1. Let \(m \) and \(n \) be positive integers. Show that the tensor product \(\mathbb{Z}/m\mathbb{Z} \otimes \mathbb{Z}/n\mathbb{Z} \) is isomorphic to \(\mathbb{Z}/d\mathbb{Z} \) for some \(d \), and determine \(d \). Also describe the bilinear map \(\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \rightarrow \mathbb{Z}/d\mathbb{Z} \).

2. Let \(M \) and \(N \) be \(\mathbb{Z} \)-modules (Abelian groups), and assume that \(M \) is a torsion group (every element has finite order) and \(N \) is a divisible group (multiplication by \(n \) on \(N \) is surjective for every positive integer \(n \)).

 (a) Let \(A \) be an Abelian group, and let \(b: M \times N \rightarrow A \) be a \(\mathbb{Z} \)-bilinear map. Show that \(b \) is the zero map.

 (b) Deduce that \(M \otimes N \) is the trivial group (and the universal bilinear map \(M \times N \rightarrow M \otimes N \) is the zero map).

3. (a) Let \(R \), \(S \) and \(T \) be three rings, let \(M \) be an \((R,S) \)-bimodule, and let \(N \) be an \((S,T) \)-bimodule. Show that the tensor product \(M \otimes_{S} N \) has a natural \((R,T) \)-bimodule structure.

 (b) Let \(R \) and \(S \) be two rings, let \(L \) be a right \(R \)-module, let \(M \) be an \((R,S) \)-bimodule, and let \(N \) be a left \(S \)-module. Show that there is a canonical isomorphism
 \[
 (L \otimes_{R} M) \otimes_{S} N \sim L \otimes_{R} (M \otimes_{S} N)
 \]
 of Abelian groups.

4. Let \(A \) be a commutative ring, and let \(M \) and \(N \) be left \(A \)-modules. We also view \(M \) as a right \(A \)-module via \(ma = am \) for \(m \in M \) and \(a \in A \), and similarly for \(N \); this is possible because \(A \) is commutative. In particular, we have left \(A \)-modules \(M \otimes_{A} N \) and \(N \otimes_{A} M \). Show that there is a canonical isomorphism
 \[
 M \otimes_{A} N \sim N \otimes_{A} M
 \]
 of left \(A \)-modules.

5. Let \(\phi: R \rightarrow S \) be a ring homomorphism, and let \(M \) be a left \(R \)-module.

 (a) Show that the Abelian group \(S \otimes_{R} M \) (where \(S \) is viewed as a right \(R \)-module via \((s,r) \mapsto s\phi(r) \)) has a natural left \(S \)-module structure.

 (b) Let \(N \) be a left \(S \)-module, and let \(\phi^{*}N \) be the Abelian group \(N \) viewed as a left \(R \)-module via \((r,n) \mapsto \phi(r)n \); cf. Exercise 12 of problem sheet 1. Show that there is a canonical isomorphism
 \[
 s\text{Hom}(S \otimes_{R} M, N) \sim r\text{Hom}(M, \phi^{*}N)
 \]
 of Abelian groups.
6. Let R and S be two rings, and let T be the Abelian group $T = R \otimes S$ (where R and S are viewed as \mathbb{Z}-modules).

(a) Show that the map
\[((r, s), (r', s')) \mapsto (rr', ss') \]
induces a bilinear map $m : T \times T \to T$.

(b) Show that T has a natural ring structure, with the map m from (a) as the multiplication map.

(c) Show that there are canonical ring homomorphisms $i : R \to T$ and $j : S \to T$.

(d) Show that T, together with the maps i and j, is a sum of R and S in the category of rings.

8. Let $A \to B$ be a homomorphism of commutative rings, and let R be an A-algebra. Show that the A-algebra $B \otimes_A R$ has a natural B-algebra structure.

9. Let $k \to K$ be a field extension.

(a) Let n be a non-negative integer. Show that there is a canonical isomorphism
\[K \otimes_k \text{Mat}_n(k) \cong \text{Mat}_n(K) \]
of K-algebras.

(b) Let G be a group. Show that there is a canonical isomorphism
\[K \otimes_k k[G] \cong K[G] \]
of K-algebras.

10. Let H be the \mathbb{R}-algebra of Hamilton quaternions. We recall that this is the 4-dimensional \mathbb{R}-vector space with basis $(1, i, j, k)$, made into an \mathbb{R}-algebra with unit element 1 and multiplication defined on the other basis elements by
\[
i^2 = j^2 = k^2 = -1,
ij = -ji = k,
jk = -kj = i,
ki = -ik = j
\]
and extended \mathbb{R}-bilinearly.

(a) Show that H is a division ring. (Hint: use the conjugation map $a + bi + cj + dk \mapsto a - bi - cj - dk$ for $a, b, c, d \in \mathbb{R}$.)

(b) Show that there is an isomorphism $\mathbb{C} \otimes_{\mathbb{R}} H \cong \text{Mat}_2(\mathbb{C})$ of \mathbb{C}-algebras.

11. Let R be a ring that is semi-simple as a left module over itself, so there is a family $(M_i)_{i \in I}$ of simple R-modules such that R is isomorphic to $\bigoplus_{i \in I} M_i$ as an R-module.

(a) Show that the set I is finite. (Hint: write $1 \in R$ as a sum of elements of the M_i.)

(b) Show that every simple R-module is isomorphic to one of the M_i.

12. Let R and S be two semi-simple rings. Show, using the definition of semi-simple rings, that the product ring $R \times S$ is also semi-simple. (Do not use the classification of semi-simple rings; this has not yet been proved in the lecture.)