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Abstract. C∗–algebras provide an elegant setting for many problems in mathematics and
physics. In view of Gelfand duality, their study is often referred to as noncommutative topology :
general noncommutative C∗–algebras are interpreted as noncommutative spaces. These form an
established research field within mathematics, with applications to quantum theory and other
areas where deformations play a role. Many classical geometric and topological concepts can
be translated into operator algebraic terms, leading to the so-called noncommutative geometry
(NCG) dictionary.

These lectures aim to provide the participants with the tools to understand, consult and
use the NCG dictionary, covering the basic theory of C∗-algebra and their modules. Focus will
be given on examples, especially those that come from deformation theory and quantisation.
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CHAPTER 1

An introduction to commutative C∗-algebras

Motivation

Over the past decades, the term noncommutative topology has come to indicate the study of
C∗-algebras. In this lecture series, I have tried to stay as closed as possible to the original moti-
vation: I will make use of many results and definition stemming from the theory of C∗-algebras,
the focus will always be on the topological aspects. In the spirit of Connes’ noncommutative
geometry, I will think of a C∗-algebra as some sort of generalised topological space.

The goal of this lecture series is to provide the reader with some basic tools to understand
the so-called NCG dictionary, or at least its topological entries:

operator algebra topology

commutative C* algebra locally compact Hausdorff space

unitality compactness

* homomorphisms continuous proper functions

* automorphisms homeomorphisms

separability metrizability

finitely generated projective module vector bundle

equivalence bimodule line bundle

f.g.p. C∗-module Hermitian vector bundle

self-Morita equivalence Hermitian line bundle

quantum group coaction Lie group action

Hopf–Galois extension principal bundle

1. Trading spaces for algebras

Let X be a compact, Hausdorff topological space. The set of continuous functions X → C
(with respect to the standard topology on the set of complex numbers C) will be denoted by
C(X). We are interested in the properties of this set, which, as we will see, gives a complete
algebraic characterisation of the underlying topological space.

(1) It inherits a complex vector space structure from C: for all f, g ∈ C(X), and for every
λ ∈ C we can define the function f + λg as

(f + λg)(x) = f(x) + λg(x).

(2) It is a commutative, unital algebra:
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(a) multiplication between functions is defined point-wise, namely (fg)(x) := f(x)g(x)
for all x ∈ X, and this defines a commutative product, namely fg = gf for all
f, g ∈ C(X);

(b) the constant function 1(x) ≡ 1 is the unit element for this multiplication;
(c) the product is compatible with the vector space structure;

(3) There is a natural norm on the algebra C(X)

(1) ‖f‖ := sup
x∈X
|f(x)|,

and the norm is compatible with the algebra structure, i.e. ‖fg‖ ≤ ‖f‖ ‖g‖. This
makes (C(X), ‖ · ‖) into a normed algebra.

(4) C(X) is complete with respect to the norm defined in (1), i.e. every Cauchy sequence
in C(X) converges in the topology defined by the norm (1). One says that (C(X), ‖·‖)
is a Banach algebra.

(5) The Banach algebra C(X) possesses a ∗-structure, namely an antilinear map ∗ : C(X)→
C(X) such (f∗)∗ = f (∗ is thus called an antilinear involution): this is defined by

f∗(x) := f(x), where z is the complex conjugate of z ∈ C. It is compatible with the
∗-structure: ‖f∗‖ = ‖f‖.

(6) The norm satisfies the C∗-property, namely

‖f∗f‖ = ‖f‖2 for all f ∈ C(X).

Indeed

‖f∗f‖ = sup
x∈X
|f(x)f(x)| = sup

x∈X
|f(x)|2 = ‖f‖2.

The above list of properties can be summarized by saying that C(X) is a commutative unital
C∗-algebra

Definition 1.1. An (abstract) C∗-algebra is a Banach algebra (A, ‖ · ‖) with the property

that

(2) ‖a∗a‖ = ‖a‖2

for every a ∈ A.

The C∗-property (2) is crucial, as it ties together analytical and algebraic properties and
has profound implications, giving C∗-algebras a very special place within the zoo of Banach
algebras. The most striking one, perhaps, is that, as we will see, the norm of a (commutative)
C∗-algebra can be given in purely algebraic terms.

Our goal is to prove that, actually, all commutative C∗-algebras are of the form C(X) for
some compact Hausdorff space X:

Theorem 1.1 (Gel’fand–Năımark). Let A be a commutative, unital C∗-algebra. Then there

exists a compact Hausdorff space X = σ(A), called the spectrum of the algebra A, such that A

is isometrically ∗-isomorphic to the algebra C(σ(A)) of continuous functions on σ(A).

Exercise 1.1. Show that the same definitions as above make the space

Cb(X) :=

{
f ∈ C(X)

∣∣∣∣ sup
x∈X
|f(x)| <∞

}
of bounded continuous functions on X into a unital, commutative C∗-algebra.

1.1. Spectral theory for Banach algebras. In this Section, we recall some basic facts
from the spectral theory of Banach algebras.

6



1.1.1. Invertibility and the spectrum. Recall that an element a of a unital algebra (or ring)
A is called invertible if there is an element b ∈ A such that ab = ba = 1.

Exercise 1.2. Let A be a unital ring.

(1) Prove that if a ∈ A is invertible, then there is a unique b ∈ A satisfying ab = ba = 1.

This b is usually denoted a−1.

(2) Given a ∈ A, suppose that there exist elements b, c ∈ A such that ab = ca = 1. Prove

that b = c (and hence that a is invertible).

(3) Show that if a and b are invertible, then ab is invertible with (ab)−1 = b−1a−1. (So the

set of invertible elements of A forms a group under multiplication.)

(4) Show that if a and b commute (i.e., ab = ba), then ab is invertible if and only if both

a and b are invertible.

(5) Find an example of a unital C∗-algebra A and elements a, b ∈ A such that ab = 1 but

a and b are not invertible.

(6) Now suppose that A is a C∗-algebra, and that a ∈ A is invertible. Show that a∗ is

invertible, with (a∗)−1 = (a−1)∗.

Definition 1.2. Let A be a Banach algebra with unit element 1. The spectrum of an

element a ∈ A is the set

σ(a) := {z ∈ C | z1− a is not invertible in A}.

The resolvent of a is the complement of the spectrum:

C \ σ(a) = {z ∈ C | z1− a is invertible in A},

and the resolvent function for a is the function

Ra : C \ σ(a)→ A, Ra(z) := (z1− a)−1.

The notion of spectrum generalises both the range of a function, and the set of eigenvalues
of a matrix.

Exercise 1.3. Consider the C∗-algebra C(X) of continuous functions on a compact Haus-

dorff space X. Prove that for each f ∈ C(X) one has

σ(f) = range(f) = {f(x) ∈ C | x ∈ X}.

Exercise 1.4. Consider the C∗-algebra Mn(C) of n × n matrices. Prove that for each

a ∈Mn(C) one has

σ(a) = {eigenvalues of a}.

Exercise 1.5. Show that in a unital C∗-algebra one has σ(a∗) = σ(a) = {z | z ∈ σ(a)}.

Exercise 1.6 (Properties of the Spectrum). Let A be a unital Banach algebra.

(1) Show that for all a, b ∈ A one has

σ(ab) ∪ {0} = σ(ba) ∪ {0}.

Hint: prove that if z1− ba is invertible, then (1 + a(z1− ba)−1b)(z1− ab) = z1.

(2) Find an example where σ(ab) 6= σ(ba).

(3) Show that for each w ∈ C and each a ∈ A one has σ(w1 − a) = w − σ(a), where the

right-hand side is defined to be the set {w − z | z ∈ σ(a)}.
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(4) Show that for each polynomial p =
∑n

i=0 pix
i ∈ C[x] and each a ∈ A one has

σ(p(a)) = p(σ(a))

where we define p(a) =
∑n

i=0 pia
i, and p(σ(a)) = {p(z) ∈ C | z ∈ σ(a)}. This equality

is (an example of) the spectral mapping property. ( Hint: write the polynomial z1− p
as a product of linear factors.)

Exercise 1.7. Let φ : A → B be a homomorphism of unital Banach algebras (i.e., a

linear map satisfying φ(a1a2) = φ(a1)φ(a2) for all a1, a2 ∈ A, and φ(1A) = 1B). Prove that

σ(φ(a)) ⊆ σ(a) for every a ∈ A.

We shall need the following fact about convergence of series in Banach spaces (which you
might have seen in a course on functional analysis).

Proposition 1.2. Let xn be a sequence of elements of a Banach space X such that the

series
∑∞

n=0 ‖xn‖ converges in R. Show that the series
∑∞

n=0 xn converges in X.

Lemma 1.3. Let A be a unital Banach algebra, and let a ∈ A be an element with ‖1−a‖ < 1.

Then a is invertible, with

a−1 =
∞∑
n=0

(1− a)n.

(As usual, we define x0 := 1 for all x ∈ A.)

Proof. Since A is a Banach algebra we have ‖(1− a)n‖ ≤ ‖1− a‖n for every n ≥ 0. Since

‖1−a‖ < 1, comparison with a geometric series shows that the series
∑∞

n=0 ‖(1−a)n‖ converges.

Exercise 1.2 then implies that the series
∑∞

n=0(1− a)n converges to some element b ∈ A.

Since multiplication in a Banach algebra is continuous, we have

ab = (1− (1− a))b

= (1− (1− a)) · lim
N→∞

(
1 + (1− a) + (1− a)2 + · · ·+ (1− a)N

)
= lim

N→∞
(1− (1− a))(1 + (1− a) + (1− a)2 + · · ·+ (1− a)N )

= lim
N→∞

(1− (1− a)N+1)

= 1

(because ‖(1 − a)N‖ ≤ ‖1 − a‖N → 0). A similar computation, left to the reader, shows that

ba = 1, and so a is invertible with a−1 = b. �

Corollary 1.4. Let A be a unital Banach algebra. Suppose that a ∈ A is invertible, and

that b ∈ A satisfies ‖a− b‖ < ‖a−1‖−1. Then b is invertible.

Proof. We have

‖1− a−1b‖ = ‖a−1(a− b)‖ ≤ ‖a−1‖ · ‖a− b‖ < 1

by our assumption on ‖a − b‖, and so a−1b is invertible by Lemma 1.3. Thus the product

b = a(a−1b) is invertible by Exercise 1.2. �

Exercise 1.8. Use Corollary 1.4 to prove that the set of invertible elements in a unital

Banach algebra A is an open subset of A (in the norm topology); and that for each a ∈ A the

spectrum σ(a) is a closed subset of C.
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Lemma 1.5. Let A be a unital Banach algebra. For each a ∈ A, and each complex number

w ∈ C \ σ(a), the resolvent function Ra is given on the disk {z ∈ C | |w − z| < ‖Ra(w)‖−1} by

the convergent power series

Ra(z) =

∞∑
n=0

(w − z)nRa(w)n+1.

We are going to use these facts (Lemmas 1.3 and 1.5) to prove:

Theorem 1.6. For each element a of a unital Banach algebra A, the spectrum σ(a) is a

nonempty, compact subset of C.

Proof. We first show that σ(a) is compact. If z ∈ C has |z| > ‖a‖, then

‖1− (1− z−1a)‖ = ‖z−1a‖ = |z|−1‖a‖ < 1,

and so Lemma 1.7 implies that 1− z−1a is invertible, with

(1− z−1a)−1 =
∞∑
n=0

z−nan.

Therefore z(1− z−1a) = z1− a is invertible too, with

(3) Ra(z) = (z1− a)−1 =

∞∑
n=0

z−n−1an.

This shows that

σ(a) ⊆ {z ∈ C | |z| ≤ ‖a‖},
and so σ(a) is a bounded subset of C. Since the spectrum is also closed, as we saw in the last

lecture, it is compact (by the Heine–Borel theorem).

It remains to show that σ(a) is nonempty. Suppose that σ(a) is empty, so that z1 − a is

invertible for every z ∈ C. We are going to arrive at a contradiction to Liouville’s theorem,

which asserts that the only bounded analytic functions on C are the constants. (Compare with

the proof that every a ∈ Mn(C) has an eigenvalue: one uses Liouville’s theorem to prove that

every complex polynomial has a root.)

The element Ra(0) ∈ A is invertible, hence nonzero, and so the Hahn-Banach theorem

implies that there is a bounded linear functional φ ∈ A∗ for which the function

Fφ : C→ C, Fφ(z) := φ (Ra(z))

has Fφ(0) 6= 0. Since φ is linear and continuous, Lemma 6 from Monday 4/9 implies that Fφ
is given in a neighbourhood of each point w ∈ C by a convergent power series, and is thus an

analytic function. On the other hand, (3) implies that for |z| > ‖a‖ we have

‖Ra(z)‖ ≤
∞∑
n=0

|z|−n−1‖a‖n =
1

|z| − ‖a‖
→ 0 as |z| → ∞,

and so

|Fφ(z)| ≤ ‖φ‖‖Ra(z)‖ → 0 as |z| → ∞.
Now Liouville’s theorem implies that Fφ(z) = 0 for every z ∈ C, whereas we chose φ in such a

way that Fφ(0) 6= 0. Having arrived at a contradiction, we conclude that σ(a) is nonempty. �

Corollary 1.7 (Gelfand–Mazur). Let A be a unital Banach algebra in which every nonzero

element is invertible. Then A ∼= C.
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Proof. Exercise. �

Definition 1.3. The spectral radius radius(a) of an element a of a unital Banach algebra

A is defined to be the number

radius(a) := sup
z∈σ(a)

|z|.

Exercise 1.9. Prove that radius(an) = radius(a)n for every n ≥ 0.

We saw in the proof of Theorem 1.6 that

(4) radius(a) ≤ ‖a‖

for every a. This inequality can be strict:

Exercise 1.10. Find an example of a unital Banach algebra A and an element a ∈ A such

that radius(a) 6= ‖a‖.

Nevertheless, the spectral radius can be expressed in terms of the norm:

Lemma 1.8. Let A be a unital Banach algebra. For each a ∈ A one has

radius(a) = lim
n→∞

‖an‖1/n.

For C∗-algebras, we have the following improvement of the spectral radius formula:

Proposition 1.9. If A is a C∗-algebra and a ∈ A is self-adjoint (i.e., a = a∗), then we

have radius(a) = ‖a‖.

Proof. If b is any self-adjoint element of A then ‖b2‖ = ‖b∗b‖ = ‖b‖2. Applying this

inductively shows that ‖a2n‖ = ‖a‖2n for every n ≥ 0. Thus the sequence ‖an‖1/n, whose limit

is radius(a), has a constant subsequence ‖a2n‖1/2n = ‖a‖. Thus radius(a) = ‖a‖. �

Exercise 1.11. Let A be a unital C∗-algebra.

(1) Prove that if a ∈ A is normal (i.e., aa∗ = a∗a), then radius(a) = ‖a‖.
(2) Prove that for every a ∈ A one has ‖a‖ = radius(a∗a)1/2.

This fact provides our first illustration of the way that the algebraic structure, the involution,
and the norm in a C∗-algebra are all intimately linked. In particular, the norm is completely
determined by the ∗-algebra structure!

1.2. The Gelfand transform and commutative C∗-algebras. Our goal is to realise
any commutative unital C∗-algebra as the algebra of continuous functions on some compact
Hausdorff space. The first step is to extract a compact Hausdorff space from any commutative
unital Banach algebra.

Definition 1.4. A multiplicative linear functional on a commutative Banach algebra A

is a nonzero algebra homomorphism φ : A → C: that is, a nonzero linear map satisfying

φ(ab) = φ(a)φ(b) for all a, b ∈ A. The set of all multiplicative linear functionals on A is

denoted σ(A).

Exercise 1.12. Show that φ(1A) = 1C for every φ ∈ σ(A).

Lemma 1.10. Let A be a unital commutative Banach algebra. Then every multiplicative

linear functional on A is bounded with norm 1.
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Proof. If a ∈ A is such that |φ(a)| > ‖a‖, then the element 1− φ(a)−1a ∈ A is invertible,

by Lemma 1.3; let b be its inverse. We then have

1 = φ(1) = φ((1− φ(a)−1a)b) =
(
φ(1)− φ(a)−1φ(a)

)
φ(b) = 0,

and this contradiction implies that we must have |φ(a)| ≤ ‖a‖ for every a ∈ A. Thus φ is

bounded with ‖φ‖ ≤ 1. Since |φ(1)| = 1 = ‖1‖ we in fact have ‖φ‖ = 1. �

Recall that the weak∗ topology on A∗ (or on the dual of any Banach space) is defined by
declaring that a net (φλ) ⊂ A∗ converges to φ ∈ A∗ if and only if the net of complex numbers
(φλ(a)) converges to φ(a) for every a ∈ A.

Exercise 1.13. Suppose that a net (φλ) ⊂ σ(A) of multiplicative linear functionals con-

verges, in the weak∗-topology on A∗, to some bounded linear functional φ ∈ A∗. Show that φ is

itself a multiplicative linear functional.

Corollary 1.11. If A is a unital commutative Banach algebra then σ(A) is compact and

Hausdorff in the weak∗ topology.

Proof. Lemma 1.10 asserts that σ(A) is a subset of the unit ball in the Banach space A∗,

while Exercise 1.13 asserts that σ(A) ⊂ A∗ is closed in the weak∗ topology. The unit ball in

A∗ is compact and Hausdorff in the weak∗ topology, by the Banach-Alaoglu theorem. Thus the

closed subset σ(A) is compact and Hausdorff as well. �

So we have successfully associated a compact Hausdorff space to each commutative unital
Banach algebra. The next step is to realise the given algebra as an algebra of continuous
functions on the space.

Definition 1.5. Let A be a commutative unital Banach algebra. The Gelfand transform

for A is the map

Γ : A→ C(σ(A)), Γ(a) : φ 7→ φ(a).

Exercise 1.14. Show that the Gelfand transform Γ is well-defined (i.e., that Γ(a) is a

continuous function on σ(A) for every a ∈ A), and that Γ is a homomorphism of unital algebras

(i.e., Γ is linear, Γ(ab) = Γ(a)Γ(b) for all a, b ∈ A, and Γ(1) = 1).

For general Banach algebras, the Gelfand transform might fail to be injective and/or sur-
jective (see exercises). But for C∗-algebras:

Theorem 1.12 (Gelfand-Naimark). If A is a commutative unital C∗-algebra, then the

Gelfand transform is an isometric ∗-isomorphism Γ : A
∼=−→ C(σ(A)).

Lemma 1.13. The Gelfand transform for a commutative unital Banach algebra A preserves

spectra:

σ(a) = σ(Γ(a)) = {φ(a) | φ ∈ σ(A)}.
for every a ∈ A.

Proof. First notice that our computation of spectra in algebras of the form C(X) (see

corresponding Exercise ) immediately gives

σ(Γ(a)) = image(Γ(a)) = {φ(a) | φ ∈ σ(A)}.

Since Γ is a unital homomorphism, we get the inclusion σ(Γ(a)) ⊆ σ(a). So we are left to

show that σ(a) ⊆ σ(Γ(a)).
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Suppose then that z ∈ σ(a), so that z1− a is not invertible in A. Then z1− a is contained

in a maximal ideal J of A by a standard Zorn’s lemma argument 1. Hence, by the bijection

between spectrum and maximal ideals, there is a φ ∈ σ(A) with z−φ(a) = φ(z1−a) = 0. Then

Γ(a)(φ) = z, showing that z ∈ image(Γ(a)) = σ(Γ(a)). �

For general Banach algebras, the Gelfand transform might fail to be injective and/or sur-
jective.

Exercise 1.15. Let A ⊂M2(C) be the Banach *-algebra

A :=


w z

0 w

 ∣∣∣∣∣∣w, z ∈ C

 .

Show that the Gel’fand transform Γ : A→ C(σ(A)) is not injective.

From now on we are going to focus on C∗-algebras, where the situation is much better.

Recall from Proposition 1.9 that for A a C∗-algebra and a ∈ A is self-adjoint, we have

(5) radius(a) = ‖a‖.
Morevover, that if a is not self-adjoint we have

‖a‖2 = radius(a∗a).

As a consequence, we have uniqueness of the C∗-norm on a C∗-algebra.

The following easy exercise will be useful in the proof of the next lemma, which asserts
that if A is a C∗-algebra, then every algebra homomorphism A → C is automatically a ∗-
homomorphism.

Exercise 1.16. Show that every element in a C∗-algebra can be written as a = a1 + ia2

with ai ∈ A self-adjoint.

Lemma 1.14. Let A be a unital C∗-algebra, and let φ : A→ C be an algebra homomorphism.

Then φ(a∗) = φ(a) for every a ∈ A.

Proof. We first let a be a self-adjoint element of A (i.e., a = a∗), and write φ(a) = x+ iy

(for x, y ∈ R). For each t ∈ R we use the fact that linear functionals are bounded with norm

one and the C∗-identity to estimate

x2 + (y + t)2 = |x+ iy + it|2 = |φ(a+ it1)|2 ≤ ‖a+ it1‖2

= ‖(a+ it1)∗(a+ it1)‖ = ‖(a− it1)(a+ it1)‖ = ‖a2 + t21‖

≤ ‖a‖2 + t2.

Subtracting t2 from the first and the last expressions gives the inequality

x2 + y2 + 2ty ≤ ‖a‖2

for every t ∈ R. If y 6= 0 then the left-hand side can be made arbitrarily large by judicious

choice of t, so we must have y = 0. Thus φ(a) = x is real for every self-adjoint element a ∈ A.

Now if a ∈ A is arbitrary, write a = a1 + ia2 with a1, a2 self-adjoint (see Exercise 1.16), and

note that

φ(a∗) = φ(a1 − ia2) = φ(a1)− iφ(a2) = φ(a1) + iφ(a2) = φ(a). �

1Indeed, since z1 − a is not invertible, it is contained in a proper ideal. The collection of all maximal ideal

containing a proper ideal, with partial order given by inclusion, is such that every partially ordered chain has an

upper bound. Hence we can apply Zorn’s lemma.
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Remark 1.1. In the proof we made again use of the C∗-property. The previous Lemma is

not true for Banach *-algebras, and motivates the following:

Definition 1.6. A commutative Banach *-algebra is called symmetric if φ(a∗) = φ(a) for

all a ∈ A, φ ∈ σ(a).

Thefore, by Lemma 1.14, every commutative unital C*-algebra is symmetric.

Theorem 1.15 (The Gelfand-Naimark theorem for unital C∗-algebras). The Gelfand trans-

form Γ : A → C(σ(A)) is an isometric unital ∗-isomorphism for every unital commutative

C∗-algebra A.

Proof. We already know that Γ is a unital algebra homomorphism (see Exercise) It remains

to show that Γ is isometric (and hence injective), surjective, and satisfies Γ(a∗) = Γ(a)∗.

Recalling how the ∗ operation is defined in the C∗-algebra C(σ(A)), and applying Lemma

1.14, it is a simple matter to check that Γ(a∗) = Γ(a)∗: for each φ ∈ σ(A) we have

Γ(a∗)(φ) = φ(a∗) = φ(a) = Γ(a)(φ) = Γ(a)∗(φ).

So Γ is a ∗-homomorphism.

Next we show that Γ is isometric. If a ∈ A is self-adjoint then we have

‖a‖ = radius(a) = radius(Γ(a)) = ‖Γ(a)‖,

where the first and the last equalities hold by (5), and the middle equality holds by Lemma

1.13. Now if a ∈ A is arbitrary then a∗a is self-adjoint and so

‖a‖ = ‖a∗a‖1/2 = ‖Γ(a∗a)‖1/2 = ‖Γ(a)∗Γ(a)‖1/2 = ‖Γ(a)‖.

Thus Γ is isometric.

Finally, to show that Γ is surjective, we use the Stone–Weierstrass theorem, recalled below.

The image Γ(A) of Γ is a ∗-subalgebra of C(X), because Γ is a ∗-homomorphism. Moreover,

Γ(A) is closed because Γ is isometric. The algebra Γ(A) also separates points, because if

φ, ψ ∈ σ(A) are two distinct linear functionals, then there is some element a ∈ A such that

Γ(a)(φ) = φ(a) 6= ψ(a) = Γ(a)(ψ). So the Stone-Weierstrass theorem implies that either

Γ(A) = C(X), or that there is a point x0 ∈ X such that Γ(A) = {f ∈ C(X) | f(x0) = 0}.
This second possibility cannot hold, because Γ(A) contains the constant function 1. Thus

Γ(A) = C(X), and this completes the proof that Γ is an isometric ∗-isomorphism. �

Here is the version of the Stone-Weierstrass theorem that we are using. See [Folland, Real
Analysis, 4.51] for a proof.

Theorem 1.16 (The Stone-Weierstrass theorem). Let X be a compact Hausdorff space, and

suppose that B ⊂ C(X) is a norm-closed ∗-subalgebra which separates points: i.e., for every

pair of distinct points x1 6= x2 ∈ X there is a function f ∈ B such that f(x1) 6= f(x2). Then

either B = C(X), or there is a point x0 ∈ X such that B = {f ∈ C(X) | f(x0) = 0}. �

In the case of Banach algebra, there is not much we can say, since we do not have injectivity
non surjectivity. We can, however, still apply the Stone-Weierstrass theorem and obtain the
following result

Proposition 1.17. Let A be a symmetric unital Banach *-algebra. Then Γ(A) is a dense

subalgebra of C(σ(A)).

13



Theorem 1.15 says that every commutative, unital C∗-algebra A is isomorphic to one of the
form C(X). What does the theorem say when A is already given in the form C(X)?

Exercise 1.17. For each x ∈ X consider the map evalx : C(X) → C of evaluation at x.

Prove that the map x 7→ evalx is a homeomorphism X
∼=−→ σ(C(X)).

Identifying σ(C(X)) with X as in the previous part, show that the Gelfand transform Γ :

C(X)→ C(σ(C(X))) ∼= C(X) is the identity.

1.3. Maximal Ideals. There is an alternative description of the set σ(A), in terms of
ideals of A. For this we need the following construction.

Exercise 1.18. Let A be a Banach algebra, and let J ⊆ A be a closed, two-sided ideal. (So

J is a norm-closed linear subspace of A such that aj ∈ J and ja ∈ J for all j ∈ J and all

a ∈ A.) Equip the quotient vector space A/J with the multiplication

(a+ J)(b+ J) := ab+ J

and the norm

‖a+ J‖ := inf
j∈J
‖a+ j‖.

Prove that these definitions make A/J into a Banach algebra, which is unital/commutative if

A is unital/commutative.

Proposition 1.18. Let A be a commutative unital Banach algebra. The map φ 7→ kerφ is a

bijection between the set σ(A) of multiplicative linear functionals on A, and the set of maximal

ideals in A.

Recall that a maximal ideal in A is a proper ideal (i.e., one that is not equal to A itself) that
is not contained in any strictly larger proper ideal. In view of this result, σ(A) is sometimes
called the maximal ideal space of A.

Proof. First note that the kernel of any algebra homomorphism is an ideal; and that the

kernel of any φ ∈ σ(A) is a proper ideal, since φ is by definition nonzero. To see that kerφ is

a maximal ideal, note that if a 6∈ kerφ then we can write 1 = (1 − φ(a)−1a) + φ(a)−1a, where

1 − φ(a)−1a ∈ kerφ. Thus any ideal containing both a and kerφ must contain 1, and clearly

the only ideal of A containing 1 is A itself. Thus kerφ is a maximal ideal in A.

For the converse, suppose that J is a maximal ideal of A. Then the closure J is again an

ideal of A, because multiplication is continuous. Since J is a proper ideal, J does not contain

any invertible elements of A, and hence cannot be dense in A (since the invertible elements

constitute an open subset of A). Thus J is a proper ideal of A, containing J . Since J is

maximal we must have J = J : i.e., J is closed in A. Now the quotient A/J is a commutative

unital Banach algebra (Exercise 1.18), and every nonzero element of A/J is invertible (because

J is a maximal ideal). Corollary 1.7 then gives an isomorphism of algebras ψ : A/J → C.

Composing this ψ with the quotient mapping A → A/J , we obtain a multiplicative linear

functional φ : A→ C whose kernel is precisely J .

So far we have shown that kerφ is a maximal ideal for every φ ∈ σ(A), and that every

maximal ideal of A has the form kerφ. It remains to show that the map φ 7→ kerφ is one-to-

one. Suppose that φ, ψ ∈ σ(A) have the same kernel. This kernel is a codimension-one subspace

of A, so in order to show that φ = ψ it will suffice to show that the two functionals agree on a

single element of A \ kerφ. Since φ(1) = ψ(1) = 1, we do indeed have φ = ψ. �
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Exercise 1.19. Let X be a compact Hausdorff space, and consider the unital commutative

C∗-algebra C(X). For each point x ∈ X, let

Jx := {f ∈ C(X) | f(x) = 0}

denote the set of functions vanishing at x.

(1) Prove that for each x ∈ X the restriction map f 7→ f |X\{x} is an isometric ∗-
isomorphism Jx

∼=−→ C0(X \ {x}).
(2) Prove that for each x ∈ X, the subset Jx is a maximal ideal of C(X).

(3) Prove that every maximal ideal of C(X) is of the form Jx for some x ∈ X.

1.3.1. Proof of Lemma 1.13. First notice that our computation of spectra in algebras of the
form C(X) (see corresponding Exercise ) immediately gives

σ(Γ(a)) = image(Γ(a)) = {φ(a) | φ ∈ σ(A)}.

Since Γ is a unital homomorphism, we get the inclusion σ(Γ(a)) ⊆ σ(a). So we are left to
show that σ(a) ⊆ σ(Γ(a)).

Suppose then that z ∈ σ(a), so that z1− a is not invertible in A. Then z1− a is contained
in a maximal ideal J of A by a standard Zorn’s lemma argument 2. Hence, by the bijection
between spectrum and maximal ideals, there is a φ ∈ σ(A) with z−φ(a) = φ(z1−a) = 0. Then
Γ(a)(φ) = z, showing that z ∈ image(Γ(a)) = σ(Γ(a)).

1.4. An equivalence of categories.

Theorem 1.19. There is a equivalence of categories between the category Topcpt of compact

Hausdorff topological spaces with continuous maps, and the opposite category of commutative

unital C∗-algebras with *-homomorphisms C∗algopcom,u.

Proof. Given a continuous mapping f : X → Y , between two compact Hausdorff spaces,

we consider the map Cf : C(Y ) → C(X) given by pullback, i.e. Cf(g)(y) = g(f(y)). Then it

is easy to check that Cf is a unital *-homomorphism. Indeed

Cf(g + h) = (g + h) ◦ f = g ◦ f + h ◦ f = Cf(g) + Cf(h), ∀g, h ∈ C(Y ),

and since the adjoint is given by point-wise conjugation, we have

Cf(g∗) = g∗ ◦ f = (g ◦ f)∗ = Cf(g)∗.

Finally, for the constant function equal to one, we have C(1) = 1 ◦ f = 1.

If now we have continuous maps f : X → Y and g : Y → Z, then we have a C∗-

homomorphism

C(g ◦ f) = Cf ◦ Cg : C(Z)→ C(Y ).

Moreover, C IdX = 1C(X).

We summarise this by saying that X → C(X), f → Cf is a contravariant functor from the

category Topcpt of compact Hausdorff topological spaces with continuous maps to the category

of commutative unital C∗-algebras with *-homomorphisms C∗algcom,u. The functor is called

contravariant since it ”reverses the arrows”.

The Gel’fand transform provides a contravariant functor going the other way. Let φ : A→ B

a *-homomorphism between two commutative unital Banach algebras. Then we denote by

2Indeed, since z1 − a is not invertible, it is contained in a proper ideal. The collection of all maximal ideal

containing a proper ideal, with partial order given by inclusion, is such that every partially ordered chain has an

upper bound. Hence we can apply Zorn’s lemma.
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σ(φ) : σ(B)→ σ(A) given by φ(x) = x ◦ φ for x ∈ σ(B). Clearly this map is continuous, since

for every a ∈ A, the map Γ(a) ◦ σ(φ) = Γ(φ(a)) is continuous for each a ∈ A, where Γ(a) is the

Gel’fand transform. If ψ : B → C is another unital *-homomorphism, then

σ(ψ ◦ φ) = σ(φ) ◦ σ(ψ) : σ(C)→ σ(A).

Recall that the map εX : X → σ(C(X)) which assigns to every point in X, the evaluation

functional evalx : C(X) → C, is a homeomorphsim of topological spaces. We have a natural

transformation between the identity functor and the functor σC on the category of compact

topological spaces, i.e.,

X
f //

εX
��

Y

εY
��

σ(C(X))
σ(C(f))// σ(C(Y ))

whenever f : X → Y is continuous.

The natural transformation between the identity functor and the functor Cσ on the category

of commutative unital C∗-algebras is given, again, by the Gel’fand–Năımarktheorem. Indeed,

the theorem states that a → Γ(a) is an isomorphism betwenn A and C(σ(A)). Morever, if

φ : A→ B is a unital *-homomorphism, we have

A
φ //

ΓA
��

B

ΓB
��

C(σ(A))
C(σ(φ))// C(σ(B)),

i.e., for Γ(a) ∈ C(σ(A)) and y ∈ σ(B) we have

(C(σ(φ)Γ(a))(y) = Γ(a)((σ(φ))y) = Γ(a)(y ◦ φ) = y(φ(a)) = Γ(φ(a))(y).

In particular, all unital *-homomorphisms from C(Y ) → C(X) come from continuous maps

X → Y . This concludes the proof of the theorem. �

This equivalence of categories has important consequences, including the following:

Exercise 1.20. Prove that two unital commutative C∗-algebras are isomorphic if and only

if their spectra are homeomorphic.

1.5. Beyond the compact case. It turns out that a variant of the Gel’fand–Năımarktheorem
holds also in the case where the topological space X is non-compact, but only locally compact
(i.e. each point has a system of compact neighbourhoods).

Theorem 1.20 (Gel’fand–Năımark). Let A be a commutative C∗-algebra. Then there exists

a locally compact Hausdorff space X such that A is isometrically ∗-isomorphic to the algebra

C0(X) of continuous functions on X vanishing at infinity.

The proof of the above theorem relies on the concept of unitalization of the C∗-algebra A.
Before we start, let us now recall the definition of direct sum of C∗-algebras.

Definition 1.7. Let A and B two C∗-algebras. Their vector space A⊕B, with component-

wise multiplication, and norm given by

‖(a, b)‖ := max{‖a‖, ‖b‖}

is a C∗-algebra, called the direct sum.
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Exercise 1.21. Prove that A⊕B is indeed a C∗-algebra.

Exercise 1.22. Let A be a non-unital C∗-algebra, and consider the vector space A+ := A⊕C
equipped with the product

(a, z)(b, w) := (ab+ zb+ wa, zw),

involution

(a, z)∗ := (a∗, z),

and norm

sup
b∈A, ‖b‖≤1

‖ab+ zb‖,

Prove that A+ is a unital C∗-algebra, and that the embedding A→ A+ given by a 7→ a+ :=

(a, 0) is an isometric ∗-homomorphism.

If A is a unital C∗-algebra, we define A+ to be the direct sum algebra A⊕C, with the usual

structures.

Definition 1.8. The C∗-algebra A+ is called the minimal unitisation of A.

The term “minimal” is explained by the following universal property:

Exercise 1.23. Let A and B be C∗-algebras, with B unital, and let φ : A → B be a

∗-homomorphism. Prove that there exists a unique unital ∗-homomorphism φ+ : A+ → B

satisfying φ+(a+) = φ(a) for every a ∈ A.

Let us emphasize that, while the A+ is isomorphic, as vector space, to the direct sum A⊕C,
the product structure and the norm are, in general different.

The notion of unitisation allows us to extend some of the definitions and results we proved
for unital Banach and C∗-algebras to the nonunital case. The first example is the notion of
spectrum of an element.

Definition 1.9. If A is a Banach algebra without unit, we define the spectrum of an element

a as the set

σ(a) = σA+(a).

With this convention, previous results like the spectral radius formula have a natural nonuni-
tal version.

Recall from the first lecture that, given a Hausdorff topological space X, a function f : X →
C is said to vanish at infinity if for all ε > 0 there exists a compact set Kε ⊆ X such that

|f(x)| < ε, ∀x ∈ X \Kε.

Then C0(X), the space of all functions on X vanishing at infinity, is a commutative C∗-
algebra with pointwise multiplication and supremum norm

‖f‖ := sup
x∈X
|f(x)|.

If X is compact, then clearly C0(X) = C(X).

Let us recall the construction of the one point compactification, also called Alexandrov
compactification X∞ of the space X. Let ∞ denote a new point not belonging to X, then as
a set X∞ = X ∪ {∞}. X∞ is a topological space with respect to the following topology: a set
U ⊆ X∞ is called open if either U ⊆ X and it is open, or if ∞ ∈ U and X \ U is compact
(hence closed because X is Hausdorff).
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Then every continuous function on C(X∞) defines, by restriction, a function in C0(X). One
can identify the functions in C0(X) with continuous fucntions in C(X∞) that satisfy f(∞) = 0.
This justifies the notion of vanishing at infinity.

Exercise 1.24. Let A be a commutative C∗-algebra, and consider the minimal unitisation

A+ as in Exercise 1.22. For each φ ∈ σ(A), define a map φ+ : A+ → C by φ+(a, z) := φ(a) + z.

(1) Show that φ+ ∈ σ(A+). Conclude that every φ ∈ σ(A) is bounded with norm ≤ 1.

(2) Show that the topology on σ(A) inherited from the weak∗ topology on (A+)∗ via the

embedding

σ(A)→ σ(A+) ⊂ (A+)∗, φ 7→ φ+

coincides with the weak∗ topology that σ(A) inherits from A∗.

(3) Show that σ(A+) = {φ+ | φ ∈ σ(A)} ∪ {φ∞}, where φ∞ is the multiplicative linear

functional on A+ defined by φ∞(a, z) = z.

(4) Conclude that σ(A), equipped with the weak∗ topology, is a locally compact Hausdorff

space.

(5) For each f ∈ C0(σ(A)), define a function f+ on σ(A+) by

f+(φ+) := f(φ) for φ ∈ σ(A), f+(φ∞) := 0.

Show that the map f 7→ f+ is an isometric ∗-homomorphism C0(σ(A))→ C(σ(A+)),

whose image is the set

{f ∈ C(σ(A+)) | f(φ∞) = 0}.

18



CHAPTER 2

Noncommutative C∗-algebas, representations, and the GNS

construction

1. Representation of C∗-algebras

Our main goal is to prove that every C∗-algebra, commutative or not, can be realised as a
C∗-subalgebra of B(H).

1.1. Basic definitions. Throughout this section we let A be a C∗-algebra: not assumed
commutative, not assumed unital.

Definition 1.1. A ∗-representation of a C∗-algebra A is a ∗-homomorphism π : A→ B(H)

into the C∗-algebra of bounded operators on some Hilbert space.

It is common to just say “representation” in place of “∗-representation”, when it is clear
what is meant. It is also common to write Hπ to indicate the Hilbert space involved in the
representation π.

There is a corresponding notion of morphisms between representations:

Definition 1.2. Let π1 : A → B(H1) and π2 : A → B(H2) be ∗-representations. An

intertwining operator between π1 and π2 is a bounded linear operator t ∈ B(H1, H2) which

satisfies t ◦ π1(a) = π2(a) ◦ t for all a ∈ A. The representations π1 and π2 are isomorphic if

there exists an invertible intertwining operator t : H1 → H2.

The Hilbert space H in a ∗-representation can be regarded as a module over A, via the action
a · h := π(a)(h). In algebra, when working with modules M over unital rings R, one usually
imposes the condition that 1R ·m = m for every m ∈M . The following is a useful replacement
for this condition in the setting of representations of (possibly non-unital) C∗-algebras.

Definition 1.3. A ∗-representation π : A→ B(H) is nondegenerate if the linear subspace

span{π(a)ξ | a ∈ A, ξ ∈ H} is dense in H.

Remark 1.1. If A is a unital C∗-algebra, then a ∗-representation π : A→ B(H) is nonde-

generate if and only if π(1A) = 1B(H).

Remark 1.2. Remarkably, if π is nondegenerate then in fact the set {π(a)(ξ) | a ∈ A, ξ ∈
H} is already equal to H. This follows from the Cohen–Hewitt factorisation theorem [5, II.5.3.7],

which states that every element x of a nondegenerate (right) Banach A-module over a C∗-algebra

A can be factored as ξ = aη.

Exercise 1.1. Let A be a C∗-algebra, π : A → B(H) a ∗-representation. Show that the

following two conditions are equivalent:

(1) span{π(a)ξ | a ∈ A, ξ ∈ H} is dense in H;

(2) For every ξ ∈ H, ξ 6= 0, there exists a ∈ A such that π(a)ξ 6= 0.

19



In other words, a representation is nondegenerate in the sense of Definition 1.3 if and only if

(2) holds.

Definition 1.4. Let π : A → B(H) be a ∗-representation. A linear subspace K ⊆ H

is A-invariant if π(a)(k) ∈ K for every k ∈ K. The representation π is called topologically

irreducible if H has no closed invariant subspaces besides {0} and H itself. The representation

π is called algebraically irreducible if H has no invariant subspaces, closed or not, besides {0}
and H.

Algebraically irreducible representations are obviously topologically irreducible. It is far
from obvious, but the converse is true as well:

Theorem 1.1. Every topologically irreducible representation of a C∗-algebra is algebraically

irreducible.

In view of Theorem 1.1 we shall from now on just say “irreducible”.

1.2. Schur’s lemma. A useful characterization of irreducible representations is provided
by Schur’s lemma.

Exercise 1.2. Given a subset M ⊂ B(H) its commutant is defined by

M ′ := {t ∈ B(H) : mt = tm for all m ∈M}.

• Show that, even if M is just a subset of B(H), its commutant M ′ is always a subalgebra

of B(H);

• Prove that if M is also closed under the ∗ operation (namely A∗ ∈M whenever A ∈M),

then M ′ is a ∗-subalgebra of B(H);

• Prove that

π(A)′ := {T ∈ B(H) | tπ(a) = π(a)t ∀a ∈ A}
is a unital C∗-subalgebra of B(H).

Lemma 1.2 (Schur). Let π : A→ B(H) be a representation of the C∗-algebra A. Then

π is irreducible ⇐⇒ π(A)′ = C1.

Proof. Assume that π is irreducible, and let T ∈ π(A)′. Pick any λ in the spectrum of T ,

and define H1 := Ran(T − λ1) ⊂ H (the image of the operator T − λ1). Then, by definition,

for each η ∈ H1 there exists a vector ξ ∈ H such that

(6) η = (T − λ1)ξ.

By applying the operator π(a) ∈ B(H), for a ∈ A, to both sides of this equation, we obtain

π(a)η = π(a)(T − λ1)ξ = (T − λ1)π(a)ξ︸ ︷︷ ︸
=:ξ′

because T − λ1 commutes with π(a). Hence also π(a)η is of the form (6), and thus H1 is an

invariant subspace under the representation of A on H. By the irreducibility of π, we must

have either H1 = {0} or H1 = H.

If H1 = {0}, then (T − λ1)ξ = 0 for all ξ ∈ H, and hence T = λ1, and we deduce that

π(a)′ = C1 as we wanted. We claim that H1 = H leads to a contradiction. Indeed, if H1 = H

then the operator T − λ1 cannot be injective, otherwise the inverse (T − λ1)−1 would be well-

defined on H contradicting the fact that λ ∈ σ(T ). Hence we have that H2 := ker(T−λ1) 6= {0},
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and also H2 is a proper subspace of H since T − λ1 is not identically zero. Let now ξ ∈ H2:

then

0 = π(a)(T − λ1)ξ = (T − λ1)π(a)ξ for all a ∈ A,
and hence also π(a)ξ ∈ H2. In other words, H2 is a non-trivial subspace of H which is invariant

under the action of A, contradicting our hypothesis that π is irreducible.

Conversely, suppose that π(A)′ = C1. Let H1 ⊂ H be an invariant subspace for A. Notice

that if η ∈ H⊥1 (namely 〈η, ξ〉 = 0 for all ξ ∈ H1), then for all a ∈ A

〈π(a)η, ξ〉 = 〈η, π(a∗)ξ〉 = 0 for all ξ ∈ H1,

since π(A)H1 ⊂ H1. Thus, π(a)η ∈ H⊥1 , and also H⊥1 is an invariant subspace.

Now, let P ∈ B(H) be the orthogonal projection onto H1. Since by definition we have that

Pξ = ξ for all ξ ∈ H1 and Pη = 0 for all η ∈ H⊥1 , we deduce that for all a ∈ A

Pπ(a)ξ = π(a)ξ = π(a)Pξ because π(a)H1 ⊂ H1,

Pπ(a)η = 0 = π(a)Pη because π(a)H⊥1 ⊂ H⊥1 .

Hence P commutes with all the operators in π(A), and thus by our hypothesis P = λ1 for

some λ ∈ C. Since P is a projection, we have that P 2 = P , which in turn gives λ2 = λ, or

equivalently either λ = 0 or λ = 1. If λ = 0, then P = 0, and hence H1 = {0}; while if λ = 1,

then P = 1, and hence H1 = H. �

Exercise 1.3 (Schur’s alternative). Two representations are said to be unitarily equivalent

if there exists a unitary intertwiner u∗u = 1 = uu∗, between π1 and π2. If the only unitary

intertwiner is the zero operator, we say that π1 and π2 are disjoint.

Let πi : A→ B(Hi), i = 1, 2, be irreducible representations of A. Prove that π1 and π2 are

not disjoint if and only if they are unitarily equivalent.

Definition 1.5. Let π1 : A → B(H1) and π2 : A → B(H2) be ∗-representations of a C∗-

algebra. The direct sum of π1 and π2 is the ∗-representation π1⊕ π2 : A→ B(H1⊕H2) defined

by

(π1 ⊕ π2)(a) : (h1, h2) 7→ (π1(a)h1, π2(a)h2).

In algebra one encounters a separate notion of “indecomposability”: a representation is inde-
composable if it is not isomorphic to a direct sum of two proper subrepresentations. Irreducible
modules are obviously indecomposable, but the converse is not always true. (Consider for in-
stance C2 as a module over the algebra of upper-triangular 2×2 matrices.) For ∗-representations
of C∗-algebras, however, every indecomposable representation is irreducible:

Remark 1.3. Let π : A → B(H) be a ∗-representation of a C∗-algebra. We saw in the

proof of Schur’s lemma that if K ⊂ H is a closed A-invariant subspace, then the orthogonal

complement K⊥ ⊂ H is also a closed A-invariant subspace. We conclude that π is irreducible

if and only if π is not isomorphic to a direct sum of nonzero representations.

To conclude this Section, let us introduce some more terminology. Let B ⊂ B(H) be a
∗-subalgebra of B(H). We say that a vector ξ ∈ H is cyclic for B if Bξ is dense in H; we say
that ξ is separating for B if Tξ = 0 for T ∈ B implies that T = 0.

Exercise 1.4. Let B ⊂ B(H) be a ∗-subalgebra. Show that if ξ ∈ H is cyclic for B, then it

is separating for the commutant B′.

Definition 1.6. A representation is called cyclic if it has a cyclic vector.
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Let A be a C∗-algebra and π : A→ B(H) an irreducible representation. Then either

(1) every ξ ∈ H is a cyclic vector;
(2) π(A) = {0} and H = C.

Clearly, a cyclic representation is always nondegenerate. By Schur’s Lemma every irre-
ducible representation is cyclic. Therefore we have the following chain of implications for non-
zero ∗-representations

π irreducible⇒ π cyclic⇒ π nondegenerate.

The key notion linking C∗-algebras with operators on Hilbert space is that of positivity.

Definition 1.7. An element a of a C∗-algebra A is called positive (notation: a ≥ 0) if a

is self-adjoint and has σ(a) ⊂ [0,∞).

Note that, by spectral permanence (and by the definition of spectra for elements of nonunital
algebras), the property of positivity does not depend on the containing C∗-algebra. In particular,
an element a ∈ A is positive if and only if the corresponding element a+ = (a, 0) ∈ A+ is positive.

Exercise 1.5. Show that a function f ∈ C0(X) is positive (in the sense of Definition 1.7)

if and only if image(f) ⊂ [0,∞).

Exercise 1.6. Prove that if a is normal in A, and f ≥ 0 in C0(σ(a) \ {0}), then f(a) ≥ 0

in A.

The most important fact about positivity is:

Theorem 1.3. Let A be a C∗-algebra. An element a ∈ A is positive if and only if a = b∗b

for some b ∈ A.

Lemma 1.4. If a ∈ A is positive, then a = b∗b for some b ∈ A.

2. States and the GNS construction

In this subsection presents some basic topics regarding states over a C∗-algebra. This notion
is tightly related to that of a representation and the relation is contained in the GNS (Gel’fand–
Năımark–Seagal) construction.

Definition 2.1. Let A be a C∗-algebra. A linear functional φ : A→ C is positive (denoted

φ ≥ 0) if φ(a) ≥ 0 whenever a ≥ 0; and φ is a state if φ ≥ 0 and ‖φ‖ = 1.

Exercise 2.1. Prove that every multiplicative linear functional is a state. Give an example

of a state that is not a multiplicative linear functional.

Exercise 2.2. Let π : A→ B(H) be a ∗-representation. Prove that for each ξ ∈ H the map

φξ : A→ C, φξ(a) := 〈π(a)ξ, ξ〉

is a positive linear functional. Prove that if π is nondegenerate and ‖ξ‖ = 1, then φξ is a state.

The set of states of A will be denoted by S(A).

The question we would like to ask is whether any state φ ∈ S(A) is of the above form? This
question is positively answered by the GNS construction.
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2.1. The GNS construction.

Exercise 2.3. Let φ : A→ C be a positive linear functional and define

(7) 〈a, b〉 := φ(b∗a).

Check that

(1) 〈·, ·〉 is linear in the first variable, conjugate linear in the second;

(2) 〈a, a〉 ≥ 0 for all a ∈ A;

(3) 〈·, ·〉 satisfies the Cauchy–Schwartz inequality

(8) |〈a, b〉|2 ≤ 〈a, a〉〈b, b〉.

Deduce that (7) defines a positive semidefinite sesquilinear form on A.

Lemma 2.1. Positive linear functionals are continuous. If {eλ}λ∈Λ is an approximate unit

on A, then ‖φ‖ = limλ∈Λ φ(eλ). In particular, if A is unital, then ‖φ‖ = φ(1A).

We are now ready to state and prove the Theorem that goes under the name of GNS
construction.

Theorem 2.2. Let A be a C∗-algebra and φ a positive linear functional on A. Then there

exist a Hilbert space Hφ, a representation πφ : A→ B(Hφ) and a vector ξφ ∈ H which is cyclic

for π such that

(9) φ(a) = 〈πφ(a)ξφ, ξφ〉

for all a ∈ A.

Conversely, if ξ is a unit cyclic vector for the representation π : A → B(H), then φ(a) :=

〈πφ(a)ξφ, ξφ〉 gives a state on A and the map a 7→ π(a)ξ induces a unitary isomorphism U from

the Hilbert space Hφ to H such that

π(a) = Uπφ(a)U∗.

Proof. The first ingretient we need is the Hilbert space on which to define the representa-

tion. Let

Nφ := {a ∈ A | φ(a∗a) = 0}.
Since φ induces the sesquilinear form (7), using the Cauchy–Schwartz inequality (8) we see that

Nφ can also be characterised as

Nφ := {a ∈ A | φ(b∗a) = 0 ∀b ∈ A}.

It follows that Nφ is a closed subspace. Moreover, it is a left ideal, since for all n ∈ Nφ and

a ∈ A we have

φ(b∗(an)) = φ((a∗b)∗n) = 0.

Therefore, it makes sense to consider the quotient A/Nφ, with the inner product

(10) 〈[x], [y]〉 := φ(y∗x).

This inner product is well defined, indeed, for n1, n2 we have

φ(y + n2)∗(x+ n1)) = φ(y∗x) + φ((y + n2)∗n1) + φ(n∗2x) = φ(y∗x),

where we have used the fact that φ(n∗2x) = φ(x∗n2).

We define the Hilbert space Hφ to be the completion of A/N with respect to the norm

coming from the inner product.
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To construct the representation πφ we start from the left regular representation π0 : A →
A/N given by

π0(a)([x]) = [ax].

This is well defined: indeed, for n ∈ N we have

π0(a)(x+ n) = ax+ an

which is a representative for [ax] since N is an ideal.

To see that the left regular representation is indeed a *-representation, let us consider the

inner product

π0(a)([x]), [y]〉 = 〈[ax], [y]〉 = φ(y∗ax) = φ((a∗y)∗x)

= 〈[x], [a∗y]〉 = 〈[x], π0(a∗)[y]〉,

hence, by definition of adjoint operator, we have that π0(a)∗ = π0(a∗).

Moreover, ‖π0‖ ≤ 1. This can be checked using the operator norm

‖π0(a)‖2 := sup
‖x‖≤1

‖π0(a)x‖2 = sup
‖x‖≤1

φ(x∗a∗ax) ≤ ‖a‖2φ(x∗x) ≤ ‖a‖2.

Note that we have used the fact that ‖a‖2x∗x − x∗a∗ax is positive. Therefore π0 extends by

continuity to a representation πφ of A on H.

Finally, to construct a cyclic vector for πφ, we first consider the case of A unital. If we

define ξφ := [1A], we have that

〈π0(a)[1], [1]〉 = φ(a),

and πφ(A)ξ = A/N , which is dense in H by construction.

Moreover, by Lemma 2.1, we have that

‖φ‖ = ‖φ(1)‖ = ‖1‖ = ‖ξφ‖.

If the algebra A is not unital, we need to consider approximate identities.

�

Given a state φ on a C∗-algebra A, we showed that there is a triple (πφ, Hφ, ξφ), where Hφ

is a Hilbert space, πφ : A → B(Hφ) is a representation, and ξφ is a cyclic unit vector in Hφ,
satisfying φ(a) = 〈πφ(a)ξφ, ξφ〉 for every a ∈ A.

We want to show that for every C∗-algebra A there is a faithful (i.e., injective) representation
A→ B(H). To see how the GNS construction helps us to do this, observe the following:

Theorem 2.3. Let A be a C∗-algebra, and let a ∈ A be self-adjoint. There is a state φ on

A such that φ(a) = ‖a‖.

Theorem 2.4. Every C∗-algebra is isomorphic to a C∗-subalgebra of B(H), for some Hilbert

space H.

Proof. Consider the direct sum

π :=
⊕

φ∈S(A)

πφ : A→ B

 ⊕
φ∈S(A)

Hφ


of all of the GNS representations of A. Being a direct sum of ∗-homomorphisms, π is itself a ∗-
homomorphism. To see that π is injective, take an arbitrary nonzero a ∈ A and use the previous

theorem to find a state φ having φ(a∗a) 6= 0. Then πφ(a) 6= 0 (see exercise), so π(a) 6= 0. Now
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π is an injective ∗-homomorphism, so it is an isometric isomorphism A ∼= image(π) (see exercise

from last Thursday). �

Remark 2.1. The set S(A) is generally very big (uncountably infinite), and so the Hilbert

space H constructed in the above proof is also very big. If A is separable, meaning that it has

a countable dense subset, then an easy approximation argument shows that the Hilbert space H

can be taken to be separable as well.

3. Notable C∗-algebras

3.1. Universal C∗-algebras. Many interesting C∗-algebras are described in terms of a
set of generation and relations.

Unlike what happens in algebra, where one can consider quotients of free rings by universal
object, C∗-algebras are always realised as algebras of bounded operators on some Hilbert space,
so the relations must prescribe uniform bonds on the norms of the generators. As a consequence,
depending on the generators and on the shape of the relations, such a universal C∗-algebra may
not exist. We will see a non-example later.

In order to tackle the problem of describing C∗-algebras subject to generation and relations,
we follow [4].

We would like to define a universal C∗-algebra starting from a set G = {xα} subject to a
set of relations R. For simplicity, we consider relations of the form

(11) ‖p(xα1 , . . . , xαn , x
∗
α1
, . . . , x∗αn)‖ ≤ η,

where p is a complex polynomial in 2n non-commuting variables, xα1 , . . . , xαn ∈ G and η ≥ 0.
Note that for η = 0, relations of the form (11) may be rewritten as algebraic relations among
xα1 , . . . , xαn ∈ G and the scalars.

Definition 3.1. A representation of (G,R) is a set of bounded operators {yα} on a Hilbert

space H that satisfy

‖p(yα1 , . . . , yαn , y
∗
α1
, . . . , y∗αn)‖ ≤ η,

whenever
(
‖p(xα1 , . . . , xαn , x

∗
α1
, . . . , x∗αn)‖ ≤ η

)
∈ R.

A representation of (G,R) extends uniquely to a *-homomorphism ρ from the free ∗-algebra
F(G) generated by G to the C∗-algebra B(H).

Definition 3.2. A set (G,R) is called admissible if

(1) there exists a representation of (G,R);

(2) whenever {yβα} is a representation of (G,R) on a Hilbert space Hβ, then ⊕yβα ∈
B(
⊕
Hβ) ( and ⊕yβα is a representation of (G,R)).

The two conditions in the definition imply that

‖z‖ := sup{‖ρ(z)‖ : ρ is a representation of (G,R)}
is a well defined complex number, and that ‖ · ‖ is a seminorm on the free algebra F(G).

We are now ready to give the definition we were after:

Definition 3.3. The completion of the quotient algebra F(G)/{z : ‖z‖ = 0} under ‖ · ‖ is

called the universal C∗-algebra of (G,R), and it is denoted by C∗(G,R). the algebra C∗(G,R) has

the property that any representation of (G,R) extends uniquely to a representation of C∗(G,R),

and conversely every representation of C∗(G,R) gives a representation of (G,R).

Example 3.1. Let A be a C∗-algebra, let G = A and R the set of all *-algebraic relations

in A. Then C∗(G,R) = A.
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3.1.1. Commutative examples. As mentioned earlier, many well known C∗-algebras can be
naturally realised as universal C∗-algebras. We start with some commutative examples.

Exercise 3.1. (1) Let G = {x} and

R = {x = x∗, ‖x‖ ≤ 1, ‖1− x2‖ ≤ 1}.

Prove that C∗(G,R) = C0((0, 1]).

(2) Let G = {x, 1} and

R = {x = x∗, ‖x‖ ≤ 1, ‖1− x2‖ ≤ 1, 1 = 12 = 1∗, x1 = x = 1x}.

Prove that C∗(G,R) = C([0, 1]).

(3) Let G = {x} and

R = {xx∗ = 1 = x∗x}.
Prove that C∗(G,R) = C(S1).

(4) Let G = {x} and

R = {xx∗ = 1 = x∗x}.
Prove that C∗(G,R) = C(S1).

(5) Let G = {x} and

R = {xx∗ = x∗x, ‖x‖ ≤ 1}.
Prove that C∗(G,R) = C0(D0), where D0 is the punctured unit disk.

(6) Let G = {x} and

R = {xx∗ = x∗x, ‖x‖ ≤ 1}.
Prove that C∗(G,R) = C0(D0), where D0 is the punctured unit disk.

(7) Let G = {x, 1} and

R = {xx∗ = x∗x, ‖x‖ ≤ 1, 1 = 12 = 1∗, x1 = x = 1x}}.

Prove that C∗(G,R) = C(D), where D is the unit disk.

3.1.2. Cuntz and Cuntz-Krieger algebras. Cuntz algebras and Cuntz-Krieger algebras are
universal C∗-algebras generated by (partial) isometries subject to certain additional conditions.
They naturally appear in the study of dynamical systems.

Before describing these algebras in detail, one needs to recall some facts about isometries
and partial isometries.

Definition 3.4. Let S be a bounded linear operator on a Hilbert space. S is an isometry if

and only if S∗S = Id.

Definition 3.5. Let n ≥ 2. The Cuntz algebra is the universal C∗-algebra generated by

n-isometries S1, . . . , Sn subject to the additional condition

(12)
n∑
i=1

SiSi
∗ = Id .

Note that condition (12) implies in particular that the corresponding range projections are
orthogonal, i.e. S∗i Sj = δij Idn for all i, j.

Theorem 3.1 ([7, Theorem 3.1]). Suppose that Si and Ti, i = 1, . . . , n are two families of

non-zero partial isometries satisfying (12). Then the map Si 7→ Ti extendes to an isomorphism

C∗(S1, . . . , Sn) ' C∗(T1, . . . , Tn).

Cuntz algebras admit an extension by compact operators:
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Proposition 3.2 ([7, Proposition 3.1]). Let V1, . . . , Vn be isometries on a Hilbert space H
such that

∑n
i=1 ViV

∗
i ≤ 1. Then the projection P := Id−

∑n
i=1 ViV

∗
i generates a closed two sided

ideal I in C∗(V1, . . . , Vn) which is isomorphic to K(H) and contains P as a minimal projection.

The quotient C∗(V1, . . . , Vn)/I is isomorphic to On.

The Toeplitz extension

(13) 0 // K(H) // C∗(V1, . . . , Vn) // On // 0.

The Cuntz algberas are pairwise non isomorphic, i.e. On ' Om if and only if n = m.

3.1.3. Cuntz–Krieger algebras. Cuntz–Krieger algebras are a generalization of the above
construction.

Theorem 3.3. Let S be a bounded linear operator on a Hilbert space. The following are

equivalent:

(1) S is a partial isometry;

(2) S∗S is a projection;

(3) SS∗ is a projection;

(4) SS∗S = S;

(5) S∗SS∗ = S∗.

In this case, S∗S is the projection on (kerS)⊥ and SS∗ is the projection on the range of S.

Definition 3.6. Let A be a matrix with entries in {0, 1} with no rows or columns equal to

zero.

The Cuntz-Krieger algebra is the universal C∗-algebra generated by partial isometries Si with

pairwise orthogonal range projections, subject to the relations

(14)

n∑
i=1

SiSi
∗ = Id

Si
∗Si =

n∑
j=1

AijSjSj
∗.

Clearly for A the matrix with all entries equal to one, one gets back the Cuntz algebras On.

Any family {Si}ni=1 of partial isometries satisfying the conditions in (14) is called a Cuntz-
Krieger A-family, and there is a uniqueness results similar to Theorem 3.1. We state it here
under mildly stronger assumptions than those of the original paper.

Theorem 3.4 (cf.[8, Theorem 2.13]). Let A be an n × n matrix with entries in {0, 1}
which is irreducible and not a permutation matrix, and assume that Si and Ti, i = 1, . . . , n are

Cuntz-Krieger A-families. Then the map Si 7→ Ti extends to an isomorphism C∗(S1, . . . , Sn) '
C∗(T1, . . . , Tn).

3.1.4. Crossed Products by the integers. Crossed products are the basic tool used to study
groups acting on a C∗-algebra. They provide a larger C∗-algebra which encodes information
both on the original algebra and on the group action. Although crossed products can be defined
for any locally compact group, we will focus here on the particular case of crossed products by
the integers.

Definition 3.7. Let B be a unital C∗-algebra and α ∈ Aut(B). The crossed product C∗-

algebra Boα Z is realised as the universal C∗-algebra generated by B and a unitary u satisfying

the covariance condition

αn(b) = unbu∗n, ∀b ∈ B,n ∈ Z.
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CHAPTER 3

Modules as bundles

1. Modules and fiber bundles

The duality between spaces and algebras can be extended to the case of vector bundles by
considering modules over algebras. We will see that the finitely generated projective ones can
be thought of as noncommutative vector bundles. We will state all results for modules over
general complex algebras A, and will only need to use C∗-algebras in the formulation of the
Serre-Swan theorem.

1.1. Modules over algebras. Let A be a complex algebra. A right A-module is a vector
space E together with a right action E × A 3 (ξ, a) 7→ ξa ∈ E satisfying

(15)

ξ(ab) = (ξa)b,

ξ(a+ b) = ξa+ ξb,

(ξ + η)a = ξa+ ηa,

for all ξ, η ∈ E and a ∈ A.

A family {ηλ}λ∈Λ of elements of E , with Λ any directed set, is called a generating set for
the right module E if any element of ξ ∈ E can be written (not necessarily in a unique way) as
a combination

(16) ξ =
∑
λ∈Λ

ηλaλ,

with only a finite number of elements aλ ∈ A different from zero.

A family {ηλ} is called free if its elements are linearly independent over A. It is called a
basis if it is a free generating set, so that every element ξ ∈ E can be written uniquely as a
combination of the form (16).

A module is called free whenever it admits a basis, and it is called finitely generated if it
admits a finite generating set. Later on, we will refer to these objects as algebraically finitely
generated modules, to distinguish them from the topologically finitely generated ones.

From now on the *-algebra A is assumed to be unital.

Example 1.1. The module An, given by the direct sum of A with itself n-times, is a free

finitely generated module for every n. The collection {ξj}nj=1, where ξj is the vector with one in

the i-th entry and zeroes elsewhere, is a basis, called the standard basis of An.

If a module E is finitely generated, there is always a positive integer n and a module
surjection ρ : An → E , such that the image of the standard basis of An is a generating set for
E (not necessarily free).

Definition 1.1. A right A-module E is said to be projective if it direct summand of a free

module, that is there exists a free module F and a module E ′ such that

(17) F ' E ⊕ E ′.
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For the proof of equivalence of the above conditions, we refer the reader to [21, Section 2.2]
(see also the discussion after [13, Definition 7]).

Now suppose that E is both projective and finitely generated, with surjection ρ : An → E .
Then there exists a lift s : E → An such that s ◦ ρ = IdE . Then e := ρ ◦ s is an idempotent in
Matn(A) satisfying e2 = e and E = eAn.

The interest in finitely generated projective modules comes from the Serre-Swan theorem,
which establishes a correspondence between vector bundles over a compact topological space
X and finitely generated projective modules over the dual C∗-algebra of continuous functions
C(X). This correspondence is actually an equivalence of categories, realized in terms of the
functor of sections Γ.

1.2. The Γ-functor. Recall that a vector bundle E over X, in symbols E → X is a locally
trivial continuous family of finite dimensional vector spaces indexed by X.

The collection of continuous sections of a complex vector bundle E → X, denoted by Γ(E,X)
or simply Γ(E), is naturally a module for the commutative algebra C(X) of continuous functions
on the base space, the right action given by scalar multiplication in each fiber:

(18) (s · a)(x) = s(x)a(x), for all s ∈ Γ(E), a ∈ C(X).

If τ : E → E′ is a bundle map, then there exists a natural map Γτ : Γ(E)→ Γ(E′) given by

Γτ (s) = τ ◦ s,
which is C(X)-linear by linearity of each fiber map: τx : Ex → E′x.

Lemma 1.1 ([11, Lemma 2.5]). The correspondence E → Γ(E), τ → Γτ is a functor from

the category of complex vector bundles over X to the category of C(X)-modules.

The Γ-functor carries the operations of duality, Whitney sum and tensor product of bundles,
which are defined fiber-wise, to analogous operations on C(X)-modules. Indeed, one can easily
check the following module isomorphisms:

Γ(E∗) ' HomC(X)(Γ(E), C(X)),

Γ(E)⊕ Γ(E′) ' Γ(E ⊕ E′).
Moreover, by [11, Proposition 2.6] one has:

Γ(E)⊗C(X) Γ(E′) ' Γ(E ⊗ E′),
where the tensor product on the left hand side makes sense because each Γ(E) is a C(X)-
bimodule, by commutativity.

Let E → X be any complex vector bundle over X. By [11, Proposition 2.9] the C(X)-
module Γ(E) is finitely generated projective. More explicitely, for every complex vector bundle
E → X there exists an idempotent e in the matrix algebra Matn(C(X)) for some n such that
Γ(E) ' eC(X)n as modules over C(X). Conversely, any C(X)-module of the form eC(X)n is
the module of sections of some vector bundle over X.

This correspondence is actually an equivalence of categories, as stated in the Serre-Swan
theorem of [19, 20], that we present here in the same form of [11, Theorem 2.10].

Theorem 1.2 (Serre-Swan). The Γ-functor from vector bundles over a compact space X to

finitely generated projective modules over C(X) is an equivalence of categories.

1.3. Hermitian structures over projective modules. Hermitian vector bundles, that
is bundles with a fiber-wise Hermitian product, correspond to finitely generated projective
A-modules endowed with an A-valued sesquilinear form. For C∗-algebras, the appropriate
framework is that of Hilbert C∗-modules,
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1.4. Hilbert C∗-modules and correspondences.

Definition 1.2. A pre-Hilbert module over a C∗-algebra A is a right A-module E with a

A-valued Hermitian product, i.e. a map 〈·, ·〉A : E × E → A satisfying

〈ξ, η〉A = 〈η, ξ〉 ∗A ;

〈ξ, ηa〉A = 〈ξ, η〉Aa;

〈ξ, ξ〉A ≥ 0;

〈ξ, ξ〉A = 0⇒ ξ = 0

for all ξ, η ∈ E and for all a ∈ A.

To lighten notation we shall write 〈·, ·〉 = 〈·, ·〉A whenever possible.

For a pre-Hilbert module E , one can define a scalar valued norm ‖ · ‖ using the C∗-norm on
A:

(19) ‖ξ‖2 = ‖〈ξ, ξ〉A‖A.

Definition 1.3. A Hilbert C∗-module is a pre-Hilbert module that is complete in the norm

(19).

If one defines 〈E , E〉 to be the linear span of elements of the form 〈ξ, η〉 for ξ, η ∈ E , then
its closure its a two-sided ideal in A. We say that the Hilbert module E is full whenever 〈E , E〉
is dense in A.

Example 1.2. Clearly, a Hilbert C∗-module over the field of complex numbers C is nothing

but a Hilbert space.

Example 1.3. The simplest (in general) noncommutative example of Hilbert C∗-module is

given by the algebra A itself, with Hermitian product

(20) 〈a, b〉 = a∗b,

and right action given by the algebra product. This module will be denoted by AA. By the

existence of approximate units for C∗-algebras (cf. [9, Theorem 1.4.8]), the module AA is auto-

matically full.

Example 1.4. Since every C∗-algebra is naturally a Hilbert module over itself, one can

use this fact to define, for any natural number n, the A module An, in analogy with Example

1.1. It consists of n-tuples of elements ξi ∈ A, with component-wise right multiplication and

well-defined Hermitian product

(21) 〈ξ, η〉 =

n∑
i=1

〈ξi, ηi〉A,

for ξ = (ξi) and η = (ηi), which turn it into a Hilbert C∗-module.

Example 1.5. Generalizing the previous example, one can start from {Ei}ni=1 a finite set of

Hilbert C∗-modules over A. The direct sum
⊕n

i=1 Ei is a A-module in the obvious way (point-

wise multiplication) with inner product defined, as in (21). If all Ei = E, then
⊕n

i Ei will be

denoted by En.

Things become subtler if {Ei}i∈I is an infinite set of Hilbert A-modules. One defines
⊕

i∈I Ei
as the set of sequences (ξi), with ξi ∈ Ei and such that

∑
i∈I〈ξi, ξi〉 converges in A. Then for

ξ = (ξi) and η = (ηi) the inner product

〈ξ, η〉 =
∑
i∈I
〈ξi, ηi〉
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is well-defined and the module
⊕

i∈I Ei is complete, hence a Hilbert C∗-module.

Example 1.6. If H is a Hilbert space, the algebraic tensor product H⊗alg A has a natural

structure of right A-module and it can be endowed with a A-valued Hermitian product

〈ξ ⊗ a, η ⊗ b〉 := 〈ξ, η〉a∗b,

which turns it into a pre-Hilbert module. We denote its completion with H ⊗ A. If the Hilbert

space H has an orthonormal basis, then H ⊗ A can be naturally identified with the direct sum

module
⊕

iA defined previously. If H is a separable, finite dimensional Hilbert space, then H⊗A
is denoted with HA and it is referred to as the standard Hilbert module.

A Hilbert C∗-module E is topologically finitely generated if there exists a finite set {η1, . . . , ηn}
of elements of E such that the A-linear span of the ηi’s is dense in E . It is said to be algebraically
finitely generated if every element ξ ∈ E is of the form

∑n
i=1 biηi for some bi.

Definition 1.4 (cf. Definition 1.1). Let A a unital C∗-algebra. A Hilbert C∗-module E is

projective if it is a direct summand in the free module An for some n.

Proposition 1.3 ([22, Corollary 15.4.8]). Every algebraically finitely generated Hilbert C∗-

module over a unital algebra is projective.

Let now E ,F be two Hilbert C∗-modules over the same C∗-algebra A.

Definition 1.5. A map T : E → F is said to be an adjointable operator if and only if there

exists another map T ∗ : F → E with the property that

〈Tξ, η〉 = 〈ξ, T ∗η〉 for all ξ ∈ E , η ∈ F .

Every adjointable operator is automatically linear, and by the Banach–Steinhaus theorem,
it is bounded. However, the converse is in general not true: a bounded linear map between
Hilbert modules need not be adjointable. To see this, let B be a unital C∗-algebra, A a proper
ideal and i : A→ B the inclusion. If i were adjointable, we would have i∗(1) = 1, which is not
the case, since 1 /∈ A.

The collection of adjointable operators from E to F is denoted LA(E ,F). When E = F , the
adjointable operators form a C∗-algebra, that is denoted by LA(E).

Inside the space of adjointable operators one can single out a particular class, which is
analogous to that of finite rank operators on a Hilbert space. More precisely, for every ξ ∈
F , η ∈ E one defines the operator θξ,η : E → F as

(22) θξ,η(ζ) = ξ〈η, ζ〉, ∀ζ ∈ E
This is an adjointable operator, with adjoint θ∗ξ,η : F → E given by θη,ξ.

We denote by KA(E ,F) the closed linear subspace of LA(E ,F) spanned by

(23) {θξ,η | ξ, η ∈ E},
which we refer to as the space of compact adjointable operators.

In particular, := KA(E , E) ⊆ LA(E) is an ideal, hence a C∗-subalgebra, whose elements are
referred to as compact endomorphisms. For any C∗-algebra A, seen as a Hilbert module over
itself, we have KA(A) ' A.

Finally, the C∗-algebraic dual of E , is defined as the space

(24) E∗ := {φ ∈ LA(E , A) | ∃ ξ ∈ E with φ(η) = 〈ξ, η〉 ∀η ∈ E} .
Thus, with ξ ∈ E , if λξ : E → A is the operator defined by λξ(η) = 〈ξ, η〉, for all η ∈ E , every
element of E∗ is of the form λξ for some ξ ∈ E .
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We finish by describing how finite projective modules can be characterized in terms of their
algebra of compact operators.

Theorem 1.4 ([11, Proposition 3.9]). Let A be a unital C∗-algebra and E a right A-module.

Then E is finitely generated projective if and only if

1 = IdE ∈ KA(E).

1.5. Correspondences. Note that whenever we have a Hilbert A-module E , by its very
definition, the algebra LA(E) and its subalgebra KA(E) act adjointably on E from the left. More
generally, whenever one has a map φ : A → LA(E), it is possible to endow the Hilbert module
E with a left A-module structure:

(25) a · ξ = φ(a)(ξ)

for all ξ ∈ E and a ∈ A. This motivates the following:

Definition 1.6. An (A,B)-correspondence, also called a C∗-correspondence from A to B,

is a right Hilbert B-module E endowed with a *-homomorphism φ : A → LB(E). If A = B we

refer to (E , φ) as a C∗-correspondence over A.

When no confusion arises, we will refer to the pair (E , φ) by using the compact notation Eφ.

Two C∗-correspondences Eφ and Fψ over the same algebra A are called isomorphic if and
only if there exists a unitary U ∈ LA(E ,F) intertwining φ and ψ.

C∗-correspondences can be composed : given an (A,B)-correspondence Eφ and a (B,C)-
correspondence Fψ, one can construct an (A,C)-correspondence, named the interior tensor
product of Eφ and Fψ.

As a first step, one constructs the balanced tensor product E ⊗B F which is a quotient of
the algebraic tensor product E ⊗alg F by the subspace generated by elements of the form

(26) ξb⊗ η − ξ ⊗ ψ(b)η,

for all ξ ∈ E , η ∈ F , b ∈ A.

This has a natural structure of right module over C given by

(ξ ⊗ η)c = ξ ⊗ (ηc)

and a C-valued inner product defined on simple tensors as

(27) 〈ξ1 ⊗ η1, ξ2 ⊗ η2〉C := 〈η1, ψ(〈ξ1, ξ2〉A)η〉C ,
and extended by linearity.

The inner product is well-defined and has all required properties; in particular, the null
space N = {ζ ∈ E ⊗alg F ; 〈ζ, η〉 = 0} is shown to coincide with the subspace generated by
elements of the form in (26).

One then defines E⊗̂ψF to be the right Hilbert module obtained by completing E ⊗B F in
the norm induced by (27).

Moreover for every T ∈ LB(E), the operator defined on simple tensors by

ξ ⊗ η 7→ T (ξ)⊗ η
extends to a well-defined operator φ∗(T ) := T ⊗ Id. It is adjointable with adjoint given by
T ∗ ⊗ Id = φ∗(T

∗). In particular, this means that there is a left action of A defined on simple
tensors by

(φ⊗ψ Id)(a)(ξ ⊗ η) = φ(a)ξ ⊗ η,
and extended by linearity to a map

φ⊗ψ Id : A→ LC(E⊗̂ψF),
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thus turning E⊗̂ψF into an (A,C)-correspondence.

Proposition 1.5 ([3, Proposition 5.2]). Given two *-algebra homomorphisms φ : A → B

and ψ : B → C, one has an isomorphism of (A,C)-correspondences.

Eφ⊗̂ψEψ = Eψ◦φ.

Taking the interior tensor power is an associative operation on isomorphism classes of C∗-
correspondences.

1.6. Morita equivalence.

Definition 1.7. An (A,B)-equivalence bimodule is a full (A,B)-correspondence Eφ where

the left action φ : A → LB(E) is an isomorphism onto KB(E). One says that two C∗-algebras

A and B are Morita equivalent if such an (A,B)-equivalence bimodule exists.

Every full Hilbert A-module E is a (KA(E), A)-equivalence bimodule.

Morita equivalence is a weaker equivalence relation that isomorphism. Indeed, given an
isomorphism φ : A→ B, the C∗-correspondence (BB, φ) is an (A,B)-equivalence bimodule.

Remark 1.1. Let (A,B) two unital C∗-algebras. Any C∗-correspondence Eφ implementing

the Morita equivalence between the two algebras is finitely generated projective as an A-module.

To see this, one can use the fact that A ' KB(E) is unital and Theorem 1.4 to obtain the claim.

Theorem 1.6. Morita equivalence is an equivalence relation.

Morita equivalence is a purely noncommutative notion. Indeed, Morita equivalent algebras
have isomorphic centers (cf. [15, Section 2.3]), and therefore two commutative C∗-algebras are
Morita equivalent if and only if they are isomorphic.

In noncommutative topology Morita equivalence is the most natural equivalence relation
to consider: Morita equivalent C∗-algebras have, among other things, the same representation
theory and the same K-theory and K-homology (and also bivariant K-theory) groups.

2. Line bundles, Self-Morita equivalence bimodules, and the Picard group

Let A be a C∗-algebra. A self-Morita equivalence bimodule over A is any C∗-correspondence
Eφ over A which implements the reflexivity of Morita equivalence for a C∗-algebra A. The
simplest example of self-Morita equivalence bimodule is the algebra A itself together with the
identity map. Equivalently, self-Morita equivalence bimodules can be defined in terms of (A,A)-
bimodules, but we prefer adopting the former approach.

Definition 2.1. A self-Morita equivalence bimodule over A is a C∗-correspondence (E , φ),

where E is full and φ : A→ KA(E) is an isomorphism.

Two self-Morita equivalence bimodules are isomorphic if and only if they are isomorphic as
C∗-correspondences; by [1, Corollary 1.2] the left inner product is automatically preserved.

Example 2.1. The prototypical commutative example of a self-Morita equivalence bimodule

is provided by A = C(X), the C∗-algebra of continuous functions on a compact topological

space X, E = Γ(X) the C(X)-module of sections of a Hermitian line bundle L → X and φ

the trivial action. For this reason, one is led to think of self-Morita equivalence bimodules as

noncommutative line bundles.
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Similarly to line bundles in classical geometry, self-Morita equivalence bimodules are invert-
ible in some sense. More precisely, if (E , φ) is a self-Morita equivalence bimodule over A, the
dual Hilbert module E∗ as defined in (24), can be made into a self-Morita equivalence bimodule
over A as well.

First of all, E∗ is given the structure of a (right) Hilbert C∗-module over A by means of the
map φ. Recall that the elements of E∗ are of the form λξ for some ξ ∈ E , with λξ(η) = 〈ξ, η〉,
for all η ∈ E . The right action of A on E∗ is given by

λξ b := λξ ◦ φ(b) = λφ(b)ξ ,

the second equality being easily established. The A-valued Hermitian product on E∗ uses the
left KA(E)-valued Hermitian product on E :

〈λξ, λη〉 := φ−1(θξ,η) ,

and E∗ is full as well. Next, define a ∗-homomorphism φ∗ : A→ LA(E∗) by

φ∗(b)(λξ) := λξ·b∗ ,

which is in fact an isomorphism φ∗ : A → KA(E∗). Thus, the pair (E∗, φ∗) is a self-Morita
equivalence bimodule over A, according to Definition 2.1. It is the inverse to the self-Morita
equivalence bimodule (E , φ) with respect to the operation given by the interior tensor product.

For a C∗-algebra A, the collection of unitary equivalence classes of self-Morita equivalence
bimodules over A has a natural group structure with respect to the interior tensor product,
with identity element the class of the self-Morita equivalence bimodule (A, Id). Thinking of
self-Morita equivalence bimodules as noncommutative line bundles, this group is named the
Picard group of A, denoted by Pic(A), in analogy with the classical situation for which the
Picard group of a space X is the group of isomorphism classes of line bundles over X.

2.0.1. Automorphism.

Definition 2.2. Let A be a *-algebra. A *-automorphism is a linear invertible map α :

A → A that satisfies

α(ab) = α(a)α(b), α(a∗) = α(a)∗.

The group of automorphisms of A is denoted by Aut(A).

As a consequence of Gelfand duality, for a commutative C∗-algebra A ' C(X) we have an
isomorphism between the group Aut(A) and the group of one-to-one homeomorphisms of X.

Let now A be a C∗-algebra. Recall that every automorphism α ∈ Aut(A) yields a self-Morita
equivalence bimodule (A,α) for A. If β is another automorphism, then by Proposition 1.5 their
product is equivalent to (A, βα). Thus one has an anti-homomorphism from the group of
automorphisms of A to the Picard group, that is denoted by

ΦA : Aut(A)→ Pic(A).

2.0.2. The Picard group of a commutative C∗-algebra. Recall that for a commutative C∗-
algebra A, the classical Picard group CPic(A) is the group of Hilbert line bundles over the
spectrum σ(A) of A (cf. [10]), and one can prove that it agrees with the group Pic(σ(X)). The
following result relates the noncommutative Picard group with its classical counterpart:

Theorem 2.1 ([1, Theorem 1.12]). Let A a commutative C∗-algebra. Then CPic(A) is a

normal subgroup in Pic(A) and

Pic(A) ' CPic(A) o Aut(A),

where the action of Aut(A) is given by conjugation.
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CHAPTER 4

Cuntz–Pimsner algebras and circle bundles

1. Pimsner algebras

In his breakthrough paper [17], starting from a full C∗-correspondence (E , φ) such that
the left action φ : A → LA(E) is an isometric ∗-homomorphism, Pimsner constructed two
C∗-algebras: these are now referred to as the Toeplitz algebra and the Cuntz-Pimsner algebra
of the C∗-correspondence (E , φ), denoted by TE and OE respectively. The former is actually
an extension of the second, and can be thought of as a generalization of the Toeplitz algebra,
while the latter encompasses a large class of examples, like Cuntz-Krieger algebras and crossed
products by the integers. Both algebras are characterized by universal properties and depend
only on the isomorphism class of the C∗-correspondence.

We will conclude with six term exact sequences in KK-theory, naturally associated to any
Pimsner algebra.

1.1. The Toeplitz algebra of a full C∗-correpsondence. In this section we will work
under the following assumption:

Assumption 1.1. The image of φ is contained in KA(E).

Iterating the construction of the interior tensor product module described in Subsection 1.4,
one considers the the k-fold tensor products

(28) E(k) := E⊗̂
k
φ k > 0.

Then one builds the infinite direct sum module

(29) E+ = A⊕
∞⊕
k=1

E(k).

It is a C∗-correspondence over A, with left action φ+ given, for all a ∈ A, by

φ+(a)(ξ1⊗ . . .⊗ξk) = φ(a)ξ1⊗ . . .⊗ξk;
for k ≥ 1 and ξ1, . . . , ξk ∈ E and

φ+(a)(a′) = aa′

for a′ ∈ B. It is referred to as the (positive) Fock correspondence associated to the correspon-
dence Eφ.

One can naturally associate to any element ξ ∈ E a creation and an annihilation operator
in LA(E+); the creation operator is given by

(30) Tξ(ξ1⊗ . . .⊗ξk) = ξ⊗ξ1⊗ . . .⊗ξk, Tξ(b) = ξb,

and its adjoint is the annihilation operator

(31) T ∗ξ (ξ1⊗ . . .⊗ξk) = φ(〈ξ, ξ1〉)ξ2⊗ . . .⊗ξk, T ∗ξ (b) = 0.

Definition 1.1. The Toeplitz algebraTE of the C∗-correspondence Eφ is the smallest C∗-

subalgebra of LA(E+) that contains all the Tξ for ξ ∈ E.

The algebra is universal in the following sense:
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Theorem 1.2 ([17, Theorem 3.4]). Let (E , φ) be a full C∗-correspondence over A, C any

C∗-algebra and ψ : A→ C a ∗-homomorphism with the property that there exist elements tζ ∈ C
for all ζ ∈ E such that

(1) αtξ + βtη = tαξ+βη for all α, β ∈ C and ξ, η ∈ E;

(2) tξψ(a) = tξa and ψ(a)tξ = tφ(a)ξ for all ξ ∈ E and a ∈ A ;

(3) t∗ξtη = ψ(〈ξ, η〉) ∈ A for all ξ, η ∈ E;

then there exists a unique extension ψ̃ : TE → C that maps Tξ to tξ.

1.2. The Pimsner Algebra of a full C∗-correspondence. The (Cuntz-)Pismner alge-
bra OE of a full C∗-correspondence (E , φ) is a quotient of the Toeplitz algebra. Under Assump-
tion 1.1 one has the following:

Definition 1.2. The Pimsner algebra OE of the C∗-correspondence (E , φ) is the quotient

algebra appearing in the exact sequence

(32) 0 // KA(E+) // TE
π // OE // 0.

It is easy to check that since E is full, then E+ is a full Hilbert module as well; hence KA(E+)
is by definition Morita equivalent to the algebra A.

The image of an element Tξ ∈ TE under the quotient map π will be denoted by Sξ.

Example 1.1. Let A = C and E = Cn and φ the left action by multiplication. If one

chooses a basis for Cn, then the Toeplitz algebra of (E , φ) is generated by n isometries V1, . . . , Vn
satisfying

∑
i ViV

∗
i ≤ 1. This is the Toeplitz extension for the Cuntz algebras On:

0 // K(H) // C∗(V1, . . . , Vn) // On // 0.

In particular, for n = 1 one gets the classical Toeplitz extension

(33) 0 // K(H) // TC // C(S1) // 0.

Example 1.2. More generally, if the module E is finitely generated projective, the Pimsner

algebra of (E , φ) can be realized explicitly in terms of generators and relations [14]. Since E is

finitely generated projective, there exist {ηj}nj=1 such that for any b ∈ A:

φ(b)ηj =
n∑
j=1

ηi〈ηi, φ(b)ηj〉A,

The C∗-algebra OE is the universal C∗-algebra generated by A together with n operators S1, . . . , Sn,

satisfying

S∗i Sj = 〈ηi, ηj〉A,
∑

j
SjS

∗
j = 1, and aSj =

∑
i
Si〈ηi, φ(a)ηj〉A,(34)

for a ∈ A, and j = 1, . . . , n. The generators Si are partial isometries if and only if the frame

satisfies 〈ηi, ηj〉 = 0 for i 6= j. For A = C and E a Hilbert space of dimension n, one recovers

the Cuntz algebra On of Example 1.1.

Example 1.3. Let A be a C∗-algebra and α : A→ A an automorphism of A. Then E = B

can be naturally made into a C∗-correspondence.

The right Hilbert A-module structure is the standard one, with right A-valued inner product

〈a, b〉A = a∗b.

The automorphism α is used to define the left action via a · b = α(a)b and left A-valued inner

product given by 〈a, b〉A = α(a∗b).
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Each module E(k) is isomorphic to A as a right-module, with left action

(35) a · (x1⊗ · · ·⊗xk) = αk(a)αk−1(x1) · · ·α(xk−1)xk.

The corresponding Pimsner algebra OE coincides then with the crossed product algebra Aoα Z,

while the Toeplitz algebra TE agrees with the Toeplitz algebra T (A,α) of [16, Section 2], that

appears in the exact sequence

(36) 0 // A⊗K(H) // T (A,α) // Aoα Z // 0.

Similarly to the Toeplitz algebra TE (cf. Theorem 1.2), the Pimsner algebra OE can be
characterized in terms of its universal properties.

Theorem 1.3 ([17, Theorem 3.12]). Let (E , φ) as above, C a C∗-algebra and ψ : A→ C a

∗-homomorphism. Suppose that there exist elements sζ ∈ C for all ζ ∈ E such that

(1) α · sξ + β · sη = sα·ξ+β·η for all α, β ∈ C and ξ, η ∈ E;

(2) sξ · ψ(a) = sξ·a and ψ(a) · sξ = sφ(a)(ξ) for all ξ ∈ E and a ∈ A;

(3) s∗ξsη = ψ(〈ξ, η〉) for all ξ, η ∈ E;

(4) sξs
∗
η = ψ(φ−1(θξ,η)) for all ξ, η ∈ E;

then there exists a unique ∗-homomorphism ψ̂ : OE → C with ψ̂(Sξ) = sξ for all ξ ∈ E.

2. Circle actions

Pimsner algebras are endowed with a natural action of the circle γ : S1 → Aut(OE), known
as the gauge action, a feature they have in common with ordinary crossed products by the
integers and with Cuntz-Krieger algebras.

In this section we will describe the gauge action on a Pimsner algebra and its properties,
and recall the theory of C∗-algebras endowed with a circle action, focusing on their connection
with the notion of generalized crossed products.

2.1. The gauge action. By the universal properties of Proposition 1.3 (with C = A, ψ
the identity and sξ := zSξ), the map

Sξ → σw(Sξ) := wSξ, w ∈ S1,

extends to an automorphism of OE , that we will denote with γ. The action is strongly contin-
uous.

The fixed point algebra OγE is in general bigger than the algebra of scalars A. In the case of
a self-Morita equivalence bimodule the two algebras agree, as shown by the following theorem.

Theorem 2.1. Let OE be the Pimsner algebra of a full C∗-correspondence over A. Then

E is a self-Morita equivalence bimoduleif and only if the fixed point algebra OγE agrees with the

algebra of scalars A.

2.2. Algebras and circle actions. Let A be a C∗-algebra endowed with a strongly con-
tinuous action σ : S1 → Aut(A). For each k ∈ Z, one defines the k-th spectral subspace for the
action σ to be

Ak :=
{
ξ ∈ A | σw(ξ) = w−k ξ for all w ∈ S1

}
.

Clearly, the invariant subspace A0 ⊆ A is a C∗-subalgebra of A, with unit whenever A is unital;
this is the fixed-point subalgebra Aσ for the action.

For every pair of integers k, l ∈ Z, the subspace AkAl–meant as the closed linear span of
the set of products xy with x ∈ Ak and y ∈ Al–is contained in Ak+l. Thus, the algebra A is
Z-graded and the grading is compatible with the involution, that is A∗k = A−k for all k ∈ Z.
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In particular, for any k ∈ Z the space A∗kAk is a closed two-sided ideal in A0. Thus, each
spectral subspace Ak has a natural structure of Hilbert A0-bimodule (not necessarily full) with
left and right Hermitian products:

(37) 〈x, y〉A0
= xy∗, 〈x, y〉A0

= x∗y, for all x, y ∈ Ak.

Definition 2.1. The action is said to be saturated if

(38) A∗1A1 = A0 = A1A
∗
1,

The condition above is equivalent to the condition that all bimodules Ak are full, that is
A∗kAk = A0 = AkA

∗
k for all k ∈ Z. When this happens, all bimodules Ak are self-Morita

equivalence bimodules for A0, with isomorphisms φ : A0 → KA0(Ak) given by

(39) φ(a)(ξ) := a ξ, for all a ∈ A0, ξ ∈ Ak.

Theorem 2.2. [2, Theorem 3.5] Let A be a C∗-algebra with a strongly continuous and

saturated action of the circle. Then the Pimsner algebra OA1 of the self-Morita equivalence

(A1, φ), with φ as in is (39), is isomorphic to A. The isomorphism is given by Sξ 7→ ξ for all

ξ ∈ A1.
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