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Principal cirlce bundles and Gysin sequences

Principal circle bundles are a natural framework for many problems in
mathematical physics:

m U(1)-gauge theory;
m T-duality;

m Chern Simons field theories.

Noncommutative circle bundles, Pimsner Algebras and Gysin Sequences Francesca Arici



Principal cirlce bundles and Gysin sequences

Principal circle bundles are a natural framework for many problems in

mathematical physics:
m U(1)-gauge theory;
m T-duality;

m Chern Simons field theories.

The Gysin sequence: long exact sequence in cohomology for any sphere bundle.
In particular, for a principal circle bundle: U(1) < P —"= X .

*)Hk(P) Hk l(X) Hk+1(X)*>Hk+1(P)*>---
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The Gysin Sequence in K-Theory

In K-theory, the Gysin sequence becomes a cyclic six term exact sequence:
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The Gysin Sequence in K-Theory

In K-theory, the Gysin sequence becomes a cyclic six term exact sequence:

KO(X) —2— K°(X) —~— K°(P)

[cﬂ l[al , (1)
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The Gysin Sequence in K-Theory

In K-theory, the Gysin sequence becomes a cyclic six term exact sequence:

[cﬂ l[al , (1)

where « is the mutiliplication by the Euler class
x(£) =1-[£] (2)

of the line bundle £ — X with associated circle bundle 7 : P — X.
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The Gysin Sequence in K-Theory

In K-theory, the Gysin sequence becomes a cyclic six term exact sequence:

[cﬂ l[al , (1)

where « is the mutiliplication by the Euler class
x(£) =1-[£] (2)

of the line bundle £ — X with associated circle bundle 7 : P — X.
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Quantum principal U(1)-bundles
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Quantum principal U(1)-bundles

As structure group we consider the Hopf algebra

O(U(1)) :=Clz,z /(1 —zz™1).
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Quantum principal U(1)-bundles

As structure group we consider the Hopf algebra

O(U(1)) :=Clz,z /(1 —zz™1).

Let A be a complex unital algebra that it is a right comodule algebra over
O(U(1)), i.e we have a homomorphism of unital algebras

Ar: A— A O(UL)).
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Quantum principal U(1)-bundles

As structure group we consider the Hopf algebra
O(U(1)) :=Clz,z /(1 —zz™1).
Let A be a complex unital algebra that it is a right comodule algebra over
O(U(1)), i.e we have a homomorphism of unital algebras
Ar: A— A® O(U(1)).

We will denote by
B:={xeA| Ar(x) =x®1}

the unital subalgebra of coinvariant elements for the coaction.
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Quantum principal U(1)-bundles

Definition
One says that the datum (A, O(U(1)), B) is a quantum principal U(1)-bundle

when the canonical map

X:A®s A ABOUQ), x®yr x-Arly),

is an isomorphism.

Francesca Arici
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Quantum principal U(1)-bundles

Definition
One says that the datum (A, O(U(1)), B) is a quantum principal U(1)-bundle

when the canonical map
x:A® A= A®O(U(1)), x®y+—x-Ar(y),
is an isomorphism.

Examples of quantum principal U(1)-bundles: quantum spheres and lens spaces

over quantum projective spaces (both 6 and g-deformations).

Graded algebra structure: the coordinate algebra decomposes as a direct sum

of line bundles over B.
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Quantum principal U(1)-bundles

Let A = ®pezA, be a Z-graded unital algebra and let O(U(1)) as before.

The unital algebra homomorphism
A A= A®0O(U(1) x—=x®z ", for x € A,.

turns A into a right comodule algebra over O(U(1)).
The subalgebra of coinvariant elements coincides with Ag.
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Quantum principal U(1)-bundles

Let A = ®pezA, be a Z-graded unital algebra and let O(U(1)) as before.

The unital algebra homomorphism
A A= A®0O(U(1) x—=x®z ", for x € A,.

turns A into a right comodule algebra over O(U(1)).

The subalgebra of coinvariant elements coincides with Ag.

Question: when is a graded algebra a principal circle bunlde?
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Quantum principal U(1)-bundles

Let A = ®pezAn a Z-graded algebra. A is strongly graded if and only if any of
the following equivalent conditions is satisfied.

For all n,m € Z we have A, An = Apim.
For all n € Z we have A, A_, = Ao.
A1 A1 = Ag = A_1 A1
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Quantum principal U(1)-bundles

Let A = ®pezAn a Z-graded algebra. A is strongly graded if and only if any of
the following equivalent conditions is satisfied.

For all n,m € Z we have A, An = Apim.
For all n € Z we have A, A_, = Ao.
A1 A1 = Ag = A_1 A1

strong grading <—  principal action
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Quantum principal U(1)-bundles

To prove bijectivity of , one has to construct sequences

{‘Sj}jN:h {,Bi}il\il in A1 and {m}JN:l, {a;},’-\il in A_;

with the property that

N M
dDoGn=1la=) aif:
j=1 i=1
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Quantum principal U(1)-bundles

To prove bijectivity of , one has to construct sequences

{‘Sj}jN:h {,Bi}il\il in A1 and {m}JN:l, {a;},’-\il in A_;

with the property that

N M
dDoGn=1la=) aif:
j=1 i=1

This means that the modules A; and A_; are finetely generated projective.

Indeed, we construct idempotents

d; - A — (.Ao)N Wy (.Ao)N — A
¢71 : .Afl — (.Ao)N \Ufl : (.Ao)N — .Al

with W1¢; = |dA1 and V_;d_; = |d_A71.
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Quantum principal U(1)-bundles

The module A; and its inverse A_; play a crucial role.

They can be thought of as modules of sections of line bundles.

This phenomenon is related to a natural construction: Pimsner algebras.
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El Pimsner algebras
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Pimsner algebras

Noncommutative line bundles

Definition
A self Morita equivalence bimodule (SMEB) over B is a pair (E, ¢) where E is
a full right Hilbert C*-module over B and

¢: B — K(E)
is an isomorphism.

Example: A= C(X) and E =T(£) the module of sections of a Hermitian line
bundle £ — X.
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Pimsner algebras

Pimsner’s Construction

The C*-algebraic dual
E*:={),§ € E | Xe(n) = (§,m)} C Homp(E, B)

can be given the structure of a (right) Hilbert C*-module over B using ¢, with
right action

Ae b= Aeg(b),
and inner product on E™ is given by
Aes An) = o7 (1€)(n]) -

If we define ¢* as
¢7(a)(Ae) == Acar,
the pair (¢*, E*) gives an isomorphism ¢* : B — K(E™).

Noncommutative circle bundles, Pimsner Algebras and Gysin Sequences Francesca Arici



Pimsner algebras

Pimsner’s Construction

We can take interior tensor product modules, that we will denote using
with

E®en n>0

E(n) = B n=20

(E)®s " n<0

Out of these we construct the Hilbert module
oo = @ E™
n€Z

on which we will represent the Pimsner algebra.
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Pimsner algebras

Pimsner’s Construction

We have natural creation and annihilation operators S¢, 57 : £oc — Eco,
defined at levels 1,0, —1 by

Se(m)y=¢®@n Sé(n) = (&)
Se(b) = ¢b Se(b) = A¢b
Se(An) = ¢ H(0e.m) S:(An) = Ae ® Ay,

and extended on higher tensor powers.
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Pimsner algebras

Pimsner’s Construction

The Pimsner algebra of the pair (¢, E), denoted O, is the smallest
C*-subalgebra of Endg(€) which contains the operators S¢ : Eoc — Eoo for
all ¢ e E.

We have an inclusion ¢ : O — Endz(€Ex)

Noncommutative circle bundles, Pimsner Algebras and Gysin Sequences Francesca Arici



Pimsner algebras

Pimsner’s Construction

The Pimsner algebra of the pair (¢, E), denoted O, is the smallest
C*-subalgebra of Endg(€) which contains the operators S¢ : Eoc — Eoo for
all ¢ e E.

We have an inclusion ¢ : O — Endg(Ex)
The representation of U(1) on £ given by
tox=1t"x VteS' xeE™

induces an circle action on Ok.
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Pimsner algebras

Pimsner algebras from circle actions

Let A be a C*-algebra with an action {o,},cs1. When can we recover A as a
Pimsner algebra?

For each n € Z, one can define the spectral subspaces
Ap={6€A|a.(§)=2"¢ forallze S'}.

It is easy to check that A{n) = A(—n) and that A Aim) € A(nsm).-
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Pimsner algebras

Pimsner algebras from circle actions

The action o has large spectral subspaces if Aj) Ay = A) for all n € Z.

Note that o has large spectral subspaces if and only if

AnAn) = Aw) = AnAQ)- 3)
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Pimsner algebras

Pimsner algebras from circle actions

The action o has large spectral subspaces if Aj) Ay = A) for all n € Z.
Note that o has large spectral subspaces if and only if

AnAn) = Aw) = AnAQ)- 3)

O

Let ¢ : Ay — EndI\(o)(A(l)) simply defined by ¢(a)(§) := a&. Suppose that
Ay and A(_y are full and countably generated over A(g).

Then the circle action {o,} has large spectral subspaces.
Moreover, the Pimsner algebra Oy is isomorphic to A.
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Pimsner algebras

Ci ion with ive principal circle bundes

Proposition (Gabriel-Grensing)
Let A be a unital, commutative C*-algebra. Suppose that the first spectral
subspace E = A1) generates A as a C*-algebra, and that it is finitely generated
projective over B = Ag).
Then the following facts hold

B = C(X) for some compact space X;

B E =T(L) for some line bundle L — X;

A= C(P), where P — X is the principal S* bundle over X associated to

the line bundle L.
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Gysin Sequences

I Gysin Sequences
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Gysin Sequences

Distinguished KK-classes

Since ¢ : B — K(E), we have a well defined class

|[E] := [(E, $,0)] € KKo(B, B) | (4)
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Gysin Sequences

Distinguished KK-classes

Since ¢ : B — K(E), we have a well defined class

|[E] := [(E, $,0)] € KKo(B, B) | (4)

Since ¢ : O — Endj(Ex) is the inclusion, we have a class

‘[a] - [(500,&, F)] c KKl(OE,B)‘ (5)
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Gysin Sequences

Distinguished KK-classes

Since ¢ : B — K(E), we have a well defined class

|[E] := [(E, $,0)] € KKo(B, B) | (4)

Since ¢ : O — Endj(Ex) is the inclusion, we have a class

‘[a] - [(500,&, F)] c KKl(OE,B)‘ (5)

To define the operator F, let P : Eoc — Es denotes the orthogonal projection
with -
m(P)=PE”eBCéx,

n=1

and set F :=2P — 1 € Endp(€x).
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Gysin Sequences

Exact sequences in KK-theory

For any separable C*-algebra C the Kasparov product induces the group
homomorphisms

[E]: KK«(B,C) = KK.(B,C), [E]: KK.(C,B)— KK.(C,B)
and

[0] : KK.(B, C) — KKw11(OF, C), [9]: KK.(C,O8) — KK.11(C, B),
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Gysin Sequences

Exact sequences in KK-theory

For any separable C*-algebra C the Kasparov product induces the group

homomorphisms
[E] : KK.(B, C) = KK.(B,C), [E]:KK.(C,B) — KK.(C,B)
and
[0] : KK«(B, C) = KKi+1(Og, C), [0]: KK.(C,Or) — KK«+1(C, B),
The inclusion j : B < Of also induces maps in KK-theory.

J* : KK.(O, C) = KK.(B,C), Jj.: KK.(C,B) = KK.(C,Ok),

We get two six term exact sequences.

Noncommutative circle bundles, Pimsner Algebras and Gysin Sequences Francesca Arici



Gysin Sequences

Exact sequences in KK-theory

In particular, for C = C we get exact sequences in K-theory

ML Ko(B) —Z s Ko(OF)

[ T l er o,

Kl(OE) — Kl(B) — Kl(B)

Ji 1-[E]
and in K-homology

KO(B) (W KO(B) (— l’(o((/)E7 C)
— j*
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Gysin Sequences

Exact sequences in KK-theory

m The previous sequences be interpreted as a Gysin sequence in K-theory
and K-homology for the ‘line bundle’ E over the ‘noncommutative base
space’ B.

m Multiplication by the Euler class is replaced with the Kasparov product
with 1 — [E].
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H Applications
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Applications

Quantum lens spaces and projective spaces

The coordinate algebra A(S2"*') of the quantum S2"**:

x-algebra generated by 2n + 2 elements {z;, z" }i=o,....n s.t.:

zizj=q 'zz 0<i<j<n,
Z,-*ZJ' :CIZJ‘Z,‘* "75./.7
n
[z2,2:] =0, [z,-*,z,-]:(l—qz) Z zjz} i=0,....,n—1,
j=i+1

* * *
1=120zg +z1zy + ...+ znz, .

(L. Vaksman, Ya. Soibelman)
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Applications

Quantum lens spaces and projective spaces

U(1)-action on the algebra A(S2"™):
(20,21, 20) = (A20, Az1, ..., Azp), A e U(1).

The coordinate algebra A(CPj) of the quantum projective space CPy is the
subalgebra of invariant elements.
We have a decomposition

52n+1 @ Ak

keZ

The U(1)-action restricts to an action of the finite cyclic group Z,.

A(Lgn,r)) — A(S§n+1)Zr

Noncommutative circle bundles, Pimsner Algebras and Gysin Sequences Francesca Arici



Applications

Quantum lens spaces and projective spaces

We have a decomposition

A(LYD) = P An

kezZ

The C*-algebras C(S2"™), c(L{"") and C(CPy) of continuous functions:
completions of A(S2"1), A(L{"") and A(CP}) in the universal C*-norms

Let r > 1, then

C(Lg"")) = OE(r)

with E(,) the r-th spectral subspaces for the circle action on C(S2"*1).
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Applications

Quantum lens spaces and projective spaces

Since K1(CP!) = 0, we can compute Ko(L"") as the kernel of a matrix
representing the multiplication map 1 — [E] : Ko(CPy) — Ko(CPyg)
This leads to

Ko(L") =Z2@Z)onZ @ - ®ZjeZ — Ki(LD) =12,

where the «;'s depend on the divisibility properties of the integer r.

Explicit algebraic generators.

Joint work with S. Brain and G. Landi.
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Applications

Quantum weighted lens spaces and projective spaces

U(1)-action on the algebra A(S2"*!): for a weight vector £ = (fo, ..., {,)
(20,21, .., 20) = (M2, \221, ..., N 2,), A€ U(1).

The coordinate algebra A(Wg(¢)) of the quantum projective space Wg(¢) is
the subalgebra of invariant elements.
The C*-algebras C(Wg(¢)) of continuous functions: completion in the

universal C*-norm.
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Applications

Quantum weighted lens spaces and projective spaces

We focus on n=1: weighted projective line.

C(Wy(k, 1)) is the universal C*-algebra generated by the elements
2(z1)" and zz;.
Notice that it does not depend on k and
Ko(C(Wa(k, 1)) =Z"*,  Ki(C(We(k,1))) =0.

Define the C*-algebra of the weighted quantum lens spaces Lq(dkl, k, /) as a

Pimsner algebra

] C(Ly(dkl, k, 1)) := Ok,

for the d-th spectral subspace Eq) for the weighted U(1)-action on S
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Applications

Quantum weighted lens spaces and projective spaces

We have a Gysin sequence in K-theory

_ad
0 — Ki(C(Lg(dkl, k, 1)) — Z+% XM 721 ko (C(Lg(dKl, K, 1)) — O

Where M = {My} € Mi;1(Z) is a matrix of pairings between the K-theory and
K-homology of C(Wq(k,/)).

We compute the K-theory groups as

Ki(C(Lg(dkl, k1)) = Ker(1 — M?)  Ko(C(Lq(dkl, k, 1)) = Coker(1 — M)

Joint work with J. Kaad and G.Landi.
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Conclusions

[@ Conclusions
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Conclusions

Summing up

Quantum principal bundles are strongly graded algebras.
m Self Morita Equivalence are the C*-algebraic version of line bundles.

m The corresponding Pimsner algebra Of is then the total space algebra of a

principal circle bundle over B.
m Gysin-like sequences relates the KK-theories of Og and of B.
m Explicit computations and representatives.
m Rich class of examples.

m Still open: understand the structure of other principal bundles.
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Conclusions

Summing up

Thank you very much for your attention!
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