Representation Theory of Finite Groups, spring 2019

Problem Sheet 10

29 April

Throughout this problem sheet, representations and characters are taken to be over the field \mathbf{C} of complex numbers.

- 1. Let $A \subset B$ be commutative rings such that B is finitely generated as an A-module, and let M be a finitely generated B-module. Show that M is finitely generated as an A-module.
- **2.** Let $f: A \to B$ and $g: B \to C$ be homomorphisms of commutative rings. Let $b \in B$ be an element that is integral over f(A). Show that g(b) is integral over g(f(A)). (This shows that integrality is preserved under ring homomorphisms.)

Theorem (Cayley–Hamilton; Frobenius). Let A be a commutative ring, let n be a nonnegative integer, and let M be an $n \times n$ -matrix over A. Let $f = \det(tI - M) \in A[t]$ be the characteristic polynomial of A. Then we have f(M) = 0 in $\operatorname{Mat}_n(A)$.

- **3.** The purpose of this exercise is to show that the Cayley–Hamilton theorem (CH) over an arbitrary commutative ring A follows from CH over \mathbf{C} (where it is a well-known result, which can be proved for example using the Jordan normal form).
 - (a) Suppose that CH holds for $n \times n$ -matrices over the polynomial ring $\mathbf{Z}[x_{i,j} \mid 1 \leq i, j \leq n]$ in n^2 variables over \mathbf{Z} . Show that CH holds for $n \times n$ -matrices over any commutative ring A.
 - (b) Suppose that CH holds for $n \times n$ -matrices over **C**. Show that CH holds for $n \times n$ -matrices over $\mathbf{Z}[x_{i,j} \mid 1 \leq i, j \leq n]$. (*Hint:* **C** contains infinitely many elements that are algebraically independent over **Q**.)
- 4. Let $\alpha \in \mathbf{C}$ be algebraic over \mathbf{Q} . Show that α is integral over \mathbf{Z} if and only if the minimal polynomial of α over \mathbf{Q} has integral coefficients.
- **5.** Let G be a finite group, and let $e = \frac{1}{\#G} \sum_{g \in G} g \in \mathbf{C}[G]$. Show that e lies in $Z(\mathbf{C}[G])$ and is integral over \mathbf{Z} .
- 6. Let $d \notin \{0,1\}$ be a square-free integer. Determine the integral closure of \mathbf{Z} in $\mathbf{Q}(\sqrt{d})$. (*Hint:* the answer will depend on the residue class of d modulo 4.)
- 7. Let A be a commutative ring, let B and B' be two commutative rings containing A, let A be the integral closure of A in B, and let A' be the integral closure of A in B'. We view A as a subring of B × B' via the map a → (a, a). Show that the integral closure of A in B × B' equals A × A'.
- 8. (a) Give an explicit C-algebra isomorphism $Z(\mathbf{C}[S_3]) \xrightarrow{\sim} \mathbf{C} \times \mathbf{C} \times \mathbf{C}$.
 - (b) Show that the integral closure of \mathbf{Z} in $Z(\mathbf{C}[S_3])$ is isomorphic to $\mathbf{\overline{Z}} \times \mathbf{\overline{Z}} \times \mathbf{\overline{Z}}$ as a $\mathbf{\overline{Z}}$ -algebra, and give a $\mathbf{\overline{Z}}$ -basis for this integral closure as a $\mathbf{\overline{Z}}$ -submodule of $Z(\mathbf{C}[S_3])$.

- **9.** (a) Let V be a vector space over **C**, and let $\phi: V \to V$ be an automorphism satisfying $\phi^k = \operatorname{id}_V$ for some $k \ge 1$. Show that all eigenvalues of ϕ are roots of unity of order dividing k.
 - (b) Let G be a finite group, and let χ be the character of a representation of G of finite dimension n. Show that for all $g \in G$, the complex number $\chi(g)$ is a sum of n roots of unity of order dividing #G. (This fact was used without proof in the lecture.)
- 10. Let G be a finite group containing a conjugacy class C satisfying $\#C = p^k$ with p a prime number and $k \ge 1$. Is G necessarily solvable? Give a proof or a counterexample.
- 11. Show that the alternating group A_5 of order $5!/2 = 60 = 2^2 \cdot 3 \cdot 5$ is simple, i.e. has exactly two normal subgroups. (*Hint:* a subgroup *H* of a group *G* is normal if and only if *H* is a union of conjugacy classes of *G*.)