These notes were prepared to accompany the first lecture in a seminar on logarithmic geometry. As we
shall see in later lectures, logarithmic geometry offers a natural approach to study semistable schemes.
By this, we mean proper, flat morphisms f : X — S whose fibres over geometric points § € .S are such
that the singular points of X5 have local rings isomorphic to k[z1,...,z,]/(z1 - - - x,) for some s < n.

More generally, logarithmic geometry is useful for studying problems of compactification in algebraic
geometry. Suppose we have a morphism g : U — T that is smooth, but not proper, and whose fibres
satisfy certain desirable properties (such as being semistable varieties). As properness is often desirable,
we might hope for a morphism f : X — S extending g, but such that f is proper and flat. To study g
we are naturally lead to consider functions on X that restrict to invertible functions on U. This is not a
sheaf of rings (consider f and —f), but it is a sheaf of monoids.

Logarithmic geometry will allow us to generalise this. We begin by studying monoids and their spectra.
Note that these notes closely follow those of Ogus [1].

0.1 SPEC OF A MONOID

We recall the definition of a monoid:

Definition 1. A monoid is a triple (M, *,e) where M is a set, * is an associative binary operation on
M, and e is a 2-sided identity element of M.

Hence monoids are "almost" groups, albeit we cannot always invert elements. As with groups, we shall
often write the operation * as additive of multiplicative, depending on which is more convenient. All
monoids considered will be commutative. We state without proof the following, though a proof can be
found in Chapter 1.1 of Ogus [1].

Fact 1. Arbitrary limits and colimits exist in the category of commutative monoids.

In particular we may form fibred products and pushout diagrams.

Example 1. Let N={0,1,2,...} be the set of natural numbers under addition. Then it is immediately
verified that N is a monoid.

There is an obvious way to embed N in the group Z. It can be shown that this embedding is universal in
the following sense: Given any morphism of monoids f : N — M where M is a group, f factors uniquely
asN—-Z— M.

This generalises to arbitrary monoids.

Definition 2. Let N be a monoid. The groupification of N, denoted N9, is the unique group, along
with a morphism from N — N9P_ such that any monoid morphism f: N — G where G is a group factors
through NIP.

Note that the morphism from N to N9 need not be injective as the example below from Gillam [2]
illustrates.

Example 2. Let Py ={0,---, N}, and define an operation on Py via a+b = maz{a+b, N}. Note that
this makes Py into a commutative monoid. We claim that PyY = {0}.

Indeed, note that given any monoid M and elements a,b,m € M such that a +m = b+ m, we must have
that the images of a and b in M9 coincide. To see this, note that the image of m is invertible in M9P
by definition, and so the result follows by adding the inverse of m to both sides of the equality.



Thus, for any a,b € Py we find that a + N = b+ N, whence the image of of P in P9 is the trivial
subgroup. By the universal property of P it follows that P35’ = {0}. In particular, the map from
Py — P{F is not injective.

We can avoid such unintuitive scenarios by requiring that our monoids are integral, which we now define.

Definition 3. Let M be a monoid. We say that M is integral if the cancellation law holds in M That
18, given m,m’,m” € M, whenever

m+m =m+m”,
we have that m' =m”.

Integral monoids shall play a large role in defining log structures on schemes. Of similar importance is
that of the group of units of a monoid. Given a monoid M, the group of units of M, denoted by M*, is
the set {m € M : 9n € M such that m +n = 0}. The non-units are denoted by M, and the quotient
M /M* is denoted by M. Note that there are no non-trivial units in M.

Example 3. Let k be any field, and let R = k[[t]] be the ring of power series in variable t over k. Then
R is a discrete valuation ring with maximal ideal t, and its multiplicative monoid has group of units
isomorphic to {a +tf(t) : a € k*}. Furthermore, we have that R/R* ~ N as monoids.

Definition 4. Let M be a monoid. An ideal of M is a submonoid I such that whenever n € I and
m € M, we haven+m € I. I is a prime if [ # M and whenever n +m € I we must have either n € I
orm € I. A face of a monoid is a submonoid F such that whenever n +m € F we have both n and m
are i F.

Remark 1. Every prime ideal P defines a face Fp = M \ P. Indeed, suppose m +n € Fp. If either or
both of n and m are in P, then so too must their sum be in P. Finally, Fp is closed under the binary
operation. If both n and m are in F', but n+m € P, then as P is prime we would have either n or m is
in P. Hence Fp is a face.

Conversely, any face determines a unique prime ideal of M, taken to be the compliment of the face. Hence
there is a bijection between the set of prime ideals and the set of faces of a given monoid.

Example 4. Let M = (Z,*), and let p be any prime number. Then pZ is a prime ideal of the monoid
M.

Furthermore, the compliment in M of pZ is the set (pZ)° = {a € Z : pt a}. By unique factorisation we
see that ab € (pZ)° if and only if both a and b belong to the compliment, confirming that (pZ)¢ is a face
of the monoid M.

Remark 2. The group of units M™ is contained in every face of M, and is in fact the smallest face of
M. Likewise, the compliment M of the group of units is the unique maximal ideal of M.

Definition 5. Let M be a monoid. We denote by Spec(M) the set of prime ideals of M. For any ideal
I of M, we denote by Z(I) the set of prime ideals containing I.

Lemma 1. Given a monoid M, there is a natural topology on Spec(M) whose closed subsets are of the
form Z(I) for an ideal I.

The proof of this is omitted. The resulting topological space is referred to as the Zariski topology. As
in the case with spectra of rings, we find that the irreducible closed subsets are in bijection with prime
ideals of M. Furthermore, given a homomorphism between two monoids, the inverse image of prime



ideals and faces are prime ideals and faces, respectively, and so there is to any such homomorphism a
resulting morphism of topological spaces.

Spectra shall be relevant later when we define charts of sheaves of monoids on a topological space.

Example 5. Let M = N2. Let P be a non-empty prime ideal, so that there exists some element (a,b) € P.
Note we cannot have a = b =0 as then P = M. Then (a,b) = a(1,0) + b(0,1), and as P is prime we
conclude that P must contain either (1,0) or (0,1) or both. We find that the unique closed point of
Spec(M) is M+ =< (1,0),(0,1) > that is the intersection of the closed subsets associated to the prime
ideals < (0,1) > and < (1,0) >, respectively. The other closed point is defined by the trivial prime.

Example 6. Let P be any monoid, and let R be a ring. Define the ring R[P] as the R-algebra whose
underlying R-module is the free R-module with basis elements given by P, and whose multiplication law
is the R-linear extension of [a][b] = [a + b]. R[P] is called the R-monoid algebra of P.

In particular, we have that Z|N] ~ Z[t], where t = [1]. More generally, given any ring R we have that
R[N*] = Rlty, -, ti]

0.2 PROPERTIES OF MORPHISMS OF MONOIDS

Let us state some properties of morphisms of monoids.

Definition 6. A morphism of monoids f: M — N is

e local if f~Y(N*) = M*;

e sharp if the induced homomorphism M* — N* is an isomorphism;

e logarithmic if the induced homomorphism f~1(N*) — N* is an isomorphism;

o strict if the induced homomorphism f : M — N is an isomorphism.
As suggested by the name, logarithmic homomorphisms are of special importance in logarithmic geometry.
The following lemma helps paint a more intuitive picture of what it means to be logarithmic.

Lemma 2. Let f : M — N be a homomorphism of monoids. Then f is logarithmic if and only if it is
sharp and local.

Proof. Suppose that f is logarithmic. Then f~!(N*) is a group contained in M that necessarily contains
M. Hence it is equal to M*, and so f is sharp and local.

Conversely, if f is sharp and local, then f~!(N*) = M* is isomorphic to N*, and so f is also logarithmic.
O

Example 7. Let A be a ring, and let S C A be a multiplicative subset not containing 0. Let M = {a €
A:a € (STYA)*}. Then the natural inclusion M — A, considered as a monoid homomorphism to the
multiplicative monoid of A, is logarithmic.

0.3 SHEAVES OF MONOIDS AND CHARTS

Logarithmic schemes shall turn out to be monoidal spaces.



Definition 7. A monoidal space (X, Mx) is a pair with X a topological space and Mx a sheaf of
monoids on X. A morphism of monoidal spaces

(f+ )+ (X, Mx) = (Y. My)
is a pair (f, f°) where f : X =Y is a continuous map of topological spaces and
£ My = My

18 a homomorphism of sheaves of monoids such that the induced morphism on stalks fg My po) = Mx e
s a local morphism of monoids.

Remark 3. By functoriality, it is equivalent in the above definition to consider My — f* : fuMx.

Example 8. Let X and Y be any two schemes with a morphism f : X — Y between them. Consider
the sheaf of monoids Mx = Ox on X and My = Oy on Y. That is, we consider the sheaf of rings but
only with the multiplicative structure. The assumption that f is a morphism of schemes ensures that the
induced ring homomorphism

o Oy, f(a) = Ox x

s a local homomorphism, i.e. fb(my,f(z)) C mx,z, and hence that the induced morphism of monoids is
a local homomorphism of monoids.

Example 9. Recall that given any monoid Q we may define a topological space Spec(Q). This has a
natural structure of a monoidal space. A base of open sets can be taken to be of the form Spec(Qyf),
where f € @) is some element and Q¢ is the localisation of Q at f. That is, Qy, along with the natural
homomorphism Q@ — Q¢, satisfies the universal property that given any homomorphism from @@ — M
with the image of f invertible, this must factor uniquely through Q — Q. When Q is integral, Qs meets
our intuition in that it’s elements are of the form q — f7, with r some integer and q € Q.

A monoidal space isomorphic to Spec(Q) for some monoid @ is said to be affine. If a monoidal space
admits a cover by such affine open sets, we say that it is a monoscheme.

As with locally ringed spaces, many properties of sheaves of monoids can be checked at the stalks. For
example, we say a sheaf of monoids is integral if for every open set U C X the sheaf M x (U) is an integral
monoid, and this is equivalent to the stalk M x , being an integral monoid for every x € X. Similarly,
morphisms of monoidal spaces are said to have property P of homomorphisms of monoids if the induced
monoid homomorphism between stalks has property P for all points x € X.

Definition 8. A homomorphism of sheaves of monoids f : M — N on a topological space X is said to
be logarithmic if the induced homomorphism f~Y(N*) — N* is an isomorphism. Here, f=*(N*)(U) =
FO)TEN(U)).

Remark 4. That f~Y(N*) is a sheaf of monoids follows from the assumption M is a sheaf of monoids
and the fact f is a homomorphism of sheaves.

In general, the morphisms between monoidal spaces in logarithmic geometry do not result in logarithmic
homomorphisms of sheaves of monoids, and so we seek a way to factor an arbitrary homomorphism of
sheaves of monoids through a logarithmic one. This is the content of the following lemma.

Lemma 3 (Proposition 2.1.1.5 of Ogus [1]). Let f : M — N be a homomorphism of sheaves on monoids
on a topological space X, and let [ be one of the following properties: local, sharp, logarithmic. Then
there exists a factorisation of f

1
f=M-oM LN,
where f! has property | and satisfies the following universal property: Given any factorisation of f as

f=M-—->M f—> N where f' has property 1, there exists a unique homomorphism M — M’ that makes
all triangles in the following diagram commute:



The final concept needed to define logarithmic structures is that of charts and coherence. Given a sheaf
of monoids M on a topological space X, a chart for M is a way of describing M via a constant sheaf of
monoids. If Q) is any monoid, let @ denote the constant sheaf of monoids whose sections on any open set
are equal to (). The following lemma has a scheme-theoretic analogue, and we state it without proof.

Lemma 4. Let (X, Mx) be a monoidal space, and let Q be a monoid. Then there is a natural map
MOT(Xa Sp@C(Q)) — Hom(Q, F(Xa MX))a

and in fact this is an isomorphism.

Hence to give a homomorphism from @ to Mx (or equivalently from Q — M) is equivalent to giving a
morphism of monoidal spaces from X — Spec(Q).

Definition 9. Let M be a sheaf of monoids on a topological space X and let Q be a monoid. A chart
for M subordinate to Q is a monoid homomorphism [ : Q — T'(X, M) and such that the associated
logarithmic map f'°9 : Q%9 — M is an isomorphism. The chart is coherent if Q is a finitely generated
monoid.

At times it is convenient to replace Spec(Q) with a monoscheme. The following lemma allows us to make
sense of this.

Lemma 5 (Proposition 2.1.1.2 of Ogus [1]). Let Q be a monoid, (X, M) a monoidal space, and suppose
we have a homomorphism of monoids f° : Q — M corresponding to a morphism of monoidal spaces

f:X — S = Spec(Q).
Then every point x € X gives a natural isomorphism
QI — fir (M (),

where f[’;g (Mg, f(z)) is the unique monoid as in Lemma 3 associated to the homomorphism f’l(/\/l57f(x)) —
M. Furthermore, the following are equivalent:

e % is a chart for M.

e For every x € X, the homomorphism Q9 — M., induced from the inclusion M* — M and
ffc 1 Q — M, is an isomorphism.

o The homomorphism flbog D flog(Ms) = Mx is an isomorphism.

Example 10. Let QQ be any monoid. Form the monoidal space Spec(Q), where Q@ — Ogpec(q) corresponds
to the identity morphism on Spec(Q). This trivially satisfies the condition on the induced homomorphism
of stalks, and so we also have a chart.

Now consider Spec(Z[Q)]). There is a natural injection of Q into the underlying ring that sends an element
q — 1[g]. Once again we find that Q is a global chart for this monoidal space.

This lemma allows us to generalise the notion of a chart by replacing Spec(Q)) with an arbitrary monoscheme,
viz. a chart for M x is a morphism f : X — S with S a monoscheme such that the associated homomor-
phism flbog : ffog(/\/ls) — M is an isomorphism.



Definition 10. Let M be a sheaf of monoids on a topological space X. Then M is coherent (resp.
quasi-coherent) if there exists an open cover U of X such that the restriction of M to each U € U admits
a chart (resp. a chart subordinate to a finitely generated monoid). If M is both coherent and integral, we
say it is fine.

0.4 LOGARITHMIC SCHEMES

We arrive at last at the definition of logarithmic structures.

Definition 11. Let (X,0Ox) be a scheme. A prelogarithmic structure on X is a homomorphism of
sheaves of monoids o : P — Ox on either Xg or X,or. A logarithmic structure is a prelogarithmic
structure such that a=1(O%) — O% is an isomorphism. Given two logarithmic structures o : M — Ox
and o : M'" — Ox, a morphism from « to o' is a homomorphism 6 : M — M’ such that o/ o 0 = «.

Example 11. Let us return to looking at a previous example, where we considered a ring A, a multi-
plicative subset S of A, and let M = {a € A:a € (S~LA)*}. Suppose that T is a multiplicative subset of
A containing S, and let N = {a € A:a € (IT"YA)*}. Then the inclusions of M and N into A are log-
arithmic homomorphisms of monoids and so provide a logarithmic structures on Spec(A). Furthermore,
the inclusion of S — T 1is then a morphism of logarithmic structures.

Remark 5. The "logarithmic” part of a logarithmic structure can be seen as follows: Given a logarithmic
structure o : M — Ox, we have an isomorphism M* with O%. Given units u,v of O, we then have
a Huv) = a t(u) + a”1(v) (here we are using the additive notation for M). Hence a1 (u) can be
thought of as the logarithm of u, and given any element f € Ox, a~L(f) is the possible empty set of
logarithms of f.

Remark 6. We have seen in an earlier example that the inclusion O% — O makes any scheme a
monoidal space. In fact, it is easily checked that this equips any scheme with a logarithmic structure. It is
referred to as the trivial log structure, and is in fact the initial object in Logx, the category of logarithmic
structures on X.

Given a morphism of schemes, we may form the direct image and inverse image log structures, respectively.

Lemma 6. Let f: X — Y be a morphism of schemes.

1. Let a: M — Ox be a log structure on X, and form the Cartesian diagram:

fi0%(a)
=

°9(M) Oy

J«(a)

feM) — [.(Ox)

Then fX9(a) is a log structure on'Y, and
fl°9 - Logx — Logy
is a functor from the category of log structures on Y to those on X.

2. Let a: N — Oy be a log structure on'Y, and let

flog(e) : fi;g(N) — Ox



be the log structure associated to the homomorphism of sheaves of monoids from f~1(N) — Ox.
Then

Jiog - Logy — Logx

is a functor from the category of log structures on'Y to those on X, and is the left adjoint to fiog.

The section following this features an extended example of log structures in the form of DF structures.

Definition 12. A log scheme (X,Ox) is a scheme together with a log structure « : M — Ox. A
morphism of log schemes f : X — Y is a morphism of the underling schemes along with a homomorphism
7 My — f.(Mx) such that the following diagram commutes:

My L feMx)

iay lf* (ax)
1

Oy —L 5 £.(0x)

Example 12. The previous example of the union of two axis in affine space is a logarithmic scheme,
with the log structure as given.

Example 13. Let P — A be a homomorphism from a monoid P to the multiplicative monoid of a ring A.
Such a homomorphism is called a log ring, and we can form a log scheme Spec(P — A) whose underlying
scheme is Spec(A) and whose log structure is that associated to the prelog structure P — O4.

We conclude by relating locally monoidal spaces to log schemes, as well as looking at how a chart on a
log scheme is the same as a morphism of locally monoidal spaces.

Lemma 7 (Proposition 3.1.2.4 of Ogus [1]). Let X be a log scheme, @ a monoid, and S = Spec(Q) a
monoidal space. The following are equivalent:

o A monoid homomorphism « : Q — I'(X, Mx).
o A morphism of locally monoidal spaces a : (X, Mx) — (S, Msg)
o A morphism of log schemes f : X — Ag, where Ag = Spec(P — Z|[P)]

Furthermore, o is a chart for Mx if and only if f satisfies fl*og(./\/lAQ) — Mx is an isomorphism. In
this case we say that f is strict, and any of the above 3 conditions is said to be a chart for Mx.

0.5 EXTENDED EXAMPLE: DF STRUCTURES AND NORMAL-CROSSING
DIVISORS

We conclude by looking at a family of examples of log structures. In this section, X will be used to denote
a scheme. DF structures, once defined, will be shown to yield log structures on an arbitrary scheme X
that admit particularly nice charts. Normal crossing divisors will be shown to be a specific case of DF
structures.

Definition 13. A DF structure on X is a finite sequence v, of homomorphisms v; : L; — Ox, where L;
s an tnvertible sheaf on X.



To a DF structure we now associate a sheaf of monoids P. On an open set U of X, the sections of P are
of the form (a, I), where I = (I1,...,1I,) € N* is a multi-index and a € £* @ --- ® LI (U). The monoid
structure is defined via tensor product. We then define a map v : P — Ox by sending (a,I) — v!(a),
where ! = 'lel @@~k . £T — Ox. This gives a prelog structure whose associated log structure is

M.

Remark 7. Note that the injection O% — P : u — (u,0) identifies O% with the sheaf of units of P,
essentially by the definition of P.

We'll see an example shortly in the form of normal crossing divisors, but first let us define a chart for this
log structure. For each ¢, the image Z; of ~; is a quasi-coherent sheaf of ideals on X, hence it defines a
closed subscheme Y; of X. Let p: P — N" denote the projection onto the second factor. Because the L;
are invertible, on any small enough open set U we can choose a choice of generators a; of £; and define

a splitting of p by sending I — (a{1 ---al» T). Hence we have an exact sequence

0—- 0% -P—N"=0,
whence P = N and so the chart 3 : P — M defines a homomorphism 3 : N* — M.
Lemma 8. The map B : N™ — M lifts locally to a chart N* — M.

Proof. Let U be any open set on which the £; are free, and let o : N™ — P denote the splitting defined
above. The composition oo : N* — M lifts § and is the chart we desire. O

We turn our attention now to divisors with normal crossings.

Definition 14. Suppose X is a regular scheme. A divisor with normal crossings is a closed subscheme
Y C X such that the intersection of any set of irreducible components of Y is also reqular. A scheme Y
is a normal crossings scheme if for every y € Y, there exists an étale neighbourhood U of y and a closed
immersion tdentifying U with a divisor with strict normal crossings in a regular scheme X.

Remark 8. If the neighbourhood can be taken as a Zariski open neighbourhood, we say Y is a strict
normal crossings scheme. we shall work with this case in this example, but many results hold true in the
étale topology. See Chapter II11.1.8 of Ogus [1] for details.

Remark 9. Y is a strict divisor with normal crossings in X if and only if for every point x of X, there
exists a regular sequence (ti,...,tm) generating the mazimal ideal of Ox  and r € N such that t1 ... t,
generates the ideal of Y in Ox .

Example 14. Perhaps the simplest example of a strict normal crossing scheme is Y = Spec(Clz, y]/(zy)),
the union of the coordinate azes in the affine plane.

Let Y be a strict divisor with normal crossings in X, and suppose its irreducible components Y; are
defined by ideals Z;. The inclusions Z; — Ox defines a DF-structure on X. By combining the discussion
of DF structures with this, we obtain

Lemma 9. Let Y — X be a strict divisor with normal crossings in a reqular scheme X, and v the DF
structure defined by the ideals of the irreducible components of Y in X. Let a : M — Ox denote the
corresponding log structure. Given a point x € X, let {Y1,---,Y.} the set of irreducible components of
Y containing x. Then in a neighbourhood of x we have a chart 8 : N — M such that a(B(e;)) is a
generator of I; for all i.

Thus logarithmic geometry naturally lends itself to the study of such divisors. Later in the seminar we
shall look at a paper by Kato [3] where logarithmic geometry applied in such a manner.
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