

The K-Theory and K-homology of Quantum Lens Spaces

Francesca Arici (SISSA)

NAOA 2014 - Politecnico di Milano

The Gysin Sequence for Quantum Lens Spaces F. Arici, S. Brain, G. Landi arXiv:1401.6788 [math.QA], to appear in JNCG.

Pimsner Algebras and Gysin Sequences from Principal Circle Actions F. Arici, J. Kaad, G. Landi *in preparation*.

1 Motivation

2 Algebraic ingredients

3 Construction of the Gysin sequence

4 Pimsner's construction

5 Conclusions

1 Topology:

 Quotient of odd dimensional spheres by an action of a finite cyclic group.

$$\mathbf{L}^{(n,r)} := \mathbf{S}^{2n+1} / \mathbb{Z}_r \tag{1}$$

• Torsion phenomena, e.g.
$$\pi_1\left(\mathrm{L}^{(n,r)}
ight)=\mathbb{Z}_r.$$

• Total spaces of U(1) bundles over complex projective spaces.

1 Topology:

 Quotient of odd dimensional spheres by an action of a finite cyclic group.

$$\mathbf{L}^{(n,r)} := \mathbf{S}^{2n+1} / \mathbb{Z}_r \tag{1}$$

$$lacksquare$$
 Torsion phenomena, e.g. $\pi_{lacksquare}\left(\mathrm{L}^{(n,r)}
ight)=\mathbb{Z}_{r}.$

- Total spaces of U(1) bundles over complex projective spaces.
- **2** Problems in high energy physics:
 - T duality
 - Chern Simons field theories

Topological formulation.

Long exact sequence in cohomology, associated to any sphere bundle. In particular, for circle bundles: $U(1) \hookrightarrow E \to^{\pi} X$.

Topological formulation.

Long exact sequence in cohomology, associated to any sphere bundle. In particular, for circle bundles: $U(1) \hookrightarrow E \to^{\pi} X$.

$$\cdots \longrightarrow H^{k}(E) \xrightarrow{\pi_{*}} H^{k-1}(X) \xrightarrow{\cup c_{1}(E)} H^{k+1}(X) \xrightarrow{\pi^{*}} H^{k+1}(E) \longrightarrow \cdots$$

Topological formulation.

Long exact sequence in cohomology, associated to any sphere bundle. In particular, for circle bundles: $U(1) \hookrightarrow E \to^{\pi} X$.

$$\cdots \longrightarrow H^{k}(E) \xrightarrow{\pi_{*}} H^{k-1}(X) \xrightarrow{\cup c_{1}(E)} H^{k+1}(X) \xrightarrow{\pi^{*}} H^{k+1}(E) \longrightarrow \cdots$$

Motivation	Algebraic ingredients	Construction of the Gysin sequence	Conclusions
The Gysin Sequ	ence in K-Theory		

Main reference: Karoubi 1978.

Main reference: Karoubi 1978. Cyclic Six Term exact sequence .

Main reference: Karoubi 1978. Cyclic Six Term exact sequence . In our examples $K^1(\mathbb{CP}^n) = 0$.

$$0 \longrightarrow \mathcal{K}^{1}(\mathcal{L}(n,r)) \xrightarrow{\delta_{10}} \mathcal{K}^{0}(\mathbb{C}\mathrm{P}^{n}) \xrightarrow{\alpha} \mathcal{K}^{0}(\mathbb{C}\mathrm{P}^{n}) \xrightarrow{\pi^{*}} \mathcal{K}^{0}(\mathcal{L}(n,r)) \to 0,$$
(2)

Main reference: Karoubi 1978. Cyclic Six Term exact sequence . In our examples $K^1(\mathbb{CP}^n) = 0$.

$$0 \longrightarrow \mathcal{K}^{1}(\mathcal{L}(n,r)) \xrightarrow{\delta_{10}} \mathcal{K}^{0}(\mathbb{C}\mathrm{P}^{n}) \xrightarrow{\alpha} \mathcal{K}^{0}(\mathbb{C}\mathrm{P}^{n}) \xrightarrow{\pi^{*}} \mathcal{K}^{0}(\mathcal{L}(n,r)) \to 0,$$
(2)

where α is the mutiliplication by the Euler class

$$\chi(\mathcal{L}_r) = 1 - [\mathcal{L}_r] \tag{3}$$

of the bundle $\mathcal{L}_r := \xi^{\otimes r}$, where ξ is the tautological line bundle on $\mathbb{C}P^n$.

Main reference: Karoubi 1978. Cyclic Six Term exact sequence . In our examples $K^1(\mathbb{CP}^n) = 0$.

$$0 \longrightarrow \mathcal{K}^{1}(\mathcal{L}(n,r)) \xrightarrow{\delta_{10}} \mathcal{K}^{0}(\mathbb{C}\mathrm{P}^{n}) \xrightarrow{\alpha} \mathcal{K}^{0}(\mathbb{C}\mathrm{P}^{n}) \xrightarrow{\pi^{*}} \mathcal{K}^{0}(\mathcal{L}(n,r)) \longrightarrow 0,$$
(2)

where α is the mutiliplication by the Euler class

$$\chi(\mathcal{L}_r) = 1 - [\mathcal{L}_r] \tag{3}$$

of the bundle $\mathcal{L}_r := \xi^{\otimes r}$, where ξ is the tautological line bundle on $\mathbb{C}P^n$ Is there a **quantum** version?

L. Vaksman, Ya. Soibelman, 1991 M. Welk, 2000

The coordinate algebra $\mathcal{A}(S_q^{2n+1})$ quantum sphere S_q^{2n+1} is the *-algebra generated by 2n + 2 elements $\{z_i, z_i^*\}_{i=0,...,n}$ s.t. $z_i z_j = q^{-1} z_j z_i$ etc... Sphere relation:

$$1 = z_0 z_0^* + z_1 z_1^* + \ldots + z_n z_n^* .$$

The coordinate algebra $\mathcal{A}(\mathbb{C}\mathrm{P}_q^n)$ of the quantum projective space $\mathbb{C}\mathrm{P}_q^n$ is made of invariant elements for the U(1)-action on the algebra $\mathcal{A}(\mathrm{S}_q^{2n+1})$ given by

$$(z_0, z_1, \ldots, z_n) \mapsto (\lambda z_0, \lambda z_1, \ldots, \lambda z_n), \qquad \lambda \in \mathrm{U}(1).$$

The C*-algebras $C(\mathbb{S}_q^{2n+1})$ and $C(\mathbb{C}\mathbb{P}_q^n)$ of continuous functions: completions of $\mathcal{A}(\mathbb{S}_q^{2n+1})$ and $\mathcal{A}(\mathbb{C}\mathbb{P}_q^n)$ in the universal C*-norms

The C^* -algebras $C(\mathbb{S}_q^{2n+1})$ and $C(\mathbb{C}\mathbb{P}_q^n)$ of continuous functions: completions of $\mathcal{A}(\mathbb{S}_q^{2n+1})$ and $\mathcal{A}(\mathbb{C}\mathbb{P}_q^n)$ in the universal C^* -norms These are graph algebras J.H. Hong, W. Szymański 2002.

The C^* -algebras $C(\mathbb{S}_q^{2n+1})$ and $C(\mathbb{C}\mathbb{P}_q^n)$ of continuous functions: completions of $\mathcal{A}(\mathbb{S}_q^{2n+1})$ and $\mathcal{A}(\mathbb{C}\mathbb{P}_q^n)$ in the universal C^* -norms These are graph algebras J.H. Hong, W. Szymański 2002.

Their K-theory can be computed out of the *incidence matrix*.

F. D'Andrea, G. Landi 2010 Generators of the homology group $K^0(C(\mathbb{C}\mathrm{P}^n_a))$ given explicitly as (classes of) even Fredholm modules

$$\mu_k = \left(\mathcal{A}(\mathbb{C}\mathrm{P}^n_q), \, \mathcal{H}_{(k)}, \, \pi^{(k)}, \, \gamma_{(k)}, \, \mathsf{F}_{(k)}\right), \quad \text{for} \quad 0 \leq k \leq n \, .$$

Generators of the K-theory $K_0(\mathbb{CP}_q^n)$ also given explicitly as projections whose are polynomial functions:

For $N \in \mathbb{Z}$, let $\Psi_N := (\psi_{j_0,...,j_n}^N)$ be the vector-valued function with entries in $\mathcal{A}(\mathbb{C}\mathrm{P}_q^n)$ Such that $\Psi_N^*\Psi_N = 1$; $\Rightarrow P_N := \Psi_N \Psi_N^*$ is a projection

The inclusion $\mathcal{A}(\mathbb{C}\mathrm{P}_q^n) \hookrightarrow \mathcal{A}(\mathrm{S}_q^{2n+1})$ is a U(1) q.p.b. \mathcal{L}_N made of elements of $\mathcal{A}(\mathrm{S}_q^{2n+1})$ transforming under U(1) as

$$\varphi_{\mathsf{N}} \mapsto \varphi_{\mathsf{N}} \lambda^{-\mathsf{N}}$$

 $\mathcal{L}_0 = \mathcal{A}(\mathbb{C}\mathrm{P}_q^n)$; each \mathcal{L}_N is an \mathcal{L}_0 -bimodule – the bimodule of equivariant maps for the IRREP of U(1) with weight N.

$$\mathcal{L}_{N} \otimes_{\mathcal{A}(\mathbb{C}P_{q}^{n})} \mathcal{L}_{N'} \simeq \mathcal{L}_{N+N'} \quad \mathcal{L}_{N}^{\otimes k} = \mathcal{L}_{kN}.$$
(4)

We denote $[P_N] = [\mathcal{L}_N]$ in the group $\mathcal{K}_0(\mathbb{C}\mathrm{P}^n_q)$.

The module \mathcal{L}_N is a line bundle, in the sense that its 'rank' (as computed by pairing with $[\mu_0]$) is equal to 1 Completely characterized by its 'first Chern number' (as computed by pairing with the class $[\mu_1]$):

Proposition (D'Andrea - Landi 2010)

For all $N \in \mathbb{Z}$ it holds that

 $\langle [\mu_0], [\mathcal{L}_N] \rangle = 1$ and $\langle [\mu_1], [\mathcal{L}_N] \rangle = -N$.

The line bundle \mathcal{L}_{-1} emerges as a central character:

$$\langle [\mu_0], [\mathcal{L}_{-1}] \rangle = 1$$
 $\langle [\mu_1], [\mathcal{L}_{-1}] \rangle = 1$

 \mathcal{L}_{-1} is the *tautological line bundle* for the QPS $\mathbb{C}P_q^n$. Consider $u = \chi([\mathcal{L}_{-1}]) := 1 - [\mathcal{L}_{-1}]$, the Euler class of \mathcal{L}_{-1} .

$$u^{j} = (1 - [\mathcal{L}_{-1}])^{j} \simeq \sum_{N=0}^{j} (-1)^{N} {j \choose N} [\mathcal{L}_{-N}].$$

Proposition (D'Andrea - Landi 2010)

$$\mathcal{K}_0(\mathbb{C}\mathrm{P}^n_q)\simeq \mathbb{Z}[\mathcal{L}_{-1}]/(1-[\mathcal{L}_{-1}])^{n+1}\simeq \mathbb{Z}[u]/u^{n+1}$$

Fix an integer $r \ge 2$ and define

$$\mathcal{A}(\mathrm{L}^{(n,r)}_q) := igoplus_{N \in \mathbb{Z}} \mathcal{L}_{rN} \,.$$

Proposition

 $\mathcal{A}(L_q^{(n,r)})$ is a *-algebra; all elements of $\mathcal{A}(S_q^{2n+1})$ invariant under the action $\alpha_r : \mathbb{Z}_r \to \operatorname{Aut}(\mathcal{A}(S_q^{2n+1}))$ of the cyclic group \mathbb{Z}_r :

$$(z_0, z_1, \ldots, z_n) \mapsto (e^{2\pi i/r} z_0, e^{2\pi i/r} z_1, \ldots, e^{2\pi i/r} z_n).$$

It can be interpreted as a deformation of the classical lens space $L^{(n,r)}=\mathrm{S}^{2n+1}/\mathbb{Z}_r$

Motivation	Algebraic ingredients	Construction of the Gysin sequence	Conclusions
Quantum princi	ipal bundles		

Proposition

The algebra inclusion $\mathcal{A}(L_q^{(n,r)}) \hookrightarrow \mathcal{A}(S_q^{2n+1})$ is a quantum principal bundle with structure group \mathbb{Z}_r .

Motivation	Algebraic ingredients	Construction of the Gysin sequence	Conclusions
Quantum princ	ipal bundles		

Proposition

The algebra inclusion $\mathcal{A}(L_q^{(n,r)}) \hookrightarrow \mathcal{A}(S_q^{2n+1})$ is a quantum principal bundle with structure group \mathbb{Z}_r .

More structrure:

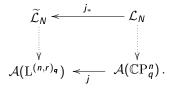
Proposition

The algebra inclusion $j : \mathcal{A}(\mathbb{C}\mathrm{P}^n_q) \hookrightarrow \mathcal{A}(\mathrm{L}^{(n,r)}_q)$ is a quantum principal bundle with structure group $\widetilde{\mathrm{U}}(1) := \mathrm{U}(1)/\mathbb{Z}_r$:

$$\mathcal{A}(\mathbb{C}\mathrm{P}_q^n) = \mathcal{A}(\mathrm{L}_q^{(n,r)})^{\widetilde{\mathrm{U}}(1)},$$

in analogy with the identification $\mathcal{A}(\mathbb{CP}_q^n) = \mathcal{A}(\mathrm{S}_q^{2n+1})^{\mathrm{U}(1)}$

A way to 'pull-back' line bundles from $\mathbb{C}P_q^n$ to $L_q^{(n,r)}$:



i.e, the algebra inclusion $j:\mathcal{A}(\mathbb{C}\mathrm{P}_q^n) o \mathcal{A}(\mathrm{L}_q^{(n,r)})$ induces a map

$$j_*: \mathcal{K}_0(\mathbb{C}\mathrm{P}^n_q) \to \mathcal{K}_0(\mathrm{L}^{(n,r)}_q)$$

They are obtained as

$$j_*(\mathcal{L}_N) = \mathcal{L}_N \otimes_{\mathcal{A}(\mathbb{CP}_q^n} \mathcal{A}\mathrm{L}_q^{(n,r)} =: \widetilde{\mathcal{L}}_N$$

Motivation	Algebraic ingredients	Construction of the Gysin sequence	Conclusions
Pulling back lin	e bundles		

Proposition

There are left $\mathcal{A}(\mathrm{L}_q^{(n,r)})$ -module isomorphisms

$$\widetilde{\mathcal{L}}_N \simeq (\mathcal{A}(\mathrm{L}_q^{(n,r)}))^{d_N} P_N$$

and right $\mathcal{A}(\mathrm{L}_q^{(n,r)})$ -module isomorphisms

$$\widetilde{\mathcal{L}}_N \simeq P_{-N}(\mathcal{A}(\mathrm{L}_q^{(n,r)}))^{d_N}$$
.

Projections P_N here are as before; now: $[\widetilde{\mathcal{L}}_N] \simeq [P_N]$ as an element in $\mathcal{K}_0(\mathrm{L}_q^{(n,r)})$.

\mathcal{L}_N versus its pull-back $\widetilde{\mathcal{L}}_N$

- marked difference: each \mathcal{L}_N is not free when $N \neq 0$; The pull-back $\widetilde{\mathcal{L}}_{-r}$ of the line bundle \mathcal{L}_{-r} is free:
- The condition $\Psi_{-r}^*\Psi_{-r} = 1$ implies that P_{-r} is equivalent to 1, that is the class of the module $\widetilde{\mathcal{L}}_{-r}$ is trivial in $K_0(L_q^{(n,r)})$. Such pulled-back line bundles $\widetilde{\mathcal{L}}_{-N}$ thus define *torsion classes*; furthermore, they generate the group $K_0(L_q^{(n,r)})$.

Motivation	Algebraic ingredients	Construction of the Gysin sequence		Conclusions	
Pulling back line bundles					

A second crucial ingredient

$$\alpha: K_0(\mathbb{C}\mathrm{P}^n_q) \to K_0(\mathbb{C}\mathrm{P}^n_q),$$

lpha is multiplication by $\chi(\mathcal{L}_{-r}) := 1 - [\mathcal{L}_{-r}]$ the Euler class of the line bundle \mathcal{L}_{-r}

Assembly these into an exact sequence, the Gysin sequence

$$0 \to \mathcal{K}_1(\mathrm{L}^{(n,r)}_q) \xrightarrow{} \mathcal{K}_0(\mathbb{C}\mathrm{P}^n_q) \xrightarrow{\alpha} \mathcal{K}_0(\mathbb{C}\mathrm{P}^n_q) \xrightarrow{j_*} \mathcal{K}_0(\mathrm{L}^{(n,r)}_q) \xrightarrow{} 0$$

Some practical and important applications, notably, the computation of the K-theory of the quantum lens spaces $L_q^{(n,r)}$. Thus

$$egin{aligned} &\mathcal{K}_1(\mathrm{L}_q^{(n,r)})\simeq \ker(lpha), & \mathcal{K}_0(\mathrm{L}_q^{(n,r)})\simeq \mathrm{coker}(lpha)\,. \ & \mathcal{K}_1(\mathrm{L}_q^{(n,r)}) & \mathcal{K}_0(\mathrm{L}_q^{(n,r)}) \end{aligned}$$

for the latter as pulled-back line bundles from \mathbb{CP}_q^n to $\mathrm{L}_q^{(n,r)}$

Motivation	Algebraic ingredients	Construction of the Gysin sequence	Con clusions
Index maps			

Some Notation: from now on we will be writing

$$A := C(\mathbb{L}_q^{(n,r)}), \qquad F := C(\mathbb{C}\mathbb{P}_q^n)$$

Some Notation: from now on we will be writing

$$A := C(\mathbb{L}_q^{(n,r)}), \qquad F := C(\mathbb{C}\mathbb{P}_q^n)$$

The infinitesimal generator of the circle action determines an unbounded self-adjoint regular operator $\mathfrak{D} : \text{Dom}(\mathfrak{D}) \to X$ The pair (X, \mathfrak{D}) yields a class in the bivariant K-theory $KK_1(A, F)$ and the Kasparov product with the class $[(X, \mathfrak{D})]$ thus furnishes

$$\operatorname{Ind}_{\mathfrak{D}}: K_*(A) \to K_{*+1}(F), \qquad \operatorname{Ind}_{\mathfrak{D}}(-) := - \widehat{\otimes}_A[(X, \mathfrak{D})].$$

Then the sequence becomes

$$0 \to K_1(A) \xrightarrow{\operatorname{Ind}_{\mathfrak{D}}} K_0(F) \xrightarrow{\alpha} K_0(F) \xrightarrow{j_*} K_0(A) \xrightarrow{\operatorname{Ind}_{\mathfrak{D}}} 0$$

At this point we are saying nothing about exactness of the sequence.

More on $Ind_{\mathfrak{D}}$

A.L. Carey, S. Neshveyev, R. Nest, A. Rennie 2011 *F* sits inside *A* as the fixed point subalgebra,

$${\sf F}=\{{\sf a}\in{\sf A}:\sigma_t({\sf a})={\sf a} ext{ for all }t\in\widetilde{\operatorname{U}}(1)\}$$

and one has a faithful conditional expectation

$$au: \mathsf{A} \to \mathsf{F}, \qquad au(\mathsf{a}) := \int_0^{2\pi} \sigma_t(\mathsf{a}) \mathrm{d}\, t\,,$$

leading to an F-valued inner product on A by defining

$$\langle \cdot, \cdot \rangle_F : A \times A \to F, \qquad \langle a, b \rangle_F := \tau(a^*b).$$

A is a right pre-Hilbert F-module, with Hilbert module X say.

The mapping cone of the pair (F, A) is the C^* -algebra

$$M(F,A) := \{ f \in C([0,1],A) \mid f(0) = 0, \ f(1) \in F \} .$$
$$0 \to S(A) \xrightarrow{i} M(F,A) \xrightarrow{\text{ev}} F \to 0,$$

 $S(A) := C_0((0,1)) \otimes A$ the suspension; with $i(f \otimes a)(t) := f(t)a$; ev(f) := f(1)Using the vanishing of $K_1(F)$, and of $K_1(M(F,A))$, the corresponding six term exact sequence is

$$0 \to K_1(A) \xrightarrow{i_*} K_0(M(F,A)) \xrightarrow{\operatorname{ev}_*} K_0(F) \xrightarrow{j_*} K_0(A) \to 0.$$

The above is an equivalent variant of the Gysin sequence

	ients Construction of the Gysin sequence	Pimsner's construction	Conclusions
Index maps			

Theorem

There is a diagram

where squares commute and vertical arrows are isomorphisms

Motivation	Algebraic ingredients	Construction of the Gysin sequence	Conclusions
Index maps			

The merit of our construction is not only in computing the K-theory groups: this could be done by means of graph algebras. Explicit generators as classes of 'line bundles', torsion ones. Since the map j_* in the sequence is surjective, the group $K_0(L_q^{(n,r)})$ can be obtained by 'pulling back' classes from $K_0(\mathbb{CP}_q^n)$. The matrix A of the map α with respect to the Z-module basis $\{1, u, \ldots, u^n\}$. Using the condition $u^{n+1} = 0$ one has

$$\chi(\mathcal{L}_{-r}) = 1 - (1 - u)^r = \sum_{j=1}^{\min(r,n)} (-1)^{j+1} {r \choose j} u^j.$$

Thus A is an $(n + 1) \times (n + 1)$ strictly lower triangular matrix:

$$A = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 \\ r & 0 & 0 & \cdots & 0 \\ -\binom{r}{2} & r & 0 & \cdots & 0 \\ \binom{r}{3} & -\binom{r}{2} & r & & 0 \\ \vdots & & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & r & 0 \end{pmatrix}$$

Proposition

The $(n+1) \times (n+1)$ matrix A has rank n:

$$\mathcal{K}_1(\mathcal{C}(\mathcal{L}_q^{(n,r)}))\simeq \mathbb{Z}.$$

•

Index maps

Motivation	Algebraic ingredients	Construction of the Gysin sequence	Conclusions
Index maps			

On the other hand, the structure of the cokernel of the matrix A depends on the divisibility properties of the integer r.

The Smith normal form for matrices over a principal ideal domain, such as \mathbb{Z} : there exist invertible matrices P and Q having integer entries which transform A to a diagonal matrix

$$\operatorname{Sm}(A) := PAQ = \operatorname{diag}(\alpha_1, \cdots, \alpha_n, 0).$$

Integer entries $\alpha_i \geq 1$, given by

$$\alpha_1 = d_1(A) \qquad \alpha_i = d_i(A)/d_{i-1}(A)$$

 $d_i(A)$ is the greatest common divisor of the non-zero determinants of the minors of order *i* of the matrix *A*.

Motivation	Algebraic ingredients	Construction of the Gysin sequence	Conclusions
Index maps			

This leads to

$$K_0(\mathcal{L}_q^{(n,r)}) = \mathbb{Z} \oplus \mathbb{Z}/\alpha_1 \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/\alpha_n \mathbb{Z}.$$

Construction of explicit generators.

The module \mathcal{L}_{-r} over the fixed point algebra $F = C(\mathbb{C}\mathrm{P}_q^n)$ plays a crucial role in our construction.

Related construction: Cuntz-Pimsner Algebras

Ingredients:

- A C*-algebra *F*;
- A C*-correspondence E over F.

One constructs a C*-algebra \mathcal{O}_E that generalizes Cuntz-Krieger algebras and crossed products.

All the information about \mathcal{O}_E is encoded in (F, E).

If F is a C*-algebra, a right Hilbert C*-module is a Banach space E together with a right action of F on E and an F-valued inner product $\langle \cdot, \cdot \rangle$ such that:

1
$$\langle \xi, \eta f \rangle_F = \langle \xi, \eta \rangle_F f$$
,
2 $\langle \xi, \eta \rangle_F = \langle \eta, \xi \rangle_F^*$,
3 $\langle \xi, \xi \rangle_F \ge 0$ and $\langle \xi, \xi \rangle_F = 0$ if and only if $x = 0$,
for all $\xi, \eta \in E, f \in F$.

- $\mathcal{L}(E)$ denotes the C^* -algebra of bounded adjointable operators on E;
- $\mathcal{K}(E) \subseteq \mathcal{L}(E)$ denotes the C*-algebra of compact operators on E, i.e. the closed two sided ideal given by

 $\overline{\operatorname{span}}\{\theta_{\xi,\eta} \mid \xi, \eta \in E\},\$

where $\theta_{\xi,\eta}\zeta = \xi\langle \eta, \zeta \rangle$.

A C*-correspondence E over F is a countably generated (right) Hilbert C^* -module over the separable C^* -algebra F toghether with a *-homomorphism

$$\phi: B \to \mathcal{L}(E).$$

We make the following assumptions:

- **1** *E* is taken to be full, i.e $\langle E, E \rangle := \operatorname{span}_{\mathbb{C}} \{ \langle \xi, \eta \rangle | \xi, \eta \in E \}$ is dense in *F*.
- **2** ϕ induces an isomorphism $\phi: B \to \mathcal{K}(E)$.

Let
$$E^*$$
 denote the dual of E , thus as a vector space

$$\mathsf{E}^* := \left\{ \lambda \in \operatorname{Hom}_{\mathsf{B}}(\mathsf{E},\mathsf{B}) \, | \, \exists \xi \in \mathsf{E} {
m with} \, \lambda(\eta) = \langle \xi, \eta \rangle \, \, \forall \eta \in \mathsf{E}
ight\}.$$

Then E^* is a C*-correspondence over F, w.r.t. the *-homomorphism $\phi^*: E^* \to \mathcal{L}(E)$ given by

$$\phi^*(b)\lambda_{\xi} := \lambda_{\xi b^*}.$$

Moreover, the pair (E^*, ϕ^*) satisfies the assumptions.

Next, for each $n \in$, let $E^{\bigotimes_{\phi} n}$ and $(E^*)^{\bigotimes_{\phi^*} n}$ be the *n*-fold interior tensor product of *E* over *B* and of E^* over *B*, respectively. Define the Hilbert C^* -module over *B*,

$$E_{\infty} := \left(\oplus_{n=1}^{\infty} E^{\widehat{\otimes}_{\phi} n} \right) \oplus B \oplus \left(\oplus_{n=1}^{\infty} (E^*)^{\widehat{\otimes}_{\phi} n} \right).$$

Then, for each $\xi \in E$ we have a bounded adjointable operator $S_{\xi}: E_{\infty} \to E_{\infty}$ defined compontent-wise by

 $B \ni b \longmapsto \xi b$ $E^{\widehat{\otimes}_{\phi} n} \ni \xi_1 \otimes \cdots \otimes \xi_n \longmapsto \xi \otimes \xi_1 \otimes \cdots \otimes \xi_n , \quad \xi_1 \otimes \cdots \otimes \xi_n \in ,$ $(E^*)^{\widehat{\otimes}_{\phi^*} n} \ni \lambda_{\xi_1} \otimes \cdots \otimes \lambda_{\xi_n} \longmapsto \lambda_{\xi_2 \phi^{-1}(\theta_{\xi_1,\xi})} \otimes \lambda_{\xi_3} \otimes \cdots \otimes \lambda_{\xi_n} .$

In particular, $S_{\xi}(\lambda_{\xi_1}) = \phi^{-1}(\theta_{\xi,\xi_1}) \in B$. The adjoint of S_{ξ} is easily found to be given by $S_{\lambda_{\xi}} := S_{\xi}^* : E_{\infty} \to E_{\infty}$:

- $\phi: F \to \mathcal{L}(E)$ factorizes through the compacts $\mathcal{K}(E) \subseteq \mathcal{L}(E)$. The class in $KK_0(F, F)$ defined by the even Kasparov module $(E, \phi, 0)$ (with trivial grading) will be denoted by [E].
- 2 Next, let $P: E_{\infty} \to E_{\infty}$ denote the orthogonal projection with image

$$\operatorname{Im}(P) = \left(\oplus_{n=1}^{\infty} E^{\widehat{\otimes}_{\varphi} n} \right) \oplus F \subseteq E_{\infty}$$

Then, let $Q := 2P - 1 \in \mathcal{L}(E_{\infty})$ and recall the inclusion $\widetilde{\phi} : \mathcal{O}_E \to \mathcal{L}(E_{\infty})$. The class in $KK_1(\mathcal{O}_E, F)$ defined by the odd Kasparov module $(E_{\infty}, \widetilde{\phi}, Q)$ will be denoted by $[\partial]$.

For any separable C^* -algebra B we then have the group homomorphisms

$$[E]: KK_*(F,B) \to KK_*(F,B), \quad [E]: KK_*(B,F) \to KK_*(B,F)$$

and

 $[\partial]: \mathit{KK}_*(B, \mathcal{O}_E) \to \mathit{KK}_{*+1}(B, F)\,, \quad [\partial]: \mathit{KK}_*(F, B) \to \mathit{KK}_{*+1}(\mathcal{O}_E, B)\,,$

which are induced by the Kasparov product.

We get two exact sequences:

$$\begin{array}{cccc} KK_{0}(B,F) & \stackrel{1-[E]}{\longrightarrow} & KK_{0}(B,F) & \stackrel{j_{*}}{\longrightarrow} & KK_{0}(B,\mathcal{O}_{E}) \\ & & & & \downarrow^{[\partial]} \\ KK_{1}(B,\mathcal{O}_{E}) & \stackrel{j_{*}}{\longleftarrow} & KK_{1}(B,F) & \stackrel{j_{*}}{\longleftarrow} & KK_{1}(B,F) \end{array}$$

and

$$\begin{array}{cccc} \mathsf{KK}_0(F,B) & \xleftarrow{}_{1-[E]} & \mathsf{KK}_0(F,B) & \xleftarrow{}_{j^*} & \mathsf{KK}_0(\mathcal{O}_E,C) \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \mathsf{KK}_1(\mathcal{O}_E,B) & \xrightarrow{j^*} & \mathsf{KK}_1(F,B) & \xrightarrow{1-[E]} & \mathsf{KK}_1(F,B) \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & &$$

For $B = \mathbb{C}$, the first sequence above reduces to

$$\begin{array}{cccc} \mathcal{K}_{0}(F) & \stackrel{1-[E]}{\longrightarrow} & \mathcal{K}_{0}(F) & \stackrel{j_{*}}{\longrightarrow} & \mathcal{K}_{0}(\mathcal{O}_{E}) \\ & & & & \downarrow [\partial] \\ \mathcal{K}_{1}(\mathcal{O}_{E}) & \stackrel{f_{*}}{\longleftarrow} & \mathcal{K}_{1}(F) & \stackrel{f_{*}}{\longleftarrow} & \mathcal{K}_{1}(F) \end{array}$$

Can be interpreted as a *Gysin sequence* in K-theory. for the 'line bundle' E over the 'noncommutative space' F and with the map 1 - [E] having the role of the *Euler class* $\chi(E) := 1 - [E]$ of the line bundle E.

The second sequence above reduces to

$$\begin{array}{cccc} \mathcal{K}^{0}(F) & \xleftarrow{1-[E]} & \mathcal{K}^{0}(F) & \xleftarrow{j^{*}} & \mathcal{K}^{0}(\mathcal{O}_{E}) \\ & & & \downarrow [\partial] & & & [\partial] \uparrow \\ \mathcal{K}^{1}(\mathcal{O}_{E}) & \xrightarrow{j^{*}} & \mathcal{K}^{1}(F) & \xrightarrow{1-[E]} & \mathcal{K}^{1}(F) \end{array}$$

Can be interpreted as a *Gysin sequence* in K-homology. for the 'line bundle' *E* over the 'noncommutative space' *F* and with the map 1 - [E] having the role of the *Euler class* $\chi(E) := 1 - [E]$ of the line bundle *E*.

Example of this construction.

F := quantum weighted proective space;

 \mathcal{O}_E := quantum weighted lens space

Fixed point algebra under a weighted circle action $\{\sigma_w^{(k,l)}\}_{w\in S^1}$ on $\mathcal{A}(S_q^3)$ defined on generators by

$$\sigma_w^L: z_0 \mapsto w^k z_0 \quad z_1 \mapsto w' z_1.$$

The algebraic quantum projective line $\mathcal{A}(W_q(k, l))$ agrees with the unital *-subalgebra of $\mathcal{A}(S_q^3)$ generated by the elements $z_0^l(z_1^*)^k$ and $z_1 z_1^*$. The C*-algebra $C(W_q(k, l))$ is defined as the completion in the universal C*-norm. Notice that it does not depend on k.

As a consequence one has the following corollary due to Brzeziński and Fairfax.

Corollary

The K-groups of $C(W_q(k, l))$ are:

 $K_0(C(W_q(k, l))) = \mathbb{Z}^{l+1}, \quad K_1(C(W_q(k, l))) = 0.$

We construct the coordinate algebra of the quantum weighted lens spaces out of a finetely generated projective modules $A_{(dn)}(k, l)$ over $\mathcal{A}(W_q(k, l))$.

$$\mathcal{A}(L_q(dlk; k, l)) \cong \oplus_{n \in \mathbb{Z}} A_{(dn)}(k, l).$$

The C*-algebra is obtained O_E for the corresponding C*-module E over $C(W_q(k, l))$.

We can compute the K-groups using the Gysin-Pimsner sequence.

- We constructed a Gysin exact sequence for quantum lens spaces using operator algebraic tecniques.
- The key role is played by a line bundle.
- Look at C*-correspondences.
- The corresponding Pimsner algebra O_E is then the total space algebra of a principal circle bundle over A.
- Gysin-like sequences relates the KK-theories of O_E and of A.
- More examples.

The Gysin Sequence for Quantum Lens Spaces F. Arici, S. Brain, G. Landi arXiv:1401.6788 [math.QA]

Pimsner Algebras and Gysin Sequences from Principal Circle Actions F. Arici, J. Kaad, G. Landi

in preparation