# The Gysin Sequence for Quantum Lens Spaces 

Some perspective

Francesca Arici (SISSA)

NGA2014 - Frascati (RM)

The Gysin Sequence for Quantum Lens Spaces
F. Arici, S. Brain, G. Landi
arXiv:1401.6788 [math.QA], to appear in JNCG .
Pimsner Algebras and Gysin Sequences from Principal Circle Actions
F. Arici, J. Kaad, G. Landi
in preparation.

1 Motivation

2 Algebraic ingredients

3 Construction of the Gysin sequence

4 Pimsner's construction

5 Conclusions

1 Topology:

- Quotient of odd dimensional spheres by an action of a finite cyclic group.

$$
\begin{equation*}
\mathrm{L}^{(n, r)}:=\mathrm{S}^{2 n+1} / \mathbb{Z}_{r} \tag{1}
\end{equation*}
$$

- Torsion phenomena, e.g. $\pi_{1}\left(\mathrm{~L}^{(n, r)}\right)=\mathbb{Z}_{r}$.
- Total spaces of $U(1)$ bundles over projective spaces.

1 Topology:

- Quotient of odd dimensional spheres by an action of a finite cyclic group.

$$
\begin{equation*}
\mathrm{L}^{(n, r)}:=\mathrm{S}^{2 n+1} / \mathbb{Z}_{r} \tag{1}
\end{equation*}
$$

- Torsion phenomena, e.g. $\pi_{1}\left(\mathrm{~L}^{(n, r)}\right)=\mathbb{Z}_{r}$.
- Total spaces of $U(1)$ bundles over projective spaces.

2 Problems in high energy physics:

- T duality
- Chern Simons field theories


## Topological formulation.

Long exact sequence in cohomology, associated to any sphere bundle. In particular, for circle bundles: $U(1) \hookrightarrow E \rightarrow^{\pi} X$.

Topological formulation.
Long exact sequence in cohomology, associated to any sphere bundle. In particular, for circle bundles: $U(1) \hookrightarrow E \rightarrow^{\pi} X$.
$\cdots \longrightarrow H^{k}(E) \xrightarrow{\pi_{*}} H^{k-1}(X) \xrightarrow{\cup c_{1}(E)} H^{k+1}(X) \xrightarrow{\pi^{*}} H^{k+1}(E) \longrightarrow \cdots$

Topological formulation.
Long exact sequence in cohomology, associated to any sphere bundle. In particular, for circle bundles: $U(1) \hookrightarrow E \rightarrow^{\pi} X$.
$\cdots \longrightarrow H^{k}(E) \xrightarrow{\pi_{*}} H^{k-1}(X) \xrightarrow{\cup c_{1}(E)} H^{k+1}(X) \xrightarrow{\pi^{*}} H^{k+1}(E) \longrightarrow \cdots$

Main reference: Karoubi 1978.

Main reference: Karoubi 1978.

## Cyclic Six Term exact sequence .

Main reference: Karoubi 1978.

## Cyclic Six Term exact sequence .

In our examples $K^{1}\left(\mathbb{C P}^{n}\right)=0$.

$$
\begin{equation*}
0 \longrightarrow K^{1}(L(n, r)) \xrightarrow{\delta_{10}} K^{0}\left(\mathbb{C P}^{n}\right) \xrightarrow{\alpha} K^{0}\left(\mathbb{C P}^{n}\right) \xrightarrow{\pi^{*}} K^{0}(L(n, r)) \rightarrow 0, \tag{2}
\end{equation*}
$$

Main reference: Karoubi 1978.
Cyclic Six Term exact sequence .
In our examples $K^{1}\left(\mathbb{C P}^{n}\right)=0$.

$$
\begin{equation*}
0 \longrightarrow K^{1}(L(n, r)) \xrightarrow{\delta_{10}} K^{0}\left(\mathbb{C P}^{n}\right) \xrightarrow{\alpha} K^{0}\left(\mathbb{C P}^{n}\right) \xrightarrow{\pi^{*}} K^{0}(L(n, r)) \rightarrow 0, \tag{2}
\end{equation*}
$$

where $\alpha$ is the mutiliplication by the Euler class

$$
\begin{equation*}
\chi\left(\mathcal{L}_{r}\right)=1-\left[\mathcal{L}_{r}\right] \tag{3}
\end{equation*}
$$

of the bundle $\mathcal{L}_{r}:=\xi^{\otimes r}$, where $\xi$ is the tautological line bundle on $\mathbb{C P}^{n}$.

Main reference: Karoubi 1978.
Cyclic Six Term exact sequence .
In our examples $K^{1}\left(\mathbb{C P}^{n}\right)=0$.

$$
\begin{equation*}
0 \longrightarrow K^{1}(L(n, r)) \xrightarrow{\delta_{10}} K^{0}\left(\mathbb{C P}^{n}\right) \xrightarrow{\alpha} K^{0}\left(\mathbb{C P}^{n}\right) \xrightarrow{\pi^{*}} K^{0}(L(n, r)) \rightarrow 0, \tag{2}
\end{equation*}
$$

where $\alpha$ is the mutiliplication by the Euler class

$$
\begin{equation*}
\chi\left(\mathcal{L}_{r}\right)=1-\left[\mathcal{L}_{r}\right] \tag{3}
\end{equation*}
$$

of the bundle $\mathcal{L}_{r}:=\xi^{\otimes r}$, where $\xi$ is the tautological line bundle on $\mathbb{C P}^{n}$.
... Is there a quantum version?

## Quantum spheres...

L. Vaksman, Ya. Soibelman, 1991 M. Welk, 2000

The coordinate algebra $\mathcal{A}\left(\mathrm{S}_{q}^{2 n+1}\right)$ quantum sphere $\mathrm{S}_{q}^{2 n+1}$ :
*-algebra generated by $2 n+2$ elements $\left\{z_{i}, z_{i}^{*}\right\}_{i=0, \ldots, n}$ s.t.:

$$
\begin{aligned}
z_{i} z_{j} & =q^{-1} z_{j} z_{i} & & 0 \leq i<j \leq n, \\
z_{i}^{*} z_{j} & =q z_{j} z_{i}^{*} & & i \neq j, \\
{\left[z_{n}^{*}, z_{n}\right] } & =0, \quad\left[z_{i}^{*}, z_{i}\right]=\left(1-q^{2}\right) \sum_{j=i+1}^{n} z_{j} z_{j}^{*} & & i=0, \ldots, n-1, \\
1 & =z_{0} z_{0}^{*}+z_{1} z_{1}^{*}+\ldots+z_{n} z_{n}^{*} . & &
\end{aligned}
$$

## ...and quantum projective spaces

The $*$-subalgebra of $\mathcal{A}\left(\mathrm{S}_{q}^{2 n+1}\right)$ generated by $p_{i j}:=z_{i}^{*} z_{j}$ is the coordinate algebra $\mathcal{A}\left(\mathbb{C P}_{q}^{n}\right)$ of the quantum projective space $\mathbb{C P}_{q}^{n}$ invariant elements for the $\mathrm{U}(1)$-action on the algebra $\mathcal{A}\left(\mathrm{S}_{q}^{2 n+1}\right)$ :

$$
\left(z_{0}, z_{1}, \ldots, z_{n}\right) \mapsto\left(\lambda z_{0}, \lambda z_{1}, \ldots, \lambda z_{n}\right), \quad \lambda \in \mathrm{U}(1) .
$$

## ...and quantum projective spaces

The $*$-subalgebra of $\mathcal{A}\left(\mathrm{S}_{q}^{2 n+1}\right)$ generated by $p_{i j}:=z_{i}^{*} z_{j}$ is the coordinate algebra $\mathcal{A}\left(\mathbb{C P}_{q}^{n}\right)$ of the quantum projective space $\mathbb{C P}{ }_{q}^{n}$ invariant elements for the $\mathrm{U}(1)$-action on the algebra $\mathcal{A}\left(\mathrm{S}_{q}^{2 n+1}\right)$ :

$$
\left(z_{0}, z_{1}, \ldots, z_{n}\right) \mapsto\left(\lambda z_{0}, \lambda z_{1}, \ldots, \lambda z_{n}\right), \quad \lambda \in \mathrm{U}(1)
$$

The $C^{*}$-algebras $C\left(\mathrm{~S}_{q}^{2 n+1}\right)$ and $C\left(\mathbb{C P}_{q}^{n}\right)$ of continuous functions: completions of $\mathcal{A}\left(\mathrm{S}_{q}^{2 n+1}\right)$ and $\mathcal{A}\left(\mathbb{C P}_{q}^{n}\right)$ in the universal $C^{*}$-norms

## ...and quantum projective spaces

The $*$-subalgebra of $\mathcal{A}\left(\mathrm{S}_{q}^{2 n+1}\right)$ generated by $p_{i j}:=z_{i}^{*} z_{j}$ is the coordinate algebra $\mathcal{A}\left(\mathbb{C P}_{q}^{n}\right)$ of the quantum projective space $\mathbb{C P}_{q}^{n}$ invariant elements for the $\mathrm{U}(1)$-action on the algebra $\mathcal{A}\left(\mathrm{S}_{q}^{2 n+1}\right)$ :

$$
\left(z_{0}, z_{1}, \ldots, z_{n}\right) \mapsto\left(\lambda z_{0}, \lambda z_{1}, \ldots, \lambda z_{n}\right), \quad \lambda \in \mathrm{U}(1) .
$$

The $C^{*}$-algebras $C\left(\mathrm{~S}_{q}^{2 n+1}\right)$ and $C\left(\mathbb{C P}_{q}^{n}\right)$ of continuous functions: completions of $\mathcal{A}\left(\mathrm{S}_{q}^{2 n+1}\right)$ and $\mathcal{A}\left(\mathbb{C P}_{q}^{n}\right)$ in the universal $C^{*}$-norms These are graph algebras J.H. Hong, W. Szymański 2002.

## ...and quantum projective spaces

The $*$-subalgebra of $\mathcal{A}\left(\mathrm{S}_{q}^{2 n+1}\right)$ generated by $p_{i j}:=z_{i}^{*} z_{j}$ is the coordinate algebra $\mathcal{A}\left(\mathbb{C P}_{q}^{n}\right)$ of the quantum projective space $\mathbb{C P}_{q}^{n}$ invariant elements for the $\mathrm{U}(1)$-action on the algebra $\mathcal{A}\left(\mathrm{S}_{q}^{2 n+1}\right)$ :

$$
\left(z_{0}, z_{1}, \ldots, z_{n}\right) \mapsto\left(\lambda z_{0}, \lambda z_{1}, \ldots, \lambda z_{n}\right), \quad \lambda \in \mathrm{U}(1) .
$$

The $C^{*}$-algebras $C\left(\mathrm{~S}_{q}^{2 n+1}\right)$ and $C\left(\mathbb{C P}_{q}^{n}\right)$ of continuous functions: completions of $\mathcal{A}\left(\mathrm{S}_{q}^{2 n+1}\right)$ and $\mathcal{A}\left(\mathbb{C P}_{q}^{n}\right)$ in the universal $C^{*}$-norms These are graph algebras J.H. Hong, W. Szymański 2002. Their K-theory can be computed out of the incidence matrix.

## F. D'Andrea, G. Landi 2010

Generators of the K-theory $K_{0}\left(\mathbb{C P}_{q}^{n}\right)$ also given explicitly as projections whose are polynomial functions:
For $N \in \mathbb{Z}$, let $\Psi_{N}:=\left(\psi_{j_{0}, \ldots, j_{n}}^{N}\right)$ be the vector-valued function

$$
\psi_{j_{0}, \ldots, j_{n}}^{N}:= \begin{cases}\beta_{j_{0}, \ldots, j_{n}}^{N}\left(z_{0}^{j_{0}}\right)^{*} \ldots\left(z_{n}^{j_{n}}\right)^{*} & \text { for } \quad N \geq 0 \\ \gamma_{j_{0}, \ldots, j_{n}}^{N} z_{0}^{j_{0}} \ldots z_{n}^{j_{n}} & \text { for } \quad N \leq 0\end{cases}
$$

with $j_{0}+\ldots+j_{n}=|N|$.
Entries of $P_{N}$ are $\mathrm{U}(1)$-invariant and so elements of $\mathcal{A}\left(\mathbb{C P}_{q}^{n}\right)$
Coefficients $\beta$ 's, $\gamma$ 's so that $\Psi_{N}^{*} \Psi_{N}=1$
$\Rightarrow \quad P_{N}:=\Psi_{N} \Psi_{N}^{*}$ is a projection
$P_{N} \in \mathrm{M}_{d_{N}}\left(\mathcal{A}\left(\mathbb{C P}_{q}^{n}\right)\right), \quad d_{N}:=\binom{|N|+n}{n}$,

The inclusion $\mathcal{A}\left(\mathbb{C P}_{q}^{n}\right) \hookrightarrow \mathcal{A}\left(\mathrm{S}_{q}^{2 n+1}\right)$ is a $\mathrm{U}(1)$ q.p.b.
To a projection $P_{N}$ there corresponds an associated bundle With $v=\left(v_{j_{0}, \ldots, j_{n}}\right) \in\left(\mathcal{A}\left(\mathbb{C P}_{q}^{n}\right)\right)^{d_{N}}$ consider

$$
\begin{equation*}
\mathcal{L}_{N}:=\left\{\varphi_{N}:=v \cdot \psi_{N}=\sum_{j_{0}+\ldots+j_{n}=N} v_{j_{0}, \ldots, j_{n}} \psi_{j_{0}, \ldots, j_{n}}^{N}\right\} ; \tag{4}
\end{equation*}
$$

$\mathcal{L}_{N}$ made of elements of $\mathcal{A}\left(\mathrm{S}_{q}^{2 n+1}\right)$ transforming under $\mathrm{U}(1)$ as

$$
\varphi_{N} \mapsto \varphi_{N} \lambda^{-N}
$$

$\mathcal{L}_{0}=\mathcal{A}\left(\mathbb{C P}_{q}^{n}\right)$; each $\mathcal{L}_{N}$ is an $\mathcal{L}_{0}$-bimodule - the bimodule of equivariant maps for the IRREP of $\mathrm{U}(1)$ with weight $N$.

$$
\begin{equation*}
\mathcal{L}_{N} \otimes_{\mathcal{A}\left(\mathbb{C P}_{q}^{n}\right)} \mathcal{L}_{N^{\prime}} \simeq \mathcal{L}_{N+N^{\prime}} \tag{5}
\end{equation*}
$$

Isomorphisms $\mathcal{L}_{N} \simeq\left(\mathcal{A}\left(\mathbb{C P}_{q}^{n}\right)\right)^{d_{N}} P_{N}$ as left $\mathcal{A}\left(\mathbb{C P}_{q}^{n}\right)$-modules we denote $\left[P_{N}\right]=\left[\mathcal{L}_{N}\right]$ in the group $K_{0}\left(\mathbb{C P}_{q}^{n}\right)$.
The module $\mathcal{L}_{N}$ is a line bundle, in the sense that its 'rank' (as computed by pairing with $\left[\mu_{0}\right]$ ) is equal to 1
Completely characterized by its 'first Chern number' (as computed by pairing with the class $\left[\mu_{1}\right]$ ):

Proposition
For all $N \in \mathbb{Z}$ it holds that

$$
\left\langle\left[\mu_{0}\right],\left[\mathcal{L}_{N}\right]\right\rangle=1 \quad \text { and } \quad\left\langle\left[\mu_{1}\right],\left[\mathcal{L}_{N}\right]\right\rangle=-N .
$$

The line bundle $\mathcal{L}_{-1}$ emerges as a central character: its only non-vanishing charges are

$$
\left\langle\left[\mu_{0}\right],\left[\mathcal{L}_{-1}\right]\right\rangle=1 \quad\left\langle\left[\mu_{1}\right],\left[\mathcal{L}_{-1}\right]\right\rangle=1
$$

$\mathcal{L}_{-1}$ is the tautological line bundle for the QPS $\mathbb{C P}_{q}^{n}$. Consider $u:=1-\left[\mathcal{L}_{-1}\right] \in K_{0}\left(\mathbb{C P}_{q}^{n}\right)$ of which we can take powers using (5):

$$
u^{j}=\left(1-\left[\mathcal{L}_{-1}\right]\right)^{j} \simeq \sum_{N=0}^{j}(-1)^{N}\binom{j}{N}\left[\mathcal{L}_{-N}\right] .
$$

## Proposition

For $0 \leq j \leq n$ and for $0 \leq k \leq n$, it holds that

$$
\left\langle\left[\mu_{k}\right], u^{j}\right\rangle=\left\{\begin{array}{ll}
0 & \text { for } j \neq k \\
(-1)^{j} & \text { for } j=k
\end{array},\right.
$$

while for all $0 \leq k \leq n$ it holds that

$$
\left\langle\left[\mu_{k}\right], u^{n+1}\right\rangle=0
$$

Thus $u^{n+1}=0$ in $K_{0}\left(\mathbb{C P}_{q}^{n}\right)$ and $\left[\mu_{k}\right]$ and $(-u)^{j}$ are dual bases

## Proposition

$$
K_{0}\left(\mathbb{C P}_{q}^{n}\right) \simeq \mathbb{Z}\left[\mathcal{L}_{-1}\right] /\left(1-\left[\mathcal{L}_{-1}\right]\right)^{n+1} \simeq \mathbb{Z}[u] / u^{n+1}
$$

The quantum lens spaces
Fix an integer $r \geq 2$ and define

$$
\mathcal{A}\left(\mathrm{L}_{q}^{(n, r)}\right):=\bigoplus_{N \in \mathbb{Z}} \mathcal{L}_{r N}
$$

## Proposition

$\mathcal{A}\left(\mathrm{L}_{q}^{(n, r)}\right)$ is a *-algebra; all elements of $\mathcal{A}\left(\mathrm{S}_{q}^{2 n+1}\right)$ invariant under the action $\alpha_{r}: \mathbb{Z}_{r} \rightarrow \operatorname{Aut}\left(\mathcal{A}\left(\mathrm{~S}_{q}^{2 n+1}\right)\right)$ of the cyclic group $\mathbb{Z}_{r}$ :

$$
\left(z_{0}, z_{1}, \ldots, z_{n}\right) \mapsto\left(e^{2 \pi \mathrm{i} / r} z_{0}, e^{2 \pi \mathrm{i} / r} z_{1}, \ldots, e^{2 \pi \mathrm{i} / \mathrm{r}} z_{n}\right) .
$$

The 'dual' $L_{q}^{(n, r)}$ can be interpreted as the quantum lens space of dimension $2 n+1$ (and index $r$ );
a deformation of the classical lens space $L^{(n, r)}=S^{2 n+1} / \mathbb{Z}_{r}$

## Proposition

The algebra inclusion $\mathcal{A}\left(\mathrm{L}_{q}^{(n, r)}\right) \hookrightarrow \mathcal{A}\left(\mathrm{S}_{q}^{2 n+1}\right)$ is a quantum principal bundle with structure group $\mathbb{Z}_{r}$.

## Proposition

The algebra inclusion $\mathcal{A}\left(\mathrm{L}_{q}^{(n, r)}\right) \hookrightarrow \mathcal{A}\left(\mathrm{S}_{q}^{2 n+1}\right)$ is a quantum principal bundle with structure group $\mathbb{Z}_{r}$.

More structrure:

## Proposition

The algebra inclusion $j: \mathcal{A}\left(\mathbb{C P}_{q}^{n}\right) \hookrightarrow \mathcal{A}\left(\mathrm{L}_{q}^{(n, r)}\right)$ is a quantum principal bundle with structure group $\widetilde{\mathrm{U}}(1):=\mathrm{U}(1) / \mathbb{Z}_{r}$ :

$$
\mathcal{A}\left(\mathbb{C P}_{q}^{n}\right)=\mathcal{A}\left(\mathrm{L}_{q}^{(n, r)}\right)^{\tilde{\mathrm{U}}(1)}
$$

in analogy with the identification $\mathcal{A}\left(\mathbb{C P}_{q}^{n}\right)=\mathcal{A}\left(\mathrm{S}_{q}^{2 n+1}\right)^{\mathrm{U}(1)}$

A way to 'pull-back' line bundles from $\mathbb{C P}_{q}^{n}$ to $\mathrm{L}_{q}^{(n, r)}$ :

i.e, the algebra inclusion $j: \mathcal{A}\left(\mathbb{C P}_{q}^{\eta}\right) \rightarrow \mathcal{A}\left(\mathrm{L}_{q}^{(n, r)}\right)$ induces a map

$$
j_{*}: K_{0}\left(\mathbb{C P}_{q}^{n}\right) \rightarrow K_{0}\left(\mathrm{~L}_{q}^{(n, r)}\right)
$$

## Definition

For each $\mathcal{A}\left(\mathbb{C P}_{q}^{n}\right)$-bimodule $\mathcal{L}_{N}$ as in (4) (a line bundle over $\left.\mathbb{C P}_{q}^{n}\right)$, its 'pull-back' to $\mathrm{L}_{q}^{(n, r)}$ is the $\mathcal{A}\left(\mathrm{L}_{q}^{(n, r)}\right)$-bimodule

$$
\widetilde{\mathcal{L}}_{N}=j_{*}\left(\mathcal{L}_{N}\right):=\left\{\widetilde{\varphi}_{N}=v \cdot \Psi_{N}=\sum_{j_{0}+\ldots+j_{n}=N} v_{j_{0}, \ldots, j_{n}} \psi_{j_{0}, \ldots, j_{n}}^{N}\right\},
$$

for $v=\left(v_{j_{0}, \ldots, j_{n}}\right) \in\left(\mathcal{A}\left(\mathrm{L}_{q}^{(n, r)}\right)\right)^{d_{N}}$.

## Proposition

There are left $\mathcal{A}\left(\mathrm{L}_{q}^{(n, r)}\right)$-module isomorphisms

$$
\widetilde{\mathcal{L}}_{N} \simeq\left(\mathcal{A}\left(\mathrm{~L}_{q}^{(n, r)}\right)\right)^{d_{N}} P_{N}
$$

and right $\mathcal{A}\left(\mathrm{L}_{q}^{(n, r)}\right)$-module isomorphisms

$$
\widetilde{\mathcal{L}}_{N} \simeq P_{-N}\left(\mathcal{A}\left(\mathrm{~L}_{q}^{(n, r)}\right)\right)^{d_{N}}
$$

Projections $P_{N}$ here are as before; now as elements of $K_{0}\left(\mathrm{~L}_{q}^{(n, r)}\right)$ use the left $\mathcal{A}\left(\mathrm{L}_{q}^{(n, r)}\right)$-module identification
$\left[\widetilde{\mathcal{L}}_{N}\right] \simeq\left[P_{N}\right]$ as an element in $K_{0}\left(\mathrm{~L}_{q}^{(n, r)}\right)$.
$\mathcal{L}_{N}$ versus its pull-back $\widetilde{\mathcal{L}}_{N}$
The marked difference: each $\mathcal{L}_{N}$ is not free when $N \neq 0$;
The pull-back $\widetilde{\mathcal{L}}_{-r}$ of the line bundle $\mathcal{L}_{-r}$ is free: the corresponding projection is $P_{-r}:=\Psi_{-r} \Psi_{-r}^{*}$ and the vector-valued function $\Psi_{-r}$ has entries in the algebra $\mathcal{A}\left(\mathrm{L}_{q}^{(n, r)}\right)$ itself : the condition $\Psi_{-r}^{*} \Psi_{-r}=1$ implies that $P_{-r}$ is equivalent to 1 , that is the class of the module $\widetilde{\mathcal{L}}_{-r}$ is trivial in $K_{0}\left(\mathrm{~L}_{q}^{(n, r)}\right)$.
$\mathcal{L}_{N}$ versus its pull-back $\widetilde{\mathcal{L}}_{N}$
The marked difference: each $\mathcal{L}_{N}$ is not free when $N \neq 0$;
The pull-back $\widetilde{\mathcal{L}}_{-r}$ of the line bundle $\mathcal{L}_{-r}$ is free: the corresponding projection is $P_{-r}:=\Psi_{-r} \Psi_{-r}^{*}$ and the vector-valued function $\Psi_{-r}$ has entries in the algebra $\mathcal{A}\left(\mathrm{L}_{q}^{(n, r)}\right)$ itself : the condition $\Psi_{-r}^{*} \Psi_{-r}=1$ implies that $P_{-r}$ is equivalent to 1 , that is the class of the module $\widetilde{\mathcal{L}}_{-r}$ is trivial in $K_{0}\left(\mathrm{~L}_{q}^{(n, r)}\right)$. It follows: $\left(\widetilde{\mathcal{L}}_{-N}\right)^{\otimes r} \simeq \widetilde{\mathcal{L}}_{-r N}$ also has trivial class for any $N \in \mathbb{Z}$ Such pulled-back line bundles $\widetilde{\mathcal{L}}_{-N}$ thus define torsion classes; furthermore, they generate the group $K_{0}\left(L_{q}^{(n, r)}\right)$.

A second crucial ingredient

$$
\alpha: K_{0}\left(\mathbb{C P}_{q}^{n}\right) \rightarrow K_{0}\left(\mathbb{C P}_{q}^{n}\right),
$$

$\alpha$ is multiplication by $\quad \chi\left(\mathcal{L}_{-r}\right):=1-\left[\mathcal{L}_{-r}\right]$ the Euler class of the line bundle $\mathcal{L}_{-r}$

Assembly these into an exact sequence, the Gysin sequence

$$
0 \rightarrow K_{1}\left(\mathrm{~L}_{q}^{(n, r)}\right) \longrightarrow K_{0}\left(\mathbb{C P}_{q}^{n}\right) \xrightarrow{\alpha} K_{0}\left(\mathbb{C P}_{q}^{n}\right) \xrightarrow{j_{*}} K_{0}\left(\mathrm{~L}_{q}^{(n, r)}\right) \longrightarrow 0
$$

Some practical and important applications, notably, the computation of the K-theory of the quantum lens spaces $\mathrm{L}_{q}^{(n, r)}$.
Thus

$$
K_{1}\left(\mathrm{~L}_{q}^{(n, r)}\right) \simeq \operatorname{ker}(\alpha), \quad K_{0}\left(\mathrm{~L}_{q}^{(n, r)}\right) \simeq \operatorname{coker}(\alpha) .
$$

Moreover, geometric generators of the groups

$$
K_{1}\left(\mathrm{~L}_{q}^{(n, r)}\right) \quad K_{0}\left(\mathrm{~L}_{q}^{(n, r)}\right)
$$

for the latter as pulled-back line bundles from $\mathbb{C P}_{q}^{n}$ to $\mathrm{L}_{q}^{(n, r)}$

Some Notation: from now on we will be writing

$$
A:=C\left(\mathrm{~L}_{q}^{(n, r)}\right), \quad F:=C\left(\mathbb{C P}_{q}^{n}\right)
$$

A.L. Carey, S. Neshveyev, R. Nest, A. Rennie 2011
$F$ sits inside $A$ as the fixed point subalgebra,

$$
F=\left\{a \in A: \sigma_{t}(a)=a \text { for all } t \in \widetilde{\mathrm{U}}(1)\right\}
$$

and one has a faithful conditional expectation

$$
\tau: A \rightarrow F, \quad \tau(a):=\int_{0}^{2 \pi} \sigma_{t}(a) \mathrm{d} t
$$

leading to an $F$-valued inner product on $A$ by defining

$$
\langle\cdot, \cdot\rangle_{F}: A \times A \rightarrow F, \quad\langle a, b\rangle_{F}:=\tau\left(a^{*} b\right) .
$$

$A$ is a right pre-Hilbert $F$-module, with Hilbert module $X$ say.

The infinitesimal generator of the circle action determines an unbounded self-adjoint regular operator $\mathfrak{D}: \operatorname{Dom}(\mathfrak{D}) \rightarrow X$ The pair $(X, \mathfrak{D})$ yields a class in the bivariant K-theory $K K_{1}(A, F)$ and the Kasparov product with the class $[(X, \mathfrak{D})]$ thus furnishes

$$
\operatorname{Ind}_{\mathfrak{D}}: K_{*}(A) \rightarrow K_{*+1}(F), \quad \operatorname{Ind}_{\mathfrak{D}}(-):=-\widehat{\otimes}_{A}[(X, \mathfrak{D})] .
$$

Then the sequence becomes

$$
0 \rightarrow K_{1}(A) \xrightarrow{\operatorname{lnd}_{刃}} K_{0}(F) \xrightarrow{\alpha} K_{0}(F) \xrightarrow{j_{*}} K_{0}(A) \xrightarrow{\operatorname{lnd}_{刃}} 0
$$

At this point we are saying nothing about exactness of the sequence.

The mapping cone of the pair $(F, A)$ is the $C^{*}$-algebra

$$
\begin{aligned}
M(F, A) & :=\{f \in C([0,1], A) \mid f(0)=0, f(1) \in F\} . \\
0 & \rightarrow S(A) \xrightarrow{i} M(F, A) \xrightarrow{\text { ev }} F \rightarrow 0,
\end{aligned}
$$

$S(A):=C_{0}((0,1)) \otimes A$ the suspension;
with $i(f \otimes a)(t):=f(t) a ; \operatorname{ev}(f):=f(1)$
Using the vanishing of $K_{1}(F)$, and of $K_{1}(M(F, A))$, the corresponding six term exact sequence is

$$
0 \rightarrow K_{1}(A) \xrightarrow{i_{*}} K_{0}(M(F, A)) \xrightarrow{\mathrm{ev}_{*}} K_{0}(F) \xrightarrow{j_{*}} K_{0}(A) \rightarrow 0 .
$$

The maps in these:

- $i_{*}: K_{1}(A) \rightarrow K_{0}(M(F, A))$ comes from $i: S(A) \rightarrow M(F, A)$
- $j_{*}: K_{0}(F) \rightarrow K_{0}(A) \cong K_{1}(S(A))$ comes from the inclusion $j: F \rightarrow A$ (up to Bott periodicity)
- $\mathrm{ev}_{*}: K_{0}(M(F, A)) \rightarrow K_{0}(F)$ comes from

$$
K_{0}(M(F, A)) \simeq V(F, A) / \sim
$$

$V(F, A)$ are partial isometries $v$ with entries in $A$ such that the associated projections $v^{*} v$ and $v v^{*}$ have entries in $F$.

$$
\mathrm{ev}_{*}: K_{0}(M(F, A)) \rightarrow K_{0}(F), \quad \mathrm{ev}_{*}([v]):=\left[v^{*} v\right]-\left[v v^{*}\right]
$$

$\sim$ a suitable equivalence relation
I. Putnam 1997

The above is an equivalent variant of the Gysin sequence

## Theorem

There is a diagram

where squares commute and vertical arrows are isomorphisms

The merit of our construction is not only in computing the K-theory groups: this could be done by means of graph algebras.
Explicit generators as classes of 'line bundles', torsion ones.
Since the map $j_{*}$ in the sequence is surjective, the group $K_{0}\left(\mathrm{~L}_{q}^{(n, r)}\right)$ can be obtained by 'pulling back' classes from $K_{0}\left(\mathbb{C P}_{q}^{n}\right)$.
The matrix $A$ of the map $\alpha$ with respect to the $\mathbb{Z}$-module basis $\left\{1, u, \ldots, u^{n}\right\}$. Using the condition $u^{n+1}=0$ one has

$$
\chi\left(\mathcal{L}_{-r}\right)=1-(1-u)^{r}=\sum_{j=1}^{\min (r, n)}(-1)^{j+1}\binom{r}{j} u^{j} .
$$

Thus $A$ is an $(n+1) \times(n+1)$ strictly lower triangular matrix:

$$
A=\left(\begin{array}{cccccc}
0 & 0 & 0 & \cdots \cdots & & 0 \\
r & 0 & 0 & \cdots \cdots & & 0 \\
-\binom{r}{2} & r & 0 & \cdots \cdots & & 0 \\
\binom{r}{3} & -\binom{r}{2} & r & & & 0 \\
\vdots & & & \ddots & \vdots & \vdots \\
& & & & & \\
0 & 0 & 0 & \cdots \cdots & r & 0
\end{array}\right) .
$$

## Proposition

The $(n+1) \times(n+1)$ matrix $A$ has rank $n$ :

$$
K_{1}\left(C\left(\mathrm{~L}_{q}^{(n, r)}\right)\right) \simeq \mathbb{Z} .
$$

On the other hand, the structure of the cokernel of the matrix $A$ depends on the divisibility properties of the integer $r$.
The Smith normal form for matrices over a principal ideal domain, such as $\mathbb{Z}$ : there exist invertible matrices $P$ and $Q$ having integer entries which transform $A$ to a diagonal matrix

$$
\operatorname{Sm}(A):=P A Q=\operatorname{diag}\left(\alpha_{1}, \cdots, \alpha_{n}, 0\right) .
$$

Integer entries $\alpha_{i} \geq 1$, given by

$$
\alpha_{1}=d_{1}(A) \quad \alpha_{i}=d_{i}(A) / d_{i-1}(A)
$$

$d_{i}(A)$ is the greatest common divisor of the non-zero determinants of the minors of order $i$ of the matrix $A$.

This leads to

$$
K_{0}\left(\mathrm{~L}_{q}^{(n, r)}\right)=\mathbb{Z} \oplus \mathbb{Z} / \alpha_{1} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / \alpha_{n} \mathbb{Z} .
$$

Construction of explicit generators.

## Pimsner Algebras

The module $\mathcal{L}_{-r}$ over the fixed point algebra $F=C\left(\mathbb{C P}_{q}^{n}\right)$ plays a crucial role in our construction.
Related construction: Cuntz-Pimsner Algebras Ingredients:

- A C*-algebra $F$;
- A C*-correspondence $E$ over $F$.

One constructs a $C^{*}$-algebra $\mathcal{O}_{E}$ that generalizes Cuntz-Krieger algebras and crossed products.
All the information about $\mathcal{O}_{E}$ is encoded in $(F, E)$.

Let $[E] \in \mathrm{KK}(F, F)$ denote the class of the Hilbert $\mathrm{C}^{*}$-bimodule E . If $B$ is any separable $C^{*}$-algebra, there are two exact sequences:

$$
\begin{array}{cc}
K K_{0}(B, F) & \stackrel{1-[E]}{\longrightarrow} K K_{0}(B, F) \xrightarrow{j_{*}} K K_{0}\left(B, \mathcal{O}_{E}\right) \\
{[\partial] \uparrow} & \\
& \downarrow \partial] \\
K K_{1}\left(B, \mathcal{O}_{E}\right) \underset{j_{*}}{\leftrightarrows} K K_{1}(B, F) \underset{1-[E]}{\leftrightarrows} & K K_{1}(B, F)
\end{array}
$$

and

$$
\begin{aligned}
& K K_{0}(F, B) \underset{1-[E]}{\longleftarrow} K K_{0}(F, B) \underset{j^{*}}{\longleftarrow} K K_{0}\left(\mathcal{O}_{E}, C\right) \\
& \text { [2] } \\
& K K_{1}\left(\mathcal{O}_{E}, B\right) \xrightarrow{j^{*}} K K_{1}(F, B) \xrightarrow{1-[E]} K K_{1}(F, B)
\end{aligned}
$$

where $j^{*}$ and $j_{*}$ are induced by $j: F \hookrightarrow \mathcal{O}_{E}$.

For $B=\mathbb{C}$, the first sequence above reduces to

$$
\begin{aligned}
& K_{0}(F) \xrightarrow{1-[E]} K_{0}(F) \xrightarrow{j_{*}} K_{0}\left(\mathcal{O}_{E}\right) \\
& { }_{[2]} \uparrow \\
& K_{1}\left(\mathcal{O}_{E}\right) \underset{j_{*}}{\longleftarrow} K_{1}(F) \underset{1-[E]}{\longleftarrow} K_{1}(F)
\end{aligned}
$$

Can be interpreted as a Gysin sequence in K-theory. for the 'line bundle' $E$ over the 'noncommutative space' $F$ and with the map $1-[E]$ having the role of the Euler class $\chi(E):=1-[E]$ of the line bundle $E$.

Example of this construction.
$F:=$ quantum weighted proective space;
$\mathcal{O}_{E}:=$ quantum weighted lens space
Fixed point algebra under a weighted circle action $\left\{\sigma_{w}^{(k, /)}\right\}_{w \in S^{1}}$ on $\mathcal{A}\left(S_{q}^{3}\right)$ defined on generators by

$$
\sigma_{w}^{L}: z_{0} \mapsto w^{k} z_{0} \quad z_{1} \mapsto w^{\prime} z_{1}
$$

The algebraic quantum projective line $\mathcal{A}\left(W_{q}(k, I)\right)$ agrees with the unital *-subalgebra of $\mathcal{A}\left(S_{q}^{3}\right)$ generated by the elements $z_{0}^{\prime}\left(z_{1}^{*}\right)^{k}$ and $z_{1} z_{1}^{*}$. The $C^{*}$-algebra $C\left(W_{q}(k, l)\right)$ is defined as the completion in the universal $\mathrm{C}^{*}$-norm. Notice that it does not depend on $k$.

As a consequence one has the folowing corollary due to Brzeziński and Fairfax.

Corollary
The K-groups of $C\left(W_{q}(k, l)\right)$ are:

$$
K_{0}\left(C\left(W_{q}(k, l)\right)\right)=\mathbb{Z}^{I+1}, \quad K_{1}\left(C\left(W_{q}(k, l)\right)\right)=0 .
$$

We construct the coordinate algebra of the quantum weighted lens spaces out of a finetely generated projective modules $A_{(d n)}(k, I)$ over $\mathcal{A}\left(W_{q}(k, l)\right)$.

$$
\mathcal{A}\left(L_{q}(d l k ; k, l)\right) \cong \oplus_{n \in \mathbb{Z}} A_{(d n)}(k, I) .
$$

The C*-algebra is obtained $O_{E}$ for the corresponding $\mathrm{C}^{*}$-module $E$ over $C\left(W_{q}(k, l)\right.$.
We can compute the K-groups using the Gysin-Pimsner sequence.

- We constructed a Gysin exact sequence for quantum lens spaces using operator algebraic tecniques.
- The key role is played by a line bundle.
- Look at self Morita equivalences.
- The corresponding Pimsner algebra $O_{E}$ is then the total space algebra of a principal circle bundle over $A$.
- Gysin-like sequences relates the KK-theories of $O_{E}$ and of $A$.
- More examples.

The Gysin Sequence for Quantum Lens Spaces
F. Arici, S. Brain, G. Landi
arXiv:1401.6788 [math.QA]
Pimsner Algebras and Gysin Sequences from Principal Circle Actions
F. Arici, J. Kaad, G. Landi
in preparation

