WEB CALCULI IN REPRESENTATION THEORY

DANIEL TUBBENHAUER

ABSTRACT. A striking question is if one can present the category $Mod(\mathfrak{g})$ of finite-dimensional representations of some Lie algebra \mathfrak{g} , via *generators and relations* – or even better: via *diagrammatic* generators and relations.

The question itself is very hard and only partial solutions are known: it goes back to work of Schur and Brauer that the subcategory of $\mathbf{Mod}(\mathfrak{g})$ tensor generated by the vector representation can be (almost) described if \mathfrak{g} is of classical type and certain dimensions are "big enough". Moreover, Rumer, Teller and Weyl showed (more or less) already in the 30ties that the Temperley-Lieb algebra can be seen as a diagrammatic realization of the representation category of \mathfrak{sl}_2 -modules tensor generated by the vector representation of \mathfrak{sl}_2 – providing a topological (and fun!) tool to study the latter.

In this talk I explain "howe" one can prove such a (*diagrammatic*) realization.

Everything in this talk can be quantized (roughly: put quantum brackets everywhere) and everything is amenable to categorification, but *I will keep it easy* and explain the \mathfrak{sl}_2 -case in details and give some applications to knot theory of the whole calculus.