Definition. A group G is solvable (Dutch: oplosbaar) if there exists a chain
\[G = G_0 \supset G_1 \supset G_2 \supset \cdots \supset G_n = \{1\} \]
of subgroups of G such that for $0 \leq i < n$, the subgroup G_{i+1} is normal in G_i and the quotient group G_i/G_{i+1} is Abelian.

1. Let G be a group. The derived series of G is the chain of subgroups of G defined by
\[G = G_0 \supset G_1 \supset G_2 \supset \cdots \]
where $G_{i+1} = [G_i, G_i]$ for all $i \geq 0$. Show that G is solvable if and only if there exists $n \geq 0$ such that $G_n = \{1\}$.

2. Let G be a finite group. Show that G is solvable if and only if there exists a chain
\[G = G_0 \supset G_1 \supset G_2 \supset \cdots \supset G_n = \{1\} \]
of subgroups of G such that for $0 \leq i < n$, the subgroup G_{i+1} is normal in G_i and the quotient group G_i/G_{i+1} is cyclic of prime order.

3. (a) Show that every subgroup of a solvable group is solvable.
(b) Show that every quotient of a solvable group by a normal subgroup is solvable.

4. For every $n \geq 1$, the dihedral group D_n of order $2n$ is defined using generators and relations by
\[D_n = \langle \rho, \sigma \mid \rho^n, \sigma^2, (\sigma \rho)^2 \rangle. \]
Show that D_n is solvable.

5. Let G be the symmetry group (of order 48) of the 3-dimensional cube. Show that G is solvable by giving a chain of subgroups as in the definition of solvability. (Hint: use the action of G on the set of four lines passing through two opposite vertices.)

Definition. Let A be a commutative ring. An A-algebra is a (not necessarily commutative) ring R together with a ring homomorphism $i: A \to Z(R)$. Here $Z(R)$ is the centre of R, defined by $Z(R) = \{r \in R \mid \forall s \in R: rs = sr\}$.

Definition. Let R be a ring. A (left) R-module is an Abelian group M together with a map
\[R \times M \longrightarrow M \]
\[(r, m) \longmapsto r \cdot m \]
satisfying the following identities for all $r, s \in R$ and $m, n \in M$:
\[r \cdot (m + n) = r \cdot m + r \cdot n \quad (rs) \cdot m = r \cdot (s \cdot m) \]
\[(r + s) \cdot m = r \cdot m + s \cdot m \quad 1 \cdot m = m. \]
6. Let M be an Abelian group. Show that there is exactly one map $\mathbb{Z} \times M \to M$ with the property that it makes M into a \mathbb{Z}-module.

7. Let R be a ring. Show that the multiplication map $R \times R \to R$ makes R into a left R-module.

8. Let M be an Abelian group. Consider the set

 $\text{End} M = \{ f: M \to M \text{ group homomorphism} \}$

 equipped with addition and multiplication maps defined by $(f + g)(m) = f(m) + g(m)$ and $fg = f \circ g$ for $f, g \in \text{End} M$ and $m \in M$.

 (a) Show that $\text{End} M$ is a ring.

 (b) Show that M is in a natural way a module over $\text{End} M$.

9. Let R be a ring, and let M be an Abelian group. Show that giving an R-module structure on M is equivalent to giving a ring homomorphism $R \to \text{End} M$.

10. Let k be a field, and let n be a non-negative integer. Show that k^n is in a natural way a module over the matrix algebra $\text{Mat}_n(k)$.

11. Let R be a ring, and let M be an R-module. Consider the set

 $\text{End}_R M = \{ f \in \text{End} M \mid f(r \cdot m) = r \cdot f(m) \text{ for all } r \in R \}$

 Show that $\text{End}_R M$ is a subring of $\text{End} M$.

12. Let $\phi: R \to S$ be a ring homomorphism, and let N be an S-module. We write $\phi^* N$ for the Abelian group N equipped with the map

 $R \times N \to N$

 $(r, m) \mapsto \phi(r) \cdot m$.

 Show that $\phi^* N$ is an R-module.

13. Let A be a commutative ring, let R be an A-algebra, let $i: A \to R$ be the corresponding ring homomorphism (with image in $\mathbb{Z}(R) \subseteq R$), and let M be an R-module. Let $i^* M$ be the A-module defined in Exercise 12. Show that the R-module structure on M gives a natural ring homomorphism

 $R \to \text{End}_A(i^* M)$.

14. Let R and S be two rings, let M be an R-module, and let N be an S-module. Show that the map

 $(R \times S) \times (M \times N) \to M \times N$

 $((r, s), (m, n)) \mapsto (r \cdot m, s \cdot n)$

 makes the product group $M \times N$ into a module over the product ring $R \times S$.

15. Let k be a field, and let G be a group, and consider the group algebra

 $k[G] = \left\{ \sum_{g \in G} c_g g \mid c_g \in k, c_g = 0 \text{ for all but finitely many } g \right\}$

 with the multiplication as defined in the lecture. Show that $k[G]$ is commutative if and only if G is Abelian.