
Representation Theory of Finite Groups, spring 2019

Problem Sheet 10

29 April

Throughout this problem sheet, representations and characters are taken to be over

the field C of complex numbers.

1. Let A ⊂ B be commutative rings such that B is finitely generated as an A-module,

and let M be a finitely generated B-module. Show that M is finitely generated as an

A-module.

2. Let f :A → B and g:B → C be homomorphisms of commutative rings. Let b ∈ B be

an element that is integral over f(A). Show that g(b) is integral over g(f(A)). (This

shows that integrality is preserved under ring homomorphisms.)

Theorem (Cayley–Hamilton; Frobenius). Let A be a commutative ring, let n be a non-

negative integer, and let M be an n × n-matrix over A. Let f = det(tI −M) ∈ A[t] be

the characteristic polynomial of A. Then we have f(M) = 0 in Matn(A).

3. The purpose of this exercise is to show that the Cayley–Hamilton theorem (CH) over

an arbitrary commutative ring A follows from CH over C (where it is a well-known

result, which can be proved for example using the Jordan normal form).

(a) Suppose that CH holds for n × n-matrices over the polynomial ring Z[xi,j | 1 ≤
i, j ≤ n] in n2 variables over Z. Show that CH holds for n× n-matrices over any

commutative ring A.

(b) Suppose that CH holds for n×n-matrices over C. Show that CH holds for n×n-

matrices over Z[xi,j | 1 ≤ i, j ≤ n]. (Hint: C contains infinitely many elements

that are algebraically independent over Q.)

4. Let α ∈ C be algebraic over Q. Show that α is integral over Z if and only if the

minimal polynomial of α over Q has integral coefficients.

5. Let G be a finite group, and let e = 1
#G

∑
g∈G g ∈ C[G]. Show that e lies in Z(C[G])

and is integral over Z.

6. Let d 6∈ {0, 1} be a square-free integer. Determine the integral closure of Z in Q(
√
d).

(Hint: the answer will depend on the residue class of d modulo 4.)

7. Let A be a commutative ring, let B and B′ be two commutative rings containing A,

let A be the integral closure of A in B, and let A
′
be the integral closure of A in B′.

We view A as a subring of B × B′ via the map a 7→ (a, a). Show that the integral

closure of A in B ×B′ equals A×A
′
.

8. (a) Give an explicit C-algebra isomorphism Z(C[S3])
∼−→ C×C×C.

(b) Show that the integral closure of Z in Z(C[S3]) is isomorphic to Z × Z × Z as

a Z-algebra, and give a Z-basis for this integral closure as a Z-submodule of

Z(C[S3]).
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9. (a) Let V be a vector space over C, and let φ:V → V be an automorphism satisfying

φk = idV for some k ≥ 1. Show that all eigenvalues of φ are roots of unity of

order dividing k.

(b) Let G be a finite group, and let χ be the character of a representation of G of

finite dimension n. Show that for all g ∈ G, the complex number χ(g) is a sum

of n roots of unity of order dividing #G. (This fact was used without proof in

the lecture.)

10. Let G be a finite group containing a conjugacy class C satisfying #C = pk with p a

prime number and k ≥ 1. Is G necessarily solvable? Give a proof or a counterexample.

11. Show that the alternating group A5 of order 5!/2 = 60 = 22 · 3 · 5 is simple, i.e. has

exactly two normal subgroups. (Hint: a subgroup H of a group G is normal if and

only if H is a union of conjugacy classes of G.)
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