Throughout this problem sheet, representations and characters are taken to be over the field \(\mathbb{C} \) of complex numbers.

Let \(G \) be a finite group. The space of class functions of \(G \) is the \(\mathbb{C} \)-vector space \(\mathbb{C}_{\text{class}}(G) = \{ f: G \to \mathbb{C} \mid f(gxg^{-1}) = f(x) \text{ for all } x, g \in G \} \), made into a \(\mathbb{C} \)-algebra by pointwise addition and multiplication. There is a Hermitean inner product on \(\mathbb{C}_{\text{class}}(G) \) defined by
\[
\langle f_1, f_2 \rangle = \frac{1}{\#G} \sum_{x \in G} f_1(x)f_2(x).
\]

For each irreducible representation \(V \) of \(G \), the character of \(V \) is the class function \(\chi_V: G \to \mathbb{C} \),
\[
\chi_V(g) = \text{tr}_\mathbb{C}(g: V \to V),
\]
i.e. the trace of \(g \) viewed as a \(\mathbb{C} \)-linear endomorphism of \(V \). Let \(X(G) \subset \mathbb{C}_{\text{class}}(G) \) be the set of characters of irreducible representations of \(G \). It has been shown in the lecture that \(X(G) \) is an orthonormal basis of \(\mathbb{C}_{\text{class}}(G) \) with respect to the inner product \(\langle \ , \ \rangle \).

1. Let \(G \) be a finite group, and let \(V \) be a finite-dimensional representation of \(G \). By Maschke’s theorem, \(V \) is isomorphic to a representation of the form \(\bigoplus_{S \in S} S^{n_S} \), where \(S \) is the set of irreducible representations of \(G \) up to isomorphism and the \(n_S \) are non-negative integers. Prove the identity
\[
\langle \chi_V, \chi_V \rangle = \sum_{S \in S} n_S^2.
\]

2. Let \(G \) be a finite group, and let \(f: G \to \mathbb{C} \) be a class function. Since \(X(G) \) is a basis of \(\mathbb{C}_{\text{class}}(G) \), we can write \(f = \sum_{\chi \in X(G)} a_\chi \chi \) with \(a_\chi \in \mathbb{C} \).
 (a) Show that for each \(\chi \in X(G) \), the coefficient \(a_\chi \) equals \(\langle \chi, f \rangle \).
 (b) Show that \(f \) is the character of a finite-dimensional representation of \(G \) if and only if all the \(a_\chi \) are non-negative integers.

3. Let \(G \) be a finite group, and consider the class function \(\chi: G \to \mathbb{C} \) defined by
\[
\chi(g) = \begin{cases}
\#G & \text{if } g = 1, \\
0 & \text{if } g \neq 1.
\end{cases}
\]
Show that \(\chi \) is the character of a finite-dimensional representation of \(G \). Which representation is this?

The character table of \(G \) is a matrix with rows labelled by the irreducible representations of \(G \) up to isomorphism and columns labelled by the conjugacy classes of \(G \). The entry in the row labelled by an irreducible representation \(V \) and the column labelled by a conjugacy class \([g]\) is the complex number \(\chi_V(g) \).
4. Determine the character tables of the dihedral group D_4 and of the quaternion group Q, both of order 8. Do you notice anything remarkable?

5. Determine the character table of the dihedral group D_5 of order 10.

6. Determine the character table of the alternating group A_4 of order 12.

7. Determine the character table of the symmetric group S_4 of order 24.

8. Determine the character table of the alternating group A_5 of order 60.

(Hint for Exercises 4–8: use explicit descriptions of low-dimensional representations and constraints on the inner products between rows of the character table. For Exercises 4, 6 and 7, you may also use results from problem sheet 7.)

9. Let G be the symmetric group S_3 of order 6. Let V be the unique two-dimensional irreducible representation of G, and let $\chi_2: G \to \mathbb{C}$ be its character.

 (a) Express the class function $\chi_2^2 \in \mathbb{C}_{\text{class}}(G)$ as a linear combination of characters of irreducible representations of G.

 (b) From the result of (a), deduce how the 4-dimensional representation $V \otimes V$ of G decomposes as a direct sum of irreducible representations.

10. As Exercise 9, but for $G = S_4$. (Note that S_4, like S_3, has a unique two-dimensional irreducible representation; see Exercise 8 of problem sheet 7).