) =
(1 + ⇢)2

⇢

e

⇢
, and ⇢ =

�

µ

. (4.1)

Theorem 4.2.2. 1. Consider the ↵-discount optimality criterion.

i) If c > (� + ↵)Ko↵ + �K

on, then the policy � with �x = off, x 2 S

⇤,
is ↵-discount optimal.

ii) If ↵Ko↵

< c  (� + ↵)Ko↵ + �K

on, then there exists an ↵-discount
optimal policy � with the property that

a) �x = idle, x 2 B;

b) �x = off, x 2 S

⇤
\ {�(n

0

(↵)) [B}.

iii) If c  ↵K

o↵ , then � with �x = idle, x 2 S

⇤, is ↵-discount optimal.

2. Consider the average optimality criterion.

i) If c > �(Ko↵ + K

on), then the policy � with �x = off, x 2 S

⇤, is
average optimal.

ii) If 0 < c  �(Ko↵ +K

on), then there exists an average optimal policy
with the property that

a) �x = idle, x 2 B;

b) �x = off, x 2 S

⇤
\ {�(n

0

(0)) [B}.

3. Denote by �

↵ an ↵-discount SC optimal policy of the type described un-
der 1. Then any limit point of the sequence �

↵, ↵ # 0, is an SC strong
Blackwell optimal policy.

The SC-policy is illustrated in Figure 4.1. The red states form a positive
recurrent class in the Markov process associated with the stationary, determ-
inistic SC policy. The policy that idles a busy server upon finishing service in
the grey area states, and switches o↵ in the white area states.

The proof of the above theorem hinges on two very crucial properties of
the server farm model. The first one is that the process associated with the
number of customers in the system is an M/M/1-queue. This is precisely
the process {Xt,2}t�0

associated with the number of busy servers. Thus, the
stationary number of busy servers has a Poisson distribution with parameter
�/µ.

The second one is the cleverly exploited property in [42], that any triangle
�(n) can only be left at state (0, n), i.e. it is an exit state of �(n) (cf. [43]).
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x

1

x

2

IDLE OFF

n

0

(↵)

Table 4.1: The optimal policy has a switching curve structure

The combination of the two properties yields that the time to reach (0, n+ 1)
from any state (i, j) 2 �(n) is independent of the policy, and only depends
on the value j. In fact, that it is equal (in distribution) to the time to reach
state n+ 1 from state j  n in the M/M/1-queue. This yields the property
formulated in Lemma 4.2.3. First we need to introduce some notation.

n-restricted MDP The n-restriction is the following MDP with a finite state
space �(n), and finite decision spaces. The decision spaces, and the transition
and cost rates on �(n) are identical to the corresponding descriptors of the
server farm model, however, in state (0, n) only one decision is available, that
is, D

(0,n) = {0}. Additionally, (0, n) is an absorbing zero cost state.
Some specific notation: A(n) = {x 2 S |x

1

+ x

2

= n, x

1

6= 0}. Furthermore,
v

↵(n) = {v

↵
x (n)}x2�(n) is the ↵-discounted value function associated with the

n-restriction, ↵ � 0. This is finite, also for ↵ = 0, since the n-restriction
defines a uniformisable finite state, finite decision MDP (cf. [26, 64]), with
absorbing zero cost state (0, n).

We will also need to introduce some quantities associated with theM/M/1-
queue. The states are indexed by i 2 {0, 1, . . .}. Let ⌧i be the hitting time of
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state i. Denote ti = Eie
�↵⌧

i+1 .
Then, it is simply checked that the following recursion holds (cf. also [28,

Eq. (2) and above]): t
0

= �/(�+ ↵) and

tl =
�

�+ ↵+ (1� tl�1

)lµ
, l � 1.

Furthermore, for l < i it holds that Ele
�↵⌧

i+1 = tl · · · ti.

Lemma 4.2.3. For x 2 �(n) \ {(0, n)} it holds that

v

↵
x = v

↵
x (n) +

n�1

Y

l=x
2

tl · v
↵
(0,n).

For the ↵-discounted cost criterion the following holds. If ⇡ 2 ⇧ is op-
timal for the server farm model, then {⇡x}x2�(n)\{0,n)} is optimal for the
n-restriction. Vice versa, if {⇡x}x2�(n)\{(0,n)} is optimal for the n-restriction,
then {⇡x}x2�(n)\{(0,n)} can be extended to a stationary optimal policy for the
server farm model. The latter implication holds as well for the average cost
criterion.

We would like to point out that not every average cost optimal policy needs
to be a solution to the average cost optimality equation Eq. (4.10). This is
responsible for the asymmetry in the above lemma with respect to the two
optimality criteria.
Theorem 4.2.1, Theorem 4.2.2 and Lemma 4.2.3 provide an e�cient compu-

tation of an (↵-discounted, or average) optimal policy. We give the algorithm
for the ↵-discounted cost. The corresponding algorithm for the average cost
can obtained from the ↵-discounted cost algorithm, by inserting the value
↵ = 0.
Note that the algorithm stops after at most n

0

(↵) iterations of step 1, with
an SC optimal policy. This is an advantage above algorithms as value iteration,
that yield only approximations. The validity of this algorithm is proven in
Lemma 4.4.4.

4.3 Roadmap and proofs

↵-discount optimality First of all we will consider the ↵-discounted cost
criterion. The paper [1] has proven ↵-discount optimality of an SC-policy, for
the case Ko↵ = 0, if the service rates are truncated at maximum value, say Nµ
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4 Power control of a server farm

Algorithm 3 Computation of an SC optimal policy �

↵ for the ↵-discounted
criterion and of �0 for the average cost criterion

0) Initialise: if c > (�+ ↵)Ko↵ + �K

on, then put ⇡x = off, x 2 S

⇤, stop;
if c  ↵K

o↵ , then put ⇡x = idle, x 2 S

⇤, stop;
otherwise: put D0

(0,0) = {0}, v↵
(0,0)(0) = 0; ⇡0

(0,0) = 0, n = 1,
goto step 1.

1) Computation of an optimal policy on �(n) \ {(0, n)}.

• For x 2 A(n) [ {(0, n� 1)} do:

– put Dn
(0,n�1)

= {idle};

– if ⇡n�1

x�e
2

= off, or ⇡n�1

x�e
1

= off, put Dn
x = {off};

– otherwise, put Dn
x = Dx.

• Put v↵
(0,n)(n) = 0,

v

↵
(0,n�1)

(n) =
v

↵
(1,n�2)

(n� 1)µ {n>1} + �K

on

�+ (n� 1)µ(1� tn�2

) {n>1} + ↵

;

and put

v

↵
x (n) = v

↵
x (n� 1)+

n�2

Y

l=x
2

tk · v
↵
(0,n�1)

(n), x 2 �(n� 1)\{(0, n� 1)}.

• Solve the following linear system in the unknowns ux, x 2 A(n),
with u

(0,n) = 0 (e.g. by policy iteration),

(↵+ �+ x

2

µ)ux = cx + �ux�e
1

+e
2

{x
1

>1}

+x

2

µ ·min
n

�

K

o↵ + v

↵
x�e

2

(n)
��

{off2Dn

x

} +1 {off 62Dn

x

}
�

,

ux+e
1

�e
2

�

{idle2Dn

x

} +1 {idle 62Dn

x

}
�

o

. (4.2)

• Put ⇡n
x = ⇡

n�1

x , x 2 �(n) \ A(n). Put ⇡n
x equal to the minimising

decision in Eq. (4.2); in case of a tie, select ⇡n
x = idle, x 2 A(n).

2) Stop, if ⇡n
x = off for x 2 A(n). Then, �↵x = ⇡

n
x , x 2 �(n) \ {(0, n)}. The

values �

↵
x , x 62 �(n) \ {(0, n)} can be determined from Theorem 4.2.2.

Otherwise, n := n+ 1, goto step 1.
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4.3 Roadmap and proofs

(cf. Eq.(4.4) below). In Section 3.6 the case K

o↵ = 0 is studied as well, and
↵-discount optimality of an SC-policy is proved for the unbounded-rate MDP.
The approach is a generic one validating to take the limit for the truncation
in [1] to vanish. The case K

o↵

> 0 is largely analogous to the proofs in [1]
and in Chapter 3. We will not give all details, but we will describe in general
terms how to tackle this problem.

First of all, we need v

↵ to be finite, as well as a solution to the ↵-discount
optimality equation, specifically

↵ux = cx

1

+ �

�

K

on

{x
1

=0}ux+e
2

+ ux�e
1

+e
2

{x
1

>0}
�

� (�+ x

2

µ)ux

+x

2

µ ·min{Ko↵ + ux�e
2

, ux�e
2

+e
1

}. (4.3)

Furthermore, if � is a deterministic policy that chooses the minimising actions
in Eq. (4.3), then we need to validate that v

↵(�) = v

↵, so that � is optimal
over ⇧. In the present model this is true under the condition that there exists
a policy with finite ↵-discounted cost (cf. [70, 63]), since the problem is a cost
minimisation problem with finite decision spaces and non-negative cost rates
(negative dynamic programming). Further v

↵ is the minimum non-negative
solution to Eq. (4.3).

In order to guarantee the existence of an SC ↵-discount optimal policy, it
is su�cient that v↵ is supermodular and superconvex.

Definition 4.3.1. Let v : S ! . Then v is supermodular, if

vx+e
1

+e
2

� vx+e
1

� vx+e
2

+ vx � 0, for x 2 S;

and v is superconvex, if

vx+2e
1

� vx+e
1

� vx+e
1

+e
2

+ vx+e
2

� 0, for x 2 S.

Denote Super = {v : S ! | v supermodular}, and SuperC = {v : S !

| v superconvex}.

We show that supermodularity and superconvexity yield the desired result.

Lemma 4.3.1. If v↵ 2 Super \ SuperC , then there exists a minimising (sta-
tionary) deterministic policy �

↵ in Eq. (4.3) that is an SC-policy. This policy
�

↵ is thus ↵-discount optimal.

Proof. Let � be a minimising policy in Eq. (4.3). Suppose that �x = off,
i.e. turning o↵ is optimal in state x. Then Eq. (4.3) implies that v↵x+e

1

�e
2

�

v

↵
x�e

2

+K

o↵ . Now Super yields that v↵x+e
1

� v

↵
x +K

o↵ , implying that turning
o↵ in x+ e

2

is optimal.
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Furthermore, SuperC yields that vx+2e
1

�2e
2

� vx+e
1

�2e
2

+ K

o↵ . Thus,
turning o↵ in x+ e

1

� e

2

is optimal.
Similarly, suppose that �x = idle. Then, Super yields that idling in state

x � e

2

is optimal, and SuperC implies that idling in state x � e

1

+ e

2

is
optimal.

Note, that there may be ties, where both off and idle can be minimisers,
hence optimal decisions. Thus, there may be optimal policies that are not an
SC-policy.

In order to show the structural results from Theorem 4.2.1, value iteration
(VI) is a proper method. This requires a uniformisation step and a subsequent
time discretisation step. However, the first is hampered by the fact that the
jump rates are unbounded as a function of state and decision pairs. Hence,
one must perform a bounded jump rate perturbation that leaves structural
properties invariant in order to apply VI.

Consequently, one needs continuity properties as a function of a vanishing
perturbation parameter, so that structural properties of the original unper-
turbed model follow from the perturbed ones. Notice that, whereas the con-
tinuous time MDP involves a minimisation over the set of Markov processes
{X(⇡)}⇡2⇧

, introducing a perturbation extends the set of Markov processes
under consideration. Denoting the perturbation parameter by N 2 N , where
N is the set of all perturbation parameters. Let one parameter be associated
with the original unperturbed problem. The set of Markov processes to be con-
sidered is a parametrised one: {X(N,⇡)}N2N ,⇡2⇧

. Thus, the perturbations
only a↵ect the transition rates and not the cost rates. Then, {X(N,⇡}⇡2⇧

defines an MDP as well, for any N 2 N .
The perturbation we will use, is the case studied in [1], where the service

rates have been truncated. Then N = {Z>0

}[{1}, where parameter N = 1

stands for the unperturbed MDP. Given N 2 N , the corresponding MDP has
rates:

qxy(N, �x) =

8

>

>

>

>

<

>

>

>

>

:

{x

2

^N}µ y = x� e

2

, �x = off

or y = x+ e

1

� e

2

, �x = idle;
�, y = x� e

1

+ e

2

, x

1

> 0
or y = x+ e

2

, x

1

= 0;
�({x

2

^N}µ+ �) y = x,

(4.4)

for x 2 S, �x 2 Dx. We call this the N -perturbed MDP.
Again, in this particular case of a cost minimisation, the same weak con-

ditions as mentioned above, ensure that for each N -perturbed MDP the ↵-
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discounted cost value function v

↵(N) is finite and a solution to the corres-
ponding ↵-discount optimality equation

↵ux = x

1

c+ �

�

{x
1

>0}ux�e
1

+e
2

+ {x
1

=0}(ux+e
2

+K

on)
 

+ {x

2

^N}µmin{Ux+e
1

�e
2

, ux�e
2

+K

o↵

}� (�+ {x

2

^N}µ)ux. (4.5)

Furthermore, if � is a deterministic policy that chooses minimising actions
in Eq. (4.5), then v

↵(N, �) = v

↵(N), and so � is optimal over ⇧. However,
we will also need that v

↵(N) ! v

↵(1) = v

↵, N ! 1. This will follow
from Theorem 4.3.2 below. Suitable conditions for this convergence have been
derived in Chapter 3.
As a consequence, if v↵(N) 2 SuperC \ Super, N < 1, then v

↵
2 SuperC \

Super. So, we are only left to show that v↵(N) 2 SuperC \ Super.
To do so, we will uniformise the N -perturbed MDP. It is convenient to first

scale the rates, so that the maximum jump rate �+Nµ = 1. Uniformisation
yields a discrete time MDP (cf. [64] and Chapter 2) with transition matrix
P (�) = I + Q(�), direct cost c̄(�) = c(�)/(1 + ↵), and discount factor ↵̄ =
↵/(1 + ↵), where we discount future cost at time n with factor (1 � ↵̄)n,
� 2 D. For the associated ↵̄-discount cost value function v̄

↵̄(N) it holds that
v̄

↵̄(N) = v

↵(N). Again, the existence of one policy with finite ↵̄-discounted
cost, ensures that v̄↵̄(N) is a solution to the ↵̄-discount optimality equation

ux = x

1

c̄+ (1� ↵̄)
⇣

�

�

{x
1

>0}ux�e
1

+e
2

+ {x
1

=0}(ux+e
2

+K

on)
 

+ {x

2

^N}µmin{ux+e
1

�e
2

, ux�e
2

+K

o↵

}+ (N � x

2

)+µux

⌘

, (4.6)

and minimising policies are ↵̄-discount optimal in ⇧. Furthermore, VI con-
verges to the value function v̄

↵̄(N), because [xDx is finite (cf. [70]), for
N < 1. The VI scheme is given by initialising

v̄

↵̄,0
x (N) = 0, x 2 S, (4.7)

and then iterating

v̄

↵̄,n+1

x (N)

= x

1

c̄+ (1� ↵̄)
⇣

�

�

{x
1

>0}v̄
↵̄,n
x�e

1

+e
2

(N) + {x
1

=0}(v̄
↵̄,n
x+e

2

(N) +K

on)
 

+ {x

2

^N}µmin{v̄↵̄,nx+e
1

�e
2

(N), v̄↵̄,nx�e
2

(N) +K

o↵

}+ (N � x

2

)+µv̄↵̄,nx (N)
⌘

.

(4.8)
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Now, if the functions v̄

↵̄,n(N), n = 0, 1, . . ., are supermodular and super-
convex, then the limit v̄

↵̄(N) = v

↵(N) is supermodular and superconvex,
and thus v

↵ = limN!1 v

↵(N) is supermodular and convex. Application of
Lemma 4.3.1 then yields the existence of an SC ↵-discount optimal policy.
This is summarised in the following theorem.

Theorem 4.3.2. Let 0 < ↵̄ < 1, N < 1. For the functions v̄↵̄,n(N) obtained
from the value iteration scheme Eqs. (4.7) and (4.8) it holds that

v̄

↵̄,n(N) 2 SuperC \ Super, n = 0, 1, . . . . (4.9)

As a consequence, v↵ 2 SuperC\Super. Hence, there exists an SC ↵-discount
optimal policy and the first part of Theorem 4.2.1 holds true.

Proof. Two steps need to be validated. The first is to prove that v↵(N) ! v

↵,
N ! 1. Essentially this follows from Chapter 3. Theorem 3.5.1 provides
conditions under which this continuity result holds and also that v↵ is finite.
These conditions are drift conditions. together with continuity assumptions
on the input parameters. Then Theorem 3.6.1 shows that the collection of
parametrised processes {X(N, �)} satisfies the conditions of Theorem 3.5.1.
Taking K

o↵

> 0 in the present chapter is trivially incorporated.
The second is to prove Eq. (4.9). This is quite a long and tedious proof

using event based dynamic programming (cf. [45]). It is therefore postponed
to Section 4.5.

Average optimality The case of average optimality of an SC-policy has been
open so far. Now, remind that [1] shows average optimality of an SC-policy for
the uniformised N -perturbations, via a vanishing discount approach based on
↵-discount optimality of an SC-policy for the uniformised N -perturbations.
They show that the N -perturbed server farm model satisfies conditions on
the input parameters of the MDP developed in [74] to justify the vanishing
discount approach. These conditions are very similar to conditions developed
by Borkar in [20, 21], and weakened in [63] (the ‘BOR’ conditions in this
book). Clearly, the vanishing discount then also applies to the continuous
time N -perturbed MDP.

One approach could be to take the limit N ! 1. Denoting the minimum
N -perturbed average cost by g(N), one would in any case need to show that
g(N) ! g, N ! 1. However, the closed class structure under the various
policies is rather complicated in the server farm model, and so we have no clue
as to what kind of conditions on the input parameters could validate such a
continuity result.
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The best road therefore seems to be to apply a vanishing discount approach
to the continuous time ↵-discount cost value functions. Interestingly, the con-
tinuous time versions of the ‘BOR’ conditions allow to apply the vanishing
discount approach to unbounded jump MDPs of Chapter 2. This is expressed
in the following theorem. Denote by �

↵ an ↵-discount optimal policy.

Theorem 4.3.3. Any sequence {↵n}n, ↵n # 0, n ! 1, has a subsequence,
again denoted {↵n}n, along which the following limits exist: for all x 2 S

wx = lim
n!1

(v↵n

x � v

↵
n

0

)

g = lim
n!1

↵nv
↵

n

x .

�

⇤ = lim
n!1

�

↵
n

.

The tuple (g, w) is a solution to the average optimality equation,

g

0 = x

1

c+ �

⇣

{x
1

>0}w
0
x�e

1

+e
2

+ {x
1

=0}(w
0
x+e

2

+K

on)
⌘

+x

2

µmin{w0
x+e

1

�e
2

, w

0
x�e

2

+K

o↵

}� (�+ x

2

µ)w0
x. (4.10)

Furthermore, g = g, �

⇤ is a minimising policy for solution tuple (g, w) and
any minimising policy � for solution tuple (g, w) is average cost optimal in ⇧.

Corollary 4.3.4. For the solution tuple (g, w) it holds that w 2 SuperC \

Super. Thus, there exists an SC average cost optimal policy. This proves the
second part of Theorem 4.2.1.

Proof of Theorem 4.3.3. We wish to apply Theorem 2.3.4. On top of the
conditions that had to be verified for the assertion of Theorem 4.3.2, the
following conditions have to be checked:

1. There exists a policy �

0

2 D and state a x

0

, such that mxx
0

(�0) < 1

and cxx
0

(�0) < 1, x 2 S, where

mxx
0

(�0) = E�0

x ⌧x
0

, cxx
0

(�0) = E�0

x

Z ⌧
x

0

t=0

cX
t

(Dt)dt,

and

⌧x
0

= inf{t > 0 | 9s 2 (0, t), such that Xs 6= x

0

, Xt = x

0

}. (4.11)

2. There exists ✏ > 0 such that A = {x 2 S | min�
x

2D
x

cx(�x)  g(�0) + ✏}

is a finite set.
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3. For all x 2 A \ {0}, there exists �

x
2 D, such that mx

0

x(�x) < 1 and
cx

0

x(�x) < 1.

First note that Condition 2 is not true. However, we can use the same trick as
in [1] to adapt the cost rate, without influencing the di↵erence in cost of any
two policies. Let c̃x(�) = cx(�) + x

2

. Denote by g̃(�) the associated expected
average cost, then

g̃(⇡) = g(⇡) +
1
X

i=0

i

�

�

i!µ

�i
e

��/µ = g(⇡) +
�

µ

,

since {Xt,2}t behaves as an M/M/1-queue. Thus, enlarging the cost rates in
this way has no e↵ect on the optimality characteristics. Then c̃x(�x), x 2 S,
�x 2 Dx, satisfies Condition 2.
We will prove Condition 1. Put x

0

= (0, 0) =: 0. Take �

0

x = off if x 2 B,
and �

0

x = idle if x 62 B, x
2

> 0. Then, the set B [ {0} is a closed, irreducible
class in the associated Markov process, with finite expected average cost. Thus,
mx0(�0), cx0(�0) < 1, for x 2 B.

Let x 62 B [ {0}. Then, since {Xt,2(�0)}t behaves as an M/M/1-queue,

mx(0,x
1

+x
2

)

(�0), cx(0,x
1

+x
2

)

(�0) < 1.

Thus, also mx,0(�0) = mx,(0,x
1

+x
2

)

(�0) + m

(0,x
1

+x
2

),0(�
0) < 1. This applies

analogously to cx,0(�0).
We finally have to check Condition 3. If x 2 B, then we can take �

x = �

0,
and a similar reasoning applies. Suppose that x 62 B. Then put �

x
y = off,

y 2 B, y 6= (0, x
1

+x

2

), and �

x
y = idle for y with y

1

+y

2

= x

1

+x

2

and y

2

> 0
(and arbitrary in the other states). Again a similar reasoning as in the above
applies.
It is easy to verify that the enlarged cost rates do not violate the conditions

of Chapter 3 to hold. Thus, for each ↵ > 0, ṽ↵ is a solution to the ↵-discount
optimality equation (4.3), with the right-hand side enlarged by a cost term x

2

,
with the property that any minimising policy is ↵-discount optimal.

Notice that
ṽ

↵
x � v

↵
x = m̃

↵
x
2

, x 2 S,

where m̃

↵ is the ↵-discount value function of the M/M/1-queue with cost
rate i in state i, for i 2

+

. Checking the conditions of Theorem 3.5.1 (see
also Example 3.4.1 ‘containing’ the verification of these conditions), it follows
that m̃

↵ is finite for ↵ > 0. Then ṽ

↵
2 SuperC \ Super for ↵ > 0. By

Theorem 2.3.4, the assertions in the statement of the present theorem apply
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to ṽ

↵
� ṽ

↵
x
0

e, with e the vector consisting of ones. Thus any limit point, say w̃,
is supermodular and superconvex, and any minimising policy is average cost
optimal. Therefore, there exists an SC minimising policy. By the observation
made above that the optimality structure is not a↵ected, the original problem
has an SC average cost optimal policy.

The assertion of the Theorem is slightly stronger. Now, notice that the
M/M/1-queue is positive recurrent and has finite expected average cost �/µ,
for cost rates i in state i, i 2 Z�0

. The conditions of Theorem 2.3.4 therefore
hold and so any sequence {↵n}n, ↵n # 0, n ! 1, contains a subsequence, again
denoted by {↵n}n, such that limn!1(m̃↵

n

x � m̃

↵
n

0

) ! mx, for some function
m : Z>0

! , and ↵

n
m̃

↵
0

! �/µ. Put v↵x � v

↵
x
0

= ṽ

↵
x � ṽ

↵
x
0

� (m̃↵
x
2

� m̃

↵
0

). The
assertion of the Theorem readily follows.

Proof of Corollary 4.3.4. Clearly, w 2 SuperC \ Super, as a limit of super-
modular, superconvex functions. The same arguments proving Lemma 4.3.1
yield that there exists a minimising policy in Eq. (4.10) with solution tuple
tuple (g, w), that is an SC-policy.

4.4 Upper bounds by coupling techniques

In this section we will exploit the special features of the server farm model
mentioned directly below Theorem 4.2.2, namely that {Xt,2}t behaves as an
M/M/1-queue that is independent of the policy, and that �(n) has only one
exit state. These features allow to use coupling techniques. The analysis is
first performed for the discounted cost criterion, lateron the limit ↵ # 0 is taken
to obtain results for the average cost case. Alternatively, the latter result can
be obtained by an analogous derivation as in ↵-discounted cost case.

With this coupling technique we provide upper bounds on the number of
states where idling might be optimal. These bounds are expressed in terms
of input parameters of the problem. Using that there is an SC ↵-discounted
optimal policy by Theorem 4.3.2, it follows that only a finite number of states
is left for which the SC-optimal policy still will have to be determined. By
virtue of Lemma 4.2.3, it is su�cient to only solve a finite state, finite action
MDP. Furthermore, this allows to deduce the existence of a strong Blackwell
optimal policy. The original ideas for this section are from Kappetein [42] and
Van der Velde [73].

To start with, we will prove Lemma 4.2.3. Denote by w(n) the minimum
total expected cost vector for the n-restricted MDP.
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4 Power control of a server farm

Lemma 4.4.1. For x 2 �(n) \ {(0, n)} it holds that

v

↵
x = v

↵
x (n) +

n�1

Y

l=x
2

tl · v
↵
(0,n),

and that
wx = wx(n) + Ex

2

⌧n · g,

where (g, w) is a vanishing discount solution of Eq. (4.10) from Theorem 4.3.3.

Proof. We consider the ↵-discounted cost first. A straightforward computation
shows for any policy ⇡ 2 ⇧ and x 2 �(n) \ {(0, n)} that

v

↵
x (⇡)=E⇡

x

Z ⌧
(0,n)

t=0

e

�↵t
cX

t

(Dt)dt+ E⇡
xe

�↵⌧
(0,n)

v

↵
(0,n)(⇡)

=v

↵
x (n) + E⇡

xe
�↵⌧

(0,n)

v

↵
(0,n)(⇡).

Since ⌧

(0,n) is exclusively determined by the process {Xt,2}t if the initial state
belongs to �(n), the distribution of ⌧

(0,n) is equal to the distribution of ⌧n in
the M/M/1-queue, which is independent of the policy. Thus, using [28]

E⇡
xe

�↵⌧
(0,n) = Ex

2

e

�↵⌧
n =

n�1

Y

l=x
2

tl,

where the empty product
Qn�1

l=n tl is assumed to equal 1.
Next we consider the average cost criterion. Note that (0, n) is reached

with probability 1 under any stationary policy on D(0, n). Consider the limits
wx = limm!1(v↵m

x � v

↵
m

(0,n)) and g = limm!1 ↵mv

↵
m

(0,n), ↵m # 0, x 2 S, along

some subsequence {↵m}m. By virtue of Theorem 4.3.3 this exists, and yields
a solution to the average optimality equation (4.10).
In terms of the n-restriction, we get

v

↵
x (n) = v

↵
x � v

↵
(0,n) +

1� Ex
2

e

�↵⌧
n

↵

↵v

↵
(0,n) ! wx + Ex

2

⌧n · g,

where En⌧n = 0. Denote wx(n) = wx + Ex
2

⌧n · g, x 2 �(n). Then, plugging
this into Eq. (4.10) for x 2 �(n) yields the equation

0 =x

1

c+ �

n

{x
1

>0}wx�e
1

+e
2

(n) + {x
1

=0}(wx+e
2

(n) +K

on)
o

+ x

2

µ ·min{wx+e
1

�e
2

(n), wx�e
2

(n) +K

o↵

}

� (�+ x

2

µ)wx(n) x 2 �(n) \ {(0, n)}. (4.12)
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4.4 Upper bounds by coupling techniques

Thus, computing the average cost value function on �(n) is equivalent to
solving a total cost problem till absorption into state (0, n), given the optimal
average cost g is known.

Proof of Lemma 4.2.3. Note that v↵x (n) = v

↵
x �

Qn�1

l=x
2

tl · v
↵
(0,n), x 2 �(n), is

the unique solution to the ↵-discount optimality equation for the n-restriction
on �(n). Thus, any minimising policy is optimal for both the unrestricted and
the restricted problems on �(n). Any ↵-discount optimal policy must satisfy
the ↵-discount optimality equation, for both problems. For the n-restriction
this is immediate, by uniqueness of the solution to the ↵-discount optimality
equation. For the unrestricted problem this follows from Theorem 3.4.1.
Furthermore, a stationary optimal policy for the n-restriction chooses min-

imising decisions in Eq. (4.12), hence in Eq. (4.10), for x 2 �(n) \ {(0, n)}.

↵-Discounted cost criterion In view of Lemma 4.2.3, we can study the char-
acteristics of optimal policies on the triangle �(n) for the n-restricted MDP.
To recall, v↵(n) : �(n) ! denotes the ↵-discount value function. It is the
unique solution to

↵ux=

8

>

<

>

:

cx

1

+ �

n

{x
1

>0}ux�e
1

+e
2

+ {x
1

=0}(ux+e
2

+K

on)
o

�(�+ x

2

µ)ux

+x

2

µ ·min{Ko↵ + ux�e
2

, ux�e
2

+e
1

} x 2 �(n) \ {(0, n)};
0 x = (0, n).

(4.13)
For studying the characteristics of optimal policies, we will view the n-restricted
MDP as a (continuous time) semi-Markov decision process (smdp), in partic-
ular an exponential semi-Markov decision process (esmdp), since the time
between jumps has an exponential distribution. The advantage is that we
may consider non-stationary deterministic policies, that only at the time of a
jump prescribe a decision, based on the history of past states and decisions
at jump times. By right-continuity of trajectories, the decision is taken in the
just reached state. Following [57, Chapter 7], we conclude that there exists a
stationary, deterministic ↵-discounted optimal policy, since Condition 1 from
that book is trivially satisfied in our case. We will use this in our coupling
arguments.

Denote the class of non-stationary, deterministic policies for the ESMDP
by C. Then again, the ↵-discount cost value function associated with policy
R 2 C is denoted by v

↵(n,R). Let x 2 �(n). Let R,R

0
2 C. Then one can

construct a probability space, such that for the associated right-continuous
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4 Power control of a server farm

non-stationary processes X(R) and X(R0) it holds that

Xt,2 := Xt,2(R) = Xt,2(R
0), t > 0,

and X

0

(R) = X

0

(R0) = x. Then the two processes jump at the same time,
but may take di↵erent decisions. For notational convenience, denote the cor-
responding probability and expectation operators by P⇤ and E⇤ respectively.

Denote the successive jump times by J

0

= 0, J
1

, J

2

, . . .. Thus at time Jn

the states of the processes (after the jump, by right-continuity) are given by
XJ

n

(R) and XJ
n

(R0) respectively. The corresponding decisions are denoted
DJ

n

(R) and DJ
n

(R0) respectively. This construction will be assumed to apply
during the whole course of this section.

Let XJ
0

(R), XJ
0

(R0) 2 �(n) \ {(0, n)}. Suppose that there exists a random
time �x, such that

• �x 2 {J

1

, . . .};

• X�
x

(R) = X�
x

(R0);

• for Jm � �x, XJ
m

(R) = XJ
m

(R0) and DJ
m

(R) = DJ
m

(R0).

Then �x is called a coupling time forX(R) andX(R0). Notice that �x is almost
surely finite, since the processes couple latest upon reaching state (0, n). This
happens in a.s. finite time by positive recurrence of the M/M/1-queue.

If �x is a coupling time for X(R) and X(R0) then

v

↵
x (n,R)  v

↵(n,R0) () v

↵
x,�

x

(n,R)  v

↵
x,�

x

(n,R0), (4.14)

where

v

↵
x,�

x

(n,R) = ER
x

Z �
x

0

e

�↵t
cX

t

(Dt)dt,

and analogously for v↵x,�
x

(n,R0).
The following simple lemma validates the coupling arguments that we will

use.

Lemma 4.4.2. Let x 2 S

⇤
\ �(n) \ {(0, n)}, and d

1

, d

2

2 Dx with d

1

6= d

2

.
Suppose that two policies R

1

, R

2

are such that:

1. X

0

(R
1

) = X

0

(R
2

) = x;

2. R

1

is a stationary deterministic policy on �(n) that takes decision d

1

in
x and optimal decisions in the states of �(n) \ {x};
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3. DJ
0

(R
2

) = d

2

;

4. there exist deterministic policies R

2a and R

2d depending on whether at
time J

1

an arrival or a departure respectively took place, describing the
decisions of R

2

after J

1

;

5. there exists a coupling time �x;

6. v

↵
x,�

x

(n,R
1

) � v

↵
x,�

x

(n,R
2

).

Then, d

2

is an optimal in state x, that is, it is a minimising decision in
Eq. (4.13). It is the unique minimising decision in Eq. (4.13) if there is strict
inequality in condition (6).

Proof. If d
2

is not an optimal decision, then d

1

must be optimal. Hence R

1

is optimal, and is equal to say the deterministic, stationary policy � say (on
�(n)). Let R be the policy with DJ

0

(R) = d

2

, and DJ
m

(R) = �X
J

m

(R)

, m � 1.
That is, after the first decision, R equals the ↵-discounted optimal policy R

1

.
Then,

v

↵
x (n,R1

) < v

↵
x (n,R).

This is immediately deducible from the ↵-discounted optimality equation.
Thus,

v

↵
x (n,R1

) <v

↵
x (n,R)

=
cx(d2)

�+ xµ+ ↵

+
�

�+ xµ+ ↵

v

↵
x0(n,R

1

) +
xµ

�+ xµ+ ↵

v

↵
x00(n,R

1

)



cx(d2)

�+ xµ+ ↵

+
�

�+ xµ+ ↵

v

↵
x0(n,R

2a) +
xµ

�+ xµ+ ↵

v

↵
x00(n,R

2d)

=v

↵
x (n,R2

),

where x

0 and x

00 are the resulting states after an arrival and a departure
respecively when decision d

2

is implemented. This contradicts condition (6)
in the assertion of the lemma by virtue of Eq. (4.14).

For convenience, introduce Ti
d
= exp(�+ iµ), a random variable that repres-

ents the sojourn time in state x, when x

2

= i.

Lemma 4.4.3. 1. If c � (�+ ↵)Ko↵ + �K

on then ⇡(0, 1) = off is ↵-
discount optimal;

2. if c  (�+ ↵)Ko↵ + �K

on then ⇡(0, 1) = idle is ↵-discount optimal.
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Proof. We will prove the second statement. It is su�cient to consider the
2-restricted processes on �(2). Start in state x = (0, 1). Put d

1

= off,
d

2

= idle. Let � be a deterministic, stationary ↵-discount optimal policy on
�(2).

R

1

is the stationary, deterministic policy �

1, with �

1

x = d

1

= off, and �

1

y =
�y, y 6= x. R

2

is the stationary, deterministic policy �

2 with �

2

x = d

2

= idle,
and �

2

y = �y, y 6= x.

Notice that the time to couple �x is equal to J

1

with probability �/(µ+ �),
and J

2

with probability µ/(µ+ �). We get

v

↵
x,�

x

(2, R
1

)� v

↵
x,�

x

(2, R
2

) =E⇤
x

n

Z J
1

0

e

�↵t
µK

o↵

dt

o

+
µ

�+ µ

E⇤
x

n

e

�↵J
1

Z J
2

�J
1

0

e

�↵t(�Kon

� c)dt
�

�

�

T > 1
o

=
µ

↵+ µ+ �

n

K

o↵ + E

Z T
0

t=0

e

�↵t(�Kon

� c)dt
o

=
µ

↵+ µ+ �

(�+ ↵)Ko↵ + �K

on

� c

↵+ �

� 0.

By virtue of Lemma 4.4.2, the idle decision is a minimising decision in Eq. (4.13)
for x = (0, 1), hence it is in Eq. (4.3).

Proof of Theorem 4.2.2. First we prove assertion (1,i). To this end, assume
c > (�+ ↵)Ko↵ + �K

on. Then, Lemma 4.4.3 (1) implies that off is optimal
in (0, 1). By virtue of Theorem 4.2.1 (i), turning o↵ is optimal in all states.

Next we will prove assertion (1,ii). Assume c  (�+ ↵)Ko↵ + �K

on. We
first show the validity of (1,ii,a) that the decision idle is a minimising decision
in Eq. (4.3) for x 2 B, with B the x

2

-axis minus the origin.

The proof is by induction. Lemma 4.4.3 (2) implies that idle is optimal in
state (0, 1). Now assume that idle is optimal in {(0, 1), . . . , (0, n)}.

We will compare two policies R

1

and R

2

, for initial state x = (0, n + 1).
It is su�cient to study the (n + 2)-restricted MDP on �(n + 2). Let � be
a deterministic ↵-discount optimal policy on �(n + 2), with �

(0,i) = idle,
i = 1, . . . , n. Put d

1

= off, d
2

= idle. Let R
1

be the deterministic, stationary
policy �

1 that selects decision d

1

in state x and �y in state y 6= x, x 2 �(n+
2). The policy R

2

is specified by d

2

at time J

0

, and policies R

2a, and R

2d

depending on whether there was an arrival at time J
1

or a departure. R
2a will
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be equal to �

1. R
2d is given by

DJ
0

(R
2d) =

8

<

:

0 XJ
0

(R
2d) = (0, n+ 2)

off XJ
0

(R
2d) = (1, n)

arbitrary XJ
0

(R
2d) = y, y 6= (0, n+ 2), (1, n),

and for m � 1, DJ
m

(R
2d) = �

1

X
J

m

(R
2d

)

. Then the coupling time �x is equal

J

1

to with probability �/(�+ (n+ 1)µ) and occurs at state (0, n+ 2). It is J
2

with probability (n+1)µ/(�+(n+1)µ), and coupling occurs with subsequent
probability p := �/(� + nµ) at state (0, n + 1) due to an arrival, and with
probability 1� p = nµ/(�+nµ) at state (1, n� 1) due to a departure. We get

v

↵
x,�

x

(n+ 2, R
1

)� v

↵
x,�

x

(n+ 2, R
2

)

=E⇤
x

n

Z J
1

0

e

�↵t(n+ 1)µKo↵

dt

o

+

(n+ 1)µ

(n+ 1)µ+ �

E⇤
x

n

e

�↵J
1

Z J
2

�J
1

0

e

�↵t(�Kon

� c� nµK

o↵)dt
�

�

�

T > 1
o

=
(n+ 1)µ

↵+ (n+ 1)µ+ �

(�+ ↵)Ko↵ + �K

on

� c

↵+ nµ+ �

> 0.

Thus, decision d

2

= idle is optimal in state x = (0, n+ 1). By induction idle

is optimal in the states of B.
In order to prove assertion (1,ii,b), we will derive the following preliminary

claim.

Claim. If c > ↵K

o↵ then for all n � {2^n
1

(↵)} it holds that off is (strictly)
optimal in state (n� 1, 1).

Proof of the Claim. Supposing that c > ↵K

o↵ , let n � 2 ^ n

1

(↵). It is
su�cient to consider the n-restricted MDP on �(n). Let x = (n � 1, 1), and
let d

1

= idle. Let � be an SC ↵-discount optimal policy on �(n). If �x = off

then there is nothing to prove. Hence, assume that �x = idle. Then �y = idle

for y 2 S

⇤
\�(n) \ {(0, n)}. The policy R

1

is then equal to �, thus, R
1

idles
in every state of �(n).
Put d

2

= off. Subsequently, we put R
2a and R

2d equal to �. Then, either
X(R

1

) and X(R
2

) couple at state (n � 2, 2) at time J

1

due to an arrival, or
they couple at state (0, n), and till that moment (on the event T > 1) the
process X(R

2

) moves on the set of states {y | y

1

+ y

2

= n � 1}. Note that T

is finite with probability 1, since state (0, n) is reached with probability 1 and
in finite expected time. That is, �x = JT is finite with probability 1.

105



4 Power control of a server farm

The cost di↵erence between the two processes consists of a switch-o↵ cost
in process X(R

2

) during the interval [0, J
1

). In case of a service completion
at time J

1

, there is an additional switch-on cost in process X(R
2

) at time
intervals during [J

1

, JT ) that no idling servers are present, as well as idling
cost in process X(R

1

) during all of [J
1

, JT ). Let

m

0

= min{l |XJ
l

(R
2

) = (0, n� 1)} = min{l |XJ
l

,2 = 0}.

We thus get,

v

↵
x,�

x

(n,R
1

)� v

↵
x,�

x

(n,R
2

)

=� µK

o↵E⇤
x

Z J
1

t=0

e

�↵t
dt

+
µ

�+ µ

E⇤
x

n

c

Z J
T

J
1

e

�↵t
dt�K
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Z J
T

J
m

0

e

�↵t
� · {(0,n�1)}(Xt(R2

)) dt
�

�

�

T > 1
o

=
µ

↵+ µ+ �

h

�K

o↵ + c · E⇤
x

n

Z J
T

�J
1

0

e

�↵t
dt

�

�

�

T > 1
o

�K

on

· E⇤
x

n

e

�↵(J
m

0

�J
1

)

Z J
T

�J
m

0

0

e

�↵t
� {(0,n�1)}(Xt(R2

)) dt
�

�

�

T > 1
oi

.

(4.15)

We will first consider the coe�cient of Kon in Eq. (4.15). Let Jm
0

< Jm
1

<

· · · < JT be the successive instants that X(R
2

) hits state (0, n � 1). To this
end, we bound the integral in expectation after further conditioning on the
state XJ

m

0

(R
2

) = (0, n� 1).

E⇤
x

n

Z J
T

�J
m

0

0

e

�↵t
� · {(0,n�1)}(Xt(R2

)) dt
�

�

�

T > 1, XJ
m

0

(R
2

) = (0, n� 1)
o

 E⇤
x

n

�

↵+ (n� 1)µ+ �

+
1
X

l=1

⇣ (n� 1)µ

↵+ (n� 1)µ+ �

⌘l
�

↵+ (n� 1)µ+ �

�

�

�

T > 1, XJ
m

0

(R
2

) = (0, n� 1)
o

=
�

↵+ �

. (4.16)

The derivation cancels the part of the paths of X(R
2

), during time-intervals
[Jm

0

+1

, . . . , Jm
1

), [Jm
1

+1

, Jm
2

), etc. where it moves on �(n� 1)\{(0, n� 1)}.
Here we use that from state (1, n � 2) there is a return to (0, n � 1) with
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probability 1. This enlarges the contribution of the discount factor. It yields
the exact expression in case n = 2.

Since there must be at least n� 1 arrivals till state (0, n� 1) is hit, Jm
0

�

J

1

� ✓n�1

, with ✓n�1

d
= E(�, n � 1), i.e. an Erlang distribution with n � 1

exponentially distributed phases with parameter �. Notice that Ee�↵✓
n�1 =

�

�/(↵+ �)
�n�1

. Thus, Eq. (4.16) implies that

E⇤
x

n

e

�↵(J
m

0

�J
1

)

Z J
T

�J
m

0

0

e

�↵t
� {(0,n�1)}(Xt(R2

)) dt
�

�

�

T > 1
o



⇣

�

↵+ �

⌘n

.

(4.17)
Similarly, in total at least n arrivals must have occurred between times J

1

and
JT . Thus, for the coe�cient of c in Eq. (4.15) it holds, that

E⇤
x

n

Z J
T

�J
1

0

e

�↵t
dt

�

�

�

T > 1
o

=E⇤
x

n1� e

�↵(J
T

�J
1

)

↵

dt

�

�

�

T > 1
o

�

1

↵

n

1�
⇣

�

↵+ �

⌘no

. (4.18)

Finally, inserting Eqs. (4.17) and (4.18) into Eq. (4.15) yields

v

↵
x,�

x

(n,R
1

)� v

↵
x,�

x

(n,R
2

) �
µ

↵+ µ+ �

h

c� ↵K

o↵

↵

�

c+ ↵K

on

↵

⇣

�

↵+ �

⌘ni

.

(4.19)
Finally, we have to choose n large enough, so that the right-hand side of
Eq. (4.19) is non-negative. In other words, n has to be large enough, so that

c+ ↵K

on

c� ↵K

o↵



⇣

1 +
↵

�

⌘n

.

Since
⇣

1 +
↵

�

⌘n

> 1 +
n↵

�

, n � 2,

it is su�cient to require that

c+ ↵K

on

c� ↵K

o↵

 1 +
n↵

�

.

In other words, it is su�cient that n � {2^ n

1

(↵)}. This completes the proof
that it is optimal to turn o↵ in (n� 1, 1) for n � {2 ^ n

1

(↵)}.
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The Claim allows to prove assertion (ii,b). Thus, assume ↵K

o↵

< c. Let
n � n

0

(↵). We consider the n-restricted MDP on �(n). Let x = (1, n � 1).
Let � be an SC ↵-discount optimal policy on �(n).

By virtue of the Claim, there exists a state x̄, x̄
1

+ x̄

2

= n, where �x̄ = off,
since n � {2 ^ n

1

(↵)}. If x̄ = (1, n � 1), there is nothing to prove. So,
assume that x̄

1

> 1, but is minimally chosen, in the sense that �y = idle,
for x

1

= 1  y

1

< x̄

1

, and y

1

+ y

2

= n. Note that x̄

1

 n

1

(↵) � 1, and so
x̄

2

� n� n

1

(↵) + 1 � n� n

1

(↵).
Choose d

1

= idle. Let R

1

be the stationary, deterministic policy �

1 (on
�(n)), with �

1

x = d

1

= idle and �

1

y = �y, y 2 �(n) \ {x}. The policy R

2

is
defined as follows. First, d

2

= off. Define for the M/M/1 queue that models
Xt,2(Ri) = Xt,2, i = 1, 2, t � 0

T = min
n

m � 1 |XJ
m

,2 2 {x̄

2

� 1, n}
o

.

Choose R
2a equal to �1. The policy R

2d is chosen as follows: DJ
m

(R
2d) = idle,

0  m < T . For m � T , put DJ
m

(R
2d) = �

1

X
J

m

(R
2

)

. Thus X(R
1

) and X(R
2

)

will couple either in state x̄�e

2

, or in state (0, n), at time �x = JT . Note that
Xt(R1

) = Xt(R2

) + e

1

, J
1

 t < JT . We get,

v

↵
x,�

x

(n,R
1

)� v

↵
x,�

x

(n,R
2

)

=
(n� 1)µ

�+ (n� 1)µ
E⇤
x

n

c

Z J
T

J
1

e

�↵t
dt

+K

o↵

Z J
T

J
1

e

�↵t
x̄

2

µ · {x̄}(Xt(R1

))dt
�

�

�

T > 1
o

� E⇤
x K

o↵

Z J
1

t=0

e

�↵t(n� 1)µdt

�

(n� 1)µ

�+ (n� 1)µ
E⇤
x

n

K

on

Z J
T

�J
1

0

e

�↵t
� · {(0,n�1)}(Xt(R2

))dt
�

�

�

T > 1
o

=
(n� 1)µ

↵+ (n� 1)µ+ �

h

E⇤
x

n

c

Z J
T

�J
1

0

e

�↵t
dt

+K

o↵

Z J
T

�J
1

0

e

�↵t
x̄

2

µ · {x̄}(Xt(R2

))dt
�

�

�

T > 1
o

�K

o↵

�K

onE⇤
x

n

Z J
T

�J
1

0

e

�↵t
� · {(0,n�1)}(Xt(R2

))dt |T > 1
oi

. (4.20)

We only have to consider the expression between the square brackets. It is
convenient to introduce some further notation and derive some preparatory
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bounds. Let m

0

= min{l |XJ
l

,2 = x̄

2

}, which is a random variable with po-
tential value 1, because the process may be absorbed in (0, n) before reaching
x̄

2

. The event {Jm
0

< JT } has the natural interpretation in the M/M/1
queue as the event that x̄

2

is reached before n. Define

�(↵) = Ex̄
2

+1

{e

�↵J
m

0 {J
m

0

<J
T

}}.

Then,

�(↵) �
(x̄

2

+ 1)µ

↵+ (x̄
2

+ 1)µ+ �

� 1�
↵+ �

↵+ x̄

2

µ+ �

. (4.21)

Next, we need

�(↵) = E⇤[x]
�

e

�↵(J
m

0

�J
1

)

�

�

T > 1, Jm
0

< JT

 

,

p = P⇤
x
{Jm

0

< JT |T > 1} = P
n�2

{Jm
0

< JT },

since {T > 1} = {XJ
1

,2 = x

2

� 1 = n � 2}. The latter probability can be
lower bounded in the following way. First observe that p is at least as large
as the probability in the M/M/1 queue to reach state 0 before reaching n,
starting at state n� 2. Thus 1� p is smaller than or equal to the probability
of reaching n before 0, starting at n� 2. Formally, write for 0 < l < n

a(l) = P
l
{Xt,2 > 0, t 2 [0, ⌧l+1

]}. (4.22)

Recall that ⌧l+1

= inf{m � 1 |XJ
m

,2 = l+1}. Then 1� p  a(n� 2)a(n� 1).
Lemma 4.6.1 shows that a(l)  k(⇢)/l, for k(⇢) = (1 + ⇢)2e⇢/⇢.

1� p  a(n� 2)a(n� 1)  k

2(⇢)
1

(n� 2)(n� 1)
. (4.23)

The switch-o↵ cost associated with X(R
1

) can now be lower bounded as fol-
lows.

K

o↵ E⇤
x

n

Z J
T

�J
1

0

e

�↵t
x̄

2

µ · {x̄}(Xt(R2

))dt
�

�

�

T > 1
o

�K

o↵ E⇤
x

n

Z J
T

�J
1

J
m

0

�J
1

e

�↵t
x̄

2

µ · {x̄}(Xt(R2

)) {J
m

0

<J
T

}dt
�

�

�

T > 1
o

�K

o↵ E⇤
x

�

e

�↵(J
m

0

�J
1

)

{J
m

0

<J
T

}
�

�

T > 1
 

·

x̄

2

µ

↵+ x̄

2

µ+ �

X

l�0

⇣

�

↵+ x̄

2

µ+ �

�(↵)
⌘l
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�K

o↵

· �(↵)p
n

1�
↵

↵+ x̄

2

µ+ �(�+↵)
↵+x̄

2

µ+�

�

�(�+ ↵)

(↵+ x̄

2

µ+ �)(↵+ x̄

2

µ+ �

�+↵
↵+x̄

2

µ+�

o

, (4.24)

where we use the Markov property repeatedly for the second inequality and
Eq. (4.21) for the third. For the idle cost term we get

c · E⇤
x

n

Z J
T

�J
1

0

e

�↵t
dt |T > 1

o

� c · E⇤
x

n

Z

min{J
m

0

,J
T

}�J
1

0

e

�↵t
dt |T > 1

o

+c · E⇤
x

n

{J
m

0

<J
T

}

Z J
T

�J
1

J
m

0

�J
1

e

�↵t
dt |T > 1

o

� c ·

1� En�2

e

�↵min{J
m

0

,J
T

}

↵

+ c ·

�(↵)p

↵+ x̄

2

µ+ �(�+↵)
↵+x̄

2

µ+�

, (4.25)

by splitting the integral in the part till time min{Jm
0

, JT }, and the restriction
of the remaining part of the integral to periods that a switch o↵ cost is incurred
(and thus on the event {Jm

0

< JT }), along trajectories that only jump between
the states x̄ and x̄� e

1

+ e

2

till absorption in x̄� e

2

.
Next, using Eq. (4.23)

En�2

e

�↵min{J
m

0

,J
T

}
 p�(↵) +

�

1� p

� (n� 2)µ+ �

↵+ (n� 2)µ+ �

 p�(↵) + k

2(⇢)
1

(n� 2)(n� 1)
. (4.26)

Adding up the idle cost terms and the switch o↵ costs within the square
brackets in Eq. (4.20) and using the bounds in Eqs. (4.24), (4.25) and (4.26),
yields

E⇤
x

n

c

Z J
T

�J
1

0

e

�↵t
dt

+K

o↵

Z J
T

�J
1

0

e

�↵t
x̄

2

µ · {x̄}(Xt(R2

))dt {T<⌧}

�

�

�

T >1
o

�K

o↵

��(↵)p
c� ↵K

o↵

�

�(�+↵)
↵+x̄

2

µ+�K
o↵

↵+ x̄

2

µ+ �

�+↵
↵+x̄

2

µ+�

+
1� En�2

e

�↵(min{J
m

0

,J
T

}�J
1

)

↵

(c� ↵K

o↵)
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+
�

�(↵)p� En�2

e

�↵(min{J
m

0

,J
T

}�J
1

)

�

K

o↵

��(↵)p
c� ↵K

o↵

�

�(�+↵)
↵+x̄

2

µ+�K
o↵

↵+ x̄

2

µ+ �

�

k

2(⇢)

(n� 2)(n� 1)
K

o↵

, (4.27)

since c > ↵K

o↵ .
We next consider the switch on cost associated with policy R

2

, for which
we derive an upper bound. We can use a similar route as in the proof of the
Claim, with the provision that the probability of reaching state (0, n�1) from
(1, n�2), without a coupling having taken place, has to be taken into account.
This probability is less or equal to a(n� 2) and so, again by Lemma 4.6.1

K

on E⇤
x

n

Z J
T

�J
1

0

e

�↵t
� · {(0,n�1)}(Xt(R2

))dt {T=⌧}

�

�

�

T > 1
o

K

on

· a(n� 2)
�

↵+ (n� 1)µ+ �

n

1 +
X

l�1

⇣

a(n� 2)
(n� 1)µ

↵+ (n� 1)µ+ �

⌘lo

=K

on

a(n� 2)�

↵+ (n� 1)µ(1� a(n� 2)) + �

K

on

k(⇢)�

(n� 2)(↵+ (n� 1)µ(1� k(⇢)/(n� 2)) + �)
, (4.28)

for n > 2 + k(⇢).
Putting Eqs. (4.27) and (4.28) together, yields the desired non-negativity of

Eq. (4.20) provided n � n

0

(↵). A quick motivation is that Eq. (4.28) and the
second term in Eq. (4.27) are of order 1/n2 and the first term in Eq. (4.27) is
positive for large n and of order 1/n. Clearly, this can be made positive for
n large. A check of the choice of n

0

(↵) ensures this to be valid. One of the
bounds used is that

�(↵) · p = Ex⇤
�

e

�↵(J
m

0

�J
1

)

{J
m

0

<J
T

} |T > 1
 

�

⇣

x̄

2

µ

↵+ x̄

2

µ+ �

⌘n�2�x̄
2

�

⇣

µ

↵+ µ+ �

⌘n
1

(↵)

=:
1

⌘(↵)
,

for n > n

1

(↵) (cf. Eq. (4.1)). Thus, turning o↵ is the optimal decision in
(1, n� 1), for n � n

0

(↵). This proves assertion (1,ii,b).
Finally, we will prove assertion (1,iii). Therefore, assume that c  ↵K

o↵ . By
virtue of assertion (1,ii,a), it is optimal to idle in state x 2 B. Let x 2 S

⇤
\B.

We consider the ⇠-restricted MDP on �(⇠), with ⇠ = x

1

+ x

2

.
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Let � be an ↵-discount optimal policy on �(⇠). The policy R

1

is stationary,
deterministic, say it equals �

1 that we will define next. Put �

1

x = d

1

= off,
and �

1

y = �y, y 6= x. The policy R

2

has d

2

= idle = DX
J

0

(R
2

)

. Put

R

2a equal to �

1. Put R

2d the following non-stationary deterministic policy:
if XJ

1

(R
2d), . . . , XJ

m

(R
2d) 62 B, then put DX

J

m

(R
2d

)

= �

1

X
J

m

(R
2d

)�e
1

. If

XJ
l

(R
2a) 2 B for some l  m, then put DX

J

m

(R
2d

)

= �

1

X
J

m

(R
2d

)

.

In words, policy R

2

‘imitates’ the decisions of R
1

, till they couple. Coupling
either takes place at time J

1

, if an arrival occurred, or at the time that B is
hit by the process controlled by R

2

. We get

v

↵
x,�

x

(⇠, R
1

)� v

↵
x,�

x

(⇠, R
2

) =

=E⇤
x

n

Z J
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e

�↵t
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2
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o

+
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µ
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2
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x

n

e
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1
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�J
1

0

e

�↵t(�Kon

{X
t,1

(R
1

)=0<X
t,1

(R
2

)} � c)dt
�

�

�

T > 1
o

�

x

2

µ

↵+ x

2

µ+ �

h

K

o↵

�

c

↵

+
c

↵

E⇤
x

n

e

�↵(J
T

�J
1

)

�

�

�

T > 1
oi

> 0.

This concludes the proof of (1).
We will prove (2). Assume any condition (2,i) or (2,ii), say (2,ii). The other

case is proved analogously. Then there exists ↵
0

, such that the corresponding
condition (1,ii) is satisfied for ↵ < ↵

0

. Note that ↵ 7! ni(↵) is continuous
increasing, and ni(↵) # ni(0), ↵ # 0, i = 0, 1. Let �

↵ denote an ↵-discount
optimal policy.

First of all, for x 2 B, �↵x = idle, ↵  ↵

0

. There exists ↵
1

 ↵

0

, such that
bn

0

(↵)c = bn

0

(0)c. For ↵  ↵

1

we have that

S

⇤
\ {�(n

0

(0)) [B} = S

⇤
\ {�(n

0

(↵)) [B}. (4.29)

Hence �

↵
x = off, for x 2 S

⇤
\ {�(n

0

(0)) [B}, ↵  ↵

1

.
Theorem 4.3.3 implies for any sequence ↵m ! 0 that any limit point of

{�

↵
m

}m is average optimal. Thus there exists an average optimal policy that
idles in B and switches o↵ in S

⇤
\{�(n

0

(0))[B}. In fact, since in the average
cost case it is su�cient to solve a total cost problem on�(n) (cf. Lemma 4.4.1),
we could have repeated all the arguments leading to assertion (1), for ↵ = 0.
We will finally show (3), that there exists a strong Blackwell optimal policy.

From the proof of (2) Eq. (4.29), idle is optimal in B, and off in S

⇤
\

{�(n
0

(0)) [ B}, for all ↵  ↵

1

. So only within �(n
0

(0) the optimal policy
may change as a function of ↵.
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By virtue of Lemma 4.4.1, for determining the decisions under an ↵-discount
optimal policy, or an average cost optimal policy on the set of states �(n

0

(0)),
it is su�cient solve the problem as a total ↵-discounted or total expected cost
problem, where we take (0, bn

0

(0)c) as a zero cost absorbing state. The total
expected cost problem is equivalent to a unichain average cost problem, with
absorbing state (0, bn

0

(0)c) that is reached with probability 1 in finite expected
time under any policy. This is a finite state and action, continuous time MDP.
Since it is uniformisable, one solve the equivalent uniformised, discrete time
MDP. The required conditions from [26, Chapter 3, Corollary 1] are met and
so there exists a strong Blackwell optimal policy on �(n

0

(0)).

Lemma 4.4.4. Algorithm 3 converges in a finite number of steps, and com-
putes an ↵-discount optimal policy, for any ↵ > 0. It computes an average
optimal policy by taking ↵ = 0 in the algorithm.

Proof. The algorithm has to perform at most n

0

(↵) iterations, and thus ter-
minates in finitely many steps.

On �(1), it is easily checked that the algorithm computes v

↵(1), the ↵-
discount value function, ↵ > 0, for the 1-perturbed problem. It generates an
optimal policy on �(1) \ {(0, 1)}.

Consider iteration n, concerning the states of �(n). Assume that iteration
n� 1 has yielded the values v↵x (n� 1) for x 2 �(n) \ {(0, n� 1)}, and an SC

optimal policy.
As in the proof of Lemma 4.4.1 we may deduce for x 2 �(n�1)\{(0, n�1)}

that

v

↵
x (n) = v

↵
x (n� 1) +

n�2

Y

l=x
2

tk · v

↵
(0,n�1)

(n). (4.30)

However, v↵
(0,n�1)

(n) has to be computed. Under the conditions on c, Ko↵

and K

on, idling is optimal in (0, n�1) for both the restricted and unrestricted
problems, by Theorem 4.2.2. Use the optimality equation (4.13) for the n-
restricted problem for state (0, n � 1), where we plug in the decision idle.
Then, the only possible transition is to state (1, n� 2), since the transition to
(0, n) gives no contribution to the cost. Using Eq. (4.30) for x = (1, n � 2),
we obtain an equation for state (0, n � 1) with one unknown, the solution of
which is given by the algorithm, step 1.

This yields the new values v↵x (n) explicitly for x 2 �(n� 1).
Lemma 4.2.3 allows to deduce that v↵(n� 1) is and Super and SuperC on

�(n� 1), as is the yet unknown v

↵(n) on �(n). This implies that there is an
SC ↵-discounted optimal extension of the SC optimal policy on �(n � 1) to
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�(n). For the specified values of the SC optimal policy on �(n � 1) in the
algorithm, this implies that the optimal decision in the specified states of A(n)
is known. Thus, it reduces the optimisation problem. The choice of how to
resolve ties is then somewhat arbitrary, but systematic.

Since v↵(n) is the unique solution of the optimality equation (4.13) on �(n),
we can then solve the missing values v↵x (n), x 2 A(n), from Eq. (4.13).
In the average cost case, the arguments are analogous. In iteration n the

minimum total expected cost wx(n), x 2 �(n) \ {(0, n)}, till absorption in
(0, n) is computed. However, it is denoted by v

0(n) in the algorithm. Note
that

Qn�2

l=x
2

tk = 1, if ↵ = 0. Thus Eq. (4.30) reduces to

v

0

x(n) = wx(n) = wx(n� 1) + w

(0,n�1)

(n) = v

0

x(n� 1) + v

0

(0,n�1)

(n),

which is the basis for extending the solution on �(n � 1) to a solution on
�(n) in the algorithm. Clearly, the validity of this equation can be deduced
by similar arguments that have been used in the proof of Lemma 4.4.1.

4.5 Propagation results

Recall the value iteration scheme for x 2 S, 0 < ↵̄ < 1,

v̄

↵̄,0
x (N) = 0,

and then iterating for n = 0, 1, . . .

v̄

↵̄,n+1

x (N)=x

1

c̄+(1�↵̄)
⇣

�

�

{x
1

>0}v̄
↵̄,n
x�e

1

+e
2

(N)+ {x
1

=0}(v̄
↵̄,n
x+e

2

(N)+K

on)
 

+{x

2

^N}µmin{v̄↵̄,nx+e
1

�e
2

(N), v̄↵̄,nx�e
2

(N) +K

o↵

}+ (N � x

2

)+µv̄↵̄,nx (N)
⌘

.

Now we introduce the following five operators

TAfx := {x
1

>0}fx�e
1

+e
2

+ {x
1

=0}(fx+e
2

+K

on);

T

N
I/Ofx :=min{

x

2

N

, 1}min{fx+e
1

�e
2

, fx�e
2

+K

o↵

}+ (1�
x

2

N

)+fx;

TCfx :=x

1

c̄+ f(x),

for x 2 S. Further,

T

N
UNIF (f

1

, f

2) :=�f

1 +Nµf

2;

T

↵̄
DISC(f) :=(1� ↵̄)f.
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This implies that

v̄

↵̄,n+1

x (N) = TC(T
↵̄
DISC(T

N
UNIF (TA, T

N
I/O)))v̄

↵̄,n
x (N). (4.31)

The following short-hand notation is convenient

Super[fx] := fx+e
1

+e
2

� fx+e
1

� fx+e
2

+ fx;

SuperC [fx] := fx+2e
1

� fx+e
1

� fx+e
1

+e
2

+ fx+e
2

;

DiffKon [fx] := fx+e
1

� fx +K

on;

and

Super := {f : Super[fx] � 0, for x
1

, x

2

� 0} (supermodularity);

SuperC := {f : SuperC [fx] � 0, for x
1

, x

2

� 0} (superconvexity);

DiffKon := {f : DiffKon [fx] � 0, for x
1

, x

2

� 0} (bounded di↵erence).

The following lemma gives all the propagation results. Clearly, there is
some overlap with [1]. Propagations 1 and 2 appear in an identical form.
Propagations 4 and 5 are similar as in [1], except for the extra term K

o↵ .
Propagations 3 and 6 are also present there, but we treat them in a more
direct manner. Propagations 7-15 are absent in [1]. For completeness we
provide all proofs in detail here.

Lemma 4.5.1. The following fifteen propagations hold

TA :Super
1

!Super,SuperC \DiffKon

2

!SuperC ,DiffKon

3

!DiffKon ;

T

N
I/O :Super \ SuperC

4,5
! Super \ SuperC , DiffKon

6

! DiffKon ;

T

N
UNIF :Super

7

! Super, SuperC

8

! SuperC , DiffKon

9

! DiffKon ;

T

↵̄
DISC :Super

10

! Super, SuperC

11

! SuperC , DiffKon

12

! DiffKon ;

TC :Super
13

! Super, SuperC

14

! SuperC , DiffKon

15

! DiffKon

.

Proof. Let x 2 S.
Proof of 1. Suppose that f 2 Super, then

TAfx+e
1

+e
2

� TAfx+e
1

� TAfx+e
2

+ TAfx

= {x
1

>0}Super[fx�e
1

+e
2

]

� 0.
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Proof of 2. Suppose that f 2 SuperC \DiffKon , then

TAfx+2e
1

� TAfx+e
1

� TAfx+e
1

+e
2

+ TAfx+e
2

= {x
1

>0}SuperC [fx�e
1

+e
2

] + {x
1

=0}DiffKon [fx+e
2

]

� 0.

Proof of 3. Suppose that f 2 DiffKon , then

TAfx+e
1

� TAfx +K

on

= {x
1

>0}DiffKon [fx�e
1

+e
2

]

� 0.

Proof of 4. Suppose f 2 Super \ SuperC . Then for x
2

< N

N

�

T

N
I/Ofx+e

1

+e
2

� T

N
I/Ofx+e

1

� T

N
I/Ofx+e

2

+ T

N
I/Ofx

�

=(x
2

+ 1)min{fx+2e
1

, fx+e
1

+K

o↵

}+ (N � x

2

� 1)fx+e
1

+e
2

� x

2

min{fx+2e
1

�e
2

, fx+e
1

�e
2

+K

o↵

}� (N � x

2

)fx+e
1

� (x
2

+ 1)min{fx+e
1

, fx +K

o↵

}� (N � x

2

� 1)fx+e
2

+ x

2

min{fx+e
1

�e
2

, fx�e
2

+K

o↵

}+ (N � x

2

)fx. (4.32)

Case (I): ⇡x+e
1

+e
2

= ⇡x = off.
Then by Eq. (4.32)

N

�

T

N
I/Ofx+e

1

+e
2

� T

N
I/Ofx+e

1

� T

N
I/Ofx+e

2

+ T

N
I/Ofx

�

� x

2

Super[fx�e
2

] + fx+e
1

� fx

+ (N � x

2

� 1)Super[fx]� fx+e
1

+ fx

� 0.

Case (II): ⇡x+e
1

+e
2

= ⇡x = idle.
Then by Eq. (4.32)

N

�

T

N
I/Ofx+e

1

+e
2

� T

N
I/Ofx+e

1

� T

N
I/Ofx+e

2

+ T

N
I/Ofx

�

� x

2

Super[fx+e
1

�e
2

] + fx+e
2

� fx+e
1

+ (N � x

2

� 1)Super[fx]� fx+e
1

+ fx

� fx+2e
1

� 2fx+e
1

+ fx

� 0,
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where for the last inequality we have used convexity.

Case (III) ⇡x+e
1

+e
2

= off, ⇡x = idle.
Then by Eq. (4.32)

N

�

T

N
I/Ofx+e

1

+e
2

� T

N
I/Ofx+e

1

� T

N
I/Ofx+e

2
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I/Ofx

�

� x
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[fx+e
1

� fx+e
1

�e
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� fx+e
1

+ fx+e
1

�e
2

] + fx+e
1

� fx

+ (N � x

2

� 1)Super[fx]� fx+e
1

+ fx

� 0.

There is no fourth case due to f 2 Super \SuperC . If x
2

� N , then the oper-
ator T N

I/O reduces to T

N
I/Ofx = min{fx+e

1

�e
2

, fx�e
2

+K

o↵

}. The subsequent
propagation follows as a simpler case of the above one.

Proof of 5. Suppose that f 2 Super \ SuperC . Then for x
2

< N

N
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T

N
I/Ofx+2e

1

� T

N
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� T

N
I/Ofx+e
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. (4.33)

Case (I) ⇡x+2e
1

= ⇡x+e
2

= off. Then by Eq. (4.33)
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�

T

N
I/Ofx+2e
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� T

N
I/Ofx+e
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� T

N
I/Ofx+e
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� 2fx+e
1
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� 0,

where convexity is used for the last inequality.

Case (II) ⇡x+2e
1

= ⇡x+e
2

= idle.
Then by Eq. (4.33)
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T

N
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Case (III) ⇡x+2e
1

= off, ⇡x+e
2

= idle. Then by Eq. (4.33)

N

�

T

N
I/Ofx+2e
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N
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N
I/Ofx+e
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�
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� 1)SuperC [fx]� fx+2e
1
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�0.

Again, the propagation for x
2

� N is straightforward.

Proof of 6. Suppose that f 2 DiffKon , then

T

N
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1
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N
I/Ofx +K
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Case (I) ⇡x+e
1

= off.
By Eq. (4.34)

T

N
I/Ofx+e

1

� T

N
I/Ofx +K

on

� min{
x

2

N

, 1}DiffKon [fx�e
2

] + (1�
x

2

N

)+DiffKon [fx]

� 0.

Case (II) ⇡x+e
1

= idle.
By Eq. (4.34)
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N
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� min{
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�e
2

] + (1�
x

2

N

)+DiffKon [fx]
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Proof of 7. Suppose that f1

, f

2

2 Super, then

T

N
UNIF (f

1

, f

2)x+e
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+e
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� T

N
UNIF (f
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2)x+e
1

� T

N
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, f
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2)x
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x ]

� 0.
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Proof of 8. Suppose that f1

, f

2

2 SuperC , then

T

N
UNIF (f

1

, f
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UNIF (f
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� 0.

Proof of 9. Suppose that f1, f2

2 DiffKon . Notice that �+Nµ = 1, so
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Proof of 10. Suppose that f 2 Super, then
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DISCfx+e
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� T
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Proof of 11. Suppose that f 2 SuperC , then
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Proof of 12. Suppose that f 2 DiffKon , then
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Proof of 13. Suppose that f 2 Super, then
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c̄+ Super[fx]
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Proof of 14. Suppose that f 2 SuperC , then

TCfx+2e
1

� TCfx+e
1

� TCfx+e
1

+e
2

+ TCfx+e
2

= (x
1

+ 2)c̄� (x
1

+ 1)c̄� (x
1

+ 1)c̄+ x

1

c̄+ SuperC [fx]

� 0.

Proof of 15. Suppose that f 2 DiffKon , then

TCfx+e
1

� TCfx +K

on

= (x
1

+ 1)c̄� x

1

c̄+DiffKon [fx]

� 0.

Lemma 4.5.1 allows to finish the proof of Theorem 4.3.2.

Proof of Theorem 4.3.2. Put v̄↵̄,0x (N) ⌘ 0. Then v̄

↵̄,0
x (N) 2 Super \SuperC \

DiffKon . VI is equivalent to the map given in Eq. (4.31) for n � 0. Lemma 4.5.1
implies that

TC(T
↵̄
DISC(T

N
UNIF (TA, T

N
I/O))) : Super \ SuperC \DiffKon

! Super \ SuperC \DiffKon

.

In other words

v̄

↵̄,1
x (N)=TC(T

↵̄
DISC(T

N
UNIF (TA, T

N
I/O)))v̄

↵̄,0
x (N)2Super \ SuperC \DiffKon

.

By induction we have that v̄

↵̄,n
x (N) 2 Super \ SuperC \ DiffKon for all n �

0.

4.6 Probability bounds

Consider the M/M/1-queue {Xt,2}t, where we use the notation of the previous
sections. Recall that the arrival rate is � and the departure rate µn if n jobs
are present. We denote the successive jump times by J

0

= 0, J
1

, . . ., and
assume that the trajectories are right-continuous. Recall the definition of a(n)
in Eq. (4.22) as the probability that state n + 1 is reached before 0, given a
start in state n. Then,

a(0) = 0, and a(1) =
�

�+ µ

.

Denote ⇢ = �/µ.
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Lemma 4.6.1. It holds that

a(n) 
(1 + ⇢)2e⇢

n⇢

.

Proof. To estimate a(n), we will use a recursion on f

n(i), the probability that
there are n jobs in the system before the system is empty, given a start in
state i. Denote �f

n(i) := f

n(i+ 1)� f

n(i). Then f

n(0) = 0, fn(n) = 1 and
further we have

f

n(i) =
�

�+ iµ

f

n(i+ 1) +
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�+ iµ

f

n(i� 1).

This implies
� ·�f
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and thus,
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k! · fn(1).

Now we use that fn(n) = 1. This yields,

1 = f
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n�1

X
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�k
k! · fn(1).

Thus,
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,

so that
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k!

Pn�1
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�k
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.

By definition, we have that a(n) = f

n+1(n), hence

a(n) =

Pn�1

k=0

⇢

�k
k!

Pn
k=0

⇢

�k
k!
, n � 1. (4.35)
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It follows trivially that a(n) meets the recursion

a(n) =
�

nµ(1� a(n� 1)) + �

.

This easily implies that limn!1 a(n) = 0. Moreover, the recursion allows to
conclude that a(n) > a(n�1) () a(n�1) < {1^ ⇢

n}, and that a(n) < a(n�1)
implies a(n+ 1) < a(n). Furthermore, using Eq. (4.35), it can be shown that
⇢ 2 [n, n+ 1] implies that a(n+ 2) < a(n+ 1).

This leads to the following conclusion:

• a(0) < a(1)  · · ·  a(b⇢c);

• a(d⇢e) > a((d⇢e+ 1) > a(d⇢e+ 2) > · · · .

Thus,
a(b⇢c) ^ a(d⇢e) � a(n), n = 0, 1, . . . .

The recursion immediately implies for n = 0, 1, . . ., that

a(n)  n

�1

⇢

(1� a(b⇢c)) _ (1� a(d⇢e))
.

We can bound the denominator as follows. First,
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Similarly,

1� a(d⇢e) �
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,

which gives the smaller lower bound. This implies that

a(n) n
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�
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1 + ⇢

⇢

e

⇢
^ (b⇢c+ 1)e⇢

 



(1 + ⇢)2

n⇢

e

⇢
.
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5 Competing queues with
abandonments

This chapter is based on Bhulai et al. [10], in preparation.

5.1 Introduction

In this chapter we consider a server assignment problem. There are K classes
of customers, each customer class i has holding cost ci, 1  i  K. There is
a single server that can serve class i with rate µi. Arrivals occur according
to independent Poisson streams. The question we address in this chapter is:
what service policy minimises the expected average cost?

In the K-competing queues model without abandonments due to impatience
it is well-known that the cµ-rule is optimal. The cµ-rule gives full priority
to the queue with the highest index ciµi, the queue that gives the highest
cost reduction per unit time. This result was shown to be optimal in 1985
simultaneously by Baras et al. [8] and by Buyukkoc et al. [22].

Recently there has been revived interest in the K-competing queues model,
with the additional feature of customer abandonments due to impatience. Say
that customers of type i leave the system with rate �i. In this case the cµ-rule is
not always optimal. When we model this problem as a continuous time Markov
decision process, the impatience departures induce the transition rates to be
unbounded. Hence, uniformisation is not possible and the standard (discrete
time) techniques are not available. In the literature several approaches have
been tried to deal with this di�culty. We may categorise them in three classes.

1. Some literature (see [5], [7] and [46]) studies a relaxation or approximate
version of the original problem. The obtained policies may serve as a
heuristic.

2. Another method is to use model specific coupling techniques to obtain
an optimal policy. Typically, these papers (see [60] and [27]) have limita-
tions to special cases as the coupling gets more tedious in a more general
setting.
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3. The third approach is to apply a truncation to make the process uni-
formisable. Then discrete time techniques are used to derive properties
implying the optimal policy to have the desired structure (see [27], [11]
and Chapters 3 and 4). This is the solution method that we will follow
within this chapter.

The first approach is most prominent in the literature. Atar et al. in [5]
consider a K-competing queues problem with many servers. In their paper the
cµ/�-rule is introduced. This rule gives priority to the queue with the highest
index ciµi/�i. They show that in the overload regime as the number of servers
tends to infinity, it is asymptotically optimal to follow the cµ/�-rule.

Ayesta et al. [7] studied the problem as well. They derive an index policy
similar to the cµ/�-rule by analytically solving the case with one or two cus-
tomers present and no arrivals.

Larranaga et al. [46] have studied a fluid approximation of the multi-server
variant of the competing queues problem. In this fluid approximation optim-
ality of the cµ/�-rule in the overload regime is shown and it is shown that for
K = 2 a switching curve policy is optimal in the underload regime.

Other literature does not focus on heuristics, but tries to find a subset of
the input parameters for which an index policy can be proven to be optimal.
Salch et al. [60] studied the competing queues system with a restriction to a
maximum of K arrivals. With the use of a coupling and interchange argument
they provide a set of three conditions that implies optimality of a priority
policy with respect to the total cost criterion. The three conditions of [60]
form a subset of the parameter set that we derive for optimality of an index
policy.

The paper of Down et al. [27] considers a 2-competing queues system, where
the two classes have equal service rates. A coupling argument is employed to
show that if two conditions hold, then an index policy is optimal for a reward
variant of the model.

The approach that we will carry out is the following. First, we model the
problem as a continuous time Markov decision process. To make the MDP
uniformisable a truncation is necessary, after uniformisation the truncated
processes can be analysed by value iteration. To show that the results for the
truncated processes converge to the original model a limit theorem is needed.
This theorem is only available for the discounted cost criterion, see Chapter 3.
Therefore we will first show that the properties hold for the discounted cost
criterion. Then via the vanishing discount approach the results are transferred
to the average cost criterion (see Chapter 2).
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5.2 Modelling and main result

As mentioned before, Down et al. [27] use a similar approach for the 2-
competing queues system with equal service rates. Convergence of the trun-
cated models to the original one relies on specific properties of the model and
the special truncation, therefore they do not need to consider the discoun-
ted criterion. Due to the involved nature of their truncation, it seems unlikely
that [27] can be extended to more dimensions or to heterogeneous service rates.
Down et al. find two conditions implying optimality of an index policy. The
results of the present chapter can be viewed as an extension of [27].

The optimality equation (CDOE) is a powerful tool for deriving optimal
policies under the discounted cost criterion. If the value function has certain
structural properties the CDOE implies optimality of an index policy. How-
ever, under naive truncations the structural properties are destroyed due to
boundary e↵ects. In [27] this problem has been solved by incorporating a
specific truncation. In this chapter we use the truncation technique, called
smoothed rate truncation (SRT). This technique has been introduced by Bhu-
lai et al. [11] and can be utilised to make a process uniformisable, while keeping
the structural properties intact. This method allow to show optimality of the
cµ/�-rule for the smoothed rate truncated problem. Applying the theory from
Chapter 3 yields that the same policy is optimal for the unbounded problem.
The theory from Chapter 2 can then be invoked to deduce that the cµ/�-rule
is optimal for the average cost criterion.

The chapter is organised as follows. In Section 5.2 we give a complete
description of the model and we present the main results: if the parameters
satisfy three easy conditions, then an index policy is optimal. We then identify
the structural properties of the value function that imply optimality of the
index policy. Section 5.3 contains the core of our analysis. First, it describes
the smoothed rate truncation in more detail. Then, the structural properties of
the value function are derived. In Section 5.4 we prove the main theorem. This
can be done by invoking the limit theorems of Chapters 2 and 3. Section 5.5
presents some numerical examples that show that none of the three conditions
is redundant. In Section 5.6 we provide the proofs of the propositions in
Section 5.3.

5.2 Modelling and main result

5.2.1 Problem formulation

We consider K stations that are served by a single server. We will refer to
customers in station i as class i customers. Customers arrive to the stations
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according to independent Poisson processes with rates �i > 0 for i = 1, . . . ,K,
respectively. The service requirement of class i customers is exponentially
distributed with parameter µi > 0, i = 1, . . . ,K. Customers have limited pa-
tience: they are willing to wait an exponential time with parameter �i > 0 for
class i. We allow abandonment during service as well, resulting in an abandon-
ment rate in station i of size �ixi if there are xi customers present at station
i. Service requirements and customer impatience are mutually independent
across di↵erent classes and customers.
Class i customers carry holding costs ci � 0 per unit time, i = 1, . . . ,K. The

service regime is pre-emptive. The goal is to find the policy that minimises
the average expected cost. See Section 5.2.2 for a discussion on alternative
modelling choices.

We will solve this problem in the framework of Markov decision theory.
To this end let the state space be S = NK

0

. Let the action space be A =
{1, . . . ,K}, where action a 2 {1, . . . ,K} corresponds to assigning the server
to station i if a = i. This means we only allow idling if one or more queues
are empty.
We are looking for a policy that minimises the expected average cost. It

can be shown that there always exists an optimal policy within the class of
stationary deterministic policies. Let ⇡ 2 ⇧ = {⇡ : S ! A} be a stationary
deterministic policy, then the rate matrix Q(⇡) and cost rate c(⇡) are given
by

qxy(⇡) =

8

<

:

�i if y = x+ ei, i = 1, . . . ,K,

xi�i + µi1{⇡(x)=i} if y = x� ei, xi > 0, i = 1, . . . ,K,

�

P

z 6=x qxz(⇡) if y = x,

cx(⇡) =
X

i

cixi.

The problem of interest is to determine the policy ⇡ 2 ⇧ that minimises the
expected average cost g(⇡), if it exists. The quantity g(⇡) is defined by

g(⇡) = lim sup
T!1

1

T

Z T

t=0

⇡
⇥

cX
t

⇤

dt.

Here Xt denotes the number of customers in the system at time t, and ⇡

the expectation operator, if policy ⇡ is used.
It is not to be expected that an easy expression exists that gives a full

description of the optimal policy. Therefore, in this chapter we will restrict to
deduce su�cient conditions for optimality of an index policy.
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5.2 Modelling and main result

5.2.2 Main result

The main result of this chapter is Theorem 5.2.1, it provides su�cient condi-
tions for optimality of the smallest index policy.

Definition 5.2.1. The smallest index policy assigns the server to the non-
empty station with the smallest index. The policy only idles if no customers
are present.

Theorem 5.2.1. Suppose the stations can be ordered such that, for 1  i < K,

the following three conditions hold

1. ci � ci+1

(c &)
2. ciµi � ci+1

µi+1

(cµ &)
3. ciµi/�i � ci+1

µi+1

/�i+1

(cµ/� &).
(5.1)

Then the smallest index policy is average optimal.

The proof is postponed until Section 5.4. In Section 5.5 we give examples
showing that if any of the three conditions of Eq. (5.1) is omitted, the smallest
index policy can fail to be optimal.
The derivation of Theorem 5.2.1 naturally gives the following extra result

for ↵-discount optimal policies. We say that a policy is ↵-discount optimal, if
it is optimal with respect to the total expected discounted cost criterion with
discount factor ↵ > 0.

Theorem 5.2.2. Let discount factor ↵ > 0. Suppose the stations are ordered
such that, for 1  i  j  K, the three conditions of Eq. (5.1) hold. Then, the
smallest index policy is ↵-discount optimal.

Alternative modelling choices. In our model the cost function is a holding
cost

P

cixi per unit time when the system is in state x. In many applications
a penalty (say Pi for class i) is charged if a customer abandons the system
due to impatience. Then the cost per unit time is given by

P

i Pi�ixi. Sub-
stitution of ci = Pi�i, i = 1, . . . ,K implies equivalence of these cost structures.

We have modelled the system such, that customers can leave the system
while being in service. In some cases it is more realistic that they are not
allowed to abandon after service has started. However, if the abandonment
rates are smaller than the service rates, i.e. �i < µi for all i, then our analysis
is still valid after an appropriate parameter change. That is, we consider the
system with service rates µ̂i = µi � �i > 0. An abandonment or service
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5 Competing queues with abandonments

completion of the customer in service in the revised model corresponds to a
service completion in the original one.

If, for one or more classes, the abandonment rates are greater than or equal
to the associated service rates, then this substitution is clearly not possible.
However, serving that customer class delays the process of emptying the sys-
tem. Thus, it follows directly that in this case it is never optimal to serve
these classes of customers. Hence, when there are only customers of that type
present, then the server should idle in order to minimise the expected average
cost. Therefore, the optimal policy never serves class i if µi  �i. For the
remaining customer classes with µi > �i, the smallest index policy is optimal
whenever these classes satisfy the ordering c &, cµ̂ &, cµ̂/� &.

Finally, it is possible to allow idling at all times. In this case, it can easily be
shown that it cannot be optimal to have unforced idling. Therefore we ignore
this option for the sake of notational convenience.

5.2.3 Structural properties

Let v↵⇡ be the discounted value function under policy ⇡, so that v↵⇡ (x) repres-
ents the total expected discounted cost starting at x 2 S. I.e. for x 2 S

v

↵
⇡ (x) =

Z 1

t=0

e

�↵t ⇡
x

⇥

cX
t

⇤

dt.

Further, let v↵ be the optimal discounted value function, defined as

v

↵(x) = min
⇡2⇧

v

↵
⇡ (x).

We refer to v

↵, simply as value function hereafter. Crucial in establishing
optimality of the smallest index policy are certain properties of the value func-
tion. If v↵ is non-decreasing (I ) and weighted Upstream Increasing (wUI ),
then the smallest index policy is optimal by virtue of the discounted cost op-
timality equation. Therefore, we introduce the following structural properties.

Definition 5.2.2. A function f : S ! R is called weighted Upstream Increas-
ing (wUI ) if f 2 wUI , with wUI defined as

wUI = {f : S ! R |µi(f(x+ ei + ei+1

)� f(x+ ei+1

))

� µi+1

(f(x+ ei + ei+1

)� f(x+ ei)) � 0, for all x 2 S, 1  i < K}.

A function f : S ! R is called non-decreasing (I ) if f 2 I , with I defined
as

I = {f : S ! R | f(x+ ei)� f(x) � 0, for all x 2 S, 1  i  K}.
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5.3 Discrete time discounted cost analysis

The following lemma makes the connection between the structural properties
and optimality of the smallest index policy.

Lemma 5.2.3. Let the discount factor ↵ > 0. Suppose v

↵
2 wUI \ I , then

the smallest index policy is ↵-discount optimal.

Proof. Let v

↵
2 wUI \ I , let 1  j

1

 j

2

 K. Suppose x is such that
xj

1

, xj
2

> 0, then v

↵
2 wUI implies

µj
1

[v↵(x� ej
1

)� v

↵(x)]  µj
2

[v↵(x� ej
2

)� v

↵(x)].

Now it is straightforward to check that this model satisfies the conditions of
Theorem 3.4.2. For example, a drift function of the type V (x) = e

✏
P

i

x
i works

well. This implies that the discount optimal policy attains the minimum in
the Continuous Discount Optimality Equation (CDOE), that is

↵v

↵(x) =
K
X

i=1

cixi +
K
X

i=1

�iv
↵(x+ ei) +

K
X

i=1

xi�iv
↵(x� ei) (5.2)

+ min
1jK

{µj [v
↵((x� ej)

+)� v

↵(x)]}�
K
X

i=1

(�i + xi�i)v
↵(x).

The CDOE yields that if class j
1

and j

2

customers are both present, then class
j

1

deserves full priority over class j
2

.
Further, since v

↵ is non-decreasing we have for 1  j  K, and x with
xj > 0 that

µjv
↵(x� ej)� µjv

↵(x)  0,

with 0 corresponding to the cost if an empty queue is served. Hence idling
is never optimal; it is optimal to serve a customer whenever possible. We
conclude that the smallest index policy is optimal.

5.3 Discrete time discounted cost analysis

5.3.1 Smoothed rate truncation

The abandonment rates increase linearly in the number of waiting custom-
ers, hence the transition rates are unbounded as a function of state. Thus,
the system is not uniformisable. To make discrete time theory available, we
approximate the Markov decision process with a sequence of (essentially) fi-
nite state state MDPs. Unfortunately, in standard state space truncations the
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5 Competing queues with abandonments

structural properties of interest are lost; due to boundary e↵ects the truncated
MDP does not posses the desired structure.

To this end, the smoothed rate truncation (SRT) has been introduced in
Bhulai et al. [11]. In that paper, smoothed rate truncation is applied to a
Markov cost process and properties of the value function are proven.

The distinguishing feature of smoothed rate truncation is that the transition
rates are decreased in all states, also close to the origin. This makes the jump
rates highly state dependent and complicates the analysis, but it is the key
feature of SRT that ensures that the desired properties are preserved.

The idea of SRT is as follows. Every transition that moves the system into
a higher state in one or more dimensions is linearly decreased as a function
of these coordinates. As we get closer to the boundary of the finite set, the
rates are smoothly truncated to 0. In this way the state space is naturally
restricted to a finite set of essential states, i.e. a finite number of recurrent
states. On the finite state space, the transition rates are bounded. Outside the
finite set the rates can be arbitrary chosen, since these states are inessential. In
particular they can be chosen such that the jump rates are uniformly bounded.

In our model the truncation parameter N = (N
1

, . . . , NK) 2 N = ( [1)K

defines the size of the state space. The set of essential states is given by
S

N = {x 2 S|xi  Ni, i = 1, . . . ,K}. SRT prescribes a truncation of all
transitions that move the system into a larger state. In this model only arrivals
move the system to a higher state, hence the arrival rates �i are replaced by
new rates �N

i (x) in state x, for all i. For Ni < 1, the smoothed arrival rates
are given by

�

N
i (x) := (1�

xi

Ni
)+�i.

The result is a uniformisable MDP for each finite N 2 N . Let N = 1

K

correspond to the original model. This leads to a collection of parametrised
Markov decision processes {X

N
}N2N . For ⇡ 2 ⇧, N 2

K , the transition
rates are given by

q

N
xy(⇡) =

8

<

:

�

N
i (x) if y = x+ ei, i = 1, . . . ,K,

min{xi, Ni}�i + µi1{⇡(x)=i} if y = x� ei, xi > 0, i = 1, . . . ,K,

�

P

x 6=z q
N
xz(⇡) else.

Notice that outside S

N it is possible to choose the rates as we like, for these
state are inessential. In particular, we can choose the new abandonment rates
of class i to be bounded by Ni�i. However, it is not necessary to consider
these states for determining the structural properties on S

N .
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5.3 Discrete time discounted cost analysis

5.3.2 Dynamic programming

Consider the following subset of the parameter space. Let N (�) be given by

N (�) =
n

N 2 N

�

�

�

�i

Ni


�i+1

Ni+1

for 1  i < K

o

.

Throughout the rest of this section we fix the truncation parameter N 2 N

and discount factor ↵ > 0. Let v

↵,N be N -truncated ↵-discounted value
function. Our goal is to show that v↵,N 2 wUI\I for all ↵ > 0 and N 2 N (�).
Use the short-hand notation for the transition rates

�̄ :=
K
X

i=1

�i, �N :=
K
X

i=1

�iNi, µ := max
1iK

µi.

Without loss of generality we assume �̄ + �N + µ = 1. Then we can apply
uniformisation. The discrete time MDP is then defined by

P

N (⇡) = I +Q

N (⇡), c̄(⇡) =
c(⇡)

↵+ 1
, ↵̄ =

↵

↵+ 1
, ⇡ 2 ⇧.

Let v̄↵̄,N denote the expected discrete time discount cost under the discrete
time discount factor 0 < ↵̄ < 1. Then v̄

↵̄,N = v

↵,N . We can approximate v̄↵̄,N

by the value iteration algorithm. Let v↵̄,Nn : S ! R for n � 0 be given by the
following iteration scheme. Put v↵̄,N

0

⌘ 0, and

v

↵̄,N
n+1

(x) =
K
X

i=1

c̄ixi + (1� ↵̄)
n

K
X

i=1

(1�
xi

Ni
)+�iv

↵̄,N
n (x+ ei)

+
K
X

i=1

min{xi, Ni}�iv
↵̄,N
n (x� ei)

+ min
0jK

�

µj [v
↵̄,N
n ((x� ej)

+)� v

↵̄,N
n (x)]

 

+
�

K
X

i=1

�

min{
xi

Ni
, 1}�i + (Ni � xi)

+

�i

�

+ µ

�

v

↵̄,N
n (x)

o

=(1� ↵̄)
⇣

K
X

i=1

cixi +
n

K
X

i=1

(1�
xi

Ni
)+�iv

↵̄,N
n (x+ ei)

+
K
X

i=1

min{xi, Ni}�iv
↵̄,N
n (x� ei)
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5 Competing queues with abandonments

+ min
0jK

�

µj [v
↵̄,N
n ((x� ej)

+)� v

↵̄,N
n (x)]

 

+
�

K
X

i=1

�

min{
xi

Ni
, 1}�i + (Ni � xi)

+

�i

�

+ µ

�

v

↵̄,N
n (x)

o⌘

.

We will prove by induction that v↵̄,Nn 2 wUI \ I on S

N , for all n � 0. To
employ the induction argument we need three additional structural proper-
ties: convexity, supermodularity and bounded increasingness. We will specify
these hereafter. The induction hypothesis v↵̄,N

0

⌘ 0 trivially satisfies all these
properties. For the induction step we are not going to look at the iteration in
its entirety, but we will use event based dynamic programming (EBDP). This
method uses event operators – representing arrivals, departures or costs – as
building blocks to construct the iteration step of the value iteration algorithm.

Definition 5.3.1. Let f : S ! R, then define

1. a) The total smoothed arrivals operator

T

N
SAf := �̄

�1

K
X

i=1

�iT
N
SA(i)f,

b) with the smoothed arrivals operator given by

T

N
SA(i)f(x) :=

⇢

(1� x
i

N
i

)f(x+ ei) +
x
i

N
i

f(x), xi  Ni,

f(x), else.

2. a) The total increasing departures operator

T

N
IDf := �

�1

N

K
X

i=1

�iNiT
N
ID(i)f,

b) with the increasing departures operator

T

N
ID(i)f(x) :=

⇢

x
i

N
i

f(x� ei) + (1� x
i

N
i

)f(x), xi  Ni,

f(x� ei), else.

3. The cost operator

TCf(x) :=
K
X

i=1

cixi + f(x).
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5.3 Discrete time discounted cost analysis

4. The cost + increasing departures operator

T

N
CID := �

�1

N TC(�NT

N
ID).

5. The movable server operator

TMSf(x) := min
1jK

n

µj

µ

f((x� ej)
+) + (1�

µj

µ

)f(x)
o

.

6. For f
1

, f

2

, f

3

: S ! R, the uniformisation operator

TUNIF (f1, f2, f3) := �̄f

1

+ �Nf

2

+ µf

3

.

7. The discount operator
T

↵̄
DISCf := (1� ↵̄)f.

Now v

↵̄,N
n+1

can be constructed as follows

T

↵̄
DISC(TUNIF (T

N
SAv

↵̄,N
n , T

N
CIDv

↵̄,N
n , TMSv

↵̄,N
n )) = v

↵̄,N
n+1

.

It is su�cient that v↵̄,Nn has the desired structural properties on the essential
states, the finite set SN . Therefore define the following collections of functions
that possess a certain property restricted to S

N .

Definition 5.3.2. (Properties on S

N )

1. Weighted upstream increasing functions on S

N

wUI

N = {f : S ! R |µi(f(x+ ei + ei+1

)� f(x+ ei+1

))

�µi+1

(f(x+ ei + ei+1

)� f(x+ ei)) � 0,

for all x, x+ ei + ei+1

2 S

N
, 1  i < K}.

2. Increasing functions on S

N

I

N = {f : S ! | f(x+ ei)� f(x) � 0,

for all x, x+ ei 2 S

N
, 1  i  K}.

3. Supermodular functions on S

N

Super

N = {f : S ! R | f(x+ ei + ej)� f(x+ ei)

�f(x+ ej) + f(x) � 0,

for all x, x+ ei + ej 2 S

N
, 1  i 6= j  K}.
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5 Competing queues with abandonments

4. Convex functions on S

N

Cx

N = {f : S ! R | f(x+ 2ei)� 2f(x+ ei) + f(x) � 0,

for all x, x+ 2ei 2 S

N
, 1  i  K}.

5. Bounded increasing functions on S

N

BD

N = {f : S ! R | f(x+ ei)� f(x) 
ci

�i
,

for all x, x+ ei 2 S

N
. 1  i  K}.

The following propositions are su�cient for the induction step.

Proposition 5.3.1. The smoothed arrivals operator has the following propaga-
tion properties

i)

T

N
SA : IN

! I

N
, Cx

N
! Cx

N
,Super

N
! Super

N
,BD

N
! BD

N
.

ii) If moreover N 2 N (�), then

T

N
SA : IN

\ wUI

N
! wUI

N
.

Proposition 5.3.2. The increasing departure operator has the following propaga-
tion properties

T

N
ID : IN

! I

N
, Cx

N
! Cx

N
,Super

N
! Super

N
.

Proposition 5.3.3. The cost operator has the following propagation properties

TC : IN
! I

N
, Cx

N
! Cx

N
,Super

N
! Super

N
.

Proposition 5.3.4. The cost + increasing departures operator has the follow-
ing propagation properties

i)
T

N
CID : BDN

! BD

N
.

ii) If moreover, for all 1  i < K, Eq. (5.1) holds, then

T

N
CID : IN

\ wUI

N
\ Super

N
\ BD

N
! wUI

N
.
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5.3 Discrete time discounted cost analysis

Proposition 5.3.5. The movable server operator has the following propaga-
tion properties

i)

TMS : IN
\ wUI

N
! I

N
\ wUI

N
,

I

N
\ wUI

N
\ Cx

N
\ Super

N
! Cx

N
\ Super

N
.

ii) If moreover, for all 1  i < K, ciµi/�i � ci+1

µi+1

/�i+1

then

TMS : IN
\ wUI

N
\ BD

N
! BD

N
.

Proposition 5.3.6. The uniformisation operator has the following propaga-
tion properties:

TUNIF : (wUIN )3 ! wUI

N
, (IN )3 ! I

N
, (CxN )3 ! Cx

N
,

(SuperN )3 ! Super

N
, (BDN )3 ! BD

N
.

Proposition 5.3.7. The discount operator has the following propagation prop-
erties:

T

↵̄
DISC : wUIN

! wUI

N
, I

N
! I

N
, Cx

N
! Cx

N
,

Super

N
! Super

N
,BD

N
! BD

N
.

The proofs of the propositions are placed in Section 5.6.

Corollary 5.3.8. Let N 2 N (�), 0 < ↵̄ < 1 and suppose that for all 1  i <

K, Eq. (5.1) holds.

i) Then for all n � 0

v

↵̄,N
n 2 wUI

N
\ I

N
\ Cx

N
\ Super

N
\ BD

N ;

ii) furthermore

v̄

↵̄,N
2 wUI

N
\ I

N
\ Cx

N
\ Super

N
\ BD

N
.

Proof. Denote A = wUI

N
\ I

N
\ Cx

N
\ Super

N
\ BD

N . First notice that
v

↵̄,N
0

2 A. Further, under above conditions we have T N
SA, T

N
CID, TMS , T

↵̄
DISC :

A ! A and TUNIF : A3

! A. This means that

T

↵̄
DISC(TUNIF (T

N
SA, T

N
CID, TMS)) : A ! A.

Now suppose that v↵̄,Nn 2 A, the above implies that

v

↵̄,N
n+1

= T

↵̄
DISC(TUNIF (T

N
SA, T

N
CID, TMS))v

↵̄,N
n 2 A.

Now, Assertion i) follows by induction.
Assertion ii) immediately follows from i) due to convergence of value itera-

tion (see Theorem 2.2.3).
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5.4 Proof of main theorems

Proof of Theorem 5.2.2. Suppose that for all 1  i < K, Eq. (5.1) holds.
Let the continuous time discount factor ↵ > 0, then the discrete time discount
factor ↵̄ = ↵/(↵+ 1) satisfies 0 < ↵̄ < 1. Take N 2 N (�), then Corollary 5.3.8
implies that v̄↵̄,N = v

↵,N
2 wUI

N
\I

N . This model satisfies the assumptions
of Theorem 3.5.1 on parametrised Markov processes, completely analogous to
the applicability of CDOE (5.2) by means of Theorem 3.4.2. Theorem 3.5.1
implies continuity in the truncation parameter. This means that v↵,N ! v

↵ as
Ni ! 1, for i = 1, . . . ,K. Hence, v↵ 2 wUI\I and therefore by Lemma 5.2.3
the smallest index policy is ↵-discount optimal.

Proof of Theorem 5.2.1. Suppose that for all 1  i < K, Eq. (5.1) holds. By
Theorem 5.2.2 we have that for all ↵ > 0 that the smallest index policy is
↵-discount optimal, denote this policy as ⇡↵.

Notice that the model satisfies the assumptions of Theorem 2.2.5. This is
straightforward because 0 is an ergodic state for every policy and for allN 2 N .
This theorem implies the existence of a sequence (↵m) with limm!1 ↵m = 0,
such that the limit limm!1 ⇡

↵
m is average optimal. Since ⇡

↵ is the smallest
index policy for all ↵, so is the limit policy. Hence the smallest index policy
is average optimal.

5.5 Numerical results

The triple set of inequalities, under which the smallest index policy is optimal,
induces a lot of parameter configurations that fall outside the scope of the
theorems. This naturally gives rise to the question whether all three conditions
are necessary.

From numerical calculations, it follows that we cannot omit one of the three
conditions. If one of these three inequalities is violated then the examples
below show that the smallest index policy need not be optimal. We carried
out the calculations for K = 2. In order to keep the structures intact we have
used smoothed rate truncation.

1. Consider the following parameter setting:

c " ci ciµi ciµi/�i �i µi �i

i = 1 0.025 1.25 12.02 2 50 0.104
i = 2 1.2 1.2 12 2 1 0.1
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5.5 Numerical results

We see that Eq. (5.1)-1 is violated, c
1

< c

2

, while Eqs. (5.1)-2 and (5.1)-3
are satisfied. The optimal policy is a switching curve policy: for small
states action 1 is optimal and for large states action 2 is optimal, see
Table 5.1.

Table 5.1: Optimality of a switching curve if Eq. (5.1)-1 is violated

2. The next parameter setting is given by:

cµ " ci ciµi ciµi/�i �i µi �i

i = 1 1 1 100 0.5 1 0.01
i = 2 1 2 20 0.5 2 0.01

Observe that Eqs. (5.1)-1 and (5.1)-3 hold, but Eq. (5.1)-2 is violated.
Table 5.2 displays the optimal policy. We see that the smallest index
policy need not be optimal. There is only a small region – if there
are only few customers in the system– where it is optimal to serve the
customer with the smallest index. In larger states action 2 is optimal.
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5 Competing queues with abandonments

Table 5.2: Optimality of a switching curve if Eq. (5.1)-2 is violated

3. The third parameter setting is:

cµ/� " ci ciµi ciµi/�i �i µi �i

i = 1 1.2 1.2 2.4 2 1 0.5
i = 2 1 1 2.5 2 1 0.4

Here only Eqs. (5.1)-1 and (5.1)-2 are satisfied, Table 5.3 shows that it
can be optimal to serve the station with the highest index instead of the
smallest index.

Another observation can be made when considering these examples. In
all cases a switching curve policy is optimal, if we view an index policy as a
degenerate switching curve policy. We conjecture that a switching curve policy
is always optimal.
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5.6 Proofs of propagation results

Table 5.3: Optimality of a highest index policy if Eq. (5.1)-3 is violated

5.6 Proofs of propagation results

In this section we will provide the proofs of Propositions 5.3.1-5.3.7. We make
use of the following notation.

Definition 5.6.1. 1. For 1  i < K,

wUI

N (i) = {f : S ! R |µi(f(x+ ei + ei+1

)� f(x+ ei+1

))

� µi+1

(f(x+ ei + ei+1

)� f(x+ ei)) � 0, for all x, x+ ei + ei+1

2 S

N
}.

2. For 1  i  K,

I

N (i) = {f : S ! R | f(x+ ei)� f(x) � 0, for all x, x+ ei 2 S

N
}.

3. For 1  i  K,

Cx

N (i) = {f : S ! R | f(x+ 2ei)� 2f(x+ ei) + f(x) � 0,

for all x, x+ 2ei 2 S

N
}.

4. For 1  i 6= j  K,

Super

N (i, j) = {f : S ! R | f(x+ ei + ej)� f(x+ ei)

�f(x+ ej) + f(x) � 0, for all x, x+ ei + ej 2 S

N
}.
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5. For 1  i  K,

BD

N (i) = {f : S ! R | f(x+ ei)� f(x) 
ci

�i
, for all x, x+ ei 2 S

N
}.

It is straightforward, that

wUI

N =
\

1i<K

wUI

N (i), I

N =
\

1iK

I

N (i), Cx

N =
\

1iK

Cx

N (i),

Super

N =
\

1i 6=jK

Super

N (i, j), BD

N =
\

1iK

BD

N (i).

Proof of Proposition 5.3.1. First we show that T

N
SA : IN

! I

N . Suppose
f 2 I

N , let 1  i  K, then for all x, x+ ei 2 S

N , we have

T

N
SA(i)f(x+ ei)� T

N
SA(i)f(x)

= (1�
xi + 1

Ni
)f(x+ 2ei) +

xi + 1

Ni
f(x+ ei)

�

�

(1�
xi

Ni
)f(x+ ei) +

xi

Ni
f(x)

�

= (1�
xi + 1

Ni
)[f(x+ 2ei)� f(x+ ei)]�

1

Ni
f(x+ ei)

+
xi

Ni
[f(x+ ei)� f(x)] +

1

Ni
f(x+ ei)

� 0.

The inequality is due to f 2 I

N (i). Hence, we obtain T

N
SA(i)f 2 I

N (i).

Notice that T

N
SA(i)f 2 I

N (j) for i 6= j is trivial. Hence, we conclude that

T

N
SA(i) : I

N
! I

N . This yields T N
SA : IN

! I

N .

Next we prove T

N
SA : CxN

! Cx

N . Assume that f 2 Cx

N . Let 1  i  K,
then x, x+ 2ei 2 S

N implies

T

N
SA(i)f(x+ 2ei)� 2T N

SA(i)f(x+ ei) + T

N
SA(i)f(x)

= (1�
xi + 2

Ni
)f(x+ 3ei) +

xi + 2

Ni
f(x+ 2ei)

�2(1�
xi + 1

Ni
)f(x+ 2ei)� 2

xi + 1

Ni
f(x+ ei)

+(1�
xi

Ni
)f(x+ ei) +

xi

Ni
f(x)

140



5.6 Proofs of propagation results

= (1�
xi + 2

Ni
)[f(x+ 3ei)� 2f(x+ 2ei) + f(x+ ei)]

�

2

Ni
f(x+ 2ei) +

2

Ni
f(x+ ei)

+
xi

Ni
[f(x+ 2ei)� 2f(x+ ei) + f(x)]

+
2

Ni
f(x+ 2ei)�

2

Ni
f(x+ ei)

� 0.

The inequality follows from f 2 Cx

N (i). Hence T

N
SA(i)f 2 Cx

N (i). Trivially,

we also have for j 6= i that T

N
SA(i)f 2 Cx

N (j). So T

N
SA(i)f 2 Cx

N for any i,

and we may conclude that T N
SA : CxN

! Cx

N .

Next we prove T

N
SA : Super

N
! Super

N . Suppose f 2 Super

N . Let
1  i 6= j  K be arbitrary, then for all x with x, x+ ei + ej 2 S

N we have

T

N
SA(i)f(x+ ei + ej)� T

N
SA(i)f(x+ ei)� T

N
SA(i)f(x+ ej) + T

N
SA(i)f(x)

= (1�
xi + 1

Ni
)f(x+ 2ei + ej) +

xi + 1

Ni
f(x+ ei + ej)

�(1�
xi + 1

Ni
)f(x+ 2ei)�

xi + 1

Ni
f(x+ ei)

�(1�
xi

Ni
)f(x+ ei + ej)�

xi

Ni
f(x+ ej)

+(1�
xi

Ni
)f(x+ ei) +

xi

Ni
f(x)

= (1�
xi + 1

Ni
)[f(x+ 2ei + ej)� f(x+ 2ei)� f(x+ ei + ej) + f(x+ ei)]

�

1

Ni
(f(x+ ei + ej)� f(x+ ei))

+
xi

Ni
[f(x+ ei + ej)� f(x+ ei)� f(x+ ej) + f(x)]

+
1

Ni
(f(x+ ei + ej)� f(x+ ei))

� 0.

We use f 2 Super

N (i, j) for the terms between square brackets to get the in-
equality. Thus T N

SA(i)f 2 Super

N (i, j). It immediately follows that T N
SA(i)f 2

Super

N (j, k), if i 6= j, k. Hence we have T

N
SA(i) : Super

N
! Super

N for any i,
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which implies T N
SA : SuperN ! Super

N .

Next we prove T N
SA : BDN

! BD

N . Suppose that f 2 BD

N . Let 1  i  K,
then for all x, with x, x+ ei 2 S

N we have

T

N
SA(i)f(x+ ei)� T

N
SA(i)f(x)

= (1�
xi + 1

Ni
)f(x+ 2ei) +

xi + 1

Ni
f(x+ ei)

�(1�
xi

Ni
)f(x+ ei)�

xi

Ni
f(x)

= (1�
xi + 1

Ni
)[f(x+ 2ei)� f(x+ ei)]�

1

Ni
f(x+ ei)

+
xi

Ni
[f(x+ ei)� f(x)] +

1

Ni
f(x+ ei)

 (1�
1

Ni
)
ci

�i



ci

�i
.

We use f 2 BD

N (i) for the terms in square brackets, to obtain the first inequal-
ity. Hence, T N

SA(i)f 2 BD

N (i). It easily follows that T

N
SA(i) : BDN

! BD

N ,

and so T

N
SA : BDN

! BD

N .

For the proof of ii) assume N 2 N (�), so that �i+1

/Ni+1

� �i/Ni for
1  i < K. We will prove that T

N
SA : IN

\ wUI

N
! wUI

N . The property
wUI

N does not propagate through one individual smoothed arrivals operator,
and so it is necessary to look at the combined smoothed arrivals operator T N

SA.
Suppose, that f 2 I

N
\ wUI

N . It su�ces to show, that T

N
SAf 2 wUI

N (i),
for an arbitrary 1  i < K. First, consider the T

N
SA(i) operator for x with

x, x+ ei + ei+1

2 S

N . Then,

µi(T
N
SA(i)f(x+ ei + ei+1

)� T

N
SA(i)f(x+ ei+1

))

� µi+1

(T N
SA(i)f(x+ ei + ei+1

)� T

N
SA(i)f(x+ ei))

= µi

�

(1�
xi + 1

Ni
)f(x+ 2ei + ei+1

) +
xi + 1

Ni
f(x+ ei + ei+1

)
�

� µi

�

(1�
xi

Ni
)f(x+ ei + ei+1

) +
xi

Ni
f(x+ ei+1

)
�

� µi+1

�

(1�
xi + 1

Ni
)f(x+ 2ei + ei+1

) +
xi + 1

Ni
f(x+ ei + ei+1

)
�
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+ µi+1

�

(1�
xi + 1

Ni
)f(x+ 2ei) +

xi + 1

Ni
f(x+ ei)

�

= (1�
xi + 1

Ni
)
⇥

µi(f(x+ 2ei + ei+1

)� f(x+ ei + ei+1

))

� µi+1

(f(x+ 2ei + ei+1

)� f(x+ 2ei))
⇤

+
xi

Ni

⇥

µi(f(x+ ei + ei+1

)� f(x+ ei+1

))

� µi+1

(f(x+ ei + ei+1

)� f(x+ ei))
⇤

�

1

Ni
µi+1

(f(x+ ei + ei+1

)� f(x+ ei))

� �

1

Ni
µi+1

(f(x+ ei + ei+1

)� f(x+ ei)). (5.3)

The terms between square brackets are greater or equal to zero because f 2

wUI

N (i). Notice that the resulting term is smaller or equal than zero, since
f 2 I

N . Combine this with the T

N
SA(i+1)

operator. Then similar as in the
above we get

µi(T
N
SA(i+1)

f(x+ ei + ei+1

)� T

N
SA(i+1)

f(x+ ei+1

))

�µi+1

(T N
SA(i+1)

f(x+ ei + ei+1

)� T

N
SA(i+1)

f(x+ ei))

= (1�
xi+1

+ 1

Ni+1

)
⇥

µi(f(x+ ei + 2ei+1

)� f(x+ 2ei+1

))

�µi+1

(f(x+ ei + 2ei+1

)� f(x+ ei + ei+1

))
⇤

+
xi+1

Ni+1

⇥

µi(f(x+ ei + ei+1

)� f(x+ ei+1

))

�µi+1

(f(x+ ei + ei+1

)� f(x+ ei))
⇤

+
1

Ni+1

µi(f(x+ ei + ei+1

)� f(x+ ei+1

))

�

1

Ni+1

µi(f(x+ ei + ei+1

)� f(x+ ei+1

)). (5.4)

Then we obtain for the total smoothed arrivals operator

�̄

⇣

µi(T
N
SAf(x+ ei + ei+1

)� T

N
SAf(x+ ei+1

))

�µi+1

(T N
SAf(x+ ei + ei+1

)� T

N
SAf(x+ ei))

⌘

� �i

⇣

µi(T
N
SA(i)f(x+ ei + ei+1

)� T

N
SA(i)f(x+ ei+1

))

143



5 Competing queues with abandonments

�µi+1

(T N
SA(i)f(x+ ei + ei+1

)� T

N
SA(i)f(x+ ei))

⌘

+ �i+1

⇣

µi(T
N
SA(i+1)

f(x+ ei + ei+1

)� T

N
SA(i+1)

f(x+ ei+1

))

�µi+1

(T N
SA(i+1)

f(x+ ei + ei+1

)� T

N
SA(i+1)

f(x+ ei))
⌘

�

�i+1

Ni+1

µi(f(x+ ei + ei+1

)� f(x+ ei+1

))

�

�i

Ni
µi+1

(f(x+ ei + ei+1

)� f(x+ ei))

=
�i

Ni

⇥

µi(f(x+ ei + ei+1

)� f(x+ ei+1

))

�µi+1

(f(x+ ei + ei+1

)� f(x+ ei))
⇤

+

✓

�i+1

Ni+1

�

�i

Ni

◆

µi[f(x+ ei + ei+1

)� f(x+ ei+1

)]

� 0.

The first inequality is due to the fact that T

N
SA(j) for j 6= i, i + 1 trivially

propagates wUI

N (i). The second inequality follows from Inequalities (5.3)

and (5.4). The third inequality follows from f 2 I

N
\ wUI

N and �
i+1

N
i+1

�

�
i

N
i

.

So we have T

N
SAf 2 wUI

N (i) for every 1  i < K, hence T N
SA : IN

\wUI

N
!

wUI

N .

Proof of Proposition 5.3.2. Start with the proof of T N
ID : IN

! I

N . Suppose,
that f 2 I

N , let 1  i  K be arbitrary, then for all x such that x, x+ei 2 S

N

we have

T

N
ID(i)f(x+ ei)� T

N
ID(i)f(x)

=
xi + 1

Ni
f(x) + (1�

xi + 1

Ni
)f(x+ ei)

�

xi

Ni
f(x� ei)� (1�

xi

Ni
)f(x)

=
xi

Ni
[f(x)� f(x� ei)] +

1

Ni
f(x)

+(1�
xi + 1

Ni
)[f(x+ ei)� f(x)]�

1

Ni
f(x)

� 0.

Here the inequality follows from f 2 I

N (i). Hence T

N
ID(i) : IN (i) ! I

N (i),

moreover for j 6= i trivially we have T

N
ID(i) : IN (j) ! I

N (j) as well. This
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5.6 Proofs of propagation results

implies T

N
ID(i)f 2 I

N , and, since 1  i  K was chosen arbitrarily, we have

T

N
ID : IN

! I

N .

We continue with the proof of T N
ID : CxN

! Cx

N . Suppose, that f 2 Cx

N .
Let 1  i  K be arbitrary. Choose x with x, x+ 2ei 2 S

N . Then

T

N
ID(i)f(x+ 2ei)� 2T N

ID(i)f(x+ ei) + T

N
ID(i)f(x)

=
xi + 2

Ni
f(x+ ei) + (1�

xi + 2

Ni
)f(x+ 2ei)

�2
xi + 1

Ni
f(x)� 2(1�

xi + 1

Ni
)f(x+ ei)

+
xi

Ni
f(x� ei) + (1�

xi

Ni
)f(x)

=
xi

Ni
[f(x+ ei)� 2f(x) + f(x� ei)] +

2

Ni
(f(x+ ei)� f(x))

+(1�
xi + 2

Ni
)[f(x+ 2ei)� 2f(x+ ei) + f(x)]�

2

Ni
(f(x+ ei)� f(x))

� 0.

The inequality comes from f 2 Cx

N (i). We may conclude that T

N
ID(i) :

Cx

N (i) ! Cx

N (i). Further T

N
ID(i) : Cx

N (j) ! Cx

N (j) is trivial. Hence

T

N
ID(i)f 2 Cx

N . Moreover, since i was arbitrary, also T

N
ID : CxN

! Cx

N .

Next we will show T

N
ID : SuperN ! Super

N . Suppose f 2 Super

N . Let
1  i 6= j  K. Then we have for x with x, x+ ei + ej 2 S

N that

T

N
ID(i)f(x+ ei + ej)� T

N
ID(i)f(x+ ei)� T

N
ID(i)f(x+ ej) + T

N
ID(i)f(x)

=
xi

Ni
[f(x+ ej)� f(x)� f(x� ei + ej) + f(x� ei)]

+
1

Ni
(f(x+ ej)� f(x))

+(1�
xi + 1

Ni
)[f(x+ ei + ej)� f(x+ ei)� f(x+ ej) + f(x)]

�

1

Ni
(f(x+ ej)� f(x))

� 0.

The inequality follows from f 2 Super

N (i, j). Hence T

N
ID(i)f 2 Super

N (i, j).

It easily follows, that T N
ID(i) : Super

N
! Super

N . Then also T

N
ID : SuperN !

Super

N .
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Proof of Proposition 5.3.3. First we prove TC : IN
! I

N . Let 1  i  K.
Then for x with x, x+ ei 2 S

N it holds that

TCf(x+ ei)� TCf(x)

=
K
X

j=1

cjxj + ci + f(x+ ei)�
⇣

K
X

j=1

cjxj + f(x)
⌘

= [f(x+ ei)� f(x)] + ci

� 0.

The inequality follows from the assumption that f 2 I

N (i) and ci � 0. Hence
TCf 2 I

N (i). It follows that TC : IN
! I

N .

Consider the propagation of convexity. To this end, let 1  i  K. For x

with x, x+ 2ei 2 S

N it holds that

TCf(x+ 2ei)� 2TCf(x+ ei) + TCf(x)

=
K
X

j=1

cjxj + 2ci + f(x+ 2ei)

�2
⇣

K
X

j=1

cjxj + ci + f(x+ ei)
⌘

+
K
X

j=1

cjxj + f(x)

= f(x+ 2ei)� 2f(x+ ei) + f(x)

� 0.

The inequality follows directly from the assumption that f 2 Cx

N (i). We
conclude that TCf 2 Cx

N (i). This implies TC : CxN
! Cx

N .

For the propagation of supermodularity TC : SuperN ! Super

N , let 1 

i 6= j  K. Then for x such that x, x+ ei + ej 2 S

N it holds that

TCf(x+ ei + ej)� TCf(x+ ei)� TCf(x+ ej) + TCf(x)

=
K
X

k=1

ckxk + ci + cj + f(x+ ei + ej)�
⇣

K
X

k=1

ckxk + ci + f(x+ ei)
⌘

�

⇣

K
X

k=1

ckxk + cj + f(x+ ej)
⌘

+
K
X

k=1

ckxk + f(x)
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= f(x+ ei + ej)� f(x+ ei)� f(x+ ej) + f(x)

� 0.

The inequality follows from f 2 Super

N (i, j). Hence, TCf 2 Super

N (i, j) for
any 1  i 6= j  K, and so TC : SuperN ! Super

N .

Proof of Proposition 5.3.4. First we show T

N
CID : BDN

! BD

N . It is neces-
sary to take the combination of more operators, because TC alone does not
propagate BD

N . First, we derive the following inequalities for the increas-
ing departure operators. Let f 2 BD

N , let 1  i  K. Then, for x with
x, x+ ei 2 S

N we have

T

N
ID(i)f(x+ ei)� T

N
ID(i)f(x)

=
xi

Ni
[f(x)� f(x� ei)] +

1

Ni
f(x)

+ (1�
xi + 1

Ni
)[f(x+ ei)� f(x)]�

1

Ni
f(x)

 (1�
1

Ni
)
ci

�i
. (5.5)

The inequality follows from f 2 BD

N (i). Furthermore, for j 6= i trivially

T

N
ID(j)f(x+ ei)� T

N
ID(j)f(x) 

ci

�i
. (5.6)

Hence for the operator T N
CID we obtain

T

N
CIDf(x+ ei)� T

N
CIDf(x)

= �

�1

N

X

j 6=i

�jNj

⇣

T

N
ID(j)f(x+ ei)� T

N
ID(j)f(x)

⌘

+�

�1

N �iNi

⇣

T

N
ID(i)f(x+ ei)� T

N
ID(i)f(x)

⌘

+
X

j

cjxj + ci �

X

j

cjxj

 �

�1

N

⇣

X

j 6=i

�jNj
ci

�i
+ �iNi(1�

1

Ni
)
ci

�i
+ ci

⌘

= �

�1

N

✓

�N
ci

�i
� ci + ci

◆

=
ci

�i
.
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Here the inequality follows from Inequalities (5.5) and (5.6). This yields
T

N
CIDf 2 BD

N (i), for all i. From this the propagation of BDN through T

N
CID

follows.

Proof of part ii). Suppose for all 1  i < K, it holds that ci � ci+1

, ciµi �

ci+1

µi+1

, ciµi/�i � ci+1

µi+1

/�i+1

. We will prove that T N
CID : IN

\ wUI

N
\

Super

N
\ BD

N
! wUI

N . Let f 2 I

N
\ wUI

N
\ Super

N
\ BD

N , take
1  i < K, let x be such that x, x + ei + ei+1

2 S

N . First observe that for
j 6= i, i+ 1, we have

�jNj

�

µi(T
N
ID(j)f(x+ ei + ei+1

)� T

N
ID(j)f(x+ ei+1

))

� µi+1

(T N
ID(j)f(x+ ei + ei+1

)� T

N
ID(j)f(x+ ei))

�

� 0. (5.7)

Next, we get the following inequality for T N
ID(i)

�iNi

�

µi(T
N
ID(i)f(x+ ei + ei+1

)� T

N
ID(i)f(x+ ei+1

))

� µi+1

(T N
ID(i)f(x+ ei + ei+1

)� T

N
ID(i)f(x+ ei))

�

= �iµi

�

(xi + 1)f(x+ ei+1

) + (Ni � xi � 1)f(x+ ei + ei+1

)

� xif(x� ei + ei+1

)� (Ni � xi)f(x+ ei+1

)
�

� �iµi+1

�

(xi + 1)f(x+ ei+1

) + (Ni � xi � 1)f(x+ ei + ei+1

)

� (xi + 1)f(x)� (Ni � xi � 1)f(x+ ei)
�

= �ixi[µi(f(x+ ei+1

)� f(x� ei + ei+1

))� µi+1

(f(x+ ei+1

)� f(x))]

+ �i(Ni � xi)
⇥

µi(f(x+ ei + ei+1

)� f(x+ ei+1

))

� µi+1

(f(x+ ei + ei+1

)� f(x+ ei))
⇤

+ �i

�

(µi+1

� µi)(f(x+ ei + ei+1

)� f(x+ ei+1

))� µi+1

(f(x+ ei)� f(x))
�

� �i

�

(µi+1

� µi)(f(x+ ei + ei+1

)� f(x+ ei+1

))� µi+1

(f(x+ ei)� f(x))
�

.

(5.8)

The inequality is due to f 2 wUI

N . For T N
ID(i+1)

it holds that

�i+1

Ni+1

�

µi(T
N
ID(i+1)

f(x+ ei + ei+1

)� T

N
ID(i+1)

f(x+ ei+1

))

�µi+1

(T N
ID(i+1)

f(x+ ei + ei+1

)� T

N
ID(i+1)

f(x+ ei))
�

= �i+1

µi

�

(xi+1

+ 1)f(x+ ei) + (Ni+1

� xi+1

� 1)f(x+ ei + ei+1

)

�(xi+1

+ 1)f(x)� (Ni+1

� xi+1

� 1)f(x+ ei+1

)
�

��i+1

µi+1

�

(xi+1

+ 1)f(x+ ei) + (Ni+1

� xi+1

� 1)f(x+ ei + ei+1

)
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�xi+1

f(x+ ei � ei+1

)� (Ni+1

� xi+1

)f(x+ ei)
�

= �i+1

xi+1

[µi(f(x+ ei)� f(x))� µi+1

(f(x+ ei)� f(x+ ei � ei+1

))]

+�i+1

(Ni+1

� xi+1

� 1)
⇥

µi(f(x+ ei + ei+1

)� f(x+ ei+1

))

�µi+1

(f(x+ ei + ei+1

)� f(x+ ei))
⇤

+�i+1

µi(f(x+ ei)� f(x))

� �i+1

µi(f(x+ ei)� f(x)). (5.9)

The inequality follows from wUI

N . Combining the three Inequalities (5.7),
(5.8) and (5.9) above gives

�N

�

µi(T
N
IDf(x+ ei + ei+1

)� T

N
IDf(x+ ei+1

))

� µi+1

(T N
IDf(x+ ei + ei+1

)� T

N
IDf(x+ ei))

�

� �i

�

(µi+1

� µi)(f(x+ ei + ei+1

)� f(x+ ei+1

))� µi+1

(f(x+ ei)� f(x))
�

+ �i+1

µi(f(x+ ei)� f(x)).

Hence, we have that

�N

�

µi(T
N
CIDf(x+ ei + ei+1

)� T

N
CIDf(x+ ei+1

))

� µi+1

(T N
CIDf(x+ ei + ei+1

)� T

N
CIDf(x+ ei))

�

� �i

�

(µi+1

� µi)(f(x+ ei + ei+1

)� f(x+ ei+1

))� µi+1

(f(x+ ei)� f(x))
�

+ �i+1

µi(f(x+ ei)� f(x)) + µici � µi+1

ci+1

=: Li. (5.10)

We wish to argue that that Li is nonnegative. To this end we will make 4 case
distinctions with respect to the parameters.

1. Suppose µi  µi+1

and �i  �i+1

, then

Li = �i

�

(µi+1

� µi)(f(x+ ei + ei+1

)� f(x+ ei+1

))

� µi+1

(f(x+ ei)� f(x))
�

+ �i+1

µi(f(x+ ei)� f(x)) + µici � µi+1

ci+1

� �i(µi+1

� µi)[f(x+ ei + ei+1

)� f(x+ ei)� f(x+ ei+1

) + f(x)]

+ µi(�i+1

� �i)[f(x+ ei)� f(x)]

� 0.

The first inequality is due to ciµi � ci+1

µi+1

. The second inequality
follows from µi  µi+1

and f 2 Super

N (i, j), together with �i  �i+1

and f 2 I

N (i).
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2. Suppose µi  µi+1

and �i � �i+1

, then we have

Li = �i

�

(µi+1

� µi)(f(x+ ei + ei+1

)� f(x+ ei+1

))

� µi+1

(f(x+ ei)� f(x))
�

+ �i+1

µi(f(x+ ei)� f(x)) + µici � µi+1

ci+1

= �i(µi+1

� µi)[f(x+ ei + ei+1

)� f(x+ ei)� f(x+ ei+1

) + f(x)]

� µi(�i � �i+1

)[f(x+ ei)� f(x)] + µici � µi+1

ci+1

�� µi(�i � �i+1

)[f(x+ ei)� f(x)] + µici � µi+1

ci+1

�� µi(�i � �i+1

)
ci

�i
+ µici � µi+1

ci+1

=� µici + �i+1

µici

�i
+ µici � µi+1

ci+1

�� µici + �i+1

µi+1

ci+1

�i+1

+ µici � µi+1

ci+1

= 0.

The first inequality is due to f 2 Super

N (i, j) together with µi  µi+1

.
The second inequality comes from �i � �i+1

and f 2 BD

N (i). The last
inequality is due to ciµi/�i � ci+1

µi+1

/�i+1

.

3. Next we assume that µi � µi+1

, µi/�i � µi+1

/�i+1

, then

Li = �i

�

(µi+1

� µi)(f(x+ ei + ei+1

)� f(x+ ei+1

))

� µi+1

(f(x+ ei)� f(x))
�

+ �i+1

µi(f(x+ ei)� f(x)) + µici � µi+1

ci+1

= (�i+1

µi � �iµi+1

)[f(x+ ei)� f(x)]

� �i(µi � µi+1

)[f(x+ ei + ei+1

)� f(x+ ei+1

)] + µici � µi+1

ci+1

�� ci(µi � µi+1

) + µici � µi+1

ci+1

= µi+1

(ci � ci+1

)

� 0.

The first inequality follows from µi/�i � µi+1

/�i+1

and f 2 I

N (i),
together with µi � µi+1

and f 2 BD

N (i). The second inequality comes
from ci � ci+1

.
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4. Finally assume µi � µi+1

and µi/�i  µi+1

/�i+1

, then

Li = �i

�

(µi+1

� µi)(f(x+ ei + ei+1

)� f(x+ ei+1

))

� µi+1

(f(x+ ei)� f(x))
�

+ �i+1

µi(f(x+ ei)� f(x)) + µici � µi+1

ci+1

= (�iµi+1

� �i+1

µi)[f(x+ ei + ei+1

)� f(x+ ei)

� f(x+ ei+1

) + f(x)] + µici � µi+1

ci+1

� (�i � �i+1

)µi[f(x+ ei + ei+1

)� f(x+ ei+1

)]

�� (�i � �i+1

)µi
ci

�i
+ µici � µi+1

ci+1

=+ �i+1

ciµi

�i
� ci+1

µi+1

�+ �i+1

ci+1

µi+1

�i+1

� ci+1

µi+1

= 0.

The first inequality follows from µi/�i  µi+1

/�i+1

and f 2 Super

N (i, j),
together with �i � �i+1

and f 2 BD

N (i). The third inequality is due to
ciµi/�i � ci+1

µi+1

/�i+1

.

So for any 1  i < K, we have T

N
CIDf 2 wUI

N (i). Hence, we conclude that
T

N
CID : IN

\ wUI

N
\ Super

N
\ BD

N
! wUI

N .

Proof of Proposition 5.3.5. Before starting with the proofs, we have the follow-
ing remark. By Lemma 5.2.3 we have that v↵ 2 wUI \ I implies the smallest
index policy to be optimal. The same holds true if f 2 wUI

N
\ I

N . Then
for x 2 S

N , the action that chooses the smallest index minimises the TMS

operator. We will use this several times below.

First we prove that TMS : IN
\wUI

N
! I

N . Assume that f 2 I

N
\wUI

N .
Let 1  i  K be arbitrary. It su�ces to show that TMSf 2 I

N (i). First
suppose x = 0. Then we have

TMSf(x+ ei)� TMSf(x)

= TMSf(ei)� TMSf(0)

=
1

µ

min
j

{µjf(0) + (µ� µj)f(ei)}� f(0)

=
µ� µi

µ

[f(ei)� f(0)]

� 0.
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5 Competing queues with abandonments

The optimal policy is non-idling because f 2 I

N , hence in state ei the system
is minimised by serving station i, the only non-empty queue. In the second
term the system is empty, so nobody is served. The inequality follows from
f 2 I

N (i).
Next suppose that x 6= 0, with x, x+ ei 2 S

N . Let j⇤ be the optimal action
in state x. If j⇤  i then wUI

N implies that this is also the optimal action in
state x + ei. The inequality follows straightforwardly. If j⇤ > i then wUI

N

implies that it is optimal to serve station i in state x+ ei. We obtain

TMSf(x+ ei)� TMSf(x)

=
1

µ

min
j

{µjf((x+ ei � ej)
+) + (µ� µj)f(x+ ei)}

�

1

µ

min
j

{µjf((x� ej)
+) + (µ� µj)f(x)}

=
1

µ

⇣

µif(x) + (µ� µi)f(x+ ei)

�µj⇤f(x� ej⇤)� (µ� µj⇤)f(x)
⌘

=
1

µ

⇣

µj⇤ [f(x)� f(x� ej⇤)]� (µj⇤ � µi)f(x)

+(µ� µi)[f(x+ ei)� f(x)] + (µj⇤ � µi)f(x)
⌘

� 0.

The last inequality follows from f 2 I

N . We conclude that TMSf 2 I

N (i).

We continue by proving TMS : IN
\ wUI

N
! wUI

N . Suppose that f 2

I

N
\ wUI

N , so that the smallest index policy is optimal. Let 1  i < K be
arbitrary. Let x be such that x, x + ei + ei+1

2 S

N . Let j

⇤ be the optimal
action in state x + ei+1

. Suppose that j⇤  i, then the smallest index policy
implies j

⇤ to be optimal in the states x + ei, x + ei+1

and x + ei + ei+1

as
well. The propagation of wUIN is trivial. Suppose that j⇤ > i. Then action
i is optimal in states x+ ei and x+ ei + ei+1

, while action i+ 1 is optimal in
state x+ ei+1

. We get

µ

⇣

µi(TMSf(x+ ei + ei+1

)� TMSf(x+ ei+1

))

�µi+1

(TMSf(x+ ei + ei+1

)� TMSf(x+ ei))
⌘

= µi

⇣

min
j

{µjf((x+ ei + ei+1

� ej)
+) + (µ� µj)f(x+ ei + ei+1

)}
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�min
j

{µjf((x+ ei+1

� ej)
+) + (µ� µj)f(x+ ei+1

)}
⌘

�µi+1

⇣

min
j

{µjf((x+ ei + ei+1

� ej)
+) + (µ� µj)f(x+ ei + ei+1

)}

�min
j

{µjf((x+ ei � ej)
+) + (µ� µj)f(x+ ei)}

⌘

= µi(µif(x+ ei+1

) + (µ� µi)f(x+ ei + ei+1

))

�µi(µi+1

f(x) + (µ� µi+1

)f(x+ ei+1

))

�µi+1

(µif(x+ ei+1

) + (µ� µi)f(x+ ei + ei+1

))

+µi+1

(µif(x) + (µ� µi)f(x+ ei))

= (µ� µi)[µi(f(x+ ei + ei+1

)� f(x+ ei+1

))

�µi+1

(f(x+ ei + ei+1

)� f(x+ ei))]

� 0.

The inequality follows from the assumption f 2 wUI

N (i). We conclude that
TMS : IN

\ wUI

N
! wUI

N (i), implying TMS : IN
\ wUI

N
! wUI

N .

Proof of TMS : IN
\wUI

N
\Cx

N
\Super

N
! Cx

N
\Super

N . To this end,
assume f 2 I

N
\ wUI

N
\ Cx

N
\ Super

N . Let 1  i 6= j  K, in particular
assume i < j. First suppose that x = 0. Then it is optimal to serve station
i in states x + ei and x + ei + ej and it is optimal to take action j in state
x+ ej . Therefore, it holds that

µ

�

TMSf(x+ ei + ej)� TMSf(x+ ei)� TMSf(x+ ej) + TMSf(x)
�

= min
k

{µkf((x+ ei + ej � ek)
+) + (µ� µk)f(x+ ei + ej)}

�min
k

{µkf((x+ ei � ek)
+) + (µ� µk)f(x+ ei)}

�min
k

{µkf((x+ ej � ek)
+) + (µ� µk)f(x+ ej)}

+min
k

{µkf((x� ek)
+) + (µ� µk)f(x)}

= µif(ej) + (µ� µi)f(ei + ej)

�µif(0)� (µ� µi)f(ei)

�µjf(0)� (µ� µj)f(ej)

+µf(0)

= (µ� µi)[f(ei + ej)� f(ei)� f(ej) + f(0)]

+µj [f(ej)� f(0)]

� 0.
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5 Competing queues with abandonments

The inequality follows from f 2 I

N (j) \ Super

N (i, j).
Next, suppose x 6= 0, with x, x + ei + ej 2 S

N . Let the optimal action in
state x be j⇤. We will make three case distinctions. First suppose j⇤  i, then
f 2 I

N
\wUI

N implies that j⇤ is also optimal in x+ei, x+ej and x+ei+ej .
The same action is optimal in every state, which implies that SuperN (i, j) is
propagated trivially. If i < j

⇤
 j, then f 2 I

N
\wUI

N implies j⇤ to be also
optimal in x+ ej , and action i is optimal in x+ ei and x+ ei + ej . We obtain

µ

�

TMSf(x+ ei + ej)� TMSf(x+ ei)� TMSf(x+ ej) + TMSf(x)
�

= µif(x+ ej) + (µ� µi)f(x+ ei + ej)

� µif(x)� (µ� µi)f(x+ ei)

� µj⇤f(x+ ej � ej⇤)� (µ� µj⇤)f(x+ ej)

+ µj⇤f(x� ej⇤) + (µ� µj⇤)f(x)

= µj⇤ [f(x+ ej)� f(x)� f(x+ ej � ej⇤) + f(x� ej⇤)]

�(µj⇤ � µi)(f(x+ ej)� f(x))

+ µi[f(x+ ei + ej)� f(x+ ei)� f(x+ ej) + f(x)]

+(µj⇤ � µi)(f(x+ ej)� f(x))

� 0

The inequality follows from f 2 Super

N
\Cx

N . If j⇤ > j, then f 2 I

N
\wUI

N

implies that action i is optimal in x + ei and x + ei + ej . Serving station j

is optimal in state x + ej . If we choose the suboptimal action j

⇤ instead,
this makes the expression only smaller. Then we are in the same situation as
above, for which we already derived that the expression is nonnegative. Hence,
TMSf 2 Super

N (i, j). We conclude that TMSf 2 Super

N as well.
This only leaves to prove that TMSf 2 Cx

N . First, consider the case that
x = 0. Then action i is optimal in states x+ ei and x+ 2ei. Hence, we have

µ

�

TMSf(x+ 2ei)� 2TMSf(x+ ei) + TMSf(x)
�

= min
j

{µjf((x+ 2ei � ej)
+) + (µ� µj)f(x+ 2ei)}

�2min
j

{µjf((x+ ei � ej)
+) + (µ� µj)f(x+ ei)}

+min
j

{µjf((x� ej)
+) + (µ� µj)f(x)}

= µif(ei) + (µ� µi)f(2ei)

�2µif(0)� 2(µ� µi)f(ei)

+µf(0)
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= (µ� µi)[f(2ei)� 2f(ei) + f(0)]

+µi[f(ei)� f(0)]

� 0.

The inequality follows from f 2 I

N (i) \ Cx

N (i).

Next, consider the case that x 6= 0, with x, x + 2ei 2 S

N . Let j

⇤ be the
the optimal action in state x. If j⇤  i, then in states x + ei and x + 2ei the
optimal actions are equal to j

⇤ as well. Propagation is trivial in that case. If
j

⇤
> i, then the optimal action in states x + ei and x + 2ei is action i. We

obtain the following inequality

µ

�

TMSf(x+ 2ei)� 2TMSf(x+ ei) + TMSf(x)
�

= min
j

{µjf((x+ 2ei � ej)
+) + (µ� µj)f(x+ 2ei)}

�2min
j

{µjf((x+ ei � ej)
+) + (µ� µj)f(x+ ei)}

+min
j

{µjf((x� ej)
+) + (µ� µj)f(x)}

= µif(x+ ei) + (µ� µi)f(x+ 2ei)

�2µif(x)� 2(µ� µi)f(x+ ei)

+µj⇤f(x� ej⇤) + (µ� µj⇤)f(x)

� µif(x+ ei) + (µ� µi)f(x+ 2ei)

�µif(x)� (µ� µi)f(x+ ei)

�µj⇤f(x+ ei � ej⇤)� (µ� µj⇤)f(x+ ei)

+µj⇤f(x� ej⇤) + (µ� µj⇤)f(x)

= µj⇤ [f(x+ ei)� f(x)� f(x+ ei � ej⇤) + f(x� ej⇤)]

+(µ� µi)[f(x+ 2ei)� 2f(x+ ei) + f(x)]

� 0.

The first inequality is due to f 2 wUI

N , the second comes from f 2 Super

N
\

Cx

N . Hence, TMSf 2 Cx

N (i). We conclude that TMS : IN
\ wUI

N
\ Cx

N
\

Super

N
! Cx

N
\ Super

N .

We prove ii), and assume ciµi/�i � ci+1

µi+1

/�i+1

, for all 1  i < K. We
will prove that TMS : IN

\wUI

N
\BD

N
! BD

N . Let f 2 I

N
\wUI

N
\BD

N ,
and let 1  i  K be arbitrary. Again we make two case distinctions. First
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suppose x = 0, then we get

TMSf(x+ ei)� TMSf(x)

= (1� ↵)
µ� µi

µ

[f(ei)� f(0)]

 [f(ei)� f(0)]



ci

�i
.

For the second inequality we use that f 2 BD

N (i). Next suppose x 6= 0. Let j⇤

be the optimal action in state x. If j⇤  i then as a result of f 2 I

N
\wUI

N the
optimal actions in states x and x+ ei are equal, namely j

⇤. As a consequence
the propagation is trivial. If j⇤ > i then the optimal actions are not equal,
because wUI

N implies that in state x + ei it is optimal to serve state i. We
obtain

TMSf(x+ ei)� TMSf(x)

=
1

µ

⇣

µj⇤ [f(x)� f(x� ej⇤)]� (µj⇤ � µi)f(x)

+(µ� µi)[f(x+ ei)� f(x)] + (µj⇤ � µi)f(x)
⌘



1

µ

⇣

µj⇤
cj⇤

�j⇤
+ (µ� µi)

ci

�i

⌘



1

µ

⇣

µi
ci

�i
+ (µ� µi)

ci

�i

⌘

=
ci

�i
.

The first inequality follows from f 2 BD

N , the second follows fromciµi/�i �

cj⇤µj⇤/�j⇤ for i < j

⇤. We conclude that TMSf 2 BD

N (i) and thus

TMS : IN
\ wUI

N
\ BD

N
! BD

N
.

Proof of Proposition 5.3.6. It follows directly that TUNIF : (IN )3 ! I

N ,
(wUIN )3 ! wUI

N , (CxN )3 ! Cx

N , (SuperN )3 ! Super

N , since convex
combinations of nonnegative terms are nonnegative.
The propagation TUNIF : (BDN )3 ! BD

N is also straightforward. We have
that �+ �N + µ = 1, hence if f

1

, f

2

, f

3

2 BD

N , then

TUNIF (f1, f2, f3) := �f

1

+ �Nf

2

+ µf

3

2 BD

N
.
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Proof of Proposition 5.3.7. Recall that T

↵̄
DISCf = (1 � ↵̄)f . Further, clearly

T

↵̄
DISC : wUIN

!, I

N
! I

N
, Cx

N
! Cx

N
,Super

N
! Super

N .
Suppose, that f 2 BD

N . Let 1  i  K be arbitrary, let x be such that
x, x+ ei 2 S

N . Then

T

↵̄
DISCf(x+ ei)� T

↵̄
DISCf(x)

= (1� ↵̄)[f(x+ ei)� f(x)]

 (1� ↵̄)
ci

�i



ci

�i
.

The first inequality is due to f 2 BD

N (i). This implies T

↵̄
DISCf 2 BD

N (i).
Hence, T ↵̄

DISC : BDN
! BD

N .
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6 Truncations of a tandem queue

This chapter is based on work in progress by Blok and Spieksma.

6.1 Introduction

In this chapter, we discuss a model illustrating how several truncations can
have a di↵erent e↵ect on the structural results, and thus on the optimal policy.
Chapter 2 introduces a tandem queue that can be modelled as a discrete time
Markov decision process with a countable state space (see Figure 2.1 in Sec-
tion 2.2.2). In this case, a truncation is not needed to make the process
uniformisable. However, if one would try to compute the optimal policy nu-
merically, a finite state space truncation is necessary. If a straightforward
truncation is executed, the outcome is not even close to the true optimal
policy, as is evidenced by Figure 2.2.

In Section 2.2.2 several claims have been made without detailed proofs. The
current chapter aims to provide the missing details. In Section 6.2 we introduce
the optimal policy and the relation to structural properties. In Section 6.3 we
prove the structural properties via value iteration. First we do this for the
untruncated model, then for the model with Smoothed Rate Truncation. In
Section 6.4 we give some final remarks on di↵erent truncations.

6.2 Optimal policy and properties of value function

Central to this chapter is the following theorem.

Theorem 6.2.1. Let ↵ 2 (0, 1). Suppose that µ
1

(1 � p

1

) � µ

2

, then AP1 is
↵-discount optimal, that is, give full priority to station 1.

We will prove this theorem lateron. Moreover, we show that this theorem
also holds true for a collection of MDPs that are perturbed by a smoothed
rate truncation as described below. The lemma below reduces the proof of
Theorem 6.2.1 to deriving a structural property of the value function. To this
end, define
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FP (p
1

) :=
�

f : S ! |µ

2

f(x� e

2

)� µ

1

(1� p

1

)f(x� e

1

)

�µ

1

p

1

f(x� e

1

+ e

2

) + (µ
1

� µ

2

)f(x) � 0, x 2 S, x

1

, x

2

> 0
 

.

Lemma 6.2.2. Let v↵ be the discounted value function for the tandem queue.
Then v

↵
2 FP (p

1

) implies that AP1 is ↵-discount optimal.

Proof. The discounted cost optimality equation is given by

u(x) = x

1

+ x

2

+ (1� ↵)
⇣

�u(x+ ei)

+ min
�

µ

1

p

1

u(x� e

1

+ e

2

) + µ

1

(1� p

1

)u(x� e

1

) + µ

2

u(x),

µ

1

u(x) + µ

2

u(x� e

2

)
 

⌘

. (6.1)

Due to Section 2.2.1, v↵ is the unique solution to Eq. (6.1) and any min-
imising policy is optimal. Now, v

↵
2 FP (p

1

) implies that for all x with
x

1

, x

2

> 0, the first argument of the minimisation is less than or equal to the
second argument. This implies that AP1 is a minimising policy in Eq. (6.1),
thus AP1 is optimal.

6.3 Dynamic programming

With value iteration it can be shown that µ
1

(1�p

1

) � µ

2

implies v↵ 2 FP (p
1

).
We will do this by means of the event based dynamic programming.

6.3.1 No Truncation

Define the operators TC , T
↵
DISC , TUNIF , TA(1)

, TMS(p
1

)

for x 2 S by

TCf(x) := f(x) + x

1

+ x

2

;

T

↵
DISCf := (1� ↵)f ;

TUNIF (f1, f2) := �f

1

+ (µ
1

+ µ

2

)f
2

;

TA(1)

f(x) := f(x+ e

1

);

TMS(p
1

)

f(x) :=

1

µ

1

+ µ

2

8

<

:

min
�

µ

1

p

1

f(x� e

1

+ e

2

) + µ

1

(1� p

1

)f(x� e

1

)) + µ

2

f(x),
µ

1

f(x) + µ

2

f((x� e

2

)+)
 

x

1

> 0;
µ

1

f(x) + µ

2

f((x� e

2

)+) x

1

= 0.
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6.3 Dynamic programming

Then the value iteration scheme is given by v

0

⌘ 0 and for x 2 S

vn+1

(x) = TC

�

T

↵
DISC

�

TUNIF (TA(1)

vn(x), TMS(p
1

)

vn(x))
��

(6.2)

= x

1

+ x

2

+ (1� ↵)
⇣

�vn(x+ ei)

+ min
�

µ

1

p

1

vn(x� e

1

+ e

2

) + µ

1

(1� p

1

)vn(x� e

1

) + µ

2

vn(x),

µ

1

vn(x) + µ

2

vn(x� e

2

)
 

⌘

Lemma 6.3.1. The following propagations hold.

a) For all ↵ 2 (0, 1)

T

↵
DISC : FP (p

1

) ! FP (p
1

),

b)

TUNIF : FP (p
1

)⇥ FP (p
1

) ! FP (p
1

),

c)

TA(1)

: FP (p
1

) ! FP (p
1

),

d)

TMS(p
1

)

: FP (p
1

) ! FP (p
1

),

e) if moreover µ

1

(1� p

1

) � µ

2

, then

TC : FP (p
1

) ! FP (p
1

).

Proof. Suppose f, f

1

, f

2

2 FP (p
1

). Let x 2 S with x

1

, x

2

> 0.

Proof of a. Let ↵ 2 (0, 1), then

µ

2

T

↵
DISCf(x� e

2

)� µ

1

(1� p

1

)T ↵
DISCf(x� e

1

)

� µ

1

p

1

T

↵
DISCf(x� e

1

+ e

2

) + (µ
1

� µ

2

)T ↵
DISCf(x)

=(1� ↵)
⇥

µ

2

f

1

(x� e

2

)� µ

1

(1� p

1

)f
1

(x� e

1

)

� µ

1

p

1

f

1

(x� e

1

+ e

2

) + (µ
1

� µ

2

)f
1

(x)
⇤

�0.

The inequality follows from f 2 FP (p
1

).
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Proof of b. We have that

µ

2

TUNIF (f1, f2)(x� e

2

)� µ

1

(1� p

1

)TUNIF (f1, f2)(x� e

1

)

� µ

1

p

1

TUNIF (f1, f2)(x� e

1

+ e

2

) + (µ
1

� µ

2

)TUNIF (f1, f2)(x)

=�

⇥

µ

2

f

1

(x� e

2

)� µ

1

(1� p

1

)f
1

(x� e

1

)

� µ

1

p

1

f

1

(x� e

1

+ e

2

) + (µ
1

� µ

2

)f
1

(x)
⇤

+ (µ
1

+ µ

2

)
h

µ

2

f

2

(x� e

2

)� µ

1

(1� p

1

)f
2

(x� e

1

)

� µ

1

p

1

f

2

(x� e

1

+ e

2

) + (µ
1

� µ

2

)f
2

(x)
⇤

�0.

The inequality is due to f

1

, f

2

2 FP (p
1

).

Proof of c. We have that

µ

2

TA(1)

f(x� e

2

)� µ

1

(1� p

1

)TA(1)

f(x� e

1

)

� µ

1

p

1

TA(1)

f(x� e

1

+ e

2

) + (µ
1

� µ

2

)TA(1)

f(x)

=µ

2

f(x+ e

1

� e

2

)� µ

1

(1� p

1

)f(x)� µ

1

p

1

f(x+ e

2

) + (µ
1

� µ

2

)f(x+ e

1

)

�0.

Proof of d. Let x
1

> 1. Then f 2 FP (p
1

) implies that action 1 is optimal
in states x� e

2

, x� e

1

, x� e

1

+ e

2

and x. Hence

µ

2

TMS(p
1

)

f(x� e

2

)� µ

1

(1� p

1

)TMS(p
1

)

f(x� e

1

)

� µ

1

p

1

TMS(p
1

)

f(x� e

1

+ e

2

) + (µ
1

� µ

2

)TMS(p
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)

f(x)

=µ

1

p

1

⇥

µ

2

f(x� e

1

)� µ

1

(1� p

1

)f(x� 2e
1

+ e

2

)

� µ

1

p

1

f(x� 2e
1

+ 2e
2

) + (µ
1

� µ

2

)f(x� e

1

+ e

2

)
⇤

+ µ

1

(1� p

1

)
⇥

µ

2

f(x� e

1

� e

2

)� µ

1

(1� p

1

)f(x� 2e
1

)

� µ

1

p

1

f(x� 2e
1

+ e

2

) + (µ
1

� µ

2

)f(x� e

1

)
⇤

+ µ

2

⇥

µ

2

f(x� 2e
2

)� µ

1

(1� p

1

)f(x� e

1

� e

2

)

� µ

1

p

1

f(x� e

1

) + (µ
1

� µ

2

)f(x� e

2

)
⇤

�0.

The inequality comes from f 2 FP (p
1

). Now let x

1

= 1. Then action 1 is
optimal in x � e

2

and x, whereas in states x � e

1

and x � e

1

+ e

2

only the
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second station is nonempty. Hence

µ

2

TA(1)

f(x� e

2

)� µ

1

(1� p

1

)TA(1)

f(x� e

1

)�

µ

1
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TA(1)
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2

�

µ

1

p

1

f(x� e

1

) + µ

1

(1� p

1

)f(x� e

1

� e

2

) + µ
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�
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�
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1

)
�

+ (µ
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� µ

2

)
�

µ

1

p

1

f(x� e

1
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2

) + µ

1

(1� p

1

)f(x� e

1

) + µ

2

f(x)
�

=µ

2

⇥

µ

2
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2

)�µ

1

(1�p

1

)f(x� e

1
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1

p

1

f(x�e

1

+ e

2
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1

� µ

2

)f(x)
⇤

�0.

The inequality is due to f 2 FP (p
1

).
Proof of e). Suppose µ

1

(1� p

1

)� µ

2

� 0. Then

µ

2

TCf(x� e

2

)� µ

1

(1� p

1

)TCf(x� e

1

)

� µ

1

p

1

TCf(x� e

1

+ e

2

) + (µ
1

� µ

2

)TCf(x)

=µ

2

f(x� e

2

)�µ

1

(1� p

1

)f(x� e

1

)�µ

1

p

1

f(x� e

1

+ e

2

)+(µ
1

� µ

2

)f(x)

+ µ

1

(1� p

1

)� µ

2

�0.

The inequality follows from f 2 FP (p
1

) and µ

1

(1� p

1

) � µ

2

.

Corollary 6.3.2. Let ↵ 2 (0, 1). For the tandem with no truncation, if µ
1

(1�
p

1

) � µ

2

, then

a) for all n � 0, vn 2 FP (p
1

);

b) v

↵
2 FP (p

1

).

Proof. Combining Eq. (6.2) and Lemma 6.3.1, the first assertion follows by
induction. The second assertion is by convergence of value iteration, which
follows from Theorem 2.2.3. The assumptions of the theorem, can be easily
checked by putting the drift function V (x) = e

✏(x
1

+x
2

).

Proof of Theorem 6.2.1. Corollary 6.3.2b) and Lemma 6.2.2 yield the result.
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6 Truncations of a tandem queue

6.3.2 Smoothed rate truncation

In this section we apply a smoothed rate truncation on the process to make
the state space bounded. In the same style as for the nontruncated Markov
decision process, we will show that AP1 is an ↵-discount optimal policy.
Smoothed rate truncation prescribes to linearly truncate the rates of events
that move the system into a higher state. However, we wish to keep the com-
plexity of the analysis as low as possible. It turns out that it is su�cient to
truncate the arrival rate as a function of both x

1

+ x

2

, thereby leaving the
positive recurrent states to be a triangular set.

The SRT arrival rates in state x will be

�

N
12

(x) :=
(N

12

� x

1

� x

2

) _ 0

N

12

�.

This gives a new arrival operator

T

N
12

SA(1)

f(x) :=
(N

12

� x

1

� x

2

) _ 0

N

12

f(x+ e

1

) +
(x

1

+ x

2

) ^N

12

N

12

f(x).

The new value iteration scheme is then given by v

0

⌘ 0 and

vn+1

(x) = TC

�

T

↵
DISC

�

TUNIF (T
N

12

SA(1)

vn(x), TMS(p
1

)

vn(x))
��

. (6.3)

It is straightforward to see that

�(N
12

) = {x 2 S|x

1

+ x

2

 N

12

}

is a positive recurrent closed class. Therefore we define the property FP (p
1

)
now only to hold on �(N

12

)

FP

N
12(p

1

) :=
�

f : S ! |µ

2

f(x� e

2

)� µ

1

(1� p

1

)f(x� e

1

)

� µ

1

p
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f(x� e

1

+ e

2

) + (µ
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� µ

2

)f(x) � 0, x 2 �(N
12

), x
1

, x

2

> 0
 

.

For the propagation of FP

N
12(p

1

) we need an additional property, namely
upstream increasing, denoted by UI

N
12(1) (cf. Section 7.3). Notice that

UI

N
12(1) is equal to FP

N
12(p

1

) for the special case that µ
1

= µ

2

and p

1

= 0.
The following lemma gives the propagation results.

Lemma 6.3.3. The following propagations hold.

a) For all ↵ 2 (0, 1)

T

↵
DISC : FP

N
12(p

1

) ! FP

N
12(p

1

), UI

N
12(1) ! UI

N
12(1),
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b)

TUNIF : FP

N
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if moreover µ
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Proof. First notice that because UI

N
12(1) is a special case of FP

N
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)
the propagation results for UI

N
12(1) follow immediately from the ones for
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N
12(p

1

). We will omit them here.
Suppose f 2 FP

N
12(p

1

), let x 2 �(N
12
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1

, x

2

> 0. Then the proofs
for Assertions a), b), d) and e) are identical to Lemma 6.3.1). Thus it remains
to prove Assertion c. To this end suppose f 2 FP

N
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N
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+ (µ
1

� µ

2

)f(x)
⇤

� µ

1
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1

f(x� e

1

+ e

2

) + (µ
1

� µ
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2
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The first inequality is due to f 2 FP

N
12(p

1

), the second inequality comes from
f 2 UI

N
12(1).

Corollary 6.3.4. Consider the smoothed rate truncated tandem queue prob-
lem. Let ↵ 2 (0, 1), let N

12

2

+

. If µ
1

(1� p

1

) � µ

2

, then

a) for all n � 0, vn 2 FP

N
12(p

1

);

b) v

↵
2 FP

N
12(p

1

).

Proof. Combining Eq. (6.3) and Lemma 6.3.3 the first assertion follows by
induction. The second assertion is by convergence of value iteration, which
follows from Theorem 2.2.3.

Corollary 6.3.5. Consider the smoothed rate truncated tandem queue prob-
lem. Let ↵ 2 (0, 1), let N

12

2

+

. If µ
1

(1� p

1

) � µ

2

, then AP1 is ↵-discount
optimal.

Proof. Due to Corollary 6.3.4 b), v↵ 2 FP

N
12(p

1

). Then by a reasoning similar
to the proof of Lemma 6.2.2, it follows that AP1 is ↵-discount optimal.

6.4 Conclusion

A few remarks are at place at the end of this chapter. In the first place, a
warning that monotonicity properties can be destroyed under naive trunca-
tions. Secondly, it should be noted that smoothed rate truncation can be used
to circumvent this, and this shows that SRT can be useful for uniformisable
MDPs as well. Further, Figure 2.3 suggests that rectangular SRT is applicable
as well, emphasising that SRT is not a uniquely defined method. Di↵erent
choices are possible, perhaps one prevaling over the other. In this case, the
triangular SRT seemed the easiest. Finally it should be noted that a state
space truncation with a triangular state space would have worked as well,
provided the right choice would have been made on the boundary: namely,
simply blocking arriving customers, if the sum of the two queues equals the
truncation value.
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7 Event Based dynamic
programming

This chapter is based on work in progress by Blok and Spieksma.

7.1 Introduction

In Chapters 4 and 5 di↵erent models are analysed and structural properties are
derived. The analysis is performed on truncated (and uniformisable) versions
of the original unbounded-rate MDP. The Chapters 2 and 3 provide verification
methods to deduce that results for the approximating MDPs converge to the
one with unbounded rates.

This analysis is done by means of event based dynamic programming. The
(n+ 1)-th step value iteration function can be composed from operators rep-
resenting events in the Markov decision process applied to the n-th step value
iteration function. If it can be shown that the event operators propagate cer-
tain properties, then it follows that the (n+1)-th step value iteration function
itself possesses these properties provides the n-step value iteration function
has. If the appropriate conditions are fulfilled, then value iteration converges
and we can conclude that the value function has these properties as well.

The monograph of Koole [45] is a comprehensive treatment of event based
dynamic programming. Naturally – since value iteration is a discrete time al-
gorithm – the monograph restricts to uniformisable Markov decision processes.

However, by truncation events arise that have adapted rates compared to the
standard events. This gives rise to new event operators. In Chapters 4, 5 and
6 some new operators have been introduced in combination with propagation
results regarding the properties that are relevant for the respective models, cf.
also [16].

In this chapter we aim to give a systematic overview of the operators that
are associated with truncated Markov decision processes. Furthermore, we
will provide the obtained propagation results. We would like to point out, the
obtained propagation results in the previous chapters that seem to be very
model specific, have not been not listed here.
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7 Event Based dynamic programming

Generally speaking, the truncations can be of two di↵erent types.

1. Truncations that prevent the system to move beyond a finite bound. This
makes the number of states that are positive recurrent finite. Because
the essential state space (the positive recurrent class of states) is finite,
the resulting transition rates are bounded. Hence, this makes the system
uniformisable. The best way to do this, seems to be smoothed rate trun-
cation (see Chapters 5 and 6). A straightforward state space truncation
might work as well, but often breaks the properties of interest. Because
the essential state space is finite, it is su�cient to derive properties on a
finite state space.

2. Truncations that directly bound the rates (see Chapter 4). Such a per-
turbation does not have an e↵ect on whether states are communicating
or not. This implies that – for any given policy – the set of essential
states is invariant under the perturbation. So for these perturbations it
is required to show the properties on the entire state space.

Within one model, a combination of these two is possible as well. Usually
when a smoothed rate truncation is performed on one or more events, then
the rates of other events are not allowed to increase outside the essential state
space.

The rest of this chapter contains the following. In Section 7.2 we intro-
duce the operators related to unbounded rates. In Section 7.3 we define the
structural properties of interest. The propagation results are presented in
Section 7.4.

7.2 Operators related to truncations

Let K 2 , define

S := {x 2

K
|xi � 0, for 1  i  K},

N := {N 2

K
|Ni � 1, for 1  i  K}.

For N 2 N define

S

N := {x 2

K
|0  xi  Ni, for 1  i  K}.

In the rest of this section, let i 2 {1, . . . ,K}, N 2 N , define the following
operators.
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SRT Arrivals operator Define T

N
SA(i) by

T

N
SA(i)f(x) :=

(Ni � xi) _ 0

Ni
f(x+ ei) +

xi ^Ni

Ni
f(x).

This operator is equal to the finite source operator T

B
FS(i) as in [45]. How-

ever, the propagation results are more extensive. Moreover the operator has a
di↵erent interpretation, which opens new applications for it. Results for this
operator stem from [16] and Chapter 5.

For �i � 0, i = 1, . . . ,K,
PK

i=1

�i = � > 0, we define the Total SRT Arrivals
operator as

T

N
SA =

1

�

K
X

i=1

�iT
N
SA(i).

SRT Controlled Arrivals operator For ci, c0i 2 , let T N
SCA(i) be given by

T

N
SCA(i)f(x) :=

(Ni � xi) _ 0

Ni
min{ci + f(x), c0i + f(x+ ei)}

+
xi ^Ni

Ni
(ci + f(x)).

This operator models control for customer arrivals. It has been introduced
in [16].

For �i � 0, i = {1, . . . ,K},
PK

i=1

�i = � > 0, we define the Total SRT
Controlled Arrivals operator as

T

N
SCA = �

�1

K
X

i=1

�iT
N
SCA(i).

SRT Double Arrivals operator Let j 2 1, . . . ,K, j 6= i, Ni = Nj = Nij ,
define T

N
SDA(i,j) by

T

N
SDA(i,j)f(x) :=

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

⇣

1� x
i

+x
j

N
ij

⌘

f(x+ ei + ej)+
x
j

N
ij

f(x+ ei) +
x
i

N
ij

f(x+ ej)

if xi + xj  Nij ,
⇣

1�
⇣

1� x
i

N
ij

⌘

+

�

⇣

1� x
j

N
ij

⌘

+

⌘

f(x)

+
⇣

1� x
i

N
ij

⌘

+

f(x+ ei) +
⇣

1� x
j

N
ij

⌘

+

f(x+ ej)

if xi + xj > Nij .
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This operator is from [16], where a rather complicated truncation, with two
layers of di↵erent truncations, was necessary. It models the event of batch
arrivals of size 2. It might be possible to extend this truncation to batch
arrivals of larger size. However, the number of layers grows as the size of the
batch, which makes the analysis too complicated already for batch size 3.

SRT Transfers operator Let i < K, define T

N
ST (i) by

T

N
ST (i)f(x) :=

(

(N
i+1

�x
i+1

)_0

N
i+1

f(x� ei + ei+1

) + x
i+1

^N
i+1

N
i+1

f(x) xi > 0,

f(x) xi = 0.

This operator is from [16]. It models transfers from queue i to the next queue
i+ 1.
For µi > 0, i = 1, . . . ,K � 1 and

PK�1

i=1

µi = µ, we define the Total SRT
Transfers operator by

T

N
ST = µ

�1

K�1

X

i=1

µiT
N
ST (i).

SRT Increasing Transfers operator For i < K, define T

N
SIT (i) by

T

N
SIT (i)f(x) :=

xi ^Ni

Ni

(Ni+1

� xi+1

) _ 0

Ni+1

f(x� ei + ei+1

)

+
xi+1

^Ni+1

Ni+1

(Ni � xi) _ 0

Ni
f(x+ ei � ei+1

)

+
⇣

1�
xi ^Ni

Ni

(Ni+1

� xi+1

) _ 0

Ni+1

�

xi+1

^Ni+1

Ni+1

(Ni � xi) _ 0

Ni

⌘

f(x).

The origin of this operator is the analysis in [11], where increasing transfers
were present in opposite directions. In the event based setting it has been
introduced in [16]. This operator may represent increasing transfers from
station i to i+1 only. Take Ni = ✏Nj with ✏ small. It follows that for x 2 S

N ,

T

N
SIT (i)f(x) !

✏!0

xi

Ni

Ni+1

� xi+1

Ni+1

f(x� ei + ei+1

) +
Ni � xi

Ni

xi+1

Ni+1

f(x).

Increasing Departures operator Define T

N
ID(i) as follows

T

N
ID(i)f(x) :=

xi ^Ni

Ni
f(x� ei) +

(Ni � xi) _ 0

Ni
f(x).

170
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Propagations for this operator have been obtained in [16] and Chapter 5.
This operator can be seen as a special case of TD(i) from [45]. T

N
ID(i) may

represent an Ni-server system, an approximation of an infinite server system
or an approximation of customer abandonments. The latter two represent
models with unbounded rates. This operator does not bound the state space,
but only the transition rates.

For �i > 0, i = 1, . . . ,K,
PK

i=1

�iNi = �N define the Total Increasing
Departures operator by

T

N
ID = �

�1

N

K
X

i=1

�iNiT
N
ID(i).

Increasing Idle/O↵ operator Let i < K, c � 0, define T

N
I/O(i+1)

by

T

N
I/O(i+1)

f(x) :=
xi+1

^Ni+1

Ni+1

min{f(x+ ei � ei+1

), f(x� ei+1

) + c}

+
(Ni+1

� xi+1

) _ 0

Ni+1

f(x).

This operator is from [1] and has been treated in Chapter 4 as well. It models
the choice upon a service completion between turning a server o↵ or leaving
it idle. The rates are the same as in T

N
ID(i+1)

, so the operator bounds the
transition rates, not the state space.

7.3 Properties

The monotonicity properties that are relevant in the models that we studied
are non-decreasingness, convexity, supermodularity, superconvexity, upstream
increasingness and downstream increasingness. The first three concepts are
standard. For the latter three we follow the notation of [45]. We define these
properties through collections of functions that have the respective properties.
As mentioned before, it is useful to consider both properties that hold on
the entire state space, as well as properties that hold on the restriction to
S

N . Moreover, we consider one property both in one dimension and in more
dimensions.

Let i, j 2 {1, . . . ,K} with i 6= j, let N 2 N . Define the following collections.
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7 Event Based dynamic programming

Non-decreasing (Increasing) functions

I (i) := {f : S ! |f(x+ ei)� f(x) � 0, for x, x+ ei 2 S};

I :=
\

1iK

I (i);

I

N (i) := {f : S ! |f(x+ ei)� f(x) � 0, for x, x+ ei 2 S

N
};

I

N :=
\

1iK

I

N (i).

Convex functions

Cx(i) := {f : S ! |f(x+ 2ei)� 2f(x+ ei) + f(x) � 0,

for x, x+ 2ei 2 S};

Cx :=
\

1iK

Cx(i);

Cx

N (i) := {f : S ! |f(x+ 2ei)� 2f(x+ ei) + f(x) � 0,

for x, x+ 2ei 2 S

N
};

Cx

N :=
\

1iK

Cx

N (i).

Supermodular functions

Super(i, j) := {f : S ! |f(x+ ei + ej)� f(x+ ei)� f(x+ ej)+ f(x) � 0,

for x, x+ ei + ej 2 S};

Super :=
\

1i 6=jK

Super(i, j);

Super

N (i, j) := {f : S ! |f(x+ ei + ej)� f(x+ ei)� f(x+ ej)+ f(x) � 0,

for x, x+ ei + ej 2 S

N
};

Super

N :=
\

1i 6=jK

Super

N (i, j).

Superconvex functions

SuperC(i, j) := {f : S ! |f(x+ 2ei)� f(x+ ei)

� f(x+ ei + ej) + f(x+ ej) � 0, for x, x+ ei + ej 2 S}.
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Downstream Increasing functions

DI

N (i) := {f : S ! |f(x+ ei+1

)� f(x+ ei) � 0,

for x, x+ ei, x+ ei+1

2 S

N
};

DI

N :=
\

1i<K

DI

N (i).

Upstream Increasing functions

UI

N (i) := {f : S ! |f(x+ ei+1

)� f(x+ ei)  0,

for x, x+ ei, x+ ei+1

2 S

N
};

UI

N :=
\

1i<K

UI

N (i).

7.4 Propagations

Because smoothed rate truncation is designed to reduce the essential states
to S

N , it is su�cient to derive propagation results for the SRT operators
restricted to S

N .

7.4.1 SRT Arrivals

Theorem 7.4.1. Let N 2 N , then for i 2 {1, . . . ,K}

1.

T

N
SA(i) : I

N (i) ! I

N (i),

2.

T

N
SA(i) : Cx

N (i)! Cx

N (i),

3.

T

N
SA(i) : Super

N (i, j)!Super

N (i, j),

4. if i < K, then

T

N
SA(i) : DI

N (i) \ I

N (i+ 1)!DI

N (i).
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Proof. Propagations 1, 2 and 3 have been proven in Proposition 5.3.1. Propaga-
tion 4 is from [16, p.37]. For completeness we give the proof of 4 here. Let
i 2 {1, . . . ,K � 1}, suppose that f 2 DI

N (i) \ I

N (i+ 1). Let x be such that
x+ ei, x+ ei+1

2 S

N , then xi  Ni � 1. It holds that

Ni(T
N
SA(i)f(x+ ei+1

)� T

N
SA(i)f(x+ ei))

= (Ni � xi)f(x+ ei + ei+1

) + xif(x+ ei+1

)

�(Ni � xi � 1)f(x+ 2ei)� (xi + 1)f(x+ ei)

= (Ni � xi � 1)[f(x+ ei + ei+1

)� f(x+ 2ei)]

+xi[f(x+ ei+1

)� f(x+ ei)]

+f(x+ ei + ei+1

)� f(x+ ei)

� 0.

For the inequality we used that f 2 DI

N (i) \ I

N (i+ 1).

Corollary 7.4.2. Consider Let N 2 N , then

1.
T

N
SA : IN

! I

N
,

2.
T

N
SA : CxN

! Cx

N
,

3.
T

N
SA : SuperN!Super

N
,

4.
T

N
SA : DI

N
\ I

N
!DI

N
.

Proof. This is a direct consequence from Theorem 7.4.1.

7.4.2 SRT Controlled Arrivals

Theorem 7.4.3. Let N 2 N , then for i 2 {1, . . . ,K},

1.
T

N
SCA(i) : I

N (i) ! I

N (i),

2.
T

N
SCA(i) : Cx

N (i)!Cx

N (i),
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3.
T

N
SCA(i) : Super

N (i, j)!Super

N (i, j),

4. if i � 2, then
T

N
SA(i) : DI

N (i� 1)! DI

N (i� 1).

Proof. The results are from [16, p.51], for completeness we give them here.
Let i 2 {1, . . . ,K}.
Proof of 1. Suppose f 2 I

N (i). Let x 2 S

N , so that xi  Ni � 1. It holds
that

Ni(T
N
SCA(i)f(x+ ei)� T

N
SCA(i)f(x))

=(Ni � xi � 1)min{ci + f(x+ ei), c
0
i + f(x+ 2ei)}+(xi + 1)(ci + f(x+ ei))

� (Ni � xi)min{ci + f(x), c0i + f(x+ ei)}� xi(ci + f(x))

=(Ni � xi � 1)[min{ci + f(x+ ei), c
0
i + f(x+ 2ei)}

| {z }

(1)

�min{ci + f(x), c0i + f(x+ ei)}
| {z }

(2)

]�min{ci + f(x), c0i + f(x+ ei)}
| {z }

(3)

+ xi[f(x+ ei)� f(x)] + (ci + f(x+ ei))

�0.

To prove that this is greater than or equal to zero, we have to make some case
distinctions. If the minimum of (1) is ci + f(x + ei) (reject), then in (2) we
also choose reject (this can only make the expression smaller). Then the terms
inside the square brackets are nonnegative by f 2 I

N (i). If the minimum of
(1) is accept, then in (2) choose accept and the inequality between the square
brackets also follows from f 2 I

N (i). In (3) always choose reject, the nonneg-
ativity of the remaining terms again follows from f 2 I

N (i).

Proof of 2. Suppose f 2 Cx

N (i), let x be such that x + 2ei 2 S

N . Then
xi  Ni � 2, and we obtain

Ni(T
S
CA(i)f(x+ 2ei)� 2TS

CA(i)f(x+ ei) + T

S
CA(i)f(x))

=(Ni � xi � 2)min{ci + f(x+ 2ei), c
0
i + f(x+ 3ei)}

+ (xi + 2)(ci + f(x+ 2ei))

� 2(Ni � xi � 1)min{ci + f(x+ ei), c
0
i + f(x+ 2ei)}

� 2(xi + 1)(ci + f(x+ ei))
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+ (Ni � xi)min{ci + f(x), c0i + f(x+ ei)}+ xi(ci + f(x))

=(Ni � xi � 2)

⇥[min{ci + f(x+ 2ei), c
0
i + f(x+ 3ei)}

| {z }

(1)

�min{ci + f(x+ ei), c
0
i + f(x+ 2ei)}

| {z }

(2)

�min{ci + f(x+ ei), c
0
i + f(x+ 2ei)}

| {z }

(3)

+min{ci + f(x), c0i + f(x+ ei)}
| {z }

(4)

]

� 2min{ci + f(x+ ei), c
0
i + f(x+ 2ei)}

| {z }

(5)

+2min{ci + f(x), c0i + f(x+ ei)}
| {z }

(6)

+ xi[f(x+ 2ei)� 2f(x+ ei) + f(x)] + 2f(x+ 2ei)� 2f(x+ ei)

�0.

Again choosing any action in (2), (3) or (5) can only make the expression smal-
ler. Let the actions of (2), (3) and (5) copy the minimisers of (1), (4) and (6)
respectively. Case checking shows that the expression can be reduced to a
convex expression. The assumption that f 2 Cx

N (i) yields the result.

Proof of 3. Suppose f 2 Super

N (i, j), let x such that x + ei + ej 2 S

N .
Hence xi  Ni � 1 and thus

Ni(T
S
CA(i)f(x) + T

S
CA(i)f(x+ ei + ej)� T

S
CA(i)f(x+ ei)� T

S
CA(i)f(x+ ej))

=(Ni � xi)min{ci + f(x), c0i + f(x+ ei)}+ xi(ci + f(x))

+ (Ni � xi � 1)min{ci + f(x+ ei + ej), c
0
i + f(x+ 2ei + ej)}

+ (xi + 1)(ci + f(x+ ei + ej))

� (Ni � xi � 1)min{ci + f(x+ ei), c
0
i + f(x+ 2ei)}

� (xi + 1)(ci + f(x+ ei))

� (Ni � xi)min{ci + f(x+ ej), c
0
i + f(x+ ei + ej)}� xi(ci + f(x+ ej))

=(Ni � xi � 1)

⇥[min{ci + f(x), c0i + f(x+ ei)}
| {z }

(1)

�min{ci + f(x+ ej), c
0
i + f(x+ ei + ej)}

| {z }

(2)

]

�min{ci + f(x+ ei), c
0
i + f(x+ 2ei)}

| {z }

(3)

+min{ci + f(x+ ei + ej), c
0
i + f(x+ 2ei + ej)}

| {z }

(4)
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�min{ci + f(x+ ej), c
0
i + f(x+ ei + ej)}

| {z }

(5)

+min{ci + f(x), c0i + f(x+ ei)}
| {z }

(6)

+ xi[f(x) + f(x+ ei + ej)� f(x+ ei)� f(x+ ej)]

+ f(x+ ei + ej)� f(x+ ei)

�0.

The validity of the last inequality follows by letting the actions in (2), (3) and
(5) copy the minimisers of (1), (4) and (6) respectively. Case checking shows
that the resulting expression can be reduced to a supermodular expression.
The assumption that f 2 Super

N (i, j) yields the result.

Proof of 4. Suppose that f 2 DI

N (i� 1)). Let x be such that xi  Ni � 1.
Then it holds that

Ni(T
S
CA(i)f(x+ ei)� T

S
CA(i)f(x+ ei�1

))

=(Ni � xi � 1)min{ci + f(x+ ei), c
0
i + f(x+ 2ei)}

+ (xi + 1)(ci + f(x+ ei))

� (Ni � xi)min{ci + f(x+ ei�1

), c0i + f(x+ ei + ei�1

)}

� xi(ci + f(x+ ei�1

))

=(Ni � xi � 1)
⇥

min{ci + f(x+ ei), c
0
i + f(x+ 2ei)}

| {z }

(1)

�min{ci + f(x+ ei�1

), c0i + f(x+ ei + ei�1

)}
| {z }

(2)

⇤

�min{ci + f(x+ ei�1

), c0i + f(x+ ei + ei�1

)}
| {z }

(3)

+ xi[f(x+ ei)� f(x+ ei�1

)] + (ci + f(x+ ei))

�0.

To verify this, choose in (2) the same action as (1), in (3) choose reject. Then
the inequality follows since f 2 DI

N (i� 1).

Corollary 7.4.4. Consider T

N
SCA, let N 2 N , then

1.

T

N
SCA : IN

! I

N
,
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2.
T

N
SCA : CxN

!Cx

N
,

3.
T

N
SCA : SuperN!Super

N
.

Proof. This is a direct consequence of Theorem 7.4.3.

Notice that we have no convergence result for DI

N , since it is not clear how
to derive this for T N

SCA.

7.4.3 SRT Double Arrivals

Theorem 7.4.5. Let N 2 N , then for i 6= j 2 {1, . . . ,K},

1.
T

N
SDA(i,j) : I

N (i) ! I

N (i),

2.
T

N
SDA(i,j) : Cx

N (i) \ Super

N (i, j) ! Cx

N (i),

3.
T

N
SDA(i,j) : Super

N (i, j) ! Super

N (i, j),

4. if j = i+ 1  K then

T

N
SDA(i,j) : DI

N (i) ! DI

N (i).

Proof. The results are from [16, p.47]. Let x 2 S

N , let i 6= j 2 {1, . . . ,K}.
Proof of 1. Suppose that f 2 I

N (i), and let x+ei 2 S

N . If xi+xj  Nij�1,
then we have

Nij

�

T

N
SDA(i,j)f(x+ ei)� T

N
SDA(i,j)f(x)

�

=(Nij � xi � xj � 1)f(x+ 2ei + ej) + xjf(x+ 2ei) + (xi + 1)f(x+ ei + ej)

� (Nij � xi � xj)f(x+ ei + ej)� xjf(x+ ei)� xif(x+ ej)

=(Nij � xi � xj � 1)[f(x+ 2ei + ej)� f(x+ ei + ej)]� f(x+ ei + ej)

+ xj [f(x+ 2ei)� f(x+ ei)]

+ xi[f(x+ ei + ej)� f(x+ ej)] + f(x+ ei + ej)

�0.
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The inequality follows from f 2 I

N (i).
Next suppose xi + xj � Nij (and xi  Nij � 1, xj  Nij), then

Nij

�

T

N
SDA(i,j)f(x+ ei)� T

N
SDA(i,j)f(x)

�

=(Nij � xi � 1)f(x+ 2ei) + (Nij � xj)f(x+ ei + ej)

+ (xi + xj �Nij + 1)f(x+ ei)

� (Nij � xi)f(x+ ei)� (Nij � xj)f(x+ ej)� (xi + xj �Nij)f(x)

=(Nij � xi � 1)[f(x+ 2ei)� f(x+ ei)]� f(x+ ei)

+ (Nij � xj)[f(x+ ei + ej)� f(x+ ej)]

(xi + xj �Nij)[f(x+ ei)� f(x)] + f(x+ ei)

�0,

and the inequality follows from f 2 I

N (i).

Proof of 2. Suppose f 2 Cx

N (i) \ Super

N (i, j). Assume x + 2ei 2 S

N . If
xi + xj  Nij � 2, we have

Nij

�

T

N
SDA(i,j)f(x+ 2ei)� 2T N

SDA(i,j)f(x+ ei) + T

N
SDA(i,j)f(x)

�

=(Nij � xi � xj � 2)f(x+ 3ei + ej) + xjf(x+ 3ei) + (xi + 2)f(x+ 2ei + ej)

� 2(Nij � xi � xj � 1)f(x+ 2ei + ej)� 2xjf(x+ 2ei)

� 2(xi + 1)f(x+ ei + ej)

+ (Nij � xi � xj)f(x+ ei + ej) + xjf(x+ ei) + xif(x+ ej)

=(Nij � xi � xj � 2)[f(x+ 3ei + ej)� 2f(x+ 2ei + ej) + f(x+ ei + ej)]

+ xj [f(x+ 3ei)� 2f(x+ 2ei) + f(x+ ei)]

+ xi[f(x+ 2ei + ej)� 2f(x+ ei + ej) + f(x+ ej)]

� 2f(x+ 2ei + ej) + 2f(x+ ei + ej)

+ 2f(x+ 2ei + ej)� 2f(x+ ei + ej)

�0.

The inequality follows from Cx

N (i).
For xi + xj = Nij � 1 (and xi  Nij � 2) we have

Nij

�

T

N
SDA(i,j)f(x+ 2ei)� 2T N

SDA(i,j)f(x+ ei) + T

N
SDA(i,j)f(x)

�

=(xj � 1)f(x+ 3ei) + (Nij � xj)f(x+ 2ei + ej) + f(x+ 2ei)

� 2xjf(x+ 2ei)� 2(Nij � xj)f(x+ ei + ej)
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+ f(x+ ei + ej) + xjf(x+ ei) + (Nij � xj � 1)f(x+ ej)

=(xj � 1)[f(x+ 3ei)� 2f(x+ 2ei) + f(x+ ei)]

+ (Nij � xj � 1)[f(x+ 2ei + ej)� 2f(x+ ei + ej) + f(x+ ej)]

+ f(x+ 2ei + ej)� 2f(x+ ei + ej)

� 2f(x+ 2ei) + f(x+ ei)

+ f(x+ 2ei) + f(x+ ei + ej)

�f(x+ ei) + f(x+ 2ei + ej)� f(x+ 2ei)� f(x+ ei + ej)

�0.

The first inequality comes from f 2 Cx

N (i), the second inequality follows from
f 2 Super

N (i, j).
For xi + xj � Nij (and xi  Nij � 2, xj  Nij) we get

Nij

�

T

N
SDA(i,j)f(x+ 2ei)� 2T N

SDA(i,j)f(x+ ei) + T

N
SDA(i,j)f(x)

�

=(Nij � xi � 2)f(x+ 3ei) + (Nij � xj)f(x+ 2ei + ej)

+ (xi + xj �Nij + 2)f(x+ 2ei)

� 2(Nij � xi � 1)f(x+ 2ei)� 2(Nij � xj)f(x+ ei + ej)

� 2(xi + xj �Nij + 1)f(x+ ei)

+ (Nij � xi)f(x+ ei) + (Nij � xj)f(x+ ej) + (xi + xj �Nij)f(x)

=(Nij � xi � 2)[f(x+ 3ei)� 2f(x+ 2ei) + f(x+ ei)]

+ (Nij � xj)[f(x+ 2ei + ej)� 2f(x+ ei + ej) + f(x+ ej)]

+ (xi + xj �Nij)[f(x+ 2ei)� 2f(x+ ei) + f(x)]

� 2f(x+ 2ei) + 2f(x+ ei)

+ 2f(x+ 2ei)� 2f(x+ ei)

�0.

The inequality follows from f 2 Cx

N (i).

Proof of 3. Suppose f 2 Super

N (i, j) and let x+ ei + ej 2 S

N . If xi + xj 

Nij � 2, then

Nij

�

T

N
SDA(i,j)f(x) + T

N
SDA(i,j)f(x+ ei + ej)

� T

N
SDA(i,j)f(x+ ei)� T

N
SDA(i,j)f(x+ ej)

�

=(Nij � xi � xj)f(x+ ei + ej) + xjf(x+ ei) + xif(x+ ej)

+ (Nij � xi � xj � 2)f(x+ 2ei + 2ej) + (xj + 1)f(x+ 2ei + ej)
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+ (xi + 1)f(x+ ei + 2ej)

�(Nij � xi � xj �1)f(x+ 2ei + ej)� xjf(x+ 2ei)� (xi + 1)f(x+ ei + ej)

�(Nij � xi � xj �1)f(x+ ei + 2ej)� (xj + 1)f(x+ ei + ej)� xif(x+ 2ej)

=(Nij � xi � xj � 2)[f(x+ ei + ej) + f(x+ 2ei + 2ej)� f(x+ 2ei + ej)

� f(x+ ei + 2ej)]

+ xj [f(x+ ei) + f(x+ 2ei + ej)� f(x+ 2ei)� f(x+ ei + ej)]

+ xi[f(x+ ej) + f(x+ ei + 2ej)� f(x+ ei + ej)� f(x+ 2ej)]

+ 2f(x+ ei + ej)� f(x+ 2ei + ej)� f(x+ ei + 2ej)

+ f(x+ 2ei + ej)� f(x+ ei + ej) + f(x+ ei + 2ej)� f(x+ ei + ej)

�0.

The compensation terms cancel, and so the inequality follows from f 2 Super

N (i, j).
If xi + xj = Nij � 1, then we get

Nij

�

T

N
SDA(i,j)f(x) + T

N
SDA(i,j)f(x+ ei + ej)

� T

N
SDA(i,j)f(x+ ei)� T

N
SDA(i,j)f(x+ ej)

�

=f(x+ ei + ej) + xjf(x+ ei) + (Nij � xj � 1)f(x+ ej)

xjf(x+ 2ei + ej) + (Nij � xj � 1)f(x+ ei + 2ej) + f(x+ ei + ej)

� xjf(x+ 2ei)� (Nij � xj)f(x+ ei + ej)

� (xj + 1)f(x+ ei + ej) + (Nij � xj � 1)f(x+ 2ej)

=xj [f(x+ ei) + f(x+ 2ei + ej)� f(x+ 2ei)� f(x+ ei + ej)]

+ (Nij � xj � 1)[f(x+ ej) + f(x+ ei + 2ej)� f(x+ ei + ej)� f(x+ 2ej)]

�0,

the inequality follows from f 2 Super

N (i, j).
For xi + xj � Nij (and xi  Nij � 1, xj  Nij � 1), we have

Nij

�

T

N
SDA(i,j)f(x) + T

N
SDA(i,j)f(x+ ei + ej)

� T

N
SDA(i,j)f(x+ ei)� T

N
SDA(i,j)f(x+ ej)

�

=(Nij � xi)f(x+ ei) + (Nij � xj)f(x+ ej) + (xi + xj �Nij)f(x)

+ (Nij � xi � 1)f(x+ 2ei + ej) + (Nij � xj � 1)f(x+ ei + 2ej)

+ (xi + xj �Nij + 2)f(x+ ei + ej)

� (Nij � xi � 1)f(x+ 2ei)� (Nij � xj)f(x+ ei + ej)

� (xi + xj �Nij + 1)f(x+ ei)
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� (Nij � xi)f(x+ ei + ej) + (Nij � xj � 1)f(x+ 2ej)

� (xi + xj �Nij + 1)f(x+ ej)

=(Nij � xi � 1)[f(x+ ei) + f(x+ 2ei + ej)� f(x+ 2ei)� f(x+ ei + ej)]

+ (Nij � xj � 1)[f(x+ ej) + f(x+ ei + 2ej)� f(x+ ei + ej)� f(x+ 2ej)]

+ (xi + xj �Nij)[f(x) + f(x+ ei + ej)� f(x+ ei)� f(x+ ej)]

+ f(x+ ei)� f(x+ ei + ej)

+ f(x+ ej)� f(x+ ei + ej)

+ 2f(x+ ei + ej)� f(x+ ei)� f(x+ ej)

�0.

The inequality follows from f 2 Super

N (i, j).

Proof of 4. Suppose f 2 DI

N (i), and let x + ei, x + ej 2 S

N . Then for
xi + xj  Nij � 1

Nij

�

T

N
SDA(i,j)f(x+ ej)� T

N
SDA(i,j)f(x+ ei)

�

=(Nij� xi� xj� 1)f(x+ ei + 2ej) + (xj + 1)f(x+ ei + ej) + xif(x+ 2ej)

�(Nij� xi� xj� 1)f(x+ 2ei + ej)� xjf(x+ 2ei)� (xi + 1)f(x+ ei + ej)

=(Nij � xi � xj � 1)[f(x+ ei + ej)� f(x+ 2ei + ej)]

+ xj [f(x+ ei + ej)� f(x+ 2ei)] + f(x+ ei + ej)

+ xi[f(x+ 2ej)� f(x+ ei + ej)]� f(x+ ei + ej)

�0.

The inequality is direct from f 2 DI

N (i).
For xi + xj � Nij and (xi, xj  Nij � 1) the following expression holds

Nij

�

T

N
SDA(i,j)f(x+ ej)� T

N
SDA(i,j)f(x+ ei)

�

=(Nij � xi)f(x+ ei + ej) + (Nij � xj � 1)f(x+ 2ej)

+ (xi + xj �Nij + 1)f(x+ ej)

� (Nij � xi � 1)f(x+ 2ei)� (Nij � xj)f(x+ ei + ej)

� (xi + xj �Nij + 1)f(x+ ei)

=(Nij � xi � 1)[f(x+ ei + ej)� f(x+ 2ei)] + f(x+ ei + ej)

+ (Nij � xj � 1)[f(x+ 2ej)� f(x+ ei + ej)]� f(x+ ei + ej)

+ (xi + xj �Nij + 1)[f(x+ ej)� f(x+ ei)]

�0,
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again f 2 DI

N (i) yields the inequality.

Corollary 7.4.6. Let N 2 N , then for i 6= j 2 {1, . . . ,K}

1.

T

N
SDA(i,j) : I

N
! I

N
,

2.

T

N
SDA(i,j) : Cx

N
\ Super

N
! Cx

N
,

3.

T

N
SDA(i,j) : Super

N
! Super

N
.

Proof. This is an immediate consequence of Theorem 7.4.5.

For property DI

N there is no direct result with respect to T

N
SDA(i,j).

7.4.4 SRT Transfers

Theorem 7.4.7. Let i 2 {1, . . . ,K � 1}. Let N 2 N , then

1.

T

N
ST (i) : I

N (i) \ I

N (i+ 1) ! I

N (i) \ I

N (i+ 1),

2.

T

N
ST (i) : Cx

N (i) \ Super

N (i, i+ 1) \ UI

N (i)
(a)
! Cx

N (i);

T

N
ST (i) : Cx

N (i+ 1)SuperN (i, i+ 1)
(b)
! Cx

N (i+ 1),

3.

T

N
ST (i) : Super

N (i, i+ 1) \ Cx

N (i) \ UI

N (i)!Super

N (i, i+ 1),

4.

T

N
ST (i) : DI

N (i) ! DI

N (i), UI

N (i) ! UI

N (i).
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Proof. The proofs are based on [16, p.39]. Suppose that x 2 S

N .
Proof of 1. Assume that f 2 I

N (i) \ I

N (i + 1). First, we prove that
T

N
ST (i)f 2 I

N (i). Because the truncation is in the (i + 1)-th component, the
only non-trivial case is when xi = 0. Then we have

Ni+1

(T N
ST (i)f(x+ ei)� T

N
ST (i)f(x))

=(Ni+1

� xi+1

)f(x+ ei+1

) + xi+1

f(x+ ei)

�Ni+1

f(x)

=(Ni+1

� xi+1

)[f(x+ ei+1

)� f(x)]

+ xi+1

[f(x+ ei)� f(x)]

�0.

The inequality follows from f 2 I

N (i) \ I

N (i+ 1).
Next we prove that T

N
ST (i)f 2 I

N (i + 1). For xi > 0, xi+1

 Ni+1

� 1, we
have

Ni+1

(T N
ST (i)f(x+ ei+1

)� T

N
ST (i)f(x))

=(Ni+1

� xi+1

� 1)f(x� ei + 2ei+1

) + (xi+1

+ 1)f(x+ ei+1

)

� (Ni+1

� xi+1

)f(x� ei + ei+1

)� xi+1

f(x)

=(Ni+1

� xi+1

� 1)[f(x� ei + 2ei+1

)� f(x� ei + ei+1

)]� f(x� ei + ei+1

)

+ xi+1

[f(x+ ei+1

)� f(x)] + f(x+ ei+1

)

�0,

where again the inequality follows from f 2 I

N (i)\IN (i+1). The propagation
for xi = 0 is trivial, this yields the result.
Proof of 2(a). Assume f 2 Cx

N (i)\Super

N (i, i+1)\UI

N (i). The proof is
trivial for all states except for the boundary states, when xi = 0. For xi = 0,
we have

Ni+1

(T N
ST (i)f(x+ 2ei)� 2T N

ST (i)f(x+ ei) + T

N
ST (i)f(x))

=(Ni+1

� xi+1

)f(x+ ei + ei+1

) + xi+1

f(x+ 2ei)

� 2(Ni+1

� xi+1

)f(x+ ei+1

)� 2xi+1

f(x+ ei)

+Ni+1

f(x)

=(Ni+1

� xi+1

)(f(x+ ei + ei+1

)� 2f(x+ ei+1

) + f(x))

+ xi+1

[f(x+ 2ei)� 2f(x+ ei) + f(x)]

�(Ni+1

� xi+1

)[f(x+ ei + ei+1

)� f(x+ ei+1

)� f(x+ ei) + f(x)]

�0.
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The first inequality follows from f 2 Cx

N (i) \ UI

N (i). The second inequality
follows from f 2 Super

N (i, i+ 1).

Proof of 2(b). Assume f 2 Cx

N (i+ 1) \ Super

N (i, i+ 1). Then for xi+1



Ni+1

� 2, we get

Ni+1

(T N
ST (i)f(x+ 2ei+1

)� 2T N
ST (i)f(x+ ei+1

) + T

N
ST (i)f(x))

=(Ni+1

� xi+1

� 2)f(x� ei + 3ei+1

) + (xi+1

+ 2)f(x+ 2ei+1

)

� 2(Ni+1

� xi+1

� 1)f(x� ei + 2ei+1

)� 2(xi+1

+ 1)f(x+ ei+1

)

+ (Ni+1

� xi+1

)f(x� ei + ei+1

) + xi+1

f(x)

=(Ni+1

� xi+1

� 2)[f(x� ei + 3ei+1

)� 2f(x� ei + 2ei+1

) + f(x� ei + ei+1

)]

� 2f(x� ei + 2ei+1

) + 2f(x� ei + ei+1

)

+ xi+1

[f(x+ 2ei+1

)� 2f(x+ ei+1

) + f(x)] + 2f(x+ 2ei+1

)� 2f(x+ ei+1

)

�2[f(x� ei + ei+1

) + f(x+ 2ei+1

)� f(x� ei + 2ei+1

)� f(x+ ei+1

)]

�0.

The first inequality follows from f 2 Cx

N (i), the second inequality from f 2

Super

N (i, i+ 1).

Proof of 3. Suppose f 2 Super

N (i, i + 1) \ Cx

N (i) \ UI

N (i). Then for
xi > 0, xi+1

 Ni+1

� 1, we obtain the following inequality

Ni+1

(T N
ST (i)f(x) + T

N
ST (i)f(x+ ei + ei+1

)

� T

N
ST (i)f(x+ ei)� T

N
ST (i)f(x+ ei+1

))

= (Ni+1

� xi+1

) f(x� ei + ei+1

) + xi+1

f(x)

+ (Ni+1

� xi+1

� 1) f(x+ 2ei+1

) + (xi+1

+ 1)f(x+ ei + ei+1

)

� (Ni+1

� xi+1

) f(x+ ei+1

)� xi+1

f(x+ ei)

� (Ni+1

� xi+1

� 1) f(x� ei + 2ei+1

)� (xi+1

+ 1)f(x+ ei+1

)

= (Ni+1

� xi+1

� 1) [f(x� ei + ei+1

) + f(x+ 2ei+1

)

� f(x+ ei+1

)� f(x� ei + 2ei+1

)]

+ xi+1

[f(x) + f(x+ ei + ei+1

)� f(x+ ei)� f(x+ ei+1

)]

+ f(x� ei + ei+1

)� 2f(x+ ei+1

) + f(x+ ei + ei+1

)

�0.

The inequality follows from the assumption that f 2 Super

N (i, i+1)\Cx

N (i).
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Now if xi = 0, then the following inequality holds

Ni+1

(T N
ST (i)f(x) + T

N
ST (i)f(x+ ei + ei+1

)

� T

N
ST (i)f(x+ ei)� T

N
ST (i)f(x+ ei+1

))

=Ni+1

f(x)

+ (Ni+1

� xi+1

� 1) f(x+ 2ei+1

) + (xi+1

+ 1)f(x+ ei + ei+1

)

� (Ni+1

� xi+1

) f(x+ ei+1

)� xi+1

f(x+ ei)

�Ni+1

f(x+ ei+1

)

= (Ni+1

� xi+1

) [f(x) + f(x+ 2ei+1

)� 2f(x+ ei+1

)]

+ xi+1

[f(x) + f(x+ ei + ei+1

)� f(x+ ei)� f(x+ ei+1

)]

+ f(x� ei + ei+1

)� f(x+ 2ei+1

)

�0.

The inequality follows from f 2 Super

N (i, i+ 1) \ Cx

N (i) \ UI

N (i).

Proof of 4. We only prove T

N
ST (i) : UI

N (i) ! UI

N (i). The other propaga-

tion follows by replacing ‘�’ by ‘’. Suppose that f 2 UI

N (i). Then for
xi > 0, xi+1

 Ni+1

� 1 we have

Ni+1

(T N
ST (i)f(x+ ei)� T

N
ST (i)f(x+ ei+1

))

=(Ni+1

� xi+1

)f(x+ ei+1

) + xi+1

f(x+ ei)

� (Ni+1

� xi+1

� 1)f(x� ei + 2ei+1

)� (xi+1

+ 1)f(x+ ei+1

)

=(Ni+1

� xi+1

� 1)[f(x+ ei+1

)� f(x� ei + 2ei+1

)]� f(x+ ei+1

)

+ xi+1

[f(x+ ei+1

)� f(x� ei)] + f(x+ ei+1

)

�0.

The inequality is valid, since f 2 UI

N (i). For xi = 0 we obtain

Ni+1

(T N
ST (i)f(x+ ei)� T

N
ST (i)f(x+ ei+1

))

=(Ni+1

� xi+1

)f(x+ ei+1

) + xi+1

f(x+ ei)

�Ni+1

f(x+ ei+1

)

=xi+1

[f(x+ ei+1

)� f(x� ei)]

�0.

The inequality follows from f 2 UI

N (i).
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Corollary 7.4.8. Let N 2 N , then

1.

T

N
ST : IN

! I

N
,

2.

T

N
ST : CxN

\ Super

N
\ UI

N
! Cx

N
,

3.

T

N
ST : DI

N
! DI

N
, UI

N
! UI

N
.

Proof. This is direct from Theorem 7.4.7.

The propagation of SuperN through T

N
ST has not been investigated so far.

7.4.5 SRT Increasing Transfers

Theorem 7.4.9. Let i 2 {1, . . . ,K � 1}. Let N 2 N , then

1.

T

N
SIT (i) : I

N (i) \ I

N (i+ 1) ! I

N (i) \ I

N (i+ 1),

2.

T

N
SIT (i) : Cx

N (i) \ Super

N (i, i+ 1)! Cx

N (i),

3.

T

N
SIT (i) : Super

N (i, i+ 1) \ Cx

N (i) \ Cx

N (i+ 1)!Super

N (i, i+ 1),

4.

T

N
SIT (i) : DI

N (i) ! DI

N (i), UI

N (i) ! UI

N (i).

Proof. The proofs are from [16, p.43]. Let x 2 S

N .
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Proof of 1. Suppose that f 2 I

N (i)\I

N (i+1). By symmetry it is su�cient
to prove T

N
SIT (i)f 2 I

N (i). For xi  Ni � 1, we have

NiNi+1

�

T

N
SIT (i)f(x+ ei)� T

N
SIT (i)f(x)

�

=(Ni+1

� xi+1

)(xi + 1)f(x+ ei+1

) + (Ni � xi � 1)xi+1

f(x+ 2ei � ei+1

)

+
�

NiNi+1

� (Ni+1

� xi+1

)(xi + 1)� (Ni � xi � 1)xi+1

�

f(x+ ei)

� (Ni+1

� xi+1

)xif(x� ei + ei+1

)� (Ni � xi)xi+1

f(x+ ei � ei+1

)

�

�

NiNi+1

� (Ni+1

� xi+1

)xi � (Ni � xi)xi+1

�

f(x)

=(Ni+1

� xi+1

)xi[f(x+ ei+1

)� f(x� ei + ei+1

)]

+ (Ni � xi � 1)xi+1

[f(x+ 2ei � ei+1

)� f(x+ ei � ei+1

)]

+
�

NiNi+1

� (Ni+1

� xi+1

)(xi + 1)� (Ni � xi)xi+1

�

[f(x+ ei)� f(x)]

+ (Ni+1

� xi+1

)[f(x+ ei+1

)� f(x)]

+ xi+1

[f(x+ ei)� f(x+ ei � ei+1

)]

�0.

The inequality follows from f 2 I

N (i) \ I

N (i+ 1).

Proof of 2. Suppose f 2 Cx

N (i)\Super

N (i, i+1). For xi  Ni� 2 we have

NiNi+1

�

T

N
SIT (i)f(x+ 2ei)� 2T N

SIT (i)f(x+ ei) + T

N
SIT (i)f(x)

�

=(Ni+1

� xi+1

)(xi + 2)f(x+ ei + ei+1

) + (Ni � xi � 2)xi+1

f(x+ 3ei � ei+1

)

+
�

NiNi+1

� (Ni+1

� xi+1

)(xi + 2)� (Ni � xi � 2)xi+1

�

f(x+ 2ei)

� 2(Ni+1

� xi+1

)(xi + 1)f(x+ ei+1

)� 2(Ni � xi � 1)xi+1

f(x+ 2ei � ei+1

)

� 2
�

NiNi+1

� (Ni+1

� xi+1

)(xi + 1)� (Ni � xi � 1)xi+1

�

f(x+ ei)

+ (Ni+1

� xi+1

)xif(x� ei + ei+1

) + (Ni � xi)xi+1

f(x+ ei � ei+1

)

+
�

NiNi+1

� (Ni+1

� xi+1

)xi � (Ni � xi)xi+1

�

f(x)

=(Ni+1

� xi+1

)xi[f(x+ ei + ei+1

)� 2f(x+ ei+1

) + f(x� ei + ei+1

)]

+ (Ni � xi � 2)xi+1

[f(x+ 3ei � ei+1

)� 2f(x+ 2ei � ei+1

)

+ f(x+ ei � ei+1

)]

+
�

NiNi+1

� (Ni+1

� xi+1

)(xi + 2)� (Ni � xi)xi+1

�

⇥ [f(x+ 2ei)� 2f(x+ ei) + f(x)]

+ 2(Ni+1

� xi+1

)[f(x) + f(x+ ei + ei+1

)� f(x+ ei)� f(x+ ei+1

)]

+ 2xi+1

[f(x+ 2ei) + f(x+ ei � ei+1

)� f(x+ 2ei � ei+1

)� f(x+ ei)]

�0.
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The inequality follows from f 2 Cx

N (i) \ Super

N (i, i+ 1).

Proof of 3. Suppose that f 2 Super

N (i, i + 1) \ Cx

N (i) \ Cx

N (i + 1). For
xi  Ni � 1, xi+1

 Ni+1

� 1, we get

NiNi+1

�

T

N
SIT (i)f(x) + T

N
SIT (i)f(x+ ei + ei+1

)

� T

N
SIT (i)f(x+ ei)� T

N
SIT (i)f(x+ ei+1

)
�

=xi (Ni+1

� xi+1

) f(x� ei + ei+1

) + xi+1

(Ni � xi) f(x+ ei � ei+1

)

+
�

NiNi+1

� xi (Ni+1

� xi+1

)� xi+1

(Ni � xi)
�

f(x)

+ (xi + 1) (Ni+1

� xi+1

� 1) f(x+ 2ei+1

)

+ (xi+1

+ 1) (Ni � xi � 1) f(x+ 2ei)

+
�

NiNi+1

� (xi + 1) (Ni+1

� xi+1

� 1)

� (xi+1

+ 1) (Ni � xi � 1)
�

f(x+ ei + ei+1

)

� (xi + 1) (Ni+1

� xi+1

) f(x+ ei+1

)� xi+1

(Ni � xi � 1) f(x+ 2ei � ei+1

)

�

�

NiNi+1

� (xi + 1) (Ni+1

� xi+1

)� xi+1

(Ni � xi � 1)
�

f(x+ ei)

� xi (Ni+1

� xi+1

� 1) f(x� ei + 2ei+1

)� (xi+1

+ 1) (Ni � xi) f(x+ ei)

�

�

NiNi+1

� xi (Ni+1

� xi+1

� 1)� (xi+1

+ 1) (Ni � xi)
�

f(x+ ei+1

)

=xi (Ni+1

� xi+1

� 1) [f(x� ei + ei+1

) + f(x+ 2ei+1

)

� f(x+ ei+1

)� f(x� ei + 2ei+1

)]

+ xi+1

(Ni � xi � 1) [f(x+ ei � ei+1

) + f(x+ 2ei)

� f(x+ 2ei � ei+1

)� f(x+ ei)]

+
�

NiNi+1

� (xi + 1) (Ni+1

� xi+1

)� (xi+1

+ 1) (Ni � xi)
�

⇥ [f(x) + f(x+ ei + ei+1

)� f(x+ ei)� f(x+ ei+1

)]

+ xif(x� ei + ei+1

) + (Ni+1

� xi+1

� 1)f(x+ 2ei+1

)

+ xi+1

f(x+ ei � ei+1

) + (Ni � xi � 1)f(x+ 2ei)

+ (Ni+1

� xi+1

)f(x) + (xi + 1)f(x+ ei + ei+1

)

+ (Ni � xi)f(x) + (xi+1

+ 1)f(x+ ei + ei+1

)

� 2(Ni+1

+ xi � xi+1

)f(x+ ei+1

)

� 2(Ni+1

� xi + xi+1

)f(x+ ei)

�xi+1

[f(x� ei + ei+1

)� 2f(x+ ei+1

) + f(x+ ei + ei+1

)]

+ xi[f(x+ ei � ei+1

)� 2f(x+ ei) + f(x+ ei + ei+1

)]

+ (Ni � xi � 1)[f(x)� 2f(x+ ei) + f(x+ 2ei)]
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+ (Ni+1

� xi+1

� 1)[f(x)� 2f(x+ ei+1

) + f(x+ 2ei+1

)]

+ 2[f(x) + f(x+ ei + ei+1

)� f(x+ ei)� f(x+ ei+1

)]

�0.

The first inequality follows from f 2 Super

N (i, i + 1), the second inequality
follows from f 2 Super

N (i, i+ 1) \ Cx

N (i) \ Cx

N (i+ 1).

Proof of 4. We only prove T

N
SIT (i) : UIN (i) ! UI

N (i), the other result

follows by symmetry. Suppose that f 2 UI

N (i). Then for xi  Ni�1, xi+1



Ni+1

� 1, we have

NiNi+1

�

T

N
SIT (i)f(x+ ei)� T

N
SIT (i)f(x+ ei+1

)
�

=(Ni+1

� xi+1

)(xi + 1)f(x+ ei+1

) + (Ni � xi � 1)xi+1

f(x+ 2ei � ei+1

)

+
�

NiNi+1

� (Ni+1

� xi+1

)(xi + 1)� (Ni � xi � 1)xi+1

�

f(x+ ei)

� (Ni+1

� xi+1

� 1)xif(x� ei + 2ei+1

)� (Ni � xi)(xi+1

+ 1)f(x+ ei)

�

�

NiNi+1

� (Ni+1

� xi+1

� 1)xi � (Ni � xi)(xi+1

+ 1)
�

f(x+ ei+1

)

=(Ni+1

� xi+1

� 1)xi[f(x+ ei+1

)� f(x� ei + 2ei+1

)]

+ (Ni � xi � 1)xi+1

[f(x+ 2ei � ei+1

)� f(x+ ei)]

+
�

NiNi+1

� (Ni+1

� xi+1

)(xi + 1)

� (Ni � xi)(xi+1

+ 1)
�

[f(x+ ei)� f(x+ ei+1

)]

+ (Ni+1

� xi+1

)[f(x+ ei+1

)� f(x)]

+ xi+1

[f(x+ ei)� f(x+ ei � ei+1

)]

+ (Ni+1

� xi+1

� 1)f(x+ ei+1

) + (xi + 1)f(x+ ei+1

)

� (Ni+1

� xi+1

� 1)f(x+ ei+1

)� (xi + 1)f(x+ ei+1

)

+ (Ni � xi � 1)f(x+ ei) + (xi+1

+ 1)f(x+ ei)

� (Ni � xi � 1)f(x+ ei)� (xi+1

+ 1)f(x+ ei)

�0.

All compensation terms cancel. The inequality follows since f 2 DI

N (i), thus
proving the propagation result.

Corollary 7.4.10. Let i 2 {1, . . . ,K � 1}. Let N 2 N , then

1.
T

N
SIT (i) : I

N
! I

N
,
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2.
T

N
SIT (i) : Cx

N
\ Super

N
! Cx

N
,

3.
T

N
SIT (i) : Super

N
\ Cx

N
!Super

N
,

4.
T

N
SIT (i) : DI

N
! DI

N
, UI

N
! UI

N
.

Proof. This is a direct consequence of Theorem 7.4.9.

7.4.6 Increasing Departures

For this operator the properties are relevant for S as well as for SN .

Theorem 7.4.11. Let i 6= j 2 {1, . . . ,K}. Let N 2 N , then

1.

T

N
ID(i) : I

N (i)
(a)
! I

N (i), I (i)
(b)
! I (i),

2.

T

N
ID(i) : Cx

N (i)
(a)
! Cx

N (i), Cx(i) \ I (i)
(b)
! Cx(i),

3.

T

N
ID(i) : Super

N (i, j)
(a)
! Super

N (i, j), Super(i, j)
(b)
! Super(i, j).

Proof. Results 1(a), 2(a) and 3(a) are from Proposition 5.3.2.
For the rest of the proof, let i 6= j 2 {1, . . . ,K}, and let x 2 S.
Proof of 1(b). Let f 2 I (i). If xi  Ni � 1, then the proof of 1(a) applies.

If xi � Ni then T

N
ID(i)f(x) = f(x� ei) and the propagation is trivial.

Proof of 2(b). Let f 2 Cx(i) \ I (i), if xi  Ni � 2, then the proof of 2(a)
applies. If xi = Ni � 1, then

N

�

T

N
ID(i)f(x+ 2ei)� 2T N

ID(i)f(x+ ei) + T

N
ID(i)f(x)

�

=N [f(x+ ei)� 2f(x) + f(x� ei)]

+ [f(x)� f(x� ei)]

�0,

where the inequality follows from f 2 Cx(i)\I (i). If xi � Ni then T

N
ID(i)f(x) =

f(x� ei) and the propagation is trivial.
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Proof of 3(b). Let f 2 Super(i, j), if xi  Ni � 1, then the proof of 3(a)
applies. If xi � Ni then T

N
ID(i)f(x) = f(x� ei) and the propagation is trivial.

Corollary 7.4.12. Consider Let N 2 N . Then

1.
T

N
ID : IN

! I

N
, I ! I ,

2.
T

N
ID : CxN

! Cx

N
, Cx \ I ! Cx,

3.
T

N
ID : SuperN ! Super

N
, Super ! Super.

Proof. This follows directly from Theorem 7.4.11.

7.4.7 Increasing Idle/O↵

Theorem 7.4.13. Let N 2 N , for i < K

1.
T

N
I/O : Super(i, i+ 1) \ SuperC(i, i+ 1) ! Super(i, i+ 1),

2.
T

N
I/O : Super(i, i+ 1) \ SuperC(i, i+ 1) ! SuperC(i, i+ 1).

Proof. 1. and 2. are equal to Assertions 4 and 5 from Lemma 4.5.1.
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Markov beslissingsprocessen met onbegrensde
sprongintensiteit:

structuureigenschappen via parametrisatie

Een Markov beslissingsproces is een stochastisch proces, waarbij de overgan-
gen worden bëınvloed door een serie van gekozen acties. De serie acties wordt
bepaald door een strategie die gekozen wordt met het doel de verwachte kos-
ten, horend bij het proces, te minimaliseren. Toepassingen zijn onder meer te
vinden in wachtrij problemen. Een intrinsieke eigenschap van Markov beslis-
singsprocessen is dat er een afweging gemaakt moet worden tussen kosten op
korte termijn en het verwachte e↵ect op de lange termijn. Dit zorgt ervoor
dat het vinden van een optimale strategie in het algemeen niet eenvoudig is.

In dit proefschrift worden methodes beschreven voor het afleiden van struc-
tuureigenschappen van Markov beslissingsprocessen. Als de waardefunctie van
een Markov beslissingsproces bepaalde monotonie-eigenschappen bezit, zoals
stijgendheid of convexiteit, dan geeft dit vaak informatie over de optimale stra-
tegie van het proces. Wat bedoeld wordt met een optimale strategie hangt af
van het criterium dat men beschouwt. In dit proefschrift behandelen we vooral
de verwachte verdisconteerde kosten en de verwachte gemiddelde kosten.

In ons onderzoek hebben we ons in het bijzonder gericht op continue-tijd
Markov beslissingsprocessen met een zogenaamde onbegrensde overgangsin-
tensiteit, omdat hiervoor nog geen systematische manier is om eigenschappen
af te leiden. Voor Markov beslissingsprocessen in discrete tijd bestaat er wel
een zeer krachtig middel om structuureigenschappen aan te tonen in de vorm
van waarde iteratie. Door middel van uniformisatie kan een proces in continue-
tijd met een vaste bovengrens op de overgangsintensiteit worden vertaald naar
een equivalent discrete-tijd beslissingsproces. Hierdoor komt waarde iteratie
ook voor deze processen beschikbaar. Voor Markov beslissingsprocessen met
onbegrensde intensiteit is dit niet direct mogelijk met behoud van de gewenste
structuureigenschappen.
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Het is mogelijk om een Markov beslissingsproces met onbegrensde intensi-
teiten uniformiseerbaar te maken door middel van een afkapping of afknot-
ting. Het geüniformiseerde afgekapte proces kan dan geanalyseerd worden
met waarde iteratie. Dit proces geldt dan als een benadering van het originele
proces. In Hoofdstuk 3 leiden we milde drift-voorwaarden af onder welke de
benadering convergeert naar het originele proces. Dit wordt gedaan voor het
verdisconteerde-kostencriterium.

Het gemiddelde-kosten probleem is lastiger, hierdoor lijkt een gelijksoortige
convergentiestelling buiten zicht, zonder al te zware voorwaarden te stellen
aan het beslissingsproces. In Hoofdstuk 2 beschrijven we een manier om ei-
genschappen voor het gemiddelde-kosten probleem aan te tonen door de ver-
disconteringsfactor naar nul te laten gaan. De eigenschappen volgen als de
limiet van het verdisconteerde-kosten probleem.

De twee genoemde limietstellingen stellen ons in staat om modellen met
onbegrensde intensiteiten te bestuderen. Via afkappingen kunnen de modellen
uniformiseerbaar worden gemaakt. Een complicerende factor is echter dat
door rande↵ecten van de afkapping monotonie-eigenschappen verloren kunnen
gaan.

In Hoofdstuk 4 bestuderen we een serverfarm waarbij het doel is kosten te
minimaliseren door een overschot aan servers op standby te beperken. Een
standaardafknotting van de sprongintensiteit voldoet hier, want deze behoudt
de monotonie-eigenschappen. Uit deze eigenschappen kunnen we afleiden dat
een drempelstrategie optimaal is. Waarbij de drempel bepaald wordt door een
kromme in de toestandsruimte. Met behulp van koppelingsargumenten kan de
optimale strategie nog verder worden gespecificeerd.

Het volgende model wordt behandeld in Hoofdstuk 5. Een bediende ont-
vangt klanten, gecategoriseerd in klassen, ieder met hun eigen karakteristieken,
zoals bedieningsduur, kosten en geduld. Om de monotonie van het systeem te
bewaren gebruiken we de zogenaamde geleidelijke intensiteitsafknotting. De
relevante structuureigenschappen zijn invariant voor de afkapping. Na deze te
hebben aangetoond kunnen we hieruit concluderen dat een generalisatie van
de cµ-regel optimaal is.

Een praktische manier om eigenschappen aantonen via waarde iteratie is
door middel van het zogenaamde gebeurtenis-gebaseerd dynamisch program-
meren. Hierbij worden de veschillende gebeurtenissen apart gemodelleerd door
operatoren, waarvoor propagatie-resultaten gelden. Bij afgekapte modellen
ontstaan er gebeurtenissen met speciale afgeknotte intensiteiten. Van deze
gebeurtenissen en de bijbehorende operatoren wordt in Hoofdstuk 7 een over-
zicht gegeven, inclusief een opsomming van de belangrijkste nieuwe propagatie-
resultaten.
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