1. Let p be a prime number, let k be a field of characteristic p, and let G be a finite group of order divisible by p. Let V be the one-dimensional k-linear subspace of $k[G]$ spanned by $\sum_{g \in G} g$.

(a) Show that V is a left $k[G]$-submodule of $k[G]$.

(b) Let $f : k[G] \to V$ be a $k[G]$-linear map. Show that the kernel of f contains V.

(c) Deduce that the ring $k[G]$ is not semi-simple.

2. Let D be a division ring, and let n be a positive integer. Show that the ring homomorphism $D \to \text{Mat}_n(D)$ sending each $\lambda \in D$ to λI (where I is the identity matrix) induces a ring isomorphism $Z(D) \isom Z(\text{Mat}_n(D))$.

3. Let R be a commutative ring. Show that R is semi-simple if and only if R is a finite product of fields.

4. Let R be a ring. We say that R is right semi-simple if every right R-module is semi-simple. Show that R is semi-simple if and only if R is right semi-simple.

5. Let k be a field, and let D be a division algebra over k such that $[D : k] = \dim_k D$ is finite. Prove that for every $\alpha \in D$, the subalgebra $k[\alpha] = \sum_{i \geq 0} k\alpha^i$ of D is a field and is a finite extension of k.

6. Let R be a ring, let M_1, \ldots, M_n be left R-modules, let M be the left R-module $\bigoplus_{i=1}^n M_i$, and let E be the Abelian group $\bigoplus_{i,j=1}^n R\text{Hom}(M_j, M_i)$.

(a) Show that there is a canonical isomorphism

$$\phi : R\text{End}(M) \isom E$$

of Abelian groups.

(b) Describe the unique ring structure on E for which ϕ is a ring isomorphism. (Hint: think of matrix multiplication).

(c) Suppose $M_1 = \ldots = M_n$. Show that there is a canonical ring isomorphism

$$R\text{End}(M) \isom \text{Mat}_n(R\text{End}(M_1)).$$

(d) Suppose that the R-modules M_1, \ldots, M_n are simple and pairwise non-isomorphic. Show that there is a canonical ring isomorphism

$$R\text{End}(M) \isom \prod_{i=1}^n R\text{End}(M_i).$$
7. Let A_4 be the alternating group on 4 elements, and let k be an algebraically closed field of characteristic not 2 or 3.
 (a) Show that up to isomorphism, A_4 has exactly four irreducible k-linear representations.
 (b) Show that up to isomorphism, A_4 has exactly three k-linear representations of dimension 1 and exactly one irreducible k-linear representation of dimension 3.

8. Let S_4 be the symmetric group on 4 elements, and let k be an algebraically closed field of characteristic not 2 or 3.
 (a) Show that up to isomorphism, S_4 has exactly five irreducible k-linear representations.
 (b) Show that up to isomorphism, S_4 has exactly two k-linear representations of dimension 1, exactly one irreducible k-linear representation of dimension 2 and exactly two irreducible k-linear representations of dimension 3.

(Hint for Exercises 7 and 8: it is not necessary to give any representation explicitly.)

9. Let S_3 be the symmetric group of order 6, and let k be a field of characteristic not 2 or 3. Give an explicit k-algebra isomorphism
 $$k[S_3] \overset{\sim}{\to} k \times k \times \text{Mat}_2(k).$$

10. Let D_4 be the dihedral group of order 8, and let k be a field of characteristic different from 2. Determine positive integers n_1, \ldots, n_m and an explicit k-algebra isomorphism
 $$k[D_4] \overset{\sim}{\to} \prod_{i=1}^m \text{Mat}_{n_i}(k).$$

11. Let Q be the quaternion group of order 8. Determine division algebras D_1, \ldots, D_m over \mathbb{R}, positive integers n_1, \ldots, n_m and an explicit \mathbb{R}-algebra isomorphism
 $$\mathbb{R}[Q] \overset{\sim}{\to} \prod_{i=1}^m \text{Mat}_{n_i}(D_i).$$

(Note that in Exercises 9, 10 and 11 the base field is not (necessarily) algebraically closed.)