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peter.bruin@math.uzh.ch

Abstract: The first half of the mini-course is an introduction to various aspects
of modular curves and modular forms. We will relate the classical description
of modular curves (as quotients of the complex upper half-plane) to moduli of
elliptic curves. This leads to a ‘finer’ description of modular curves as algebraic
curves over the rationals. In the second half of the mini-course, we will describe
how modular curves and their Jacobians can be used to attach two-dimensional
Galois representations to modular forms, in particular over finite fields. We will
finish with some words on how all of this can be made computable.

Introduction

The goal of these notes (a written and slightly expanded version of the lectures given at CAMS)
is to give an overview of a few aspects of modular curves and of Galois representations attached
to modular forms.

In the first two talks, we give a brief (and necessarily very incomplete) introduction to elliptic
curves and modular curves from both an analytic and an algebraic perspective. We start by
defining modular curves in the classical way as quotients of the complex upper half-plane, and we
relate this description to moduli of complex tori. Next, we explain how complex tori can be viewed
in an algebraic way as elliptic curves, and we extend the definition of elliptic curves to arbitrary
fields. This leads to a definition of modular curves as algebraic curves over Q classifying elliptic
curves with extra structure.

This ‘arithmetic’ structure of modular curves can be used as the starting point for associating
two-dimensional representations of Gal(Q/Q) to modular forms. We refer to Gabor Wiese’s lec-
tures for a general introduction to Galois representations. In the third talk, we introduce Galois
representations attached to modular forms. In the fourth talk, we focus on modular forms over
finite fields. We describe how the associated Galois representations appear in the Jacobian vari-
eties of modular curves. We finish by explaining the results of Edixhoven, Couveignes [13] and
the author [1] on computing modular Galois representations over finite fields and coefficients of
modular forms over number fields.

There exists an enormous amount of mathematical literature on the subject of modular curves,
modular forms and Galois representations. Let us just mention a few recommended references. An
accessible and extensive reference treating the material in the first half of the mini-course, and much
more, is the book of Diamond and Shurman [11]. For the analytic theory, the book of Miyake [20]
is also recommended. Slightly more advanced references are the survey [10] of Diamond and Im,
which is extremely useful and has an extensive bibliography, and the book of Ribet and Stein
[22]. For anybody who is seriously interested in modular forms, Shimura’s influential book [24] is
impossible to ignore. More advanced treatments of modular curves from an algebraic point of view
can be found in Deligne and Rapoport [8], Katz and Mazur [15], and Conrad [5]. The topic of
elliptic curves, essential for a good understanding of modular curves, is even broader. The books
of Silverman [25], [26], Silverman and Tate [27], Cassels [4] and Milne [19], as well as the article
of Tate [28], are just a few of the many introductions. The construction of Galois representations
attached to modular forms can be found for modular forms of weight at least 2 in Deligne’s article
[7] and for weight 1 in Deligne and Serre [9]. A more expanded description of Deligne’s construction
will be given in the future in a book of Conrad [6].

Acknowledgements. I would like to thank Kamal Khuri-Makdisi, Wissam Raji and the staff at
CAMS for their efforts in organising this workshop and for their hospitality. I also thank all the
participants of the workshop for a very enjoyable week in Lebanon.
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1. Modular curves: complex analytic aspects

References: Diamond and Im [10, § 7] and the references therein; Diamond and Shurman [11,
Chapter 1].

In this first talk, we start by defining modular curves as quotients of the complex upper half-
plane by a certain kind of group action. We then give a “moduli interpretation” of modular curves
as geometric objects classifying other geometric objects (namely, complex tori).

1.1. Modular curves as Riemann surfaces

The two fundamental objects in the theory of modular curves and modular forms are the complex
upper half-plane

H = {τ ∈ C | =τ > 0}
and the group

SL2(Z) =

{(
a

c

b

d

) ∣∣∣∣ a, b, c, d ∈ Z, ad− bc = 1

}
.

They are connected by a left action of SL2(Z) on H defined by

γτ =
aτ + b

cτ + d
for all γ =

(
a

c

b

d

)
∈ SL2(Z). (1.1)

For every positive integer n, we define a subgroup Γ(n) ⊆ SL2(Z) by

Γ(n) =

{(
a

c

b

d

)
∈ SL2(Z)

∣∣∣∣ (ac b

d

)
≡
(

1

0

0

1

)
mod n

}
.

Definition. A congruence subgroup is a subgroup Γ ⊆ SL2(Z) that contains Γ(n) for some n.

The most important congruence subgroups are Γ0(n) and Γ1(n), consisting of those matrices
in SL2(Z) whose reduction modulo n are of the form

(∗
0
∗
∗
)

and
(

1
0
∗
1

)
, respectively, where ∗ stands

for any element of Z/nZ.

Remark . Every congruence subgroup has finite index in SL2(Z), but the converse does not hold.

Let Γ be a congruence subgroup of SL2(Z). We define

YΓ = Γ\H.
This is a non-compact Riemann surface (one has to be careful at the points of H that have non-
trivial stabiliser in Γ).

1.2. Lattices and complex tori

Definition. A lattice (in C) is a subgroup L ⊂ C generated by two elements z1, z2 ∈ C that are
linearly independent over R.

We note that such an L is isomorphic to Z2 as an Abelian group. We do not view the points
z1 and z2 as part of the data defining L, so there is no distinguished identification of L with Z2.

Definition. Two lattices L and L′ are homothetic if there exists λ ∈ C× such that L′ = λ · L.

Let L be a lattice. The quotient C/L has the structure of an Abelian group as well as the
structure of a Riemann surface. We will denote the image of a point z ∈ C under the quotient
map C→ C/L by [z].

Fact 1.1. Let L and L′ be lattices in C, and let h: C/L → C/L′ be a holomorphic map sending
[0] to [0]. Then there exists λ ∈ C with λ · L ⊆ L′ such that the diagram

C
λ·−→ Cy y

C/L
h−→ C/L′

is commutative.

One can use this to show that every holomorphic map C/L→ C/L′ sending [0] to [0] is a group
homomorphism, and that the group Hom(C/L,C′/L) of all such maps is canonically isomorphic
to the group {λ ∈ C | λL ⊆ L′}.

Taking L = L′, we see that the holomorphic maps C/L → C/L preserving [0] form a ring
that is isomorphic to {λ ∈ C | λL ⊆ L}.
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Definition. A complex torus is a Riemann surface T together with a distinguished point O ∈ T
such that there exist a lattice L ⊂ C and an isomorphism of Riemann surfaces (holomorphic map
admitting a holomorphic inverse)

φ: C/L
∼−→ T

that sends [0] to O.

Remark . Equivalently, a complex torus is a compact connected Riemann surface T of genus 1
together with a point O ∈ T .

Any isomorphism φ as above gives T the structure of an Abelian group. Using Fact 1.1, one
can show that this structure does not depend on the choice of φ. Given (T,O), the lattice L is
unique up to homothety.

1.3. Moduli interpretation of the upper half-plane

We consider group homomorphisms
ω: Z2 � C

whose image in C is a lattice. Given such an ω, we abbreviate

ω1 = ω

(
1

0

)
, ω2 = ω

(
0

1

)
.

We write
M =

{
ω: Z2 � C

∣∣ =(ω1/ω2) > 0
}

∼= {(z1, z2) ∈ C× ×C× | =(z1/z2) > 0}.
This can be thought of as the space of lattices in C together with a “negatively oriented” basis.
The second description gives M the structure of a complex manifold of (complex) dimension 2.
There is an action of C× on M given by

(λω)(v) = λ · ω(v).

There is a surjective map
Q:M→ H

ω 7→ ω1/ω2.

This is a quotient map for the action of C× on M; in other words, two elements ω, ω′ ∈ M have
the same image under Q if and only if there exists λ ∈ C× such that ω′ = λ · ω.

Remark . One can also think of M in various other ways:

(1) as the space of negatively oriented bases of C as an R-vector space;

(2) as the space of isomorphism classes of triples (V, α, β) with V a one-dimensional complex
vector space, α: C

∼−→ V an isomorphism, and β: Z2 � V a lattice together with a negatively
oriented basis. In this interpretation, the map Q:M→ H means forgetting the isomorphism α.

(3) as the group GL2(R)+ of 2 × 2-matrices with real coefficients and positive determinant, via
the isomorphism of real manifolds

GL2(R)+ ∼−→M(
a

c

b

d

)
7−→ (ω1 = ai+ b, ω2 = ci+ d).

1.4. The action of SL2(Z)

We recall that the group SL2(Z) acts from the left on H by (1.1). On the other hand, from the
standard action of SL2(Z) on Z2 we obtain a left action of SL2(Z) on M defined by

γω = ω ◦ γt for all γ ∈ SL2(Z), ω ∈M,

where γt is the transpose of γ. When γ =
(
a
c
b
d

)
, this means

(γω)1 = aω1 + bω2, (γω)2 = cω1 + dω2.

We note that the actions of C× and SL2(Z) on M are compatible with each other.
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Lemma 1.2. The quotient map Q:M→ H is SL2(Z)-equivariant.

Proof . Let γ =
(
a
c
b
d

)
∈ SL2(Z), and let ω ∈M. We compute

Q(γω) =
(γω)1

(γω)2
=
aω1 + bω2

cω1 + dω2

and

γQ(ω) =
aQ(ω) + b

cQ(ω) + d
=
aω1/ω2 + b

cω1/ω2 + d
.

From the equality of these two expressions, we conclude that Q is compatible with the action
of SL2(Z).

1.5. Moduli interpretation of modular curves

For concreteness, we now restrict ourselves to congruence subgroups of the form Γ1(n). If in
addition n is at least 4, then Γ1(n) acts without fixed points on H, but we will not use this. We
write

Y1(n) = YΓ1(n) = Γ1(n)\H.

We will shortly give the moduli interpretation of Y1(n), but we start with Γ1(n)\M.
For all ω ∈M, we write Lω for the image of ω viewed as a map Z2 � C, and we write

Pω = [ω2/n] ∈ C/Lω.

Theorem 1.3. There is a bijection

Γ1(n)\M ∼−→ {(L,P ) | L ⊂ C lattice, P ∈ C/L of order n}
Γ1(n)ω 7−→ (Lω, Pω).

(1.2)

Proof . We start by noting that the pair (Lω, Pω) is indeed an element of the right-hand side of (1.2).
One can check (although this is not completely trivial) that every element on the right-hand side
can be obtained in this way. The proof of this fact is left as an exercise.

It remains to see under which conditions two elements ω, ω′ ∈ M give the same element of
the right-hand side of (1.2). First, the lattices Lω and Lω′ are equal if and only if there exists
γ ∈ SL2(Z) such that ω′ = γω, where γω = ω ◦ γt as before. Such a γ, if it exists, is uniquely
determined by ω and ω′. Thus in order to have (Lω, Pω) = (Lω′ , Pω′), the existence of such a γ is
a necessary condition. Given such a γ =

(
a
c
b
d

)
, we have the following equivalences:

Pω′ = Pω ⇐⇒ (γω)2/n ≡ ω2/n (mod Lω)

⇐⇒ (γω)2 ≡ ω2 (mod nLω)

⇐⇒ ω

(
a

b

c

d

)(
0

1

)
≡ ω

(
0

1

)
(mod nLω)

⇐⇒
(
c

d

)
≡
(

0

1

)
(mod nZ2)

⇐⇒
(
a

c

b

d

)
≡
(

1

0

∗
1

)
(mod n).

This proves the theorem.

Generalising the concept of homothety of lattices, we say that two such pairs (L,P ) and
(L′, P ′) are homothetic, notation (L,P ) ∼ (L′, P ′), if there exists λ ∈ C× such that L′ = λL and
P ′ = λP . (Note that λP is a well-defined element of C/L′ because L′ = λL.)

Theorem 1.4. There is a bijection

Y1(n)
∼−→ {(L,P ) | L ⊂ C lattice, P ∈ C/L of order n}/∼

Γ1(n)τ 7−→ [Zτ + Z, [1/n]].

Proof . This follows from Theorem 1.3 by taking the quotient by the action of C× on Γ1(n)\M,
and by the relation of homothety on the set of pairs (L,P ).
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Corollary 1.5. There is a bijection

Y1(n)
∼−→ {complex tori with a point of order n}/∼=

Γ1(n)τ 7−→ [C/(Zτ + Z), [1/n]].

Proof . This follows from the fact that homothety classes of pairs (L,P ) as above are the same as
isomorphism classes of complex tori with a point of order n.

1.6. Compactifications

Let Γ be a congruence subgroup of SL2(Z). The non-compact Riemann surface YΓ = Γ\H can
made into a compact Riemann surface by adding a finite number of points, called cusps. This
compactification is denoted by XΓ.

There also exists a moduli interpretation of the cusps, related to ‘degenerating’ lattices and
tori. We will not go into the details.

2. Modular curves: algebraic and arithmetic aspects

References: Diamond and Im [10, §§ 8–9], and the references therein; Diamond and Shurman [11,
Chapter 7].

2.1. Elliptic curves

Definition. Let L be a lattice in C. The Weierstrass ℘-function associated to L is the meromor-
phic function

℘L: C→ P1(C) = C ∪ {∞}

defined for z 6= L by the infinite sum

℘L(z) =
1

z2
+
∑
ω∈L
ω 6=0

(
1

(z − ω)2
− 1

ω2

)

and for z ∈ L by ℘L(z) =∞. The sum converges absolutely and uniformly on compact subsets of
C− L. The function ℘L has poles of order 2 at the points of L.

Lemma 2.1. The function ℘L is even and invariant under translation by elements of L, i.e. for
all z ∈ C and ω ∈ L it satisfies

℘L(−z) = ℘L(z)

and

℘L(z + ω) = ℘L(z).

Proof . The claim that ℘L is even easily follows from the definition by using te fact that the map
ω 7→ −ω is a bijection from L to itself. To prove the claim that ℘L is invariant under translation,
we first compute the derivative of ℘L as

℘′L(z) = −2
∑
ω∈L

1

(z − ω)3
.

This is clearly invariant under translation by elements of L. We deduce that for every ω ∈ L there
is cω ∈ L such that

℘L(z + ω) = ℘(z) + cL for all z ∈ C.

Putting z = −ω/2 and comparing with the identity ℘L(−ω/2) = ℘L(ω/2), we conclude that
cL = 0.

5



Theorem 2.2. The functions ℘L and ℘′L satisfy an equation of the form

℘′L(z)2 = 4℘L(z)3 − g2℘L(z)− g3,

where g2 and g3 are certain complex numbers depending on L.

Proof . We expand each term in the definition of ℘L in a Laurent series in z, change the order of
summation, and take a suitable linear combination of the resulting series for ℘L(z)3, ℘L(z) and
℘′L(z)2 to make the non-positive powers of z cancel. (A priori, we would also need ℘L(z)2, but
this turns out to be unnecessary.) For suitable g2 and g3, we obtain

℘′L(z)2 − 4℘L(z)3 + g2℘L(z) + g3 = O(z2) as z → 0.

Now the left-hand side can be extended to a holomorphic L-invariant function h on all of C. This h
is bounded, because it assumes all its values already on the closure of a fundamental parallellogram,
which is compact. By Liouville’s theorem, h is constant, and substituting z = 0 shows that h = 0.
It turns out that the correct values for g2 and g3 are

g2 = 60G4(L) and g3 = 140G6(L),

where

Gk(L) =
∑
ω∈L
ω 6=0

1

ωk
.

The details are left as an exercise.

Remark . For L = Zτ + Z, the function Gk(L) equals, up to multiplication by a constant, the
Eisenstein series Ek(τ) of weight k defined in Prof. Kohnen’s first lecture.

Via the functions ℘L and ℘′L, the complex torus C/L can be given the structure of an algebraic
curve in the projective plane P2(C). More precisely, we have an embedding of complex manifolds

ψL: C/L� P2(C)

[z] 7→
{

(℘L(z) : ℘′L(z) : 1) if z 6∈ L;
(0 : 1 : 0) if z ∈ L.

The image is the complex curve (or Riemann surface) EL given by the homogeneous cubic equation

Y 2Z = 4X3 − g2XZ
2 − g3Z

3.

We conclude that from L we have constructed a cubic curve EL in P2(C) together with a dis-
tinguished point, namely (0 : 1 : 0). Via the map ψL, we can identify C/L with EL. Because
C/L is an Abelian group with neutral element [0], EL also gets a group structure with neutral
element (0 : 1 : 0). We call EL the elliptic curve associated to L.

Remark . Usually, one uses the affine equation because it is shorter. That is to say, one simply
writes

E: y2 = 4x3 − g2x− g3.

We now consider cubic curves over an arbitrary field K, given by a homogeneous equation

C:
∑

i,j,k≥0
i+j+k=3

ci,j,kX
iY jZk = 0 with ci,j,k ∈ K. (2.1)

It does not matter very much whether we view C as a set of points in P2(K̄) (where K̄ is an
algebraic closure of K), as a function field over K, or as a scheme over K.

We say that C is smooth if the three partial derivatives do not vanish simultaneously anywhere
on the curve. We will denote by C(K) the set of K-rational points of C. This is the set of solutions
of the homogeneous equation (2.1) in P2(K).
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Definition. Let K be a field. An elliptic curve over K is a smooth cubic curve E over K together
with a point O ∈ E(K).

Fact 2.3. Up to a change of coordinates, every elliptic curve E is given by an equation of the
form

E:Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3, (2.2)

where a1, a2, a3, a4, a6 are elements of K and O corresponds to the point (0 : 1 : 0).

An equation of the form (2.2) is called a Weierstrass equation. Usually, E is denoted instead
by the affine equation

E: y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (2.3)

The smoothness of E is equivalent to the non-vanishing of the discriminant of the above
equation, which is a certain polynomial in the coefficients a1, . . . , a6. The set E(K) of K-rational
points of E now consists of the solutions of the homogeneous equation (2.2) in P2(K). These
correspond bijectively to the solutions of (2.3) in K ×K together with the point at infinity.

Remark . If the characteristic of K is not 2 or 3, one can make a change of variables giving a
simpler equation

E: y2 = x3 + px+ q.

In this case the smoothness of E is equivalent to the condition 4p3 + 27q2 6= 0.

Any cubic curve has the property that every line intersects the curve in exactly three points,
counted with multiplicity. Let E be an elliptic curve over any field, embedded into the projective
plane by a Weierstrass equation. Then the group structure on E is characterised by the property
that three points of E add up to 0 if and only if they lie on a line.

Let (E,O) and (E′, O′) be elliptic curves. One can show that every map of algebraic curves
E → E′ sending O to O′ preserves the group structure; this is analogous to the similar statement
about holomorphic maps between complex tori.

2.2. Algebraic modular curves

In the previous lecture, we saw that modular curves over C parametrise complex tori with “level
structure”. We have just seen that complex tori can be viewed as elliptic curves over C. This
interpretation allows us to give an algebraic interpretation of modular curves, and to define them
over Q, or more generally over Z[1/n] for some n.

An (algebraic) modular curve is a curve which classifies elliptic curves over fields with addi-
tional level structure. For concreteness, we restrict to the case where the level structure consists
of a rational point of order n, where n ≥ 4.

Fact 2.4 (somewhat imprecise). Let n ≥ 4. There exists a smooth affine curve Y1(n) defined
over Z[1/n] such that for any field K whose characteristic does not divide n, the set Y1(n)(K)
of K-rational points of Y1(n) is in bijection with the set of isomorphism classes of pairs (E,P )
consisting of an elliptic curve E over K and a point P ∈ E(K) of order n.

Remark . Using the language of schemes, one can define Y1(n), together with a so-called universal
elliptic curve over it, as a universal object in the category of elliptic curves over schemes together
with a section which is everywhere of order n.

Example. We consider elliptic curves with a point of order 4 over a field K of characteristic
different from 2. Consider an elliptic curve E over K and a point P ∈ E(K) of order 4. We note
that 2P is a point of order 2. After a suitable choice of coordinates, we may assume that E is
given by an equation

E: y2 = x(x2 + ax+ b)

and that 2P has coordinates (0, 0). Let (r, s) be the coordinates of P , and consider the invariant

µ(E,P ) = r3/s2 ∈ K.

One can show that this is independent of the choice of coordinates. We get a bijection

{elliptic curves with a point of order 4 over K}/∼= ∼−→ K − {0, 1/4}
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mapping (E,P ) to µ(E,P ). The inverse is given by

µ 7→ (E: y2 = x(x2 + (1− 2c)x+ c2), P = (c, c)).

This shows that the modular curve Y1(n) over Z[1/n] parametrising elliptic curves with a point
of order 4 is the affine line with two points removed, or equivalently the projective line with three
points removed.

2.3. Hecke correspondences

Let n ≥ 4 be an integer. For any positive integer m, let Y1(n;m) denote the modular curve
classifying triples (E,P,C), where E is an elliptic curve, P is a point of order n, and C is a (not
necessarily cyclic) subgroup of order m such that 〈P 〉∩C = {0}. In terms of congruence subgroups,
Y1(n;m) is defined by the group

Γ1(n;m) =

{(
a

c

b

d

)
∈ Γ1(n)

∣∣∣∣ b ≡ 0 (mod m)

}
.

The m-th Hecke correspondence on Y1(n) is the diagram

Y1(n;m)
q1 ↙ ↘ q2

Y1(n) Y1(n)

(2.4)

where q1 and q2 send the point of Y1(n;m) corresponding to a triple (E,P,C) to the points of Y1(n)
corresponding to the pairs (E,P ) and (E/C,P mod C), respectively.

For all d ∈ (Z/nZ)×, the d-th diamond automorphism is the automorphism

rd: Y1(n)→ Y1(n) (2.5)

sending the point corresponding to a pair (E,P ) to the point corresponding to the pair (E, dP ).
The Hecke correspondences and diamond automorphisms can be used to define endomorphisms

(called Hecke operators and diamond operators, respectively) on spaces of modular forms for Γ1(n),
as well as on (co)homology groups and on the Jacobian of Y1(n).

2.4. Compactified modular curves

Let n ≥ 4 be an integer. The modular curve Y1(n) is an affine curve. Up to isomorphism,
there is a unique smooth projective curve over Z[1/n] containing Y1(n) as an open subset. This
compactification is denoted by X1(n). The set X1(n)(C) of complex points of X1(n) is isomorphic
to the compactification of Γ1(n)\H that we saw earlier.

3. Galois representations in Jacobians of modular curves

References: Mazur [18], Ribet [21], Gross [14], Edixhoven [12].

3.1. Hecke algebras and eigenforms

Let n and k be positive integers. Let Mk(n) denote the space of modular forms of weight k for
the group Γ1(n), and let T(Mk(n)) denote the Hecke algebra acting on Mk(n). We recall that
T(Mk(n)) is a commutative ring that is generated as a Z-algebra by the Hecke operators Tm for
all m ≥ 1, and that T(Mk(n)) is free of finite rank as a Z-module.

Definition. Let K be a field. A (Hecke) eigenform of weight k for the group Γ1(n) with coefficients
in k is an element f ∈ Mk(n)(K) that is an eigenvector for all the Hecke operators Tm with m ≥ 1.

Remark . The ring T(Mk(n)) is also generated by the Tp for all prime numbers p and the diamond
operators 〈d〉 for all d ∈ (Z/nZ)×. If f is an eigenform, then it has a well-defined character
(sometimes called Nebentypus), which is a group homomorphism

ε: (Z/nZ)× → C×

determined uniquely by the property that f is an eigenvector of 〈d〉 with eigenvalue ε(d) for all
d ∈ (Z/nZ)×.

To every eigenform f ∈ Mk(n)(K), we associate a ring homomorphism

φf : T(Mk(n))→ K

mapping every operator to its eigenvalue on f . If f is normalised such that its first coefficient
a1(f) equals 1, then φf (Tm) = am(f) for all m ≥ 1.

8



3.2. Galois representations attached to eigenforms

Theorem 3.1 (Eichler, Shimura, Igusa, Deligne, Serre). Let f ∈ Mk(n) be a normalised Hecke
eigenform with character ε. Let Qf = Q({am(f) | m ≥ 1}) denote the number field generated by
the coefficients of f , and consider ε as a group homomorphism (Z/nZ)× → Q×f . Let λ be a finite
place of Qf of residue characteristic l, and let Qf,λ denote the completion of Qf with respect to λ.
There exists a continuous semi-simple group homomorphism

ρf,λ: Gal(Q/Q)→ GL2(Qf,λ)

with the following properties:

(1) ρf,λ is unramified outside nl;

(2) for every prime number p - nl, the characteristic polynomial of ρf,λ(σp), where σp is a Frobenius
element at p, equals t2 − ap(f)t+ ε(p)pk−1.

Furthermore, this ρf,λ is odd and unique up to conjugation in GL2(Qf,λ).

Let us make some remarks to explain the conditions and conclusion of the theorem.

1. The group Gal(Q/Q) is a compact topological group, where the closed subgroups correspond
bijectively to the subfields of Q via the Galois correspondence. This correspondence is obtained
as follows: to every subfield K of Q we associate the stabiliser

GK = {σ ∈ Gal(Q/Q) | σ(x) = x for all x ∈ K}

and to every closed subgroup H of G we associate the field of invariants

Q
H

= {x ∈ Q | σ(x) = x for all σ ∈ H}.

2. The completion Qf,λ is a topological field; it is a finite extension of the field Ql of l-adic
numbers. The topology on Qf,λ makes GL2(Qf,λ) into a topologial group.

3. The kernel of ρf,λ is the inverse image of a closed normal subgroup under a continuous homomor-
phism, and hence is a closed normal subgroup of Gal(Q/Q). The subfield Kf,λ of Q corresponding
to ker ρf,λ is a Galois extension of Q, and ρf,λ factors as

ρf,λ: Gal(Q/Q) � Gal(Kf,λ/Q) � GL2(Qf,λ).

4. Let p be a prime number not dividing nl. One way of stating condition (1) is to say that the
extension Kf,λ/Q is unramified at p; this means that the element p ∈ Kf,λ has valuation 1 with
respect to every extension of the p-adic valuation from Q to Kf,λ. An equivalent way of stating
condition (1) is as follows. After choosing an embedding

ip: Q→ Qp,

we obtain an injection of Galois groups

rp: Gal(Qp/Qp) � Gal(Q/Q).

Via rp, we identify Gal(Qp/Qp) with a subgroup Gp of Gal(Q/Q). Furthermore, there is a
canonical homomorphism

sp:Gp → Gal(Fp/Fp).

The kernel of sp is called the inertia subgroup of Gp and denoted by Ip. Now condition (1) means
that ρf,λ is trivial when restricted to Ip.

5. Recall that the Frobenius automorphism Frobp ∈ Gal(Fp/F) is the automorphism of Fp defined
by Frobp(x) = xp for all x ∈ Fp. Choose an element

F̃robp ∈ Gp such that sp(F̃robp) = Frobp .

By condition (1), the matrix ρf,λ(F̃robp) ∈ GL2(Qf,λ) is independent of the choice of F̃robp. We
denoted this matrix by ρf,λ(Frobp). This still depends on the choice of the embedding ip: different
choices of ip lead to ρf,λ(Frobp) that are conjugate in GL2(Qf,λ).

6. Because ρf,λ is well-defined up to conjugation, its characteristic polynomial is well-defined
independently of any choices made. Condition (2) says that this characteristic polynomial must
be equal to t2 − ap(f)t+ ε(p)pk−1. Note that this polynomial actually lies in the subring Qf [t] of
Qf,λ[t], has algebraically integral coefficients, and is independent of λ.
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We recall that Mk(n) is the direct sum of the subspace Ek(n) of Eisenstein series and the
subspace Sk(n) of cusp forms. Moreover, every eigenform is either an Eisenstein series or a cusp
form. The fact that there are elementary formulae for the coefficients of Eisenstein series (e.g.
am(Ek) =

∑
d|m d

k−1 for the Eisenstein series Ek of weight k for SL2(Z)) is reflected in the
following fact about Galois representations.

Theorem 3.2. Let f ∈ Mk(n) be a normalised eigenform, and let λ be a finite place of Qf .

(1) If f is an Eisenstein series, then ρf is reducible, i.e. there are two continuous homomorphisms

χ1, χ2: Gal(Q/Q)→ GL1(Qf,λ) = Q×f,λ

such that ρf,λ is described up to conjugation by a fixed matrix in GL2(Qf,λ) by

ρf,λ(σ) =

(
χ1(σ) 0

0 χ2(σ)

)
for all σ ∈ Gal(Q/Q).

(2) If f is a cusp form, then ρf,λ is irreducible, i.e. there is no vector in Q2
f,λ − {0} that is a

common eigenvector of the ρf,λ(σ) for all σ ∈ Gal(Q/Q).

Example. Let f be the Eisenstein series Ek of weight k for SL2(Z). We have Qf = Q and λ = l
for some prime number l. For every r ≥ 1, let ζlr be a primitive lr-th root of unity in Q. We can
construct ρf,l using the l-adic cyclotomic character

χl: Gal(Q/Q)→ Gal
(
Q({ζlr | r ≥ 1})/Q

) ∼−→ Z×l � Q×l ,

which is defined uniquely by the equation

σ(ζlr ) = ζ
χl(σ) mod lr

lr for all r ≥ 1 and all σ ∈ Gal(Q/Q).

It follows from the definition of χl that for every prime number p 6= l, we have

χl(Frobp) = p ∈ Z×l .

(Note that χl(Frobl) is not defined.) This implies that up to conjugation in GL2(Ql), the Galois
representation attached to f = Ek is

ρf,l =

(
1 0
0 χk−1

l

)
.

The construction that Deligne used in [7] to attach l-adic representations to cusp forms is
much more difficult than for Eisenstein series. The main ingredients are:

• Hecke correspondences on X1(n) (see § 2.3);

• the Eichler–Shimura isomorphism between modular forms and the cohomology of certain “local
systems” on X1(n), which can equivalently be interpreted as group cohomology (see Gabor
Wiese’s lectures);

• the action of Gal(Q/Q) on the l-adic étale cohomology of these local systems, or on the l-adic
Tate module of the Jacobian of X1(n) in the case of weight 2;

• the Eichler–Shimura congruence relation linking the Hecke operator Tp in characteristic p with
the Frobenius map (see § 3.6 below for the statement in the context of the Jacobian of X1(n)).

3.3. Reduced representations

Using the compactness of Gal(Q/Q), one can show that after a suitable change of basis, the matrix
ρf,λ(σ) has algebraically integral coefficients for all σ ∈ Gal(Q/Q). One can then reduce modulo λ
and obtain a representation with values in GL2(Fλ), where Fλ is the residue field of λ. This
representation in general depends on the choice of basis, but it becomes unique (up to conjugation)
after an operation called semi-simplification. Finally, one can show that for the existence of this
reduced representation, it is not strictly necessary that f be an eigenform; it suffices that f is an
eigenform “modulo λ”. The general statement about Galois representations attached to eigenforms
over finite fields is the following.
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Theorem 3.3 (Eichler, Shimura, Igusa, Deligne, Serre). Let f ∈ Mk(n)(F) be a normalised Hecke
eigenform of weight k for the group Γ1(n) with coefficients am(f) in a finite field F of characteristic l
and with character ε: (Z/nZ)→ F×. There exists a continuous group homomorphism

ρ̄f : Gal(Q/Q)→ GL2(F)

with the following properties:

(1) ρ̄f is unramified outside nl;

(2) for every prime number p - nl, the characteristic polynomial of ρ̄f (σp), where σp is a Frobenius
element at p, equals t2 − ap(f)t+ ε(p)pk−1.

Furthermore, this ρ̄f is odd and unique up to conjugation in GL2(F).

Let us explain this theorem in a slightly different way than we did for Theorem 3.1. There is
a unique finite Galois extension Kf/Q such that the homomorphism ρ̄f factors as

ρ̄f : Gal(Q/Q) � Gal(Kf/Q) � GL2(F).

The first condition means that every prime number p - nl is unramified in the field extension Kf/Q.
Let p be a prime of K lying over p, let k(p) denote its residue field, and let Gp ⊆ Gal(Kf/Q) be the
decomposition group at p. The fact that p is unramified implies that Gp maps isomorphically to
Gal(k(p)/Fp). The element σp ∈ Gp ⊆ Gal(Kf/Q) is called a Frobenius element at p. It depends
on the choice of p, but its conjugacy class in Gal(Kf/Q) is independent of this choice. The
characteristic polynomial of ρ̄f (σp) is invariant under conjugation of σp and hence only depends
on p. Condition (2), which prescribes what this characteristic polynomial should be, therefore
makes sense.

To simplify the presentation, we will assume in what follows that ρ̄f is absolutely irreducible,
i.e. that the representation Gal(Q/Q)→ GL2(F) obtained by base extension to an algebraic closure
F of F is irreducible.

Remark . The assumption that ρ̄f is absolutely irreducible implies that f is a cusp form, because the
Galois representations attached to Eisenstein series are direct sums of two characters. Moreover,
using the fact that ρ̄f is odd, one can show that if l > 2, then ρf is absolutely irreducible as soon
as it is irreducible.

3.4. Jacobian varieties

Let X be a smooth projective curve over a field K. We recall some terminology on divisors and
divisor classes.

A divisor on X is a finite formal sum of points on X, with integral (possibly negative) coeffi-
cients. The degree of a divisor is the sum of these coefficients. Any non-zero rational function on X
has a divisor associated to it; such divisors are called principal divisors. Two divisors are linearly
equivalent if their difference is a principal divisor. A divisor class is a linear equivalence class of
divisors. For every extension L/K, there is a notion of L-rational divisors and of L-rational divisor
classes.

There exists an Abelian variety (projective variety with a group structure) JacX with the
following property: for every field extension L/K, there is a bijection between the group (JacX)(L)
and the group of L-rational linear equivalence classes divisor of degree 0 on X. The dimension
of JacX is equal to the genus of X.

Let us now suppose that K is a subfield of C. Let g be the genus of X. One has the following
complex analytic description of (JacX)(C) as the quotient of a complex vector space of dimension g
by a lattice of rank 2g:

(JacX)(C) = H0(X(C),Ω1
X(C))/H1(X(C),Z).

Let f :Y → X be a non-constant morphism of smooth projective curves. To f we can associate
two maps between Jacobian varieties. First, we have the covariant Albanese map

h∗: JacY → JacX

sending the class of a divisor D on Y to the class of the push-forward of D by h. Second, we have
the contravariant Picard map

h∗: JacX → JacY

sending the class of a divisor D on X to the class of the pull-back of D by h.
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3.5. The Jacobian of X1(n)

Let n ≥ 4 be an integer. We introduce the abbreviation

J1(n) = Jac(X1(n)).

For every m ≥ 1, we use the diagram (2.4) to define an endomorphism

Tm = (q2)∗ ◦ (q1)∗: J1(n)→ J1(n).

Similarly, for every d ∈ (Z/nZ)× we use (2.5) to define an automorphism

〈d〉 = (rd)∗: J1(n)
∼−→ J1(n).

Definition. The Hecke algebra acting on J1(n) is the commutative subring

T(J1(n)) ⊆ End(J1(n))

generated as a Z-algebra by all the Tm for m ≥ 1 (or equivalently by the Tp for p prime and the
〈d〉 for d ∈ (Z/nZ)×).

3.6. The Eichler–Shimura congruence relation

Let p be a prime number not dividing n. The fact that the modular curve X1(n) has good
reduction at p implies that its Jacobian J1(n) has good reduction at p. Let Frobp denote the
Frobenius endomorphism of J1(n)Fp ; this acts on a point by raising its coordinates to the p-th
power. Let Verp denote the Verschiebung*; this is the unique endomorphism of J1(n)Fp satisfying

Frobp ◦Verp = Verp ◦Frobp = p. (3.1)

In the ring End(J1(n)Fp
), we have the Eichler–Shimura (congruence) relation

Tp = Frobp + 〈p〉Verp ;

see Diamond and Im [10, § 8.5 and § 10.2]. Multiplying by Frobp and using (3.1), we obtain

Frob2
p − Tp Frobp + 〈p〉p = 0.

Moreover, if l is a prime number different from p, then the Tate module

Ql ⊗Zl
lim←−
r

J1(n)(Fp)[l
r]

is a free module of rank 2 over Ql ⊗T(J1(n)), and the characteristic polynomial of Frobp on this
space equals t2 − Tpt+ 〈p〉p ∈ T(J1(n))[t]; see Diamond and Im [10, § 12.5].

3.7. Realisation of ρf in the Jacobian of a modular curve

Let f be a Hecke eigenform of weight k for the group Γ1(n) with coefficients in a finite field F of
characteristic l.

Theorem 3.4 (see Serre [23, 2.7, remarque (2)] (without proof) or Edixhoven [12, Theorem
3.4]). There exists an eigenform f̃ for the group Γ1(n) with coefficients in F, but of weight k̃ with
1 ≤ k̃ ≤ l + 1, such that

ρf = χil ⊗ ρf̃
for some integer i.

On the level of modular forms, it means that

ap(f) = (p mod l)iap(f̃) (p - nl prime),

εf (d) = (p mod l)2iεf̃ (d) (d ∈ (Z/nZ)×).

* German for “shift” or “displacement”.
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On the level of Galois representations, it means that if σp denotes a Frobenius element at a prime
number p - nl, we have

ρf (σp) = (p mod l)iρf̃ (σp)

In case k̃ = 1, we can find an eigenform of weight l for Γ1(n) over a quadratic extension F′

of F whose associated Galois representation is isomorphic to F′⊗Fρf [12, proof of Proposition 2.7].

After replacing f by f̃ , we may therefore assume that the weight k of f satisfies

2 ≤ k ≤ l + 1.

It turns out that we now have to distinguish between two cases: the weight equals 2 or is greater
than 2. Let us write

n′ =

{
n if k = 2;
nl if 2 < k ≤ l + 1.

Theorem 3.5 (Gross [14, Proposition 11.8]; see also [13, Theorem 2.5.7] or [1, § I.3.6]). There
exists a ring homomorphism

ef : T(J1(n′))→ F

that maps Tm to am(f) for all m ≥ 1 and 〈d〉 to ε(d mod n) · (d mod l)k−2; the last factor is
understood to be 1 if k = 2.

We may assume that ef is surjective. Let mf be the kernel of ef . Then the set

Vf = J1(n′)(Q)[mf ].

has a natural structure of F[Gal(Q/Q)]-module. One can show that Vf is non-zero. Moreover,
using the Eichler–Shimura relation, Čebotarev’s density theorem, and a theorem due to Boston,
Lenstra and Ribet, one can show that Vf is a direct sum of copies of the representation ρf . (Here
we use the assumption that ρf is absolutely irreducible.)

Theorem 3.6 (Mazur, Ribet, Gross, Edixhoven, Buzzard, Wiese [29]).

(1) If ρf is ramified at l, or if ρf is unramified at l and a Frobenius element at l does not act as
a scalar, then the F[Gal(Q/Q)]-module is isomorphic to ρf .

(2) If ρf is unramified at l, a Frobenius element at l does act as a scalar, and ρf arises from a
form of weight 1 (the last condition follows from the others if l > 2), then J1(n′)[mf ](Q) is a
direct sum of at least two copies of ρf .

Roughly speaking, the conclusion of this section is that up to twisting, the representation ρf
occurs in the l-torsion of the Jacobian of a modular curve.

4. Computation of modular Galois representations

References: the book [13] edited by Edixhoven and Couveignes, and the author’s thesis [1].

4.1. The question and the main result

Let f be a Hecke eigenform over a finite field F. We are interested in the problem of “computing”
the modular Galois representation

ρf : Gal(Q/Q)→ GL2(F)

attached to f .
Since Gal(Q/Q) is infinite, we first have to show that we can describe ρf using a finite amount

of data. We recall that ρf factors as

ρf : Gal(Q/Q) � Gal(K/Q) � GL2(F),

where K is a finite Galois extension of Q. This means that it suffices to compute the field K (which
we can describe for example as the splitting field of an irreducible polynomial over Q) together
with an embedding of Gal(K/Q) into GL2(F).

The above question has the following answer.
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Theorem 4.1 (Edixhoven, Couveignes et al. [13] for n = 1; B. [1] for n > 1). There exists an
algorithm that, given

– positive integers n and k, with n square-free

– a finite field F of characteristic greater than k, and

– an eigenform f of weight k for Γ1(n) with coefficients in F, given by the am(f) for 0 ≤ m ≤
k
12 (SL2(Z) : {±1}Γ1(n)),

computes ρf in the form of the following data:

– the finite Galois extension K of Q such that ρf factors as

Gal(Q/Q) � Gal(K/Q) � GL2(F),

given by the multiplication table of some Q-basis (b1, . . . , br) of K;

– for every σ ∈ Gal(K/Q), the matrix of σ with respect to the basis (b1, . . . , br) and the element
ρf (σ) ∈ GL2(F),

and that runs in time polynomial in k, n and #F.

Moreover, once ρf has been computed, one can compute ρf (Frobp) using a deterministic algorithm
in time polynomial in k, n, #F and log p.

Remark . The algorithm for n = 1 given in [13] is deterministic. For n > 1, only a probabilistic
algorithm is known. The word ‘probabilistic’ here means that the output is guaranteed to be
correct, but that the running time depends on random choices made during the execution of the
algorithm. It is the expected running time (taken with respect to these random choices, not with
respect to the possible inputs) that is polynomial in the length of the input.

Remark . The assumption that n is square-free is made for technical reasons and will probably be
removed in the near future.

4.2. Reduction to computation of vector space schemes

Using the techniques described in the previous talk, we reduce the problem to computing Galois
representations of the form

ρJ[m]: Gal(Q/Q)→ AutF J [m](Q)

where J is the Jacobian of the modular curve X1(n) for some n, m is a maximal ideal of the Hecke
algebra acting on J and F is the residue field of m.

Computing the representation ρf comes down to computing J [m] as a two-dimensional F-
vector space scheme over Q. We do this in the following way. We choose an embedding of finite
Q-schemes

ι: J [m]→ A1
Q.

This gives a description of J [m] as Spec Q[x]/P , for some P ∈ Q[x]. The F-vector space structure
on Spec Q[x]/P is given (in the style of Hopf algebras) by ring homomorphisms

α: Q[x]/(P )→ Q[x1, x2]/(P (x1), P (x2))

and
µc: Q[x]/(P )→ Q[x]/(P ) for all c ∈ F

describing addition and scalar multiplication, respectively.
The strategy for computing ρJ[m] consists of two parts:

(1) approximate P , α and the µc by computing them modulo p for sufficiently many small prime
numbers p;

(2) using height bounds, reconstruct the data over Q from these approximations.

Remark . Instead of computing the data modulo p for many small prime numbers p, one can try
to take approaches based on complex or p-adic approximation of the data. We will not describe
these variants.

14



4.3. Computing in Jacobians of curves of modular curves

Let us now briefly describe one of the essential tools used in the algorithm, namely a collection
of algorithms for computing with divisors on curves over finite fields. The general set-up, which
gives the asymptotically fastest known algorithms for computing with divisors on general curves,
was developed by Khuri-Makdisi in [16] and [17]. Various extensions were developed by the author
[3] to deal with finite morphisms between curves and with operations specific to curves over finite
fields.

For concreteness, we will restrict to modular curves over finite fields. Let n ≥ 11 be an integer,
and let X1(n) be the compactified modular curve over Z[1/n] classifying elliptic curves with a point
of order n. (The reason for the restriction n ≥ 11 is both that there are small technical difficulties
for n ≤ 4, and that X1(n) has genus 0 for all n ≤ 10 and is therefore less interesting.) Let p a
prime number not dividing n. We want to describe (very roughly) how one can compute in the
Jacobian J1(n)Fp of the curve X1(n)Fp .

For i ≥ 0, let Vi denote the vector space of modular forms of weight 2i for Γ1(n) with
coefficients in Fp. The Vi are finite-dimensional, and there are multiplication maps

Vi × Vj → Vi+j .

The geometric interpretation is that Vi consists of the global sections of ω2i, where ω is the line
bundle of modular forms on X1(n). We will only need finitely many Vi; in fact, for our purposes it
will be enough to know the Vi for 1 ≤ i ≤ 7 together with the multiplication maps between them.

Let D be an effective divisor on X1(n). Then for i sufficiently large, D is uniquely determined
by the subspace of Vi consisting of forms (of weight 2i) that vanish on D. In this way, we get a way
of representing effective divisors. We represent divisors of degree 0 as differences of two effective
divisors of the same degree. Using (bi)linear algebra on subspaces of the Vi, one can perform
various operations such as testing for linear equivalence, and addition and subtraction of divisors
and divisor classes.

For us, the most relevant result is that one can compute the l-torsion of J1(n) over a finite
extension of Fp.

Theorem 4.2. There exists a probabilistic algorithm that, given a positive integer n, a finite
field k of characteristic p - n and cardinality q, a prime number l 6= p, computes an Fl-basis for
J1(n)(k)[l] in expected time polynomial in n, p, [k : Fp] and l.

4.4. Computing coefficients of modular forms

The research project leading to [13] and [1] was originally motivated by a question that René Schoof
asked to Bas Edixhoven in 1995: can one evaluate Ramanujan’s τ -function at a prime number p
in time polynomial in log p? Ramanujan’s τ -function is defined by the following equality of power
series:

∞∑
m=1

τ(m)qm = q

∞∏
n=1

(1− qn)24.

This is the q-expansion of the modular form ∆, the unique normalised cusp form of weight 12 for
the full modular group SL2(Z).

More generally, one can ask the question how fast one can compute the m-th coefficient of f
for a given positive integer m and a given modular form f with coefficients in some number field.
One can use Theorem 4.1 together with some analytic number theory to accomplish this, assuming
the generalised Riemann hypothesis. The result is as follows.

Theorem 4.3 (Edixhoven and Couveignes [13] for n = 1; B. [2, Theorem 1.1] for n > 1). There
exists an algorithm that, given

– positive integers n and k, with n square-free,

– a number field K,

– a modular form f of weight k for Γ1(n) over K, and

– a positive integer m in factored form,
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computes am(f), and whose running time is bounded by a polynomial in the length of the input
under the Riemann hypothesis for zeta functions of number fields.

Remark . As in Theorem 4.1, a deterministic algorithm is known for n = 1, but only a probabilistic
algorithm for n > 1.

Remark . One can hardly expect to remove the assumption that m is given in factored form.
Namely, the multiplicative relations between the coefficients of an eigenform imply that if the
theorem were true without this assumption, then we would be able to factor integers (at least
products of two prime numbers) in polynomial time.

4.5. Example: sums of squares

It is a classical problem to determine in how many ways a given positive integer m can be written
as a sum of k squares for given k. In other words, the problem is to evaluate the function

rk(m) = #{(x1, . . . , xk) ∈ Zk | x2
1 + · · ·+ x2

k = m}.

This function is famously related to modular forms. We consider Jacobi’s theta series

θ =
∑
m∈Z

qm
2

= 1 + 2

∞∑
m=1

qm
2

∈ Z[[q]].

An easy combinatorial argument shows that for every positive integer k, we have

θk =

∞∑
m=0

rk(m)qm.

It is known that θ is (the q-expansion of) a modular form of weight 1/2 for the group Γ1(4); this
is essentially Poisson’s summation formula. This implies that θk is a modular form of weight k/2
for Γ1(4). The analogue of Theorem 4.3 with n = 4 is also true, and we obtain the following result.

Theorem 4.4 (B. [2, Theorem 6.5]). There exists a probabilistic algorithm that, given an even
positive integer k and a positive integer m in factored form, computes rk(m), and that runs in
time polynomial in k and logm under the Riemann hypothesis for zeta functions of number fields.
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