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Introduction

This thesis is about arithmetic, analytic and algorithmic aspects of modular curves
and modular forms. The arithmetic and analytic aspects are linked by the viewpoint
that modular curves are examples of arithmetic surfaces. For this reason, Arakelov
theory (intersection theory on arithmetic surfaces) occupies a prominent place in this
thesis. Apart from this, a substantial part of it is devoted to studying modular curves
over finite fields, and their Jacobian varieties, from an algorithmic viewpoint.

The end product of this thesis is an algorithm for computing modular Galois
representations. These are certain two-dimensional representations of the absolute
Galois group of the rational numbers that are attached to Hecke eigenforms over finite
fields. The running time of our algorithm is (under minor restrictions) polynomial in
the length of the input. This main result is a generalisation of that of the book [17],
which was written by Jean-Marc Couveignes and Bas Edixhoven with contributions
from Johan Bosman, Robin de Jong and Franz Merkl.

Although describing such an algorithm has been my principal motivation, several
intermediate results are developed in sufficient generality to make them of interest to
the study of modular curves and modular forms in a wider sense.

In the remainder of this introduction, we explain the motivating question and
outline the strategy for computing modular Galois representations. After that, we
state the results of this thesis in more detail, and we compare them to those of
Couveignes, Edixhoven et al. We then discuss some applications of our algorithm.
The introduction is concluded with a summary of the chapters of this thesis.

Modular (Galois representations

By work of Eichler, Shimura, Igusa, Deligne and Serre, one can associate to any Hecke
eigenform over a finite field F a two-dimensional F-linear representation of Gal(Q/Q).
This means the following. Let n and k be positive integers, and let f be a modular
form of weight k for the group

T1(n) = {(‘CL 2) € SLy(Z)

over a finite field F of characteristic . We suppose that f is an eigenform for the
Hecke algebra of weight k for I'1(n). Let K, be the largest extension of Q inside Q
that is ramified only at primes dividing nl. For every prime number p { nl, let Frob,

(mod n), }

1



Introduction

denote a Frobenius element at p in Gal(K,,;/Q); this is well-defined up to conjugation.
Then there exists a two-dimensional semi-simple representation

pr:Gal(Q/Q) — Autg Wy (=2 GLy(F)),

where Wy is a two-dimensional F-vector space, such that py is unramified at all
prime numbers p t nl (in other words, p; factors via Gal(K,,;/Q)) and such that
for every prime number p { nl, the characteristic polynomial of ps(Frob,) equals
t2 — apt + €(p)p*~1, where a, and €(p) are the eigenvalues of the Hecke operators T},
and (p) on f. The representation py is unique up to isomorphism; it is called the
modular Galois representation associated to f.

The main result of this thesis

The goal of the last chapter of this thesis is to give an efficient algorithm for computing
representations of the form p;, where f is an eigenform over a finite field F. By
“computing p;” we mean producing the following data:

(1) the finite Galois extension Ky of Q such that ps factors as
Gal(Q/Q) - Gal(Kf/Q) — Autp Wf,

given by the multiplication table of some Q-basis (b1,...,b.) of Ky;

(2) for every o € Gal(K;/Q), the matrix of ¢ with respect to the basis (b1,...,b,)
and the matrix of ps(o) with respect to some fixed F-basis of Wy.

We give a probabilistic algorithm that computes py. We consider the situation where
the weight k is less than the characteristic of F and where n is of the form ab,
where a is a fixed positive integer and b is a squarefree positive integer coprime to a.
In this situation we prove that the running time of the algorithm is bounded by a
polynomial in the level and weight of the form in question and the cardinality of F.
This is essentially optimal, given the fact that the length of the input and output of
such an algorithm is already polynomial in the same quantities.

The strategy

The main application of the results in this thesis is a generalisation of that of the
book [17] of Couveignes, Edixhoven et al. The basic strategy is the same as that
of [17], but there are various differences. We will now explain this strategy, as well as
the differences.

The first step, due to Edixhoven, is to reduce the problem to computing repre-
sentations of the form

P13,y Gal(Q/Q) — Autg (J1(n)[m](Q)),

where n is a positive integer, Jq(n) is the Jacobian of the modular curve X;(n), mis a
maximal ideal of the Hecke algebra T1(n) C End Jy(n), J1(n)[m] is the largest closed
subscheme of J; (n) annihilated by m, F is the residue field T1(n)/m and pj, (n)[m] is the
natural homomorphism. Computing pj, (n)m] essentially comes down to computing
the F-vector space scheme J;(n)[m] over Q.

2



Introduction

The problem of computing J; (n)[m] is approached by choosing a closed immersion
t:J1(n)[m] — A(IQ

of Q-schemes. The image of ¢ is of the form V = SpecQ[z]/(P) for some P €
QJz]. This V gets the structure of a finite F-vector space scheme, which is given by
polynomials with rational coefficients. The essential idea that makes it possible to
efficiently compute V is due to Couveignes. It is to approximate V, either over the
complex numbers or modulo sufficiently many prime numbers, to sufficient precision
to reconstruct it exactly. To find out what precision is sufficient, we need to bound
the heights of the coefficients defining V.

In [17] both a deterministic and a probabilistic algorithm are given. The de-
terministic algorithm uses computations over the complex numbers; the probabilistic
variant uses computations over finite fields. It seems hard to remove the probabilistic
aspect from the algorithms for computing in Jacobians of curves over finite fields.

In this thesis, we only give an algorithm that works over finite fields. Let us
briefly explain the reason for this. The computations in J;(n) are done using divisors
on X;(n) as follows. Let g be the genus of X;(n). We fix a divisor Dg of degree g
on X;(n). This gives a birational morphism

Sym? X1 (n) — J1(n)
D +— [D — Dy].

In [17], the divisor Dy is chosen such that this map is an isomorphism over J;(n)[m].
The method of choosing such a divisor that is used in [17] does not work in our more
general situation. This problem is solved as follows. We take Dy = gO, where O is a
rational cusp of Xj(n). With this choice, there may be points of J;(n)[m] for which
the representation in the form [D — D] is not unique. For every z € J1(n)[m](Q) we
therefore consider the least integer d, such that = [D, — d,O] for some effective
divisor D, of degree d,. These D, are unique; the downside is that we need to
compute the d,. We show how to do this in the variant that uses finite fields, but it
is not yet clear how to do the analogous computations over the complex numbers.

The algorithms that we use for computing in Jacobians of modular curves over
finite field are different from those used in [17]. Instead of algorithms for computing
with singular plane curves, we use the algorithms for computing in Jacobians of
projective curves developed by Khuri-Makdisi in [56] and [57], and we transfer the
methods of Couveignes [16] to this setting.

A bound on the heights of the coefficients of the data to be computed, and
therefore a bound on the running time of the algorithm, is derived using Arakelov
intersection theory on models of modular curves over rings of integers of number
fields. We follow roughly the same strategy that was applied in [17], but there are
some notable differences. First, we have avoided introducing Faltings’s d-invariant,
which means we do not need bounds on #-functions of Jacobians of modular curves.
Second, our methods allow us to derive bounds on the amount of work that has to
be done to find the numbers d, defined above. Finally, we introduce new analytic
methods to find sharper bounds for various Arakelov-theoretic quantities associated
to modular curves.
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Applications

We now outline some applications of our main result. This thesis contains no proofs
of the theorems below; we refer to [17, Chapter 15] for arguments that can be used
to prove them. I hope to give more attention to these applications in a future article.

Computing coefficients of modular forms

The history of [17], and therefore also of this thesis, started with a question that René
Schoof asked to Bas Edixhoven in 1995. Ramanujan’s 7-function is defined by

g [JTa—=g™*=> r(n)q"
m=1 n=1

This power series is the g-expansion of the unique cusp form A of weight 12 for SLo(Z).
Schoof’s question was: given a prime number p, can one compute 7(p) in time poly-
nomial in logp? This question is answered affirmatively in [17].

For modular forms for I';(n) with n > 1, the results of this thesis imply the
following generalisation.

Theorem. Let a be a positive integer. There is a probabilistic algorithm that, given
a positive integer k, a squarefree positive integer b coprime to a, the g-expansion of
a Hecke eigenform f of weight k for T'1(ab) up to sufficient precision to determine f
uniquely, and a positive integer m in factored form, computes the m-th coefficient of f,
and that runs in expected time polynomial in b, k and logm under the generalised
Riemann hypothesis for number fields.

The Riemann hypothesis is needed to ensure the existence of sufficiently many primes
of small norm in the number field generated by the coefficients of f. It does not suffice
to apply the prime number theorem for each of these fields; we need an error term
for the prime number theorem that is sufficiently small relative to the discriminant.
More precisely, we use the result that if K is of a number field of discriminant Ay
for which the generalised Riemann hypothesis holds and 7k (z) denotes the number
of prime ideals of the ring of integers of K of norm at most z, then

Y d .
i (z) — / Y 1< evzlog(| Ak |zl for all > 2,
2 logy

where c¢ is a positive real number not depending on K or z; see Weinberger [111].

Sums of squares

One particularly interesting family of modular forms consists of #-series associated
to integral lattices. Let L be an integral lattice of rank k and level n. The 6-series
of L is defined by

o= 3 ¢ € Z[[q]).

€L

This power series is the g-expansion of a modular form of weight &/2 for I'; (4n). Our
results imply that if k is even, then given 6; up to sufficient order and a positive

4
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integer m in factored form, the m-th coefficient of 8; can be computed quickly, at
least for fixed n.

A case that is worth mentioning specifically is the classical question in how many
ways a positive integer can be written as a sum of a given number of squares. For
this we introduce Jacobi’s 6-series

o0
o=1+23 ¢
n=1
If m and k are positive integers, we write
re(m) = #{(x1,...,2p) € ZF |22 + - + 22 =m}.

An elementary combinatorial argument shows that

oo

oF = Z re(m)g™.

n=0

It is known that 0 is the g-expansion of a modular form of weight 1/2 for I'y(4). We
therefore obtain the following new result on the complexity of evaluating r(m).

Theorem. There is a probabilistic algorithm that, given an even positive integer k
and a positive integer m in factored form, computes ri(m) in time polynomial in k
and logm under the generalised Riemann hypothesis for number fields.

It was proved recently by Ila Varma [110] that for every even k > 12, the decom-
position of #* as as a linear combination of Hecke eigenforms contains cusp forms
without complex multiplication. No method was previously known for computing the
coefficients of such forms efficiently.

Computing Hecke operators

A consequence of being able to compute coeflicients of modular forms is that one can
also compute Hecke algebras, in the following sense. Let T(Sx(I'1(n))) be the Hecke
algebra acting on cusp forms of weight k for T';(n). We represent T(S;(T'1(n))) by its
multiplication table with respect to a suitable Z-basis (b, ..., b, ), together with the
matrices with respect to (by,...,b,) of the Hecke operators T), for all prime numbers
p < £[SLy(Z) : {£1}T1(n)] and of the diamond operators (d) for all d € (Z/nZ)*.

Theorem. There exists a probabilistic algorithm that, given a positive integer k, a
squarefree positive integer n and a positive integer m in factored form, computes the
matrix of the Hecke operator T,,, in T(S(I'1(n))) with respect to (b, ..., b,), and that
runs in time polynomial in n and log m under the generalised Riemann hypothesis for
number fields.

The case k = 2 of this theorem implies a new result on counting points on modular
curves over finite fields. This is because from the elements T, and (p) in T(S2(I'1(n)))
one can compute the characteristic polynomial of the Frobenius endomorphism Frob,,
on the l-adic Tate module of J;(n)g,, where [ is a prime number different from p.
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Theorem. There exists a probabilistic algorithm that, given a squarefree positive
integer n and a prime number p { n, computes the zeta function of the modular
curve Xi(n) over F,, and that runs in time polynomial in n and logp under the
generalised Riemann hypothesis for number fields.

In particular, this theorem implies that given n and a prime power ¢ coprime to n,
the number of rational points on X;(n) over the field of ¢ elements can be computed
in time polynomial in n and log ¢ under the generalised Riemann hypothesis.

Explicit realisations of certain Galois groups

The Abelian representations of Gal(Q/Q) are well understood: by the Kronecker—
Weber theorem, the largest Abelian extension of Q is obtained by adjoining all roots
of unity, and the largest Abelian quotient of Gal(Q/Q) is isomorphic to 7"

Serre’s conjecture, which is now a theorem thanks to Khare and Wintenberger,
with an important step due to Kisin (see [54], [55] and [61]), asserts that every two-
dimensional, odd, irreducible representation of Gal(Q/Q) over a finite field is asso-
ciated to a modular form. Our results therefore imply that an important class of
non-Abelian extensions of Q can be computed efficiently.

Computational work based on the work of Couveignes, Edixhoven et al. has been
carried out by Johan Bosman using the complex analytic method; see [17, Chapter 7.
In [9], Bosman also gave an explicit polynomial of degree 17 over Q with Galois
group SLs(F1g); the corresponding Galois representation is attached to a modular
form of weight 2 for I'g(137). It follows from the results of this thesis that analogous
calculations of Galois groups can be done efficiently in greater generality.

Overview of the chapters

In Chapter I, we introduce modular curves, modular forms and modular Galois
representations. This chapter consists mostly of known material.

In Chapter II, we prove several analytic results on modular curves that are
needed in the later chapters. The most important of these are explicit bounds on
Petersson norms and suprema for cusp forms, and on Green functions of quotients of
the upper half-plane by cofinite Fuchsian groups.

In Chapter III, we describe Arakelov’s intersection theory on aritmetic surfaces.
We give the results from Arakelov theory that we need for the bounds of the running
time of the algorithm that is described in Chapter V. We also find fairly explicit
bounds on many Arakelov-theoretic invariants of modular curves.

In Chapter IV, we collect the computational tools that are needed for the
algorithm. This chapter largely consists of algorithms for computing with projective
curves and their Jacobians. We describe a collection of algorithms developed by Khuri-
Makdisi, and we develop new algorithms that allow us to work with finite morphisms
between curves and with curves over finite fields.

In Chapter V, we describe the promised algorithm for computing Galois rep-
resentations associated to modular forms over finite fields. The algorithm is based
on the tools developed in Chapter IV. We use the Arakelov-theoretic methods intro-
duced in Chapter IIT to bound the heights of the data that need to be computed, and
thus to bound the expected running time of our algorithm.
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Chapter I

Modular curves, modular forms and Galois repre-

sentations

In this chapter we collect the necessary preliminaries on modular curves, modular
forms and modular Galois representations. We focus entirely on the algebraic side;
the analytic side will be explained in Chapter II. Essentially all the material in this
chapter is known; only Theorem 3.5 seems to be new.

The set-up of this chapter is geared towards quickly introducing the material
and notation we need, rather than towards giving an anywhere near complete in-
troduction. The reader is therefore encouraged to consult one of the many existing
texts in which this material, and much more, is explained. These include Deligne
and Rapoport [23], Katz and Mazur [53], Conrad [14], Diamond and Im [25], and
Diamond and Shurman [26].

1. Modular curves

1.1. Moduli spaces of generalised elliptic curves

To begin with, we describe some of the work of Deligne and Rapoport [23], Drinfeld
(unpublished), Katz and Mazur [53], Edixhoven (unpublished) and Conrad [14] on
the moduli spaces of (generalised) elliptic curves.

Let S be a scheme. For each positive integer n, the standard n-gon (or Néron
n-gon) over S is the S-scheme obtained by taking n copies of P} and identifying the
section oo on the i-th copy with the section 0 on the (i 4+ 1)-th copy. For n = 1, one
needs to be a bit careful. The result in this case is the closed subscheme of P% defined
by the equation y?z + xyz = z3; see Conrad [14, §2.1].)

A semi-stable curve of genus 1 over S is a proper, finitely presented and flat
morphism f:C' — § such that every geometric fibre of f is either a smooth curve of
genus 1 or a Néron n-gon for some n. If f: C' — S is a semi-stable curve of genus 1, we
write C®™ for the open subscheme of C' consisting of the points at which f is smooth.
If f:C — S is a semi-stable curve of genus 1, then the relative dualising sheaf Q¢
is a line bundle on C, and the direct image f.{lc/s is a line bundle on S.



I. Modular curves, modular forms and Galois representations

A generalised elliptic curve over S is a triple (E, +,0) consisting of a semi-stable
curve E of genus 1 over .S, a morphism +: E¥™ x ¢ E — E of S-schemes and a section
0 € E*™(S) such that the following conditions hold (see Conrad [14, Definition 2.1.4]):

(1) + restricts to a commutative group scheme structure on E*™ with identity sec-
tion 0;

(2) + is an action of E®™ on E such that on singular geometric fibres the translation
action by each rational point in the smooth locus induces a rotation on the graph
of irreducible components.

Let E be a generalised elliptic curve over S. A point P € E®™(S) is called a
point of exact order n if the relative Cartier divisor

n

()™ = >7(iP)

=1

on E*™ is a closed subgroup scheme of E™; see Katz and Mazur [53, §1.4]. A T'y(n)-
structure on E is a group homomorphism ¢: Z/nZ — E(S) such that ¢(1) is a point
of exact order n. A cyclic subgroup of order n on E is a subgroup scheme that locally
for the fppf-topology on S is of the form (P)(™) for some point P of exact order n.

Let G be a cyclic subgroup of order n on E. For every divisor d of n, there is a
canonical subgroup scheme G4 of G that, again locally for the fppf-topology on S, is
given by choosing a generator P of G and defining

Ga = ((n/d)P)?;

see Katz and Mazur [53, Theorem 6.7.2]. This G is called the standard cyclic subgroup
of order d of G.

Let F be a generalised elliptic curve over a scheme S, let n be a positive integer,
and let p be a prime number. For p { n, we define a I';(n;p)-structure on E to be
a pair (P,G) cousisting of a I'1(n)-structure P on E® and a cyclic subgroup G of
order p on E*™ such that the Cartier divisor }°; 7,7 (jP 4+ G) on E is ample. For
p | n, we define a I'; (n; p)-structure in the same way, but we add the condition

> (i(n/p)P+Gy) = E™[p),

JEZ/pZ

where G, C G is the standard cyclic subgroup of order p as defined above.

Let I" denote I'1(n) or I'y(n;p). There exists a moduli stack Mr classifying
I-structures. (For background on stacks, we refer to the book [63] of Laumon and
Moret-Bailly.) It is known that Mr is a proper flat Deligne-Mumford stack over Z;
see Conrad [14, Theorem 1.2.1]. Furthermore, Mr is regular and has geometrically
connected fibres of pure dimension 1 over SpecZ. The coarse moduli spaces of Mp
for T =T1(n) and I = 'y (n;p) are denoted by X;(n) and X;(n;p), respectively.

The stack Mr has an open substack consisting exactly of the points with trivial
automorphism group, and this open substack is representable by a scheme. This
implies, for example, that Mp, (,y and My, (,,,) are representable over Spec Z[1/n]
for n > 5 and p prime.

8



1. Modular curves

There is a canonical open substack M7, of Mr classifying smooth elliptic curves
with I'-structure, and a divisor of cusps M classifying Néron polygons with I'-
structure. If I' = I'1(n;p), we identify M with the stack classifying pairs of the

form (F Ny , P), where ¢ is a cyclic isogeny of degree p whose kernel has trivial
intersection with (P) (") in the following way. Given a cyclic subgroup G, we take
E' = E/G and take ¢ to be the quotient map; conversely, given ¢, we take G to be
the kernel of ¢.

If E — S is a generalised elliptic curve and €25 is the relative dualising sheaf,
then f.Qp/g is a line bundle on S whose formation is compatible with base change
on S. This gives us the line bundle of modular forms of weight 1 on My, denoted
by wr.

1.2. Maps between moduli spaces

There are various canonical morphisms between the moduli stacks defined above; see
Conrad [14, Lemma 4.2.3]. These preserve the open substack Mg and M.

First, let n be a positive integer, and let p be a prime number. The p-th Hecke
correspondence on Mr () is the diagram

@ Ml“l(n;p) a2
e N (1.1)
Mr, () Mr, (n)

where ¢; and g2 are defined on the open substack ./\/ll‘il(nip) classifying smooth elliptic
curves by

Q(E -2 B P)=(E,P) and q(E-% E',P)=(E ¢oP).

By Conrad’s result in [14, Theorem 1.2.2] the morphisms ¢; and g2 extend uniquely
to finite flat morphisms My, () — Mr, (n)-
Furthermore, for all d € (Z/nZ)*, we define an automorphism

rq: Mfl(n) — Mfl(n) (12)
by the modular interpretation
rq(E,P) = (E,dP)

for all generalised elliptic curves E together with a I';(n)-structure P.
Finally, let m be a divisor of n. Then for each divisor d | (n/m) there exists a
natural morphism

bZ’m: Mpl(n) — Mrl(m)

defined on (smooth) elliptic curves with I'y(n)-structure by sending a pair (E, P) to
(E/{(n/d)P)a, (n/md)P mod ((n/d)P)q).



I. Modular curves, modular forms and Galois representations

1.3. Jacobians of modular curves

Let n be an integer such that n > 5. The modular stack Mr, (,) over SpecZ[1/n]
is representable by a proper smooth curve X;(n) over SpecZ[1/n| with geometri-
cally connected fibres. Because of this, there exists an Abelian scheme J 1(n)z[1 /n]
over Spec Z[1/n] representing the functor Picg(l(n)/z[l/n], i.e. the connected compo-
nent of the identity element of the Picard functor. For details, we refer to Bosch,
Liitkebohmert and Raynaud [8, Chapter 9].

For any prime number p we can now view the Hecke correspondence (1.1) as a
correspondence on X;(n), and use it to define an endomorphism T}, of Ji(n)z[1/n
called the p-th Hecke operator, as

T, = Alb(g2) o Pic(q1).

This is a priori defined on Ji(n)z[1/np), but it extends uniquely to an endomorphism
of J1(n)z[1/n) since the latter is an Abelian scheme. For d € (Z/nZ)* we define the
diamond operator (d) on J1(n)z[1/n) to be the automorphism

(d) = Alb(rg).
We define the Hecke algebra for T'1(n) as the subring
Tl(n) Q End Jl(n)z[l/n]

generated by the endomorphisms T}, for p prime and (d) for d € (Z/nZ)*. It is known
that the Hecke algebra T (n) is commutative; see for example Miyake [80, §4.5].

We introduce some more notation for the case that n = nyng with given coprime
integers n; and ns. Then the Chinese remainder theorem implies that

(Z/nanZ)X = (Z/’I’L1Z)X X (Z/TLQZ)X
For dy € (Z/n1Z)*, we define
(d)n, = (d),

where d is the unique element of (Z/nZ)* with (d mod n;) = d; and (d mod ny) = 1.
Then we can decompose (d) for any d € (Z/nZ) as

(d) = (d mod ny)n, (d mod ng)y,.

It is also useful at times to consider the duals of the Hecke operators, which are
defined by
T,/ = Alb(q1) o Pic(gqz) for p prime

and
(d)V = Pic(rq) = (d™*) ford e (Z/nZ)*.

Remark. In the case where p divides n, the operator 7, is often denoted by U,
in the literature, but we will not do this. Also, some authors, such as Ribet [88,
page 444], define the operators T, and (d) in the opposite way, i.e. as the duals

10



1. Modular curves

of the endomorphisms defined above. The subring of End Jy(n)z1/s) generated by
these endomorphisms is isomorphic to the Hecke algebra T;(n) defined above via
the Rosati involution on End J1(n)z[1/s). (The Rosati involution is actually an anti-
isomorphism, but this does not matter since T1(n) is commutative.) There does not
seem to be a strong reason to prefer either of the two definitions, but our choice is
motivated by the convention that in the representation ps associated to an eigenform f
with T,f = a,f for p prime and (d)f = e(d)f for d € (Z/nZ)*, the characteristic
polynomial of a Frobenius element at a prime number p is X2 — a, X + ¢(p)p*~1, as
opposed to X? — (a,/e(p))X + p*~1/e(p); compare §1.4.

For later use, we state here a result on the non-vanishing of certain finite subgroup
schemes of Jacobians of modular curves.

Lemma 1.1. Let A be a complex Abelian variety (viewed as a complex manifold) and
R a commutative subring of End A. For every maximal ideal m of R, the subgroup

Am|={z € A|rz =0 for all r € m}

is non-zero.

Proof. The homology group Hi (A, Z) is a faithful, finitely generated R-module. For
any maximal ideal m C R, the localisation Hi (A, Z),, is therefore a faithful, finitely
generated module over the local ring R,,. Because R is finitely generated as a Abelian
group, m contains a prime number [ and A[m] is contained in the group A[l] of I-torsion
points of A. From the canonical isomorphism

we get a canonical isomorphism

Alm]

IR

(Hl (A’ Z)/ZHI(Av Z))[m}
(Hi(A, Z)m/1H1 (A, Z)wm) [m].

Il

Since [ is in the maximal ideal mR,, of R,, Nakayama’s lemma implies that the
Ry-module Hy (A, Z)w /IH1 (A, Z)y, is non-zero. As this module has finite cardinality,
it admits a composition chain whose constituents are isomorphic to R/m (the only
simple Ry-module). The above isomorphism now shows that A[m] # 0. O

Lemma 1.2. Let n be an integer withn > 5, and let m be a maximal ideal of T1(n).
Let J = Ji(n)z[1/n), and let J[m] be the maximal closed subscheme of J annihi-
lated by m. Then J[m] is a non-zero closed subgroup scheme of J and is étale over
Spec Z[1/nl], where [ is the residue characteristic of m. O

Proof. The claim that J[m] is non-zero follows from Lemma 1.1. Since J[I] is étale,
the closed subscheme of J[I] that is sent to zero by any Hecke operator is a union of ir-
reducible components of J[I]. The scheme J[m] is the intersection of these subschemes
and is therefore étale as well. O

11



I. Modular curves, modular forms and Galois representations

1.4. The Eichler—Shimura relation

Let n be a positive integer, and let p be a prime number not dividing n. We write
Frob,, for the the Frobenius endomorphism of the Abelian variety

Ji(n)r, = J1(n)z[1/n) X SpecF,
and Ver, for the Verschiebung, i.e. the unique endomorphism of J;(n)r, such that
Frob, Ver, = Ver, Frob, = p € End J;(n)F, .
Then the Eichler—Shimura relation
T, = Frob, +(p) Ver, (1.3)

holds in End J;(n)r,; see Diamond and Im [25, §8.5 and §10.2] or Gross [41, Propo-
sition 3.12]. Moreover, if [ is a prime number different from the characteristic of p,
then the Tate module

Vi(Ji(n)r,) = Qi ®z, li%nJl(n)Fp [I"(Fp)

is a free module of rank 2 over Q; ® T (n), and the characteristic polynomial of Frob,
on this space is equal to

XQuoT, (n) (Frob,) = 2% — Tyx + p(p) € T1(n)[z];
see Diamond and Im [25], § 12.5 or Gross [41, Proposition 11.8].

2. Modular forms

Let T denote I'1(n) or I'y(n;p) for a positive integer n and a prime number p. We
define the moduli stack M over SpecZ and the line bundle wr on Mr as in §1.1.
For any non-negative integer k and any Abelian group A, we define the Abelian group
of modular forms of weight k for I' with coefficients in A as

My (T, A) = HY(Mr, A @7 wEF). (2.1)

This gives a functor on the category of Abelian groups. Furthermore, if A and B are
Abelian groups, there are multiplication maps

Mk(FaA)®Ml(F?B)—>Mk+l(FaA®B) (kalZO)

and if R is any ring, then @kzo My (T, R) is in a natural way a graded R-algebra.
If n > 5, k > 2, and A is a Z[1/n]-module, then the canonical map

A @7 My(T, Z) — M(T, A).

is an isomorphism. This is not the case in general. For example, if p is a prime
number, the canonical reduction map

M;(T',Z) — My (T, F,)
is not always surjective. For this reason, modular forms of weight 1 often require a

more careful treatment.

12



2. Modular forms

2.1. Cusp forms

We recall from § 1.1 that the moduli stack Mt is the union of the open substack M3,
classifying (smooth) elliptic curves, and the divisor of cusps, classifying Néron poly-
gons. For any Abelian group A, we define the subgroup of cusp forms inside the
group My (T, A) of modular forms as

Sk(I',A) =H° (./\/lp, A®gz wl@k(—cusps)).

As is the case for the full space of modular forms, for n > 5, k > 2 and A a Z[1/n]-
module, the map
A®z Sk(l“, Z) — Sk(l“, A)

is an isomorphism; this is not true in general.
The maps b defined in § 1.2 respect the divisor of cusps. This implies that the
induced maps

(b4 *: Mp(T'y(d), A) — Mg(T'1(n),A) (d|n and e | n/d)

preserve the subgroup of cusp forms.

2.2. Hecke algebras on spaces of modular forms

Let n and k be positive integers, and let A be any Abelian group. The Abelian group
Mg (T (n), A) of modular forms of weight & for I'; (n) with coefficients in A, as defined
in (2.1), admits a natural action of the Hecke operators T, for p prime and (d) for
d € (Z/nZ)*. We will briefly sketch how these operators are defined.

First, for every prime number p, the Hecke correspondence (1.1) induces an en-
domorphism of My (I'1(n), A), denoted by T},. Its definition is somewhat complicated,
especially if A has non-trivial p-torsion. We therefore assume that multiplication by p
is injective on A, and we refer to Conrad [14, §4.5] for the construction in the general
case. On the open substack Ml‘ll(n) of Mr, (), we have the universal p-isogeny ¢ as
in §1.1. There is an induced pull-back map

P WD, (n) = WIy (nip) = LWL (n)

on Ml‘il(n;p). This map can be extended to all of Mrp, (,,.,); see Conrad [14, Theo-

rem 1.2.2]. Furthermore, the fact that ¢; is finite flat implies that there is a natural
trace map
trg, s HY (Mr, (). wl@lk(n;p)) = H(Mr, (np) qi‘wl@f(n)) — HY (M, (n), wl@lk(n)).
The Hecke operator T}, on the Abelian group
M (T'1(n), A) = H' (M, (n), i)
can now be defined by
pTy = trg, 0 HY (M, (nyp), ¢%) 0 G5

13



I. Modular curves, modular forms and Galois representations

Indeed, we have assumed that multiplication by p is injective on p, and the right-hand
side is divisible by p; see Conrad [14, Theorem 4.5.1].

Next we introduce the diamond operator (d) on My(T'1(n), A) for every d €
(Z/nZ)* as the automorphism of Mg (I'1(n), A) induced by pull-back via the au-
tomorphism r4 of Mp, (,). Here we have used the fact that rjwr, () is naturally
isomorphic to wr, (5)-

The Hecke algebra on the space of modular forms with coefficients in A is the
subring

T(M;(T1(n), A)) € End My (T1 (n), A)

generated by the Hecke operators acting on M (T'y(n), A).
If K is a field, a (Hecke) eigenform of weight k for T';(n) over K is a non-zero
element

feMg(i(n),K)

such that the one-dimensional K-linear subspace of My(I'1(n), K) spanned by f is
stable under the action of T(M(I'1(n), K).

Since the maps defining the Hecke correspondences respect the divisor of cusps,
the action of the Hecke algebra T(My(I'1(n), A)) preserves the subgroup Si(I'1(n), A)
of cusp forms. In other words, we have a canonical ring homomorphism

T(M;(T1(n), A)) — End Si(T1(n), A).

The image of this homomorphism is a subring of End Si(T'1(n), A) called the Hecke
algebra on the space of cusp forms. We denote it by T(Sk(T'1(n), A)).

Similarly to the case of Hecke operators on Jacobians, we can also consider the
duals of the Hecke operators defined above on spaces of modular forms. The dual
of T}, for p prime is defined by

pTIY = tI‘Q2 o HO(Mf‘l(n;p)v é*) o QTy

where é* is given on ./\/ll‘ll(n) by pullback via the dual of the universal p-isogeny ¢.
We have

T, = (p)~'T, for p{n prime.

For p | n prime, the operators T}, and T z}/ do not in general commute. The duals of
the diamond operators are defined by

(d)Y = {d)~" fordec (Z/nZ)*.
Finally, we note that the maps 6™ introduced in § 1.2 induce natural maps

(b4 *: My (T'1(d), A) — M(T'1(n), A) for d|n and e |n/d.
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2. Modular forms

2.3. A connection between Hecke algebras on Jacobians and on spaces of
cusp forms

Let n be a positive integer, let [ be a prime number not dividing n, and let k£ be an
integer such that
2<k<Ii+1. (2.2)

We now come to the rather subtle point that the Fj-vector space Si(T'1(n),F;) of
cusp forms can be viewed as a module over the ring T1(n) C End J1(n)zp1/») if & = 2,
and over the ring Ty (nl) € End J1(nl)z[1/ny if 3 <k <1+ 1.

Remark. This fact is a basic ingredient for the algorithms of Chapter V. At first sight,
the condition (2.2) puts a restriction on the set of modular forms for which we can
compute Galois representations. However, this restriction is only superficial, because
up to twists all modular Galois representations arise from eigenforms of weight &
over finite fields of characteristic { for which the inequality (2.2) holds; see Serre [99,
page 116] or Edixhoven [31, Theorem 3.4]. We will explain this in more detail when
we need it.

We start with the case k = 2. The Hecke algebra T1(n) € End Ji(n)z[1/y] acts
in a natural way on the space So(I'1(n),Z). One way to see this is using the injective
homomorphism

End(J1(n)zp1/y)) — End(J1(n)c),
the isomorphism
Ji(n)c = H(X1(n)(C), O, (c)) ¥ /Hi1(X1(n)(C), Z)
and the Kodaira—Spencer isomorphism
HO(Xl(”)Ca Q%(l(n)) — S5(T'1(n), C).

One can check that these isomorphisms are compatible with the action of the Hecke
operators. From the fact that the subgroup S2(T'1(n), Z) of S2(T'1(n), C) is stabilised
by the Hecke algebra, one then deduces that there exists a ring isomorphism

T1(n) — T(S2(I'1(n),Z))

sending each of the Hecke operators T, with m > 1 and (d) with d € (Z/nZ)*
in T1(n) to the operator in T(S2(T'1(n),Z)) denoted by the same symbol. For each
prime number [, the existence of the isomorphism

F; ®z 52(T1(n), Z) — Sy(T'1(n), F)

implies that Ty (n) also acts on Sa(I'1(n), Fy).

When 3 < k <[+ 1, the situation is more complicated. In this case the Hecke
algebra T1(nl) € EndJi(nl)zp/my) acts in a natural way on the Fj-vector space
Sk(T'1(n), Fy). In other words, there is a surjective ring homomorphism

Ty (nl) — T(Sk(T1(n), Fy))

15



I. Modular curves, modular forms and Galois representations

sending each of the operators T}, for p prime and (d),, for d € (Z/nZ)* (using the
notation of §1.3) to the corresponding operator on Si(I'y(n),F;). Note that T; is
a somewhat subtle case, since [ divides the level on the left-hand side but not on
the right-hand side. Furthermore, it sends the operator (d); to d*~2 € F/ for each
d € (Z/1Z)*. Another way to phrase the effect on the diamond operators is to say
that (d) — (d mod n)(d mod [)*~2. The construction of the action just described is
essentially given by Edixhoven in [31, §6.7].

2.4. The Tate curve and g-expansions

We give here the basic facts about Tate curves. For details, we refer to Deligne and
Rapoport [23, VII, §1] and Conrad [14, §2.5].

For every positive integer d, the d-th Tate curve is a certain generalised elliptic
curve

£ Tate(q*) — Spec Z[[q]]

that becomes a Néron d-gon after base change to the zero locus of ¢ and that is a
(smooth) elliptic curve over Spec Z[[g]][¢™!], the complement of this zero locus. The
relative dualising sheaf Qrage(qe)/ spec z[[g)) @dmits a canonical generating section «,
giving a trivialisation

~  (d
OSpeC Zlq)] — f* )Qm(qd)/ Spec Z[[q]]

Consider a positive integer n, and let d and e be positive integers such that n is the
least common multiple of d and e. Then the curve Tate(q?) over Spec Z[g, {.]] admits
at least one I'y(n)-structure. Each choice of d, e and a I'y (n)-structure gives rise to a
morphism

Spec ZH(], Ce“ - Ml"l(n)~

The pull-back of wr, () via this map is canonically trivialised by . For any Abelian
group A, this gives an injective map

My, (Fl(n)v A) =H° (Mrl(n)7 A® w%?lk(n)) — A®z Z[[Qv ge]]»

called the g-expansion map relative to Tate(q?) with the given T'y (n)-structure. As an
important special case, we consider the I'; (n)-structure ¢ on Tate(g™) over Spec Z[[q]]
given by ¢(i) = ¢' for i € Z/nZ. We call the corresponding g-expansion the ¢-
expansion at 0 (because of the connection with complex modular curves). For any
f € Mg(T1(n), A) we define a,,(f) to be the m-th coefficient in this g-expansion.

Via a calculation on Tate(¢™), we can express the action of the duals of the
Hecke operators, as defined in §2.2, in terms of the g-expansion at 0 by the well-
known formula

am(T;/f) = apm(f) +pk_1am/p(<p>vf) for m > 1 and p prime,

where the rightmost term is omitted if p divides n or if p does not divide m; see for
example Diamond and Im [25, equation 12.4.1].

16



2. Modular forms

Remark. The reason for using the duals of the Hecke operators is that the cusp oo,
which is the more traditional choice for g-expansions, is not Z-rational, but only Z[(,]-
rational. This follows from the moduli interpretation of this cusp: it corresponds to
a Néron 1-gon, whose smooth locus is isomorphic to the multiplicative group, with
an n-th root of unity as the distinguished n-torsion point. We therefore consider the
g-expansion at the “dual” cusp 0, which is Z-rational.

Another calculation using Tate(q") shows that the effect of the maps b9 on the
g-expansion at the cusp 0 is given by

ai((by™) f) = aije(f) if n/m = de,

where the right-hand side is to be interpreted as 0 if e 1 7. (Again this is different
from the effect on g-expansions at the cusp oo, where the correct expression on the
right-hand side is a;/4(f).)

Let p be a prime number. We write 0 for the cusp of Mr, () corresponding to
the Néron n-gon obtained by n copies of P! indexed by Z/nZ, where the distinguished
point of order n is the point 1 on the copy indexed by 1, and the distinguished subgroup
of order p is the subgroup p,, of the copy indexed by 0. For every non-negative integer k
and every Abelian group A, the maps

q1,q2: MFl (nsp) — MF1 (n)
defining the Hecke correspondence (1.1) induce morphisms
41593 Mi(T'1(n), A) — Mg (T'1(n;p), A).

A calculation on the Tate curve Tate(q™) shows that

* * k(li lf 7 y
i) =aitf) and ailgif) = { B
for all f € Mg(T'1(n), A) and all i > 0.
The following basic but very useful fact shows how many coefficients of the g-
expansion are needed to determine a modular form uniquely. This is a simple case of
a more general result proved by Sturm [105].

Lemma 2.1. Let I' be one of the groups I'1(n) or I'1(n; p) with n > 1 and p prime.
Let f be a modular form of weight k for T over a field whose characteristic does not
divide n. If the g-expansion Y~ amq™ of f at some cusp satisfies

L

=0 f <
ar, orr_12

[SLa(Z) - {+1}T7,

then f = 0.

Proof. This follows from the fact that the line bundle of modular forms of weight &
on Mr has degree % [SL2(Z) : T, together with the fact that the automorphism group
of a Néron polygon with I'-structure has order 1 if —1 ¢ I" and order 2 if —1 € I". [
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I. Modular curves, modular forms and Galois representations

Let n and k be positive integers. The g-expansion principle gives us a canonical
Z-bilinear pairing
T(Sk(T'1(n),Z)) x Sk(I'1(n), Z) — Z
(t, f) — ai(t’f)
between the Hecke algebra and the space of cusp forms. Moreover, this pairing is bi-
linear over T(Sk(I'1(n),Z)) in the sense that (tt', f) = (¢,¢' f) for all f € S;(T'1(n),Z)
and all ¢, € T(Sk(T'1(n),Z)); this follows immediately from the definition. After
changing the base to Z[1/n], the above pairing becomes perfect.

In addition to Sg(I'1(n),Z), we will also be interested in the T(S;(I'1(n), Z))-
module

STy (n)) = {f € Sk(T1(n),Q) | the g-expansion of f at 0 has coefficients in Z}.

(2.3)

The advantage of this module is that the pairing
T(Sk(F1(n), Z)) x Sj*(T1(n)) — Z
(tv f) — al(tvf)

is perfect over Z; see Ribet [87, Theorem 2.2].
Now let K be a field of characteristic not dividing n. Then we have

K ®Si(T1(n),Z) = K @ S™(T1(n)),
and the pairing (2.3) induces a perfect K-bilinear pairing
(K @ T(Sk(T1(n),2))) x (K ®Sp(T1(n),Z2)) — K (2.4)

This pairing gives rise to a canonical bijection between the set of ring homomorphisms
T(Sk(T'1(n),Z)) — K and the set of lines in the K-vector space K ® S;(I'1(n), Z) that
are stable under the action of T(Sk(I'1(n),Z)). More precisely, this bijection is given
as follows. We identify K ® S (T'1(n),Z) with a K-linear subspace of Si(I'1(n), K);
this is in fact the whole space, except possibly when & = 1 and K is of non-zero
characteristic. For any eigenform

feK®S;p(T1i(n),Z),
there is a corresponding ring homomorphism
evp: T(Sk(T1(n),Z)) — K

sending each Hecke operator to its eigenvalue on f. Conversely, given a ring homo-
morphism

¢: T(S(T1(n),Z)) — K,
the kernel of the induced homomorphism
1®p: K® T(Sk(Fl (n), Z)) — K

is a K-linear subspace of codimension 1, so its annihilator in K ® Si(I'1(n), Z) with
respect to the pairing (2.4) is a one-dimensional K-linear subspace spanned by some
eigenform.
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3. Modular Galois representations

3. Modular Galois representations

In this section we introduce certain representations of Gal(Q/Q) associated to Hecke
eigenforms, called modular Galois representations. Such representations can be de-
fined over finite extensions of either F; or Q;, where [ is a prime number. All repre-
sentations will be assumed to be continuous without further mention.

We will describe how to associate to a given Hecke eigenform f over a field of
characteristic 0 a family of A-adic representations, where A runs over all primes of the
number field K¢ obtained by adjoining the Hecke eigenvalues of f to Q. This gives an
example of a compatible family of l-adic representations [97, chapitre I, n°2.3]. In the
case where f is of weight 1, all such [-adic representations can moreover be obtained
from a representation defined over K via extension of scalars to the completions
of Ky at its finite places. The claim that this representation is defined over Ky is
somewhat subtle and relies the fact that the representation is odd. The existence of
this representation over Ky will, however, not be used in this thesis.

References for this section include Deligne [20], Deligne and Serre [24], Serre [99],
Gross [41], Edixhoven [31], and Couveignes, Edixhoven et al. [17].

3.1. Modular Galois representations over fields of characteristic 0

In [98], Serre conjectured that for every cusp form f that is an eigenform of the Hecke
operators, there should be an associated family of [-adic representations with certain
properties that we will give below. For cusp forms of weight 2, the existence of such
representations follows from work of Eichler [33], Shimura [102] and Igusa [47]. Using
the étale cohomology of powers of the universal elliptic curve over a certain modular
curve, Deligne [20] generalised their construction to cusp forms of weight at least 2.
In [20], the construction is only described in the case of cusp forms for SLy(Z), but
Deligne certainly knew how to generalise this to cusp forms for congruence subgroups.
Conrad’s book [15] contains a complete construction of the representations attached
to cuspidal eigenforms of weight at least 2. Finally, a construction for cusp forms
of weight 1 was given by Deligne and Serre [24]. Their construction actually uses
the existence of [-adic representations associated to cuspidal eigenforms of weight
> 2 in order to associate to any cuspidal eigenform of weight 1 a family of repre-
sentations over various finite fields; these are then shown to be the reductions of a
two-dimensional representation over the field K having the desired properties.

With all of the above results put together, the precise statement on [-adic Galois
representations associated to modular forms is as follows.

Theorem 3.1. Let n and k be positive integers, and let f be a modular form of
weight k for T'y(n) over a field of characteristic 0. Assume that f is a (non-zero)
eigenvector of the Hecke operators T,, (p prime) and (d) (d € (Z/nZ)*) for T'1(n),
with corresponding eigenvalues a,, (p prime) and €(d) (d € (Z/nZ)*). Let Ky be the
number field generated by these eigenvalues. Let [ be a prime number, let A be a
prime of Ky over [, and let Ky denote the completion of Ky at A\. There exists a
two-dimensional representation

pra:Gal(Q/Q) — Autg, , Vi
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that is unramified outside nl and such that for every prime number p { nl the
characteristic polynomial of a Frobenius element at p (defined up to conjugation
in Autg, , Vyx) equals X? — a, X + e(p mod n)p*~1.

It follows from the properties characterising such a representation py x that if it
exists, it must be odd, i.e. the determinant of a complex conjugation ¢ equals —1;
equivalently, the characteristic polynomial of ¢ equals X2 — 1. Also, p £, 1s unique up
to Jordan—-Holder equivalence, i.e., after semi-simplification it is unique up to (non-
unique) isomorphism. Moreover, it is known that py y is irreducible if and only if f
is a cusp form; see Ribet [86, Theorem 2.3].

3.2. Modular Galois representations over finite fields

Let f be a Hecke eigenform of weight & for T'y (n), and consider the associated family
of l-adic representations as in Theorem 3.1. The following basic result allows us to
reduce these representations to representations over the residue fields of the number
field K.

Lemma 3.2. Let A be a discrete valuation ring with maximal ideal m and field of
fractions K. Let G be a group, and let V be a finite-dimensional representation of G
over K. The following are equivalent:

(1) there exists a G-stable lattice in V;

(2) there exists a basis of V with respect to which G acts via matrices with coeffi-
cients in A;

(3) the image of G in Autg V is bounded, i.e. for some (hence any) basis of V, the

matrices giving the action of G have coefficients in m~~ for some sufficiently
large integer N.

Proof. The implications (1) < (2) = (3) are clear. Now assume (3), and choose any
lattice L in V. By assumption, there exists an integer N > 0 such that gL C m~NL
for all g € G. Therefore we have inclusions of A-modules

LCY gLCm VL,
geG

SO deG gL is a lattice, and it is clearly G-stable. O

Let A be a finite place of the number field K¢, let K¢ » be the completion of K
with respect to ), and let F be the residue field. Since Gal(Q/Q) is compact, applying
Lemma 3.2 to the representation

pf7)\3 Gal(Q/Q) — Auth)\ Vf7)\

given by Theorem 3.1 shows that p; x can be obtained by base change from a repre-
sentation over the valuation ring of K ». Reducing modulo the maximal ideal of this
valuation ring, we obtain a two-dimensional representation of Gal(Q/Q) over F, un-
ramified outside nl and such that the characteristic polynomial of a Frobenius element
at a prime number p { nl is the reduction modulo A of X2 — a,X + €(p mod n)p*~1L.
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3. Modular Galois representations

By the Brauer—Nesbitt theorem, such a representation is unique up to Jordan-Holder
equivalence. Replacing the reduced representation by its semi-simplification, we there-
fore get a unique semi-simple representation with these properties. We note that
although [-adic representations associated to cusp forms are irreducible, the corre-
sponding representations over finite fields may be reducible. We will take a more
precise look at this below.

In view of the above construction, one may ask whether a representation as above
can be constructed starting from any eigenform over a finite field, not necessarily one
obtained by reducing an eigenform in characteristic 0 modulo a prime. In fact, this
can be done by lifting eigenforms over finite fields to forms in characteristic 0 that
are eigenforms “modulo the given prime”. In this way one can prove the following
analogue of Theorem 3.1; see Deligne and Serre [24, théoréeme 6.7] or Gross [41,
Proposition 11.1].

Theorem 3.3. Let n and k be positive integers, let | be a prime number, and let f be
a modular form of weight k for I'1(n) over a finite field F of characteristic l. Assume
f is an eigenvector of the Hecke operators T, (p prime) and (d) (d € (Z/nZ)*),
with corresponding eigenvalues a, (p prime) and e(d) (d € (Z/nZ)* ). There exists a
unique semi-simple two-dimensional representation

pr:Gal(Q/Q) — Autg V

that is unramified outside nl and with the property that for every prime number p
not dividing nl, the characteristic polynomial of a Frobenius element at p equals
X2 —a,X + ¢(p mod n)(p mod 1)*~1. Moreover, this py is odd.

The above theorem associates to a Hecke eigenform f over a finite field F an
isomorphism class of two-dimensional, odd, semi-simple representations of Gal(Q/Q)
over F. Any representation in this isomorphism class is said to arise from f, and any
representation arising from an eigenform is said to be modular.

3.3. Distinguishing between modular Galois representations

Let n be a positive integer, let [ be a prime number, and let F be a finite field of
characteristic {. It is a natural question to ask when two eigenforms for I'; (n) over F
give rise to isomorphic Galois representations. We will use this later to decide whether
the Galois representation associated to a given modular form is reducible.

Let us first mention that if n = [{*m with a > 0 and m not divisible by [, then the
representation attached to an eigenform for I'y (n) over F also arises from an eigenform
(of possibly different weight) for I'1 (m); see Serre [99, page 195, remarque], Ribet [89,
§ 2], Buzzard [12], Wiese [114], and Khare and Wintenberger [54, Theorem 1.2(2)].

From now on we assume that [ { n. Below we will give a criterion that allows
us to decide whether two eigenforms for I'1 (n) over F give rise to isomorphic Galois
representations. In the case n = 1, this criterion is proved (in a slightly different
form) in [17, Proposition 2.5.16]. Before giving the criterion, we state some results
on modular forms in characteristic .

There exists a unique modular form

A e lel(l—‘l(l), Fl)
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that has ¢g-expansion 1 at all cusps; it is called the Hasse invariant in characteristic [.
If f is an eigenform of some weight k > 2 for some I'1 (n) over a field of characteristic [,
then the product A;f is an eigenform of weight k 4+ 1 — 1 for 'y (n).

There exists a derivation #; on modular forms over fields of characteristic [; see
Katz [52]. Tt increases weights by [+ 1 and acts on g-expansions at all cusps as g d/dq.
This implies that if f is an eigenform whose g-expansion at some cusp is non-constant,
0, f is an eigenform with 7T; f = 0, and the Galois representations are related by

Po.f = X1 QF, pf,

where x; is the [-cyclotomic character.

Let f be a form whose g-expansion at some cusp is constant. Using the deriva-
tion 6;, one can show that the weight of f is a multiple of I —1; see Katz [52, § 1]. This
implies that f is a scalar multiple of a power of A;, so the g-expansion of f at every
cusp is constant. Therefore we can simply say that f has constant q-expansion with-
out causing confusion. Furthermore, each Hecke operator T}, with p a prime number
not dividing nl acts on f as multiplication by (p+ 1)/p. This implies that the Galois
representation py is isomorphic to 1 @ Xfl.

Let f be an eigenform of weight k for I'; (n) over F with non-constant g-expansion,
let p be a prime number, and let a, be the eigenvalue of 7}, on f. We define an
eigenform

€ {Mk(rl(np)7F) ifp|n
b My (Ti(np?),F) ifpfn

with the property that T,(n,f) = 0 by the formula

bnpﬂl * £ pnp,m* if .
npf:{(l ) f = ap(bp") f plmn 5.1)

(B f = ap(bpP" ) f 4 pE LB f i p i,

We now first give a special case of the criterion for distinguishing modular Galois
representations. The general case is deduced from this in the theorem below.

Lemma 3.4. Let f,g € Si(I'1(n),F) be eigenforms with non-constant q-expansions,
with eigenvalues given by

Tpf =ap(f)f and T,9=ay(g)g for all prime numbers p.

If ap(f) = ap(g) for all prime numbers p < %[SLg(Z) : {£1}I'1(n)], then ps and pg
are isomorphic.

Proof. By the recurrence relations for the eigenvalues of Hecke operators, the con-
dition implies that for some A\ € F*, the ¢g-expansions of f and A\g are equal up to
order 2[SLy(Z) : {£1}T(n)]. By Lemma 2.1, this implies f = Ag. In particular, ps
and p, are isomorphic. O
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3. Modular Galois representations

Theorem 3.5. Let n be a positive integer, let | be a prime number not dividing n,
and let F be a finite field of characteristic . Let f be an eigenform of weight kj
for T'y(n) over F, and let g be an eigenform of weight k, for I'i(n) over F, with
eigenvalues given by

T,f =ap(f)f and T,9=a,(g)g for all prime numbers p.

We define

manp

p|n prime
and
max{ks, kg, 11} +3 ifl =2,
N =[SLy(Z) : {£1}T'1(m)] -  max{ks,k,,10} +4 ifl =3,
max{ky, ky} +1*—1 ifl>5.
For any integer ¢ with 0 <1¢ <[ — 2, the following are equivalent:
(1) the representations py and Xfpg are isomorphic;
(2) we have ky = kg + 2i (mod | — 1), and a,(f) = p‘a,(g) for all prime numbers p
with p{nl and p < N;
(3) we have ky = kg+2i (mod [—1), and one of the following three situations occurs:
(a) the g-expansions of f and g are constant (so kf = ks =0 (mod [ — 1)), and
1=0;
(b) the g-expansion of f (but not that of g) is constant (so ky =0 (mod [ —1)),
and a,(g) = p~*(1 +p~') for all prime numbers p with p{nl and p < N;
(b') the g-expansion of g (but not that of f) is constant (so ky =0 (mod I — 1)),
and a,(f) = p'(1 +p~') for all prime numbers p with p{nl and p < N;

(c) the g-expansions of f and g are non-constant, and a,(f) = p‘a,(g) for all
prime numbers p with ptnl and p < N.

Proof. The implication (1) = (2) follows from the properties characterising py and p,.
The implication (2) = (3) follows from the standard formula for the action of Hecke
operators on g-expansions, together with the fact that the only forms f with constant
g-expansion are multiples of powers of A;. To prove the implication (3) = (1), we
treat the three cases (a), (b), (c) separately. The proof in case (b’) is almost identical
to that in case (b) and is therefore omitted.

Case (a). This is trivial since both p; and p, are isomorphic to 1@ x; "
Case (b). We have p; = 1@ x; ', and we have to show that p, = x; " (1@ x; ). We
distinguish the cases I =2, =3 and [ > 5.

If I = 2, the assumption means that a,(g) = 0 for all prime numbers p with p { 2n
and p < NNV, and we have to show that p, is the trivial representation. We define an
integer k and an eigenform hy € Si(T'1(1),F2) by

k=12 and hy = A mod 2 if k, = 0 (mod 3),
k=13 and hy = Ay(Amod 2) if k; =1 (mod 3),
k=14 and hy = A3(A mod 2) if k, =2 (mod 3),
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where A is the discriminant modular form. In particular, we have k = k; (mod 3),
and pp, is trivial. Applying the operators 7, defined in (3.1) to hy for p | n, we
construct an eigenform

hm € Sk(l—‘l(m), Fg)

such that pp,, is trivial and Tk, = 0 for every p. Similarly, applying the 7, with
p | n to g, we construct an eigenform

gm € Skg (Fl (m)v F)

such that p,, = p, and T,g,, = 0 for all prime numbers p with p # 2 and p < N. If
kg < k, we define

Gry = Gék_kg)/?’gm and hl, =h,, in Sg(Ti(m),F)
Similarly, if k; > k, we define
g;n = 02gm and h’{m = oékg*k)/3+1hm in Skg+3(rl(m)7 F)

In either case, g, and h;, are eigenforms, p, = pg and py is trivial. Furthermore,
the g-expansions of g/, and h}, are non-constant, and we have

ap(gn,) =0 =ay(hl,) for all primes p < N.

Lemma, 3.4 now implies that p, is trivial, which is what we had to prove.

If [ = 3, then kg is even, the assumption means that a,(g) = 1 + p for all prime
numbers p with p{ 3n and p < N, and we have to show that p, = 1 @ x3. We define
an integer k and an eigenform hy € Si(I'1(1), F3) by

k=12 and hy = A mod 3 if k, =0 (mod 4),
k=14 and hy = A3(A mod 3) if k, = 2 (mod 4),

where A is the discriminant modular form. In particular, we have k = k, (mod 4),
and pp, = 1 x3. Applying the operators n, defined in (3.1) to hy for p | n, we
construct an eigenform

hy, € Sk(I‘l(m), Fg)

with pp,, =2 1®xs, T3hm = 0 and Tph,, = (1+p)h,, for all p # 3. Similarly, applying
the n, with p | n to f2, we construct an eigenform

gm € Si, (L1 (m), F)

such that pg,, = ps, and T,g,, = 0 for all prime numbers p with p | m. If k; < k, we
define
gl =08 g and R =h,, in Sp(Ti(m),F).

Similarly, if k4 > k, we define
G =O3gm and  hl, =057 i Sy (D (), F).
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3. Modular Galois representations
In either case, g,, and h!, are eigenforms, pg:, is isomorphic to either pg or x3pg, and

pnr, = 1@ x3. Furthermore, the g-expansions of g;, and A, are non-constant, and
for all prime numbers p < N we have

0 if p | 3n;

rN Iy
ap(gnb) - a‘P(h’m) - { 14+p 1fpj(3n

Lemma 3.4 now implies that p, is isomorphic to 1 @ x3. Therefore the same holds
for pg, which is what we had to prove.
If [ > 5, then again k, is even. We define an eigenform hy € M;11(I'1(1), F;) by
hl = El+1 mod Z,

where Ej1; is the Eisenstein series of weight [ 4+ 1. Since [ — 1 does not divide [ + 1,
the g-expansion of Ej;; is non-constant. We have

Pr, = 1@ X1
Applying the operators 1, to h; for p | n, we construct an eigenform
hm € Mi41(T1(m), F)
such that pp,, = 1® x; and T,h,, = 0 for all prime numbers p | m. Similarly, we

construct an eigenform

gm € ng (Fl(m), F)

such that py,, = pg and Tp,g,, = 0 for all prime numbers p with p | m. We define

G = A;naX{fj’O}elgm € Sp(I'1(m), F)

and
b, = AU g1y e g (T (m), Fy).
where
1)—(—1 1
j:(kg+l+ ) (l Z)<l+ )EZ and k’:max{kg+l+1,(l—i)(l+1)}.

-1
Then g/, and A/, are eigenforms with
Py, = xipg and  pr, =X (16 x0).

Furthermore, the g-expansions of ¢/, and h], are non-constant and agree up to
order N. Lemma 3.4 now implies that p, = pp/ , and we conclude that p,
x; (1 Xfl), which is what we had to prove.
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Case (c). Applying the operators n, for p | n prime to f and g, we construct eigen-
forms

Jm €Sk, (I'1(m),F) and g, € Sg, (['1(m),F)

with pg,. = pr, pg., = pg, and Ty fr, = 0 and T,g,, = 0 for all prime numbers p | n.
We define

flo=Arti0g o and gl = APUOgitlg i S (T (m), F),

m

where
j= (kf+l+1)—(lki—1l-(z+1)(l+1)) cz

and

b = mas(ky + 14 Lk + (4 )0+ 1)
Then f/ and g/, are eigenforms with
py = xupy and  pg = X§+1pg.

Furthermore, the g-expansions of f and g are non-constant, and we have

ap(fr,) = ay(g,,) for all prime numbers p < N.

m

Lemma 3.4 now implies that py = p, . From this it follows that py = Xipg, which
is what we had to prove. O

It is known that if f is an eigenform of weight & for T'1(n) over F, then there
exist integers ¢ and k with

0<i<l—2, 1<k<Il+1 and k=k+2i(modl—1)

and an eigenform f of weight k such that if the eigenvalues of the Hecke operators
on f are given by

T,f = apf for p prime and (d)f =e(d)f for d € (Z/nZ)*,
then the eigenvalues on f are given by
T,f = (pmod l)ia, f for p # | prime and (d)f = e(d)f for d € (Z/nZ)*.

For a proof of the existence of such an f, we refer to Edixhoven [31, Theorem 3.4].
The Galois representation p 7 associated to such an f is isomorphic to x| ®r, ps.
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3.4. Reducible representations

Let n and k be positive integers, and let [ be a prime number not dividing n.

Let f be an eigenform of weight k for T'y(n) over F, and let e: (Z/nZ)* — F,
be the character such that (d)f = e(d)f for all d € (Z/nZ)*. If py is reducible, we
can write ‘

pr=e1xi e
with characters €; and ea whose conductors are coprime to [, and with i, j € Z/(1—1)Z;
here x; is the I-cyclotomic character. The defining properties of py imply that

creg =€ and i+j=k—-1€Z/(l-1)Z.

Furthermore, it follows from work of Carayol that the product of the conductors of
€1 and €3 divides n; see Livné [71, Proposition 0.1].
Conversely, it is well known that given characters

e1:(Z/mZ)* — F), e:(Z/nyZ)* — F]
such that
ning |n and e (—1)ey(—1) = (—1)%,

there exists a Hecke eigenform f of some weight k' for I'1(n) over F; such that the
Galois representation py is isomorphic to €; ® 62X§€_1. In fact, we can take the unique
integer k' satisfying

3<Kk <l+4+1 and kK =k (modl—1),

and take f to be the reduction of a suitable multiple of the Eisenstein series E})"

which will be defined in §1I.2.3.

)

3.5. Serre’s conjecture

In 1973, Serre made the conjecture that all two-dimensional, odd, irreducible repre-
sentations

p:Gal(Q/Q) — Autp V

are modular. He published his conjecture in 1987, stating it in a sharper form [99]
that predicted the minimal level and weight of the modular form that should give rise
to p. To this end Serre associated to such a p two invariants, called its level n(p) and
its weight k(p). The level is defined in terms of the local behaviour of p at the primes
different from the characteristic of F, whereas the weight is defined using the local
behaviour at the characteristic of F. For a general introduction to Serre’s conjecture,
we refer to Edixhoven [32] or Ribet and Stein [90].

It is known, by the work of many people, that the weak form of Serre’s conjecture
implies the strong form, i.e. that if a representation p as above is modular, it arises
from a modular form of level n(p) and weight k(p). In fact, a modular representation p
is even known to arise from a form of minimal weight (which equals k(p) in most cases,
but is sometimes smaller; see Edixhoven [31, Definition 4.3]), except possibly if F is of
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characteristic 2 and the restriction of p to a decomposition group at 2 is an extension
of an unramified character by itself. For the proof of this result, we refer to Kisin’s
overview article [60, Theorem 1.1.4].

Starting with the proof of the modularity theorem for elliptic curves (previously
the Shimura—Taniyama conjecture) by Wiles [115] and Taylor and Wiles [107], impor-
tant developments in the theory of deformations of Galois representations have been
made by many authors. These developments, including a crucial result of Kisin [61],
have finally allowed Khare and Wintenberger [54], [55] to prove Serre’s conjecture.

3.6. Galois representations on torsion subgroups of Jacobians of modular
curves

Let n > 1 be an integer, let [ be a prime number not dividing n, and let k£ be an

integer such that
2<k<Ii+1.
We write
nl if k> 2.

We saw in § 2.3 that there exists a canonical surjective ring homomorphism
T1(n') — T(Sk(T1(n), F1)),

where T1(n') is the subring of End J;(n')z[1/,/] generated by the Hecke operators.
Let us now consider a cusp form

[ €Sk(Ti(n), Fy)

that is an eigenvector for all the Hecke operators. Let F; denote the finite exten-
sion of F; generated by the corresponding eigenvalues. We define a surjective ring
homomorphism

er:Ti(n') — Fy

as the composed map

evy

Ti(n) — T(Sk(T1(n), F1)) — Fy,

where evy denotes the ring homomorphism from § 2.4 that sends each Hecke operator
to its eigenvalue of f. We define a maximal ideal my of T;(n’) by

my = kerey.

Note that giving a form f as above up to scalar multiplication is equivalent to speci-
fying the ring homomorphism ey, and that giving the homomorphism e up to Galois
conjugacy comes down to specifying the maximal ideal my.

Let J1(n')z[1/nylmy] be the largest closed subscheme of Ji(n')z[1/n annihi-
lated by my. Since ey induces an isomorphism Ti(n')/m; — Fj, the action
of T1(n') makes Ji(n')zp /niy[my] into a finite-dimensional Fs-vector space scheme
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over SpecZ[1/nl]. By Lemma 1.2, this vector space scheme is non-zero and finite
étale.

It follows from the Eichler-Shimura congruence relation (see § 1.4), the Cebotarev
density theorem and the Brauer-Nesbitt theorem that if p; is irreducible, then the
semi-simplification of the F;[Gal(Q/Q)]-module J1(n')[m](Q) is a direct sum of
copies of the Galois representation p; attached to f; see Mazur [76, Chapter II,
Proposition 14.2]. In the case that py is absolutely irreducible, we can invoke the
theorem of Boston, Lenstra and Ribet [10]. This gives a stronger result than the
Brauer-Nesbitt theorem, namely that J;(n')[m](Q) is a direct sum of copies of py,
i.e. it is already semi-simple. If [ > 2, then p; is absolutely irreducible as soon as it
is irreducible.

Remark. Another place where modular Galois representations over finite fields occur
is in étale cohomology of modular curves. We refer to Wiese [113] for details.

3.7. Simplicity

We complement the results of § 3.6 with a result on simplicity (or multiplicity one, as
it is usually called) of the F([Gal(Q/Q)]-module J;(n’)[m/](Q) in the case that the
F-linear representation

pr:Gal(Q/Q) — Autg, Wy

associated to f is absolutely irreducible. As we have just seen, in this situation the
F;[Gal(Q/Q)]-module J;(n')[mf](Q) is a direct sum of copies of W.

In many cases, J;(n')[m¢](Q) is in fact simple as a F ¢[Gal(Q/Q)]-module, which
is to say that it is isomorphic to Wy. It is known precisely under which conditions
this occurs. Sufficient conditions for this simplicity phenomenon follow from work
of Mazur [76], Mazur and Ribet [77, Theorem 1], Gross [41, Theorem 12.10(1)],
Edixhoven [31, Theorem 9.2] and Buzzard [90, Appendix]. Wiese proved in [112] that
these conditions are also necessary, under an extra assumption in the case | = 2.
(This assumption is automatically fulfilled if the strong form of Serre’s conjecture, as
described in §3.5, is true.)

Theorem 3.6. Suppose that 2 < k <1+ 1 and that py is absolutely irreducible.

(1) If py is ramified at I, or if py is unramified at | and a Frobenius element at | does
not act as a scalar, then the F¢[Gal(Q/Q)]-module J;(n')[m](Q) is isomorphic
to Wf.

(2) If py is unramified at [, a Frobenius element at | does act as a scalar, and py
arises from a form of weight one (this last condition is implied by the preceding
ones if | > 2), then the semi-simplification of J1(n")[my](Q) is a direct sum of at
least two copies of Wy.
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Chapter 11

Analytic results on modular curves

This chapter is devoted to certain analytic results that will be used in the next chap-
ters. Most importantly, we give explicit bounds on Petersson norms and supremum
norms of cusp forms, and on Green functions of Fuchsian groups.

1. Fuchsian groups

In this section we collect some results that will be useful later on when we bound
analytic quantities related to modular curves. We will begin by summarising some
basic facts about the hyperbolic plane and about Fuchsian groups. After that we
describe some material concerning harmonic analysis on the quotient of the hyperbolic
plane by a Fuchsian group.

The author has found Iwaniec’s book [49] to be a very valuable reference. Other
references are Beardon [5] and Terras [108]. Selberg’s foundational article [94], in
which he develops this material (and much more) in a general context, is also highly
recommended. Hejhal’s two volumes [45] and [46] contain in-depth proofs of Selberg’s
results, as well as a lot of useful background material.

1.1. Hyperbolic geometry

The hyperbolic plane H is the unique two-dimensional, complete, connected and
simply connected Riemannian manifold with constant Gaussian curvature —1. We
will always identify H with the complex upper half-plane; this gives H the structure
of a (non-compact) Riemann surface. The Riemannian metric is given in terms of the
standard coordinate z = x + iy by

dzdz dz? + dy?
(S22 2

and the associated volume form is

_idzANdz  dx Ndy
bu = 2(32)2 g2
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In the hyperbolic plane, the circumference of a circle of radius r equals 27 sinh(r),
and the area of a disc of radius r equals 27 (cosh(r) — 1).

The group SL2(R) acts on H by isometries. Under the identification of H with
the complex upper half-plane, this action on H is the restriction of the action on P(C)
by Mobius transformations. The elements of SLo(R) can be classified according to
their fixed points in P}(C). For any element v € SLo(R) that is not the identity,
there are three possibilities, depending on the trace of ~:

(E) |try| < 2: two conjugate fixed points in P(C) \ P}(R);
(P) |tr~y| = 2: a unique fixed point in P1(R);
(H) [try| > 2: two distinct fixed points in P*(R).

The element +y is called elliptic, parabolic or hyperbolic, acccording to its place in this
classification. This terminology also applies to conjugacy classes.
Instead of the usual geodesic distance r(z,w) between two points of H, the func-
tion
u(z,w) = coshr(z,w)

turns out to be a more convenient measure of distance for computations. Clearly, any
function on H x H depending only on the hyperbolic distance between its arguments
can be expressed as a function of u. For z and w in the upper half-plane, u(z, w) can
be expressed as

|z — wl?

u(z,w) =1+ EBICT)

This is easily checked for z and w on the imaginary axis. For arbitrary z and w, the
identity follows from this case after translation by a suitable element v € SLy(R),
using the fact that both sides are invariant under replacing (z,w) by (vz, yw).
We denote by
A= —y*(07 +05)

the Laplace—Beltrami operator on H. It turns out to be useful to write the eigenvalues
of A as i + t? with ¢ a complex number (defined up to sign).
An invariant integral operator on H is an integral operator of the form

Lt (s [ Ko@)

for some function k: (1,00) — R. The domain of definition depends on the function k;
for example, if £ is smooth, then we can take f to range over the smooth functions
with compact support.

The Laplace operator A commutes with all invariant integral operators; see Sel-
berg [94, pages 51-52] or Iwaniec [49, Theorem 1.9]. In fact, every eigenfunction
of A is also an eigenfunction of all invariant integral operators, and conversely; see
Selberg [94, page 55] or Iwaniec [49, Theorems 1.14 and 1.15].

Let k:[1,00) — R be a smooth function with compact support, and let Lj be
the invariant integral operator defined by k. The relation between the eigenvalues
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of A and those of Ly is given by the Selberg—Harish-Chandra transform of k. This is
a function
h:RU[-1/2,1/2]i — C

defined by the following property. Let f: H — C be an eigenfunction of the Laplace
operator with eigenvalue A\ = 1/4+t2. Then f is also an eigenfunction of Ly, and the
eigenvalue depends only on A; we can therefore define h(t) uniquely such that

/EH k(u(z, w)) f(w)pg(w) = h(t)f(2)- (L.1)

In particular, taking f = 1 we see that

h(£i/2) = 21 /100 k(u)du. (1.2)

The Selberg-Harish-Chandra transform can be defined for general symmetric
spaces; see Selberg [94, page 55]. In the case of H it can be identified with the classical
Mehler—Fock transform, which is defined as follows (see Iwaniec [49, equation 1.62']):

h(t) = 27 /1 k)P p i (w)du (1.3)

Here P, is the Legendre function of the first kind of degree v (see Iwaniec [49, equa-
tion 1.43] or any book on special functions, such as Erdélyi et al. [34, §3.6.1]). The
function k can be recovered from h by means of the Mehler—Fock inversion formula
(see Iwaniec [49, equation 1.42], Erdélyi et al. [34, §3.15.1, equations 8 and 9], or
Mehler [78, page 192]):

k(u) = % /0 TPy (w)h(t) tanh(nt)t dt. (1.4)

We call k the inverse Selberg—Harish-Chandra transform of h.

The identity (1.1) holds more generally than just for smooth functions k with
compact support; see Selberg [94, pages 60—61]. It will be enough for us to state a
slightly weaker, but more convenient sufficient condition (cf. Selberg [94, page 72] or
Iwaniec [49, equation 1.63]). Let h be a function with the following properties:

(H1) For some a > 1/2, the function h is even and holomorphic on {t € C | |St| < a}.
(H2) For some 3 > 2, the function t +— |h(t)||t|® is bounded in this strip.

Then the inverse Selberg—Harish-Chandra transform k of h (as defined by (1.4)) exists,
and (1.1) is valid for the pair (h, k).

There is an alternative way to compute the Selberg-Harish-Chandra transform
and its inverse which is sometimes useful. In fact, this is the formula originally given
by Selberg [94, page 72]. Writing h as the Fourier transform of a function g, we can
compute h in two steps using the following formula (cf. Iwaniec [49, equation 1.62]):

e k(u)du
= ﬁ 77
g(r) coshr VU — coshr

h(t) = 2/0 cos(rt)g(r)dr.
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The inverse can be computed as follows (cf. Iwaniec [49, equation 1.64]):

g(r) = 71r/000 cos(rt)h(t)dt,
1 *° g (r)dr

k() = ——— _gdr
(u) 7T\/§ acoshu Vcoshr —u

1.2. Fuchsian groups

A Fuchsian group is a discrete subgroup of SLy(R). For any Fuchsian group T', the
quotient space I'\H is a connected Hausdorff space and can be made into a Riemann
surface in a natural way. However, the T'\H “inherits” the structure of Riemannian
manifold from H only outside the set of fixed points of elliptic elements of T".

The hyperbolic metric on H induces a measure on I'\H, given by a smooth
volume form outside the elliptic points. If the volume of I'\H with respect to this
measure is finite, we call I' a cofinite Fuchsian group. In this case we define

volr = / L
r\H

Let T be a cofinite Fuchsian group. The Riemann surface I'\H is in general not
compact, but can always be compactified by adding a finite number of points, called
cusps. These correspond to the conjugacy classes of non-trivial mazimal parabolic
subgroups in T', i.e. non-trivial subgroups that are maximal among the subgroups
containing only parabolic elements. Every such subgroup has a unique fixed point
under the natural action of I' on P1(R). For every conjugacy class ¢ we choose one
representative, which we denote by I'.. We fix an element o. € SLy(R) such that
o.00 € PY(R) is the unique fixed point of ' and such that

o ' Teoe = T N{EIN{(;9) |a € Z}.

Such a o, exists and is unique up to multiplication from the right by a matrix of the
form () ?) with b € R; see Iwaniec [49, §2.2].
Let ¢ be a cusp of I'. We define
¢g:-H—C

2 exp(2mio; 12)

and
ye: H — (0, 00)
oty JoEla)]
2

For € a positive real number, we let B.(¢) denote the open subset of I'\H that is the
image of the strip
{z+iy|0<z<landy>1/e} CH

under the quotient map
H-T\H

z—To.z.
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1. Fuchsian groups

For e sufficiently small, B(¢) is an open disc of area e around ¢, and the map ¢,
induces a chart on I'\H with domain B,(e¢) and with image equal to the punctured
disc {z € C |0 < |z|] < exp(—27/€)}. A compactification of I'\H can be obtained by
adding a point for every cusp ¢, corresponding to the point 0 € C in the chart g, and
defining the topology such that g. extends to a chart with image equal to the disc
{z € C||z| <exp(—2m/e)}.

Next we look at the non-trivial mazimal elliptic subgroups of I'. These correspond
bijectively to the points of H with non-trivial stabiliser in I', and the conjugacy classes
correspond to the images of these points in T'\H. By an elliptic point of T" we mean
a point of I"'\H as above. For each elliptic point e, we choose a representative of the
corresponding conjugacy class and denote it by I'.. We write

T
C#T {1}
If w is the point of H stabilised by T, then for all € > 0 the open disc
{z € H | 2n(u(z,w) — 1) < mee}

of area m.e maps to a disc of area ¢ in I'\H if ¢ is sufficiently small. We denote this
disc by B.(€). For r > 0 sufficiently small, the map

w—z

qe:{wGH

‘wz

<7’}—>C

Z = w\Me
z2—W

induces a chart around z on I'\H with image equal to the disc {z € C | |z| < r™=}.
The map ¢, is related to the distance function v on H by

oy — L )P
T T wPr

This means that the image of B, (€) under ¢, equals the disc {g € C | |¢| < §}, where

¢ is chosen such that
42/ me

1 — §2/me
For later use, we note that the function
HxH— [1,00)

(z,w) — I’%?u(z, yw)

= M,E.

is I-invariant in both variables and hence induces a function
d:T\H x T"\H — [1, 00).

It can be viewed as the hyperbolic cosine of a distance function on T'\H.

Finally, we introduce a point counting function which will be useful several times
in this chapter. For any two points z, w in H and U > 1, we denote by Nr(z,w,U)
the number of translates of w by elements of I' lying in a disc around z of radius r
given by cosh(r) = U, i.e.

Nr(z,w,U) = #{y € T | u(z,yw) < U} (1.5)
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2. Modular curves and modular forms over the com-
plex numbers

Let us now describe how the notions of modular curves and modular forms as described
in Chapter I are related to the classical view of modular curves as quotients of the
hyperbolic plane H by congruence subgroups of SLy(Z) and of modular forms as
functions on H satisfying a certain transformation property with respect to these
groups. For proofs, we refer to Deligne and Rapoport [23, IV, §5; VII, §4].

Over the hyperbolic plane, which we identify as always with the upper half-plane
in C, there is a (complex analytic) elliptic curve

f:FE— H.
This E can be defined as the cokernel of the closed embedding
Z} — Cu
n
(( ) , T) = n+mT
m
of topological groups over H. The fibre over a point 7 € H can also be described as

E, = C/(Z+Z7) = C* /¢”

z — exp(2miz),

where
q = exp(2miT).

The curve E has a global relative differential
ap = 2midz,
with z the standard coordinate on C. Via the isomorphism C/(Z + Z1) — C* /q%,

this corresponds to the differential dt/¢, with ¢ the standard coordinate on C*.
Let n be a positive integer. We write

Ty (n) = {(‘CL Z) € SLy(Z)

There is a canonical isomorphism

Iy (n)\H — X (n)°(C).
of (non-compact) Riemann surfaces. Similarly, for every prime number p we define

Ty (n;p) = {(Z Z) € SLy(Z) (mod n), }
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2. Modular curves and modular forms over the complex numbers

Then there is a canonical isomorphism
Iy (n;p)\H — Xi(n; p)°(C).

Let T" be one of the above groups, and let k be a positive integer. Via the canonical
differential ag on E over H, the space Mg (T, C) can be identified with the space of
modular forms of weight k for I' in the classical sense, i.e. as holomorphic functions

ffH—-C

that satisfy

f(y7) = (et +d)*f(r) for all y = (Z Z) eT

and are holomorphic at the cusps.

Remark. One can also consider an arbitrary congruence subgroup I' of SLy(Z), i.e.
a group containing the kernel of the group homomorphism SLy(Z) — SLo(Z/nZ) for
some positive integer n. To such a I' one can associate a moduli stack classifying
(generalised) elliptic curves with level structure, with a corresponding coarse moduli
scheme X(T'), such that I'\H is isomorphic to X(T')(C). Since we only need the
special cases of T';(n) and T';(n;p), we refer to Deligne and Rapoport [23] for this
more general theory.

2.1. The Petersson inner product

Let f and g be complex analytic modular forms of weight & for a congruence sub-
group I' C SLy(Z) such that at least one of them is a cusp form. Then the function
7+ (37)¥f(7)g(7) on H is I-invariant and bounded on I'\H, so the integral

(= [ ODM @ ()
Tel'\H
converges. In particular, this defines a Hermitean inner product

{ , )r:Sk(T,C) x S(I',C) — C.

This is called the Petersson inner product on Si(I', C).
For every positive integer k, we equip the line bundle of cusp forms of weight &
with the Petersson metric

| Flie,pet (7) = (ST)M2| f(7)].

This metric vanishes at the cusps.
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2.2. Newforms

We briefly describe the theory of newforms, developed by Atkin and Lehner [3] and
extended by Li [69]. Let n and k be positive integers. For every divisor d of n and
every divisor e of n/d, the map

bg’di MFl(n) - MFl(d)
defined in §1.1.2 induces an injective C-linear map
(b2%)*:S(T'1(d), C) — Sk(T'1(n), C).

We define a subspace
S (I'1(n), C) € Sk(I't(n), C)

as the orthogonal complement of the subspace of Si(I';(n), C) spanned by the images
of all the (b™%)* with d a strict divisor of n. The Hecke operators form a family of
normal commuting operators on Sp*V(I'1(n),C). This implies that Sp*V(I'1(n), C)
admits an orthogonal basis of eigenforms. It follows from the formulae for the action
of the Hecke operators on the g-expansion of an eigenform f given in §1.2.4 that
the first coefficient aq(f) of the g-expansion of f at the cusp 0 does not vanish. A
primitive cusp form of weight k for I'y(n) is an eigenform in S}V (I';(n), C) that is
normalised such that aq(f) = 1. We write Py (T'1(d)) for the set of primitive cusp
forms for T'y (d). The C-vector space Si(I'1(n), C) has a canonical basis

By(Li(n) = || |] @) Pe(T1(a)).

dlne|n/d

The matrix of the Petersson inner product with respect to the basis By (I'1(n)) is not
in general diagonal. For positive integers

dln, d|n, e|n/d, € |n/d
and primitive forms f and f’ for T';(d) and T’y (d’), respectively, the inner product

<(bZ7d)*f7 (b;l,,d )*f/>[‘1(n)-
vanishes in all cases except possibly when d = d’ and f = f’.

2.3. Eisenstein series

Let k and n be positive integers. The orthogonal complement of the subspace of cusp
forms in My (I'1(n), C) is called the space of Eisenstein series. In [44, § 10], Hecke gave
an explicit description of this orthogonal complement. We briefly state the result; for
details, we refer to Miyake [80, Chapter 7] or Stein [104, §5.3].

For every primitive character

e:(Z/nZ)* — C*,
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2. Modular curves and modular forms over the complex numbers

we extend € to a function Z/nZ — C by putting e(d) = 0if d € Z/nZ is not invertible.
Furthermore, we define the generalised Bernoulli numbers By, for k > 0 by the formula

n

(a)
Z eeipexp ax) Z Bk -

a=1

Let us now consider primitive characters
€1: (Z/m1Z)* — C*, e9:(Z/nZ)* — C*

such that e;(—1)ea(—1) = (—1)* and nyny | n. We define the formal power series

o0

E(q) = —0py 1 BZ2 + Z <Z er(m/d) 62(d)dk_1>qm € Cl[q]]-

Assume first that k£ # 2. Then for every positive integer ¢ dividing n/(nins), there
is a modular form E;l’ez’t of weight k for T'1 (n) whose g-expansion at the cusp oo is
E;*(¢"). When k = 2, the same holds for all €; and e, that are not both the trivial
character. As for the case where k = 2 and both €; and €5 are trivial, for every divisor
t | n with ¢ > 1 there is a modular form of weight 2 for I';(n) whose g-expansion is
Ex(q) — tE>(qt), where E5(q) is the power series

Es(g :*%Jrzal
m=1

here o1(m) denotes the sum of the positive divisors of m. Moreover, the modular
forms mentioned above are eigenforms for the Hecke operators, and they form a basis
for the space of Eisenstein series of weight & for T';(n).

2.4. Petersson norms of cusp forms

Let f be a primitive form of weight & for I'y(n). Iwaniec proved in [48] that for all
€ > 0, the (squared) Petersson norm (f, f)r, ) of f satisfies

(£,

< Ak 6n
VOlpl(n)

for some positive real number Ay . independent of n and f. Below we will give such
an Ay, . explicitly, using the Rankin—Selberg L-function attached to f, the functional
equation proved by Li [70], and the Ramanujan—Petersson bound proved by Deligne
in [20] and [21]. If the g-expansion of f is given by

=3 anlHa™
m=1

then the Rankin—Selberg L-function attached to f is defined for s € C with s > 1

by the series
|am
Z merk 1
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Rankin proved in [84] that L .7 can be continued to a meromorphic function on C,
having a simple pole at s = 1 with residue

L r =
e hf F(k) V01F1 (n)

where T" is the usual gamma function; see also Li [70, Theorem 3.2].

We now assume for simplicity that f is p-primitive at every prime number p | n
for which a,(f) = 0 in the sense of [70, page 139]. For forms f that do not satisfy this
condition, we actually get a slightly sharper bound by “lowering the level”. To state
the functional equation, we introduce the following notation: if the prime factorisation

of nis
= [ »"
p prime

then we write

H p2lo®+1)/2]

p prime

and we define S as the set of prime numbers p dividing n except those for which
ay(f) =0 and r(p) is even. We consider the “completed” L-function

Ly #(s) = ¢/2@m) ™ T(s)0(s + k — 1)¢(2s) [J (1 +p7)Ly 5(s),
peS

where ¢ is the Riemann zeta function. The function L 7.7 has a simple pole at s =1
with residue

(4m)5(f, Frs .

VOIF1 (n)

res; fo = c;/2(27r)72é(2) H(l +p7)

peS
In [70, Theorem 2.2], Li proved the functional equation
Lip(s)=Lss(1—5s).

Lemma 2.1. Let n and k be positive integers, and let f be a primitive form of
weight k for T'y(n). Then for all ¢ > 0 the Petersson norm of f satisfies
€/2

<f7 f> A J /Ty (n) < Ak eCf < Ak7ene,
VOlpl(n)

where

Ape = (dm) 7k (2m)" 4(24(*)26 Z ";(ﬁ) s |s(1 — s)T(s)T(s + k — 1)].

Here 0g(m) denotes the number of positive divisors of m.
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Proof. We apply the Phragmén—Lindeldf principle (see for example Markushevich [74,
Volume II, Theorem 7.7]) to the function s(1 — s)ﬂf’f(s) on the strip {s € C | —e <
Rs < 1+ e}; this is permitted by Stirling’s estimate for the I-function. This shows
that |s(1 — s)iff(s)| is bounded by its values on the boundary of the strip. The
functional equation now implies
res; f,f’f < sup |s(1-— s)ﬂf’f(s)|.
RNs=1+¢€

Plugging in the definition of L ¢ 7 and the expression for the residue at s = 1 given
above and using the inequalities

s _1 |am,
C2s)[ <C(2+2¢), [T+p~°|<14p, |Lgs( y<§: nﬁﬁ
m=1

for ®s = 1 + ¢, we deduce that

€/2
r

{f; F)r, ¢(2+2¢) lam (£
VOIFIF(n() ) - (471’)]6(27T)6 C(?) : %5311:_6’8(1 B S>F( ) 5 + k Z mk+6

The first inequality in the statement of the lemma now follows from Deligne’s bound

k—1

|am(f)| < ao(m)mT.
The second is a result of the easily verified inequality ¢y < n?. O

In addition to the above upper bound for primitive forms, we note the following
“trivial” lower bound for the Petersson norm of a cusp form with integral g-expansion.

Lemma 2.2. Let n > 1 and k > 2 be integers, and let f be a non-zero element
of Si"(Ty(n)). Then we have

exp(—47r(d(/<;, n)+1))
4r(d(k,n)+1)

<faf>F1 n)

where d(k,n) is the degree of the line bundle w®*(—cusps) on Mr, ().

Proof. The open subset
{zeC| -1 <R(-1/2) <1/2 and I(-1/z) > 1}

maps injectively to I'y (n)\H. This implies that if the g-expansion of f at the cusp 0
is given by

= 3 o) with ao(2) = exp(-2ri/2),

then
0o oo
(fs vy 2/ yh2 Z am(f)? exp(—4rmy)dy.
1 m=1
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By definition, all the a,, are in Z, and at least one of a1, ..., aq(kn)+1 is non-zero
since otherwise f would be the zero form. This implies that

o F)rim) = /1 yk_zexp(—47r(d(k:,n) + 1)y)dy

>/ " exp(—4n(d(k,n) + 1)y)dy

_exp(—4n(d(k,n) +1))
- dn(d(k,n)+1)

which proves the lemma. O

3. Spectral theory of Fuchsian groups

Let T be a cofinite Fuchsian group. We denote by L?(I'\H) the Hilbert space of
square-integrable complex-valued functions on I'\H (with respect to the measure
given by g ), and by ( , ) the standard inner product on this Hilbert space.

The Laplace operator A on the space of smooth I'-invariant functions with com-
pact support on H can be extended to an (unbounded) self-adjoint operator on the
Hilbert space L?(I"\H), defined on a dense subspace; we denote this extension by A
as well. The spectrum of A consists of a discrete part and a continuous part.

3.1. Automorphic forms of weight 0

The discrete spectrum consists of eigenvalues of A and is of the form {\;}%2, with
0:)\0</\1§/\2§..., )\j—>ooasj—>oo.

Let {¢; }J‘?‘;O be a corresponding set of eigenfunctions; these are called automorphic
forms of Maaf3 (of weight 0). We may (and do) assume that they are orthonormal
with respect to the inner product on L?(I'\H). For each j > 0, we define complex
numbers s; and t; by

1
/\j = Sj(l — Sj) and S = 5 + it
with s; € [1/2,1] if \; < 1/4. For \; > 1/4, the s; are only determined up to
s; «+» 1 —s; and the t; are only determined up to sign.

3.2. Eisenstein—Maaf} series of weight 0

The continuous part of the spectrum of the Laplace operator on L2(I'\H) is the
interval [1/4, 00), with multiplicity equal to the number of cusps of T'. In particular,
the continuous spectrum is absent if I' has no cusps. The continuous spectrum does
not consist of eigenvalues, but corresponds to “wave packets” that can be constructed
from non-holomorphic Eisenstein series or Fisenstein-Maafi series (introduced by
MaaB in [72]). These series are defined as follows: for every cusp ¢ of ' the series

E(z,8) = Z (So.1v2)% (2 € H,s € C with Rs > 1)
~yel A\
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3. Spectral theory of Fuchsian groups

converges uniformly on sets of the form K x {s € C | ®s > ¢} with K a compact
subset of H and 6 > 1. In particular, F.(z,s) is a holomorphic function of s.

A crucial ingredient in the spectral theory of automorphic forms is the meromor-
phic continuation of Fisenstein series, due to Selberg [95]. The functions F.(z, s) can
be continued to functions of the form E.(z,s) = H(z,s)/G(s), where H is a smooth
function of (z, s) € Hx C and both G and H are entire functions of s. These meromor-
phic continuations have a finite number of simple poles on the segment (1/2,1] and
no other poles in {s € C | s > 1/2}. Furthermore, the meromorphically continued
Eisenstein series satisfy a functional equation of the form

Ee(2,8) =Y ¢ea(s)Eo(z,1 - 3),

for certain meromorphic functions ¢, which we will not write down. We refer to
Hejhal [46, Chapter VI, §11] for a construction of the meromorphic continuation of
the E.(z,s) and proofs of the functional equation and the other properties stated
here; see Faddeev [36, §4], Hejhal [46, Appendix F] or Iwaniec [49, Chapter 6] for
different constructions.

For each s € C such that E.(z,s) is holomorphic in s for all z € H, the function
z — FE.(z,s) is I-invariant and satisfies the differential equation

AE( ,8)=s(l—=s)E( ,s).

If s is a complex number with Rs = 1/2, the Eisenstein-Maaf} series E.( ,s) are
integrable, but not square-integrable, as functions on I'\H. In contrast, the “wave
packets” mentioned above are square-integrable. They are constructed as follows: if
9:]0,00) — C is a smooth function with compact support, then the function

EgH— C

1

1 .
Z— g/o g(t)E, (z, 5+ zt)dt

is in L2(I'\H), and by extension we get an embedding of Hilbert spaces
2 1 2
&L ([0, oo),Q—dt> — LA(T\H).
™

The orthogonal projection on the image of £, which we denote by I, is given by the
following formula (valid for smooth and bounded I'-invariant functions f: H — C):

I f:[0,00) — C

te F(2)Ee(z, 5 +it) g (2)-
zel'\H
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3.3. Spectral theory for automorphic forms of weight 0
The following result is fundamental in the theory of automorphic forms of weight 0.
Theorem 3.1 (see Iwaniec [49, Theorems 4.7 and 7.3|; cf. Faddeev [36, Theo-

rem 4.1]). Every smooth and bounded T'-invariant function f: H — C has the spectral
representation

Zf,dwﬁj +Z /Hf Ec(z, 1 +it)dt,
=0

where ¢ runs over the cusps of I', in the sense that the right-hand side converges
to f in the Hilbert space L?(I'\H). If in addition the smooth I'-invariant function
Af:H — C is bounded, the convergence is uniform on compacta in H.

There is an analogous result (Theorem 3.2 below) for functions on H x H that are
of the form . k(u(z,yw)), where k: [1, 00) — R is a function satisfying certain con-
ditions. To state the conditions and the result, we need the Selberg—Harish-Chandra
transform of k, introduced in §1.1. We also have to explain the type of convergence
provided by the theorem below. Let A be a filtered set, and let {K,},ca be a family
of continuous functions on I'\H x I'\H, square-integrable in the second variable. If
K is a function such that for all compact subsets C' of I'\H we have

lim( sup |K,(z,w) — K(z,w)| + sup/ | Koz, w) — K(z,w)zuH(w)> =0,
a€A\z,weC z€C Jwer\H

we say that the family of functions {K,}aea converges to K in the (L3S, L2 N L2)-

loc
topology. In other words, this condition means that the family converges uniformly on

compacta in H x H, and also with respect to the L2-norm in the variable w, uniformly
for z in compacta of T'\H.

Theorem 3.2 (see Iwaniec [49, Theorem 7.4]). Let k:[1,00) — R be a function
that is the inverse Selberg—Harish-Chandra transform of a function h satisfying the
conditions (H1) and (H2) of § 1.1. Then the function

K:-HxH —R
1
Z,W) — —————— k(u(z, yw
(=00) — s gy O K 7))
~erl
is I'-invariant with respect to both variables and admits the spectral representation
(z,w) Zh )6;(2)¢; (w +Z2ﬂ_/ z 7+zt)Ec(w,%+it)dt. (3.1)

More preczsely, the right-hand side converges to K(z,w) in the following sense. For
J a positive integer and T a positive real number, we define

KT (2, w) = Zh 16, (2)%; (w +Z%/ (2 L+ it) Be(w, L + it)dr.

Then as J and T tend to infinity, K”*T converges to K in the (L2, L20L10C) topology.
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3. Spectral theory of Fuchsian groups

3.4. Bounds on eigenfunctions

The convergence of the spectral representation (3.1) can be deduced from suitable
bounds on the values of the I'-invariant function

H — [0,00)
T1/4
Z Z |9, (2 |2+Z / ,2—|—zt)’dt
3 A <T

as T'— oo. In Lemma 3.4 below, we will provide such bounds in a way that applies
at the same time to all the subgroups of finite index in a given Fuchsian group T'y.
This will turn out to be useful later for bounding suprema of Green functions in a
uniform way.

We define a function ky: [1,00) — R by

1 ifu<U;

ko () = {0 ifu>U. (3.2)

From (1.3) and the formula for [ P, (w)dw found in Erdélyi et al. [34, §3.6.1, equa-
tion 8], we see that the Selberg—Harish-Chandra transform of ky is

=2V U? - 1/2+zt

Here P! is the associated Legendre function of degree v and order p; see [34, §3.2].

Lemma 3.3. Suppose U € [1,3] and t € RU [—1, 1]i are such that

G+)U-1)<

N | =

Then the real number hy (t) satisfies the inequalities
(47— 8)(U — 1) < hus(t) < 8(U — 1),

Proof. We start by expressing the Legendre function P in terms of Gauf’s hy-
pergeometric function F'(a,b;c;z). (This function is described in Erdélyi et al. [34,
Chapter II].) Because of the many transformation identities satisfied by the hyperge-
ometric function, there are lots of ways to do this. We use [34, §3.2, equation 3]; this
gives
r 1 1-U

Next we use the hypergeometric series for F'(a,b; c; z) with convergence radius 1 (see
[34, §2.1, equation 2]):

oo

F(a,b;c;2) = Z)Wz", (3.3)

where (), is Pochhammer’s rising factorial symbol, defined by
(@), =T(a+n)/T(a) =ala+1)---(a+n—1).
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II. Analytic results on modular curves

Putting « = % for a moment, using the series expansion (3.3) and applying the
triangle inequality, we get the bound

(z+it), (5 —i)
(2)nn!

|F (3 +it, 5 —it;2—2) 1| <) n(—z)"

n>1

The assumption (i + t2) U-1)< % is equivalent to (i + t2) z < i. Therefore the
n-th term in the series on the right-hand side can be bounded as follows:
T2 (2 + )z + k(k + 1))
(2)pn!
n—1
< 15z (5 +k(k+1))
- (2)pn!

G+it), (5 —it),
(2)pn!

(2| =

This implies that

2 29994
=4/ —1,

|F(5+it, 5 —it; 2 —x) —1| < F(3,5:21) — 1

where the last equality follows from the formula

I(e)T'(c—=b—a)

Flabieil) = 5 0= ore =)

for Re > 0 and Re > N(a + b)

(see Erdélyi et al. [34, §2.1.3, equation 14] or Iwaniec [49, equation B.20]) and the
fact that I'(3/2) = v/m/2. We conclude that

|hy(t) —27(U = 1)| =27 (U — 1) |F($ +it, 3 — it; 2, —x) — 1]
<2n(U-1)(4/7—1)
— (8- 2m)(U - 1),
which is equivalent to the inequalities in the statement of the lemma. O

The following result can be used to show that the spectral representation in
Theorem 3.2 converges; however, we will also apply it in Section 5 below in order to
find upper bounds for Green functions of Fuchsian groups. To state the result, we
introduce the notation

Ni(z,U) = #{y €T | u(z,72) <2U%* =1} for z€ Hand U > 1;
this defines a I'-invariant function of z.
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3. Spectral theory of Fuchsian groups

Lemma 3.4. Let I’ be a cofinite Fuchsian group. For all z € H and all T > 1/4, the
Maaf} forms ¢; and the Eisenstein—MaaB series E. for I' corresponding to eigenvalues
less than or equal to T satisfy the inequality

e |2+Z /

Ji A <T

T— 1/4

T 1
(2 4 +it)|” dtgmjvf (z 1+2T>

Proof. For a given T > 1/4, we put
U=1+ = €(1,3]
2T ) )
so that T(U — 1) = 1/2. We note that
> ke (uf = Nr(z,w,U),

~ver

where Nt is the point counting function defined in (1.5). From Bessel’s inequality
one can deduce that

V/T-1/4

> lho(ty)es(z |2+Z / \ho () Ee (2, 5 +it) [P dt

JiA<T
< / Ne (2w, U)pgg (w);
wel'\H

see Iwaniec [49, §7.2]. The inequality hy (t) > (2r—4)/T given by Lemma 3.3 implies

> 1oz Z / " 1/4 zf—Ht)!d

G <T
T2 9
<o o N 0 )
we

for € I'\H and all T > 1.
It remains to bound the integral on the right-hand side of the above inequality.
For this we rewrite it as follows (cf. Iwaniec [49, page 109]):

/ Ne (2,0, U pugg (1) = Z/ o (2 0) ke (72, 70 g (10)
wel\H wel\H

v,y €T

-y / _ ook (s ()

yel’

The last integral can be interpreted as the area of the intersection of the discs of
radius r around the points z and vz of H, where coshr = U. By the triangle inequality
for the hyperbolic distance, this intersection is empty unless

u(z,yz) < cosh(2r) = 2U2 — 1;
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II. Analytic results on modular curves

furthermore, the area of this intersection is at most 2m(U — 1) = /7. From this we
deduce that

Nr(z,w,U)*pg(w) < ENF(Z,Z,ZU2 -1
wel'\H T

By the definition of NJ.(z,U), this proves the lemma. O

Corollary 3.5. Let 'y be a cofinite Fuchsian group, fix a compact subset Yy of T'o\H,

and write T
T 1
Yo, T)= —— N7 1+ —
v(Yo,T) or 1z S Vry (z, + ZT) )

with Ny (2,U) as in Lemma 3.4. Let I' be a subgroup of finite index in I'y, and let Y
be the inverse image of Y, in I'\H. Then the Maaf forms ¢; and the Eisenstein-Maaf
series E, for I' corresponding to eigenvalues < T satisfy the inequality

/T-1/4 1/4

> 1oz |2+Z / (2, 2 it) [Pt < v(Yo,T)

J: X <T
forall z€Y and all T > 1/4.

We note for later use that the function v(Yy, T') in the preceding result is bounded
by a linear function of 7'

3.5. The hyperbolic lattice point problem

Let T be a cofinite Fuchsian group. By the hyperbolic lattice point problem for T' we
mean the following question: what is the asymptotic behaviour of the point counting
function Nr(z,w,U) (defined in (1.5)) as U — oo? The Euclidean analogue of this
question (about the number of points in Z? lying inside a given disc in R?) was
first treated by Gauf} using an elementary packing method, and the error term was
later improved using spectral theory on R?/Z?. In the hyperbolic setting, no packing
method is known to even give the dominant term of Np(z,w,U) as U — oo; the
difficulty here is that the circumference of a circle in the hyperbolic plane grows as
fast as its area as the radius goes to infinity. To produce estimates for Np(z,w,U),
we will use a more sophisticated tool, namely spectral theory on I'\H.
The strategy is to take suitable functions

ki, k;i[l,00) — R

with compact support, and to define functions K ,}' and K;; on H x H, invariant with
respect to the action of I' on each of the two variables, by

Kizw Zki u(z, yw))

yerl

Notice that the sum is finite because the functions k% have compact support. We
take the functions k:?][ such that the inequality

K (z,w) < Np(z,w,U) < K} (2,w) (3.4)
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3. Spectral theory of Fuchsian groups

holds for all z,w € H and U > 1. Provided the Selberg—Harish-Chandra transforms
h% of kﬁ, defined in § 1.1, satisfy the conditions of Theorem 3.2, the functions Kﬁ
have spectral representations

Kizw ih b;(w)

J (3.5)

=0
+ZQW/ BE(WEe (2, 1+ it) B (w, L + it)dt

for all z,w € H. These spectral representations can then be used to find the asymp-
totic behaviour of Np(z,w,U) as U — oc.

A reasonable choice at first sight would be to take for both k7 and k; the
function ky defined by (3.2), so that the inequalities in (3.4) become equalities. Un-
fortunately, the Selberg—Harish-Chandra transform hy of ky does not decay quickly
enough as t — oo to give a spectral representation of Np(z,w,U) as in Theorem 3.2.
Following Iwaniec [49, Chapter 12] (cf. Patterson [82]), we therefore take

1 if1 <u<U,
ki(u) = {V uofU<u<V,

V—U
0 itV <u

and

1 ifl1<u<T,
k[;(u){U“ ifT<u<U,
0 ifU <u

for certain T, V', depending on U, with 1 <T < U < V. It turns out that a suitable
choice is

V-U~U-=-T~BU*?* asU — oo, for some 3> 0. (3.6)
1
ki
01 %

Figure 1: The functions k;} and k.

Using (1.3), integrating by parts and applying the integral relation between the
Legendre functions P, and P, 2 given in Erdélyi et al. [34, §3.6.1, equation 8], we get

( ) (U2 ) 71/2+“5(U)
V-U '

V2 p2
h?}(t) _ 27('( ) —1/2+it

Replacing (U, V') by (T,U) we get a similar formula for h,(t).
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II. Analytic results on modular curves

Theorem 3.6. Let I' be a cofinite Fuchsian group. For all z,w € H, the point
counting function Nr satisfies

- I'(s;—1% _ ,
Ne(z,w,U)= 3 2% \/Elw%(z)%(w)m: +O(U*?) as U — oo,
§:2/3<s;<1 J

with an implied constant depending on I' and the points z and w.

Proof. See Iwaniec [49, Theorem 12.1]. O

In particular, since |¢g|?

of I'\H, this shows that

is the constant function 1/volp, where volr is the volume

2n(U - 1)

as U — oo.
VOlF

Nr(z,w,U) ~
The main term in the estimate comes from the eigenvalue Ao = 0, corresponding to
to = +i/2. It follows from (1.2) that

hi(£i/2) =2n(U — 1) + 7(V — U). (3.7)

Since 27(U — 1) is the area of a disc of radius r with coshr = U, Theorem 3.6 is
the result that one would intuitively expect, in the sense that it shows that this area
is asymptotically equivalent to the number of lattice points inside the disc times the
area of a fundamental domain for the action of T.

For future reference, we also derive an estimate for the derivatives of the func-
tions K [j][ (2, w) with respect to U. For this we assume that T and V are differentiable
and satisfy

T(U)=1+0U %) and V'(U) =1+ 0(U %) asU — oo (3.8)

for some § > 0. By differentiating ky; with respect to U, applying the definition of K [J}
and estimating the sum using Theorem 3.6, it is straightforward to prove that
d 2m

&+ _ T —e
dUKU (27 ’U)) VOIF + O(U ) (39)

for some € > 0.

3.6. The Green function of a Fuchsian group

We fix a cofinite Fuchsian group I', and we write volp for the volume of T'\H. The
Laplace operator on I'\H is invertible on the orthogonal complement of the constant
functions in the following sense: there exists a unique bounded self-adjoint opera-
tor R on L2(I'\H, y1g7) such that for all smooth and bounded functions f on I'\H the
function Rf satisfies

1
ARf=f= o [ gy ad [ Rfug 0.
I\H rH

VOIF
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3. Spectral theory of Fuchsian groups

With regard to the spectral representations provided by Theorem 3.1, the effect of R
is as follows: if f has the spectral representation

F2) = bigi(2)+ % /OOO be(t)E.(z, 1 +it)dt,
j=0 ¢

then Rf has the corresponding spectral representation
o0

b; 1 [ b(t )
Rf(z) = Zyﬁ%(@ +Z%/O M(Jr)tzEc(z,éﬂt)dt.

j=1

(Note the absence of the eigenvalue \g = 0.)
There exists a unique function

grri{(z,w) e HxH|z¢Tw} - R

with the following properties:

(1) grp is smooth and I'-invariant in both variables;

(2) grr(,w) = grp (w, 2);

(3) for fixed w € '\H and z near a cusp ¢ of I, the behaviour of grp(z, w) is

grr(z,w) = log(So; t2) + O(1) as So. 'z — oo;

(4) if f is a smooth and bounded T'-invariant function on H, then the function Rf
is given by
RFG == [ sl fw)m(e).
wel'\H
The function grp is called the Green function of the Fuchsian group I'. In § 5.1 below,
we will give a construction of grp that will allow us to study it quantitatively.

Remark. Different normalisations of gri- occur in the literature; for example, our grp
is 1/4m times the function defined by Gross in [40, § 9.

3.7. Automorphic forms of general weight

We recall the definition of automorphic forms of arbitrary real weight. We also de-
scribe g-expansions of holomorphic forms, and we define the Petersson inner product.

Definition. (Cf. Rankin [85], §3.1.) Let I" be a cofinite Fuchsian group and let k be
a real number. An automorphy factor of weight k for I' is a function

v:I' xH— C*
satisfying the following conditions:
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II. Analytic results on modular curves

(1) the map v — v(v,z) is a 1l-cocycle with values in the right I'-module of holo-
morphic functions H — C* (with pointwise multiplication), i.e. the function
z — v(7, z) is holomorphic for all v € T and

V(7. 2) = v(7,82)0(3, 2)

for all 4,6 € T and z € H;
(2) for all v € T and z € H, we have

Sz \ F/? b - * %
ol =(gz)  (slerat ita=(1 7))

(3) if =1 €T, then v(—1,2) = 1.

Definition. (Cf. Roelcke [91], Definition 1.1.) Let I" be a cofinite Fuchsian group, let
k be a real number, and let v an automorphy factor of weight k for I'. An automorphic
form (of Maaf) of type v for I' is a smooth function f:H — C with the following
properties:

(1) forally = (% %) € I and z € H, the transformation formula

2y = 2003 gy

- |ez + d|*
holds;
(2) for every cusp ¢ of T', there is a real number & such that |0} f(z + iy)| = O(y")
as y — o0.

A cusp form of type v for I is a function f satisfying (1) and the following condition
(which is stronger than (2)):

(2") for every cusp ¢ of I" there exists € > 0 such that |0} f(z + iy)| = O(exp(—ey)) as

y — 00.

Remark. If we write £2)
- z
f(z) = (©2)h2”

then condition (1) in the definition of automorphic forms is equivalent to

f(yz) =v(v,2)f(z) forallyeTl, ze€ H.
For every cusp ¢ of I and every automorphic form f of type v, we define

lez +d|*
fe(z) = m (0c2),
where (¢ Z) is some lift of o, to SLa(R), so that

_|—cz+al*

f(z) = mﬂ(a:lz).
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3. Spectral theory of Fuchsian groups

The definition of f. implies that f comes from a holomorphic form (i.e. the function
(32)7%/2 f(2) is holomorphic) if and only if (3z)~*/2f.(2) is holomorphic.

We now assume that the automorphy factor v is singular at the cusp ¢, by which
we mean the following. We fix a specific branch of the k-th power map by

2F = |z|Fexp(ikargz), —7m <argz <.

We recall from §1.2 that I'; is generated by I' N {£1} and the element

11y _
")/CO'C<0 1>UCIEFC.

The automorphy factor v is said to be singular at the cusp c¢ if the restriction of v to
I'. x H is given by the particular formula

. * ok
Vo) = e+ ) itr= (1)
Under the assumption that v is singular at ¢, we have

fe(z+1) = fc(2) for every cusp c.

Let us assume furthermore that f, and hence also f,, is holomorphic. Then f, has a
g-expansion of the form

fe(z) = y*/? Z acn(f)g" with ¢ = exp(2miz).
n=0

This can be rewritten as

_|—cz+al*

12 = Corar

yc(z)k/Q Z acn(f)ge(2)", (3.10)
n=0

where y.(2) = So_ !z and ¢, = exp(2mio_ '2) as in §1.2.

If f and g are automorphic forms of type v for ', the function fg is I'-invariant,
and hence can be viewed as a function on I'\H. We let L2(I'\H) denote the Hilbert
space obtained by completing the space of smooth and bounded automorphic forms
with respect to the Petersson inner product

(fi9) = /F\H g1
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3.8. Spectral theory for automorphic forms

Let T" be a cofinite Fuchsian group, and let k be a real number. The Laplace operator
of weight k is the differential operator

Ay = —y*(02 + 0) + ikyd,
= A+ iky0,

on the space of twice continuously differentiable functions on H. For any automorphy
factor v of weight k, the operator Ay can be extended to an (unbounded) self-adjoint
operator on a dense subspace of L2(I'\H); see Roelcke [91, § 3].

The spectrum of Ay is contained in the interval [(|k|/2)(1 — |k|/2),0), and
the eigenspace corresponding to the eigenvalue (k/2)(1 — k/2) is equal to the space
of functions y*/2f with f a holomorphic form of type v that is square-integrable
with respect to the Petersson inner product; see Roelcke [91, Sdtze 5.2 und 5.5]. In
particular, this implies the well-known fact that there are no holomorphic forms of
negative weight, since (|k|/2)(1 — |k|/2) > (k/2)(1 — k/2) if £ < 0. For k > 1,
the only square-integrable holomorphic forms of weight k are the cusp forms; see
Roelcke [92, Satz 13.1]. This means that the map f — y*/2f gives an identification
of the space S, (") of holomorphic cusp forms of type v with the subspace of L2 (I'\H)
on which Ay acts with eigenvalue (k/2)(1 — k/2).

As in the case of automorphic forms of weight 0, the discrete spectrum of Ay
on L2 (T'\H) consists of eigenvalues. Let {);}52, be this discrete spectrum, ordered
such that

MSA <A<y

and let {ng;’ 720 be a corresponding orthonormal set of eigenfunctions. We write

1

Aj =sj(1—s;) and s, 5

+ it
with s; € [1/2,1] if \; <1/4.

Apart from the discrete spectrum, there is also a continuous spectrum, which
can again be described in terms of suitably defined Eisenstein—-Maaf§ series. These
functions are defined for the cusps ¢ at which v is singular in the sense of §3.7. For
such a cusp ¢, the Eisenstein series EY is defined for Rs > 1 by

(S 12)*H?

(7, 2) vz + d)F

BY(z,8) = (S2)*2 Y

v
yer AT

cf. Roelcke [92, §10] or Hejhal [46, Chapter 9, Definition 5.3]. Here (¢ d) denotes the
bottom row of the unique lift of ! to SLy(R) such that either ¢ > 0, or ¢ = 0 and
d > 0. The functions E¥(z, s) can be meromorphically continued in the variable s in
the same sense as the Eisenstein-Maaf} series E.(z, s) defined in § 3.2, and they satisfy
a similar functional equation. For any smooth and bounded function f on I'\H, we

define
I f:[0,00) — C

te FRE (2,5 + it up (2).
zel'\H
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3. Spectral theory of Fuchsian groups

The generalisation of Theorem 3.1 is now as follows. Every smooth and bounded
automorphic form f of type v has the spectral decomposition

=Y (f. 608 (z +Z /Hf )EY (2,1 + it)dt,
7=0

where ¢ runs over the cusps at which v is singular. Similarly, we have the following
generalisation of 3.2. Let ¢ > max{|k|/2,1}, and let ¢:[1,00) — R be a continuous
function such that ¢(u) = O(u°) as u — oco. Then the sum

y _exp(ikm/2) Syw k/2 2 — vl k
K (z,w)—m%;u(%w) (Sw> (Z—W_}) o(u(z,yw)) (3.11)

converges uniformly on compact subsets of H x H; cf. Faddeev [36, Theorem 4.1]. It
can be shown that this function satisfies

N e e G (Su)?
(7277 w) - (%Z)k/Q (Z,'w) V(')//,w)(%’}//'IU)k/Q

The last equation implies that K" (z,w) defines an invariant integral operator on the
space L2(T"\H).

To state the generalisation of Theorem 3.2, we need an analogue of the Selberg—
Harish-Chandra transform in higher weights. For this we introduce the following
variants of the Legendre functions (see Fay [38, §1]; note that our k& would be 2k in

Fay’s notation):
2\’ u—1
P =(—) Fls—ks+k1l,— .
+() <1+u> (S st u+1)

Let ¢:[1,00) — R be a continuous function satisfying ¢(u) = O(u~°) for some real
number ¢ > max{|k|/2,1—|k|/2}. We have the following generalisation of the Selberg—
Harish-Chandra transform (see Fay [38, (34)]):

t) = 271'/1 QS(U)Pl/Q_;'_“,k(U)dU.

This transform can also be computed as follows (cf. Hejhal [46, pages 385-386]):

oo . ~k/2
o) = V2 [ ot o) [ IR ] e
g(r) = g(coshr)

h(t) = 2/0Oo cos(rt)g(r)dr.
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Its inverse can be computed by means of the formulae

g(r) = 1 /000 cos(rt)h(t)dt,

™

g(w) = g(acosh w)

k/2
1 > 1+¢t2—¢

s = [T fue) [T,
™2 J_oo vu+1+t24¢

By means of the change of variables u + t? = coshr, the last two equations can be
rewritten as

1
¢(U) - 723/27{_(” + 1)k/2

/Oo g’(r){(\/coshr 1+ Veoshr —u)"

cosh u

dr
Veoshr —u

We are now in a position to describe the spectral decomposition of a function of
the form (3.11). Let h be the Selberg-Harish-Chandra transform of weight & of the
function ¢. Assume h is even and holomorphic on the strip {t eC ’ ISt < a} for
some o > max{(|k|—1)/2,1/2}, and |h(t)||t|® is bounded on this strip for some 3 > 2;
cf. the conditions (H1) and (H2) of §1.1. Then K" has the spectral representation

+ (Vcoshr +1 — Vcoshr — u)k}

3=0 (3.12)

(oo}

+> — | h(WEY (21 +it)EY (w, § +it)dt,
c

where the second sum is taken over the cusps at which v is singular; see Hejhal [46,
Chapter 8, (4.1), and Chapter 9, §6].

4. Bounds on cusp forms

Let I be a cofinite Fuchsian group, let k£ be a real number with k£ > 1, and let v be an
automorphy factor of weight k for I'. We assume for simplicity that v is singular at all
cusps of I" (in the sense of §3.8). We define a smooth and I'-invariant function Fr ,
on H by

Fro(z) =Y _(32)"f(2)P,

feB

where B is an orthonormal basis for the space S, (I') of holomorphic cusp forms of
type v for I'. The function Fr, is independent of the choice of B. In this section we
give explicit bounds on the values of FT,. These results are due to Jorgenson and
Kramer [50]; we have written them down here in a slightly more explicit form.
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4.1. The heat kernel for automorphic forms

Following Jorgenson and Kramer [50], we are going to apply the spectral theory
described in § 3.8 to the function

() = e (- (22 424,

where Y is a fixed positive real number. This is the spectral function for the heat kernel
associated to the operator Ay. We compute the kernel function ¢, corresponding
to hy  via the auxiliary function g, introduced in § 3.8 (the Fourier transform of hy, , ):

gx(r):*/ exp(irt) eXp< <(k 41) +t2>x>dt

Sz 5)

It now follows from the formula for the inverse Selberg—Harish-Chandra transform
given at the end of § 3.8 that

B exp(—(k - 1)2x/4) o0 r2
() = o)+ 1) /Xp<_4x)

{(\/coshr+ 1+ \/coshr—u)k + (\/coshr—i— 1-— \/coshr—u)k}

dr
Veoshr —u

This does not look very enlightening, but the only property of ¢, that we will need
is that it is non-negative. The properties of hy , imply that the function

_\k
o exp(ikm/2) w)H/? z— YW
B = Zrn ) Gopre Z vinw e aal) )

has a spectral representation given by (3.12). In particular, we have the identity
1% - 1 > 1% N 2
KT (22) = S b6, (IF + X 50 [ hen @l 3+ @)
3=0 c

4.2. Bounds on cusp forms

As we saw in §3.8, the assumption that k& > 1 implies that the space S, (I") can be
identified with the eigenspace of the Laplace operator A on L2(I') associated to the
eigenvalue
M= (k/2)1 - k/2) = § + 1,
where
k-1,
5 ¢

th =+
It is clear from the definition of hy , that
hk’x(th) =1
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and that hy , (t) is non-negative for all values of ¢ involved in the spectral represen-
tation (4.1). Therefore (4.1) implies the bound

Fr,(z) < K;Z”’(z, z) for all z € H and x > 0.

By the triangle inequality, the fact that

oo = (22)
1% w = —_—
Y Svw

and the non-negativity of ¢,, we deduce from the above definition of K;’” the in-
equality

v 1
Ki’ (2,2) < m%gbx(u(z,’yz)).

We now take I' to be an arbitrary subgroup of finite index in a fixed cofinite Fuchsian
group I'g. We fix a compact subset Y; of I'o\H, and we let Y1 denote the inverse
image of Yy in I'\H. Since there is an injective map I'/(TN{£1}) — Ty/(ToN{£1}),
we get the inequality
supFFW < C(Yo,k), (42)
Yr

where

1
C(Yo, k) = #To N {£1}) wery ; )

4.3. Extension to neighbourhoods of the cusps

We now take the compact subset Yy to be of the following specific form. For every
cusp ¢q of T'g, we choose a real number €., > 0 such that the disc B, (e, ) of area e,
around ¢g as in §1.2 is well-defined. We define a compact subset Yy of I'o\H as the
complement of the discs By, (€, ), with ¢y running over the cusps of T'y.

The inverse image in I'\H of the disc B,(€,,) C I'0\H equals the union of the
discs Bc(¢€.), where ¢ runs over the cusps of T" lying over ¢g, and where

€c = M€y,

with m, the ramification index at ¢ of the map from the compactification T\H to
that of To\H. We write Y for the inverse image of Yy in T'\H; then Yr equals the
complement of the discs B.(¢.), with ¢ running over the cusps of T'.

Because the forms in our basis B are holomorphic cusp forms, they have g¢-
expansions of the form (3.10) with a. o = 0. In particular, we see that every f € B

satisfies )
§ G, n

‘f( —yc

Therefore the function

f(2)
qc(2)

ye(2) ™ exp(dmye(2)) Fro(2) = >

fEB
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4. Bounds on cusp forms

extends to a subharmonic function on the compactification
Be(e.) ={z € T\H | ye(2) > 1/e } U {c}.

of B(e.). By the maximum principle for subharmonic functions, the function takes
its maximum on the boundary, so that

Fr,(z) < (ecyc(z))k exp(4n/e. — 4wy (2)) ( s;1p/ Fr (7)) (4.3)
ye(2')=1/€c

for all z € B.(e).

Lemma 4.1. Let I'g be a cofinite Fuchsian group, and let k be a real number. There
is a real number D(T'y, k) such that for any subgroup I of finite index in Ty and any
automorphy factor v of weight k for I" that is singular at all cusps, we have

sup Fr,(z) < (maxmc)kD(Fo, k).
2eT\H ¢

Proof. We fix a positive real number x and define ¢,:[1,00) — R as in §4.1. We

choose € > 0 small enough such that the discs B, (€) around the cusps of I'g\H are
disjoint. We write

Yo = TO\H \ |_| Bey (o),

and we let Yr denote the inverse image of Yj in T\H. An elementary calculation
shows that

B\
y" exp(—4my) < () exp(—k),
4
with equality if and only if y = k/4w. Combining this with (4.2) and (4.3) gives

C (Yo, k) if z € Yr;
Fro () < { o, :
(477:) exp(4r/e. — k)C(Yo, k) if z € Be(ec),

which implies the lemma. O
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5. Bounds on Green functions of Fuchsian groups

In this section we will apply the spectral theory described in § 3.3 and the solution to
the hyperbolic lattice point problem from §3.5 in order to obtain bounds on Green
functions of Fuchsian groups. We start with an elementary “counting lemma’” that
we will need later.

Lemma 5.1. Let {z)}xea and {wy}rea be two families of real numbers, indexed by
a set A, such that for every x € R there are only finitely many A € A with x) < x.
(In particular, A is countable.) For all x € R we define

W(x) = Z W.
A€z <z

Suppose a is a real number such that x) > a for all A € A, and A, B: (a,00) — R are
continuous functions such that A(x) < W(x) < B(x) for all x > a. Let f:(a,00) —
[0,00) be a decreasing, continuously differentiable function such that the sum

=" flax)wx
AEA

converges absolutely. Then the inequality

/ f(z da:—l—bLhm fx)A(z) < S < — / f(z)B(z)dz + hm f(z)B(x),

holds, provided the integrals and limits exist. If in addition A and B are piecewise
continuously differentiable, then S satisfies the inequality

| 0@+ i @A) <5 < [ @B @da + i @) B),

again provided the integrals and limits exist.

Proof. By assumption, the subset {z) | A € A} of (a,00) is discrete. We write y1,
Ya, ..., for its elements in increasing order, and we put yo = a. Using the absolute
convergence of the sum S, we can rewrite it as

S=> flw) D w
i=1

AEA: z \=Y;
I
= fim (Z Fu) (W (i) — W(yi_l))>

I—1
— lim (Z(f(yi) — fWir1))W (ys) + f(yI)W(y1)>;

I—o0 \ 4
i=1

the last equality is gotten by partial summation and the fact that W (yy) = 0. Because
W is constant on each [y;,y;+1) and zero on (yo,y1), we may rewrite this as

5= (- z / (@) -+ )W) ).
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5. Bounds on Green functions of Fuchsian groups

Together with the inequality A(x) < W(x) < B(z) and the assumption that f is
decreasing and non-negative, we now get

lim ( / " @) A + f(y»A(yI)) <s

I—oo
0

< lim (_ [ r@B@s+ f(y»B(yI)),

I—o0 Yo

from which the first inequality follows. If A and B are piecewise continuously differ-
entiable, the second is equivalent to the first via integration by parts. O
5.1. A construction of the Green function

We will now give a construction of the Green function for I' that will allow us to find
explicit bounds on its values. For this we use a family of auxiliary functions

kq: (1,00) — [0,00) (a € A)

parametrised by a filtered set A, that converges in a suitable sense (made precise in
Lemma 5.3 below) to the function k; defined by

1 u+1
kl(u):EIOgu—l'

(5.1)
We will take the k, such that their Selberg—Harish-Chandra transforms are of the
kind described in the following definition.

Definition. An admissible spectral function is an even and holomorphic function
h:D — C

where D is an open subset of C containing the strip {t € C | [St| < a} for some
a > 1/2, such that for some > 1 the function

1

/67
~ | = AT G -1
4

ERRa 0

is bounded on this strip.

Lemma 5.2. Let D be an open subset of C containing the strip {t € C | |St| < o}
for some o > 1/2, and let h: D — C be an admissible spectral function. Then h
satisfies the conditions (H1) and (H2) of §1.1; in particular, the inverse Selberg—
Harish-Chandra transform k of h (see (1.4)) exists. Moreover, u®+/?k(u) is bounded
as u — oo.

Proof. The claim that h satisfies (H1) and (H2) is straightforward to check. To com-
pute k, we use the formulae from the end of § 1.1 relating k and h via the intermediate
function

g(r) = iﬂ /OO exp(irt)h(t)dt.

— 00
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Since h is even, we may assume r > 0. Because h is holomorphic, we may shift the
line of integration to R 4+ i«; this gives

g(r) = W /00 exp(irt)h(t + ia)dt.

— 0o

/ : exp(irt) d—0

o 7 + (t + ia)2
(since the integrand is holomorphic for $t > 0, we may integrate over the semi-circle

{ia + Rexp(if) | 0 < 6 < 7} and let R tend to oo; it is not hard to show that this
integral tends to 0). This implies that

Next we note that

exp(—ar)

o(r) = 2 /_O;exp(irt) (h(t+ia)—M)dt.

Likewise, we have

J(r) = Lexplzar) /oo exp(irt)(t + i) (h(t +ia) — 1) dt

27 oo 1+ (t+in)?
Applying the triangle inequality and the assumption on h, we deduce from this that
lg(r)| < Dexp(—ar) and |¢'(r)] < D’ exp(—ar),
where D and D’ are certain positive real numbers. The formula

1 > g (r)dr

k(u) = ——— _g\ar
(w) V2 Jacoshu Vcoshr —u
now implies that
D' [ exp(—ar)dr
k()] < ——

V2 Jacoshu Vcoshr — u
D/

= 7@&—1/2(”)7
T

where ), denotes the Legendre function of the second kind of degree v; see Erdélyi
et al. [34, §3.6.1 and §3.7, equation 4]. Since Qq—1/2(u) = O(u™'/27) as u — oo
(see [34, §3.92, equation 21]), this proves the claim. O

Let h: D — C be an admissible spectral function as defined above, and let k
be its inverse Selberg—Harish-Chandra transform. It follows from Lemma 5.2 that
the sum »° p k(u(z,yw)) converges uniformly on compact subsets of H x H not
containing any points of the form (z,vz); see Faddeev [36, pages 363-364 of the
English translation]. (See also Lang [62, Chapter XIV], which is an explanation
of [36], filling in many details.) We can therefore define a continuous, symmetric
function

K':{(z,2w) e HxH|z¢Tw} — R

2, W H; u(z,yw)) —c (5'2)
(2,) #(m{ﬂ});ku,v ) -
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5. Bounds on Green functions of Fuchsian groups

where the constant c is chosen such that the integral of KT over I'\H with respect to
each of the variables vanishes:

c= v011?1/ k(u(z,w))pgg(w) for any z € H
weH
2 oo
=7 / k(u)du
1

VOIF
= volp ! h(+£i/2).

Note that the last equality is just (1.2).

Lemma 5.3. Consider a family {hq}qca of admissible spectral functions, with A a

filtered set, and let {kq}qea and {KL},ca be the corresponding functions defined by

(1.4) and (5.2). Suppose that the following two conditions are satisfied:

(1) Each of the functions k, is bounded pointwise from above by the function ki
defined by (5.1), and the family of functions {k,}.ca converges pointwise to k.

(2) There is a real number 3 > 1 such that the family of functions

1

B
|1+ ha(t)—ﬁ

converges to 0 (with respect to the filtration of the set A), uniformly on the strip
{teC||St| <1/2}.
Then the family of functions {—K!},ca converges to the Green function gr in the
(L2, L2 N Lg2 )-topology.

loc? loc

(The existence of families of admissible spectral functions {h,}.ca satisfying the
above conditions will be proved in § 5.2 below.)

Proof of Lemma 5.3. For all a,b € A, it follows from condition (1) that the function
ko — kp satisfies the conditions of Theorem 3.2. This implies that the function

K!' - Kl = #(F;{il});(ka(u(z,vw)) — kp(u(z,yw))) — ca +

has the spectral representation

1 oo

+3 = [ (ha(t) = he(8) Be(z, & + it) Ec (w, § +it)dt,

(5.3)
where the right-hand side converges to K. — K}; in the (Lf’g’C,L2 N L2 )-topology.
(Note that the eigenvalue Ag = 0 has disappeared because of the definition of ¢,.) In
particular, K} — K| extends to a continuous function on H x H that is [-invariant

with respect to both variables.
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We claim that the right-hand side of (5.3) converges to 0, with respect to A, in
the (L2, L2N L2 )-topology. In particular, this implies that {KI'}4ca converges to a
symmetric continuous function on I'\H x I'\H that is square-integrable with respect
to each variable separately.

First we show that {K. — K[}, pca converges to zero uniformly on compact

subsets of H x H. For this we write

Ko — K |(2,w) < Z [ha(ts) = ho ()] - [65(2) b5 (w)]

1 e L\ .
> 3 | a0 = o) | i) B § + 1)

It follows from the triangle inequality and condition (2) on the family {h,} that

1
ha(t) = ho(t)] < |ha(t) — e ha(t) —

< (Ca+ Cy)|3+¢27°

1

+ —
ri

for some family of positive real numbers {C,},c4 such that lim,c 4 C, = 0. This
implies

KL — Kl|(z,w) < 0+0b2i + 27719 (2) ¢ (w)]

Ca+Cy) Z/ 12482 7P| Be(2, L +it) B (w, L + it)|dt.
Using the elementary inequality

|65 (2)¢5 (w)] < 5 (165 (2)1* + |6 (w) ), (5-4)

and applying Lemma 5.1 and Corollary 3.5, we see that the right-hand side converges
to 0 uniformly on compacta of H x H, as claimed.

Next we show that the right-hand side of (5.3) converges with respect to the
L2norm on I'\H, uniformly for w in compacta of H. For this we use that the
orthogonality of eigenfunctions implies

/’KP KL [ (2 w) g (w <Z|h — hy(t5)]165(2)1?
wel'\H
1 [ 2 N2
+2c:27r/0 |ha(t) — ho(t)|" | Ec (2, 3 +it) | dt
< (Cat Co) S5+ 2719 (2)
j=1
c,+C o —28 (2
+27sz/0 |42 7| Be(2, L + it) Pt
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5. Bounds on Green functions of Fuchsian groups

Again using Lemma 5.1 and Corollary 3.5, we see that the right-hand side converges
to 0 uniformly on compacta of H, which is what we had to prove.

The L2-convergence that we just proved implies that if f is a smooth, bounded,
I-invariant function on H, with spectral representation

o0 1 o '
f(z) = ;:0 bidi(z) + Zc o /O be(t)Ee(z, 4 + it)dt
(see Theorem 3.1), then

[ KNG =t [ K0,
wel\H wel\H

Now the defining property (1.1) of the Selberg—Harish-Chandra transform implies
that

I\H

KE ) fwhna() = 3 bihalt)6,:) + 5 5= [ 0Oha(0B (.4 + i)t

Taking the limit, we get

/ lim KL (2, w) f(w) gz (w) = 3 12— 65(2)
ac j=114 + tj
wel'\H
1 b.(t .
e lizzEc(z,%—Ht)dt
= Rf(2)
_ / v (2, w) £ () ().
wel'\H

Since the set of smooth and bounded functions is dense in L?(T'\H), this proves that
the limit of the convergent family of functions {K!},c4 equals — grp. O

5.2. Existence of families of admissible spectral functions

Of course, the construction given in §5.1 would be futile if there were no family
of functions {h,} fulfilling the conditions of Lemma 5.3. Let us therefore give two
examples of such families.

The resolvent kernel for a parameter a \, 1. This is the function

M) = 5-Qu-1(u),

where @, is the Legendre function of the second kind of degree v; see Erdélyi et al. [34,
§3.6.1]. The function @,—; has the integral representation [34, § 3.7, equation 12]

e dt
Quma(w) = /0 (u+ vu2 —1cosht)e’
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which shows that all the Q,_1 with a > 1 are bounded pointwise by the function

1w+l
— 1 .
Qolu) =3 log

(see [34, §3.6.2, equation 20]). This shows that the family {k,} satisfies condition (1)
of Lemma 5.3. From [34, §3.12, equation 4] we see that the Selberg-Harish-Chandra
transform of k& is

ha (t) = /100 P_194it(0)Qa—1(u)du
1
T (a—1/2—it)(a—1/2+1t)
1
ala—1)+ 5+

One can check easily that this is an admissible spectral function and that the family
{hZ} satisfies condition (2) of Lemma 5.3.

The cumulative heat kernel for a parameter T — oo. The function hS is defined for
T >0 by

T
K (1) = / exp(—(L/4 + £2)x)dy

1 —exp(—(1/4+¢*)T)
N 1/4 +t2 '

It is straightforward to check that these are admissible spectral functions and that
the family {h$} satisfies condition (2) of Lemma 5.3. We compute the corresponding
function kS using an intermediate function g% as in §1.1. This function is given by

() = l/oo cosrt . exp(=T/4) /OO cos(rt) exp(—t3T) i@t
T Jo 1/4+ 12 7r 0 1/4+t2

T+r

= exp(—|r|/2) — % {exp(r/2)erfc<m> + exp(—1/2) erfc(gﬁfﬂ .

The last equality follows from Erdélyi et al. [35, §1.2, equation 11, and § 1.4, equa-
tion 15]; the complementary error function appearing in this formula is defined by

erfe(z) = % /00 exp(—t?)dt.

A straightforward computation gives

48y() = B e

(55 - ocron(55)]
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5. Bounds on Green functions of Fuchsian groups

By differentiating with respect to T', we see that the family of functions {g4(r)}rs0
is pointwise decreasing as 1" — oo, with limit function

Jim () (r) = —Sgn(r)eX;D(_lr'/Q).

This implies that the family of functions {k$} 7o given by

1 o (g% (r)dr
7T\/§ acoshu Vcoshr —u

is pointwise increasing with limit function

ki (u) =

) 1 *  exp(—r/2)dr
lim k$(u) = —_—_—
T—o0 () 2327 [ coshu VCoshr — u

This last integral can be evaluated using Erdélyi et al. [34, §3.7, equation 4, and
§3.6.2, equation 20]:

. 1

Jim () = - Qo(w)
—il u+1
T Byt

We conclude that the family {k$} satisfies condition (1) of Lemma 5.3.

5.3. Bounds on Green functions

Let {hq}aca, {ka}aca and {KL},ca be families of functions satisfying the conditions
of Lemma 5.3. We will give bounds on the values taken by the functions K! and by
the Green function grp. For this we will exploit the estimates for the hyperbolic lattice
point problem given in §3.5. Given two points z,w € H, we choose a real number
4 > 1, and we split the sum over I into sums over the two subsets II(z, w) and A(z, w)
consisting of those v for which u(z,yw) < § and u(z,yw) > §, respectively, i.e.

Mz w) = {7 €T | u(z,yw) < 6,
Az,w) ={y €T | u(z,yw) > d}.

For any U > 4, the inequality (3.4) implies that the number of elements v € A(z,w)
with u(z,yw) < U can be bounded as

A(U) < #{v € Mz, w) | u(z,qw) <U} < BU),

where the functions
A,B:[0,00) = R

are defined by

AWU) = K (z,w) — ##H(z,w)

B #I1(z, w)
TN {L1) and B(U) = K (z,w) — i

(CN{x1})’
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Here the functions K 5 are defined as in §3.5 via functions T' and V of U satisfying
(3.6) and (3.8). The functions A and B are increasing and piecewise continuously
differentiable, and the estimates from § 3.5 imply that

A(U)=0(U) and B({U)=0U) asU — o0,

with implied constants depending on the group I', the points z and w and the functions
T and V. Applying Lemma 5.1 gives

/OO Eo(U)A(U)AU + Ka(DAG) < S haluz,yw))
o

YEA(z,w)

< /OO ko (U) B/ (U)AU + ka(5)B(S).
5

for all a. By the definition (5.2) of KL, we get the lower bound

KT > -
M(z,w) > — m{ﬂ} enz(: ko (u(z, yw)) / ko U)dU — k4 (5)B(6)
o2 [
+E . k’a(u)du

Using the definition of B, we can rewrite this as

r 1
Kq(z,w) 2 ECA D ﬂ/EHE(z:,w)(ka((;) = ka(u(z,yw))) = ka(0) K (2,w)
o d 2 o [?
_/5 k (U)dU <K+(Z w) VOlF (U )) dU+ E ka(U)dU

We recall from (3.9) that d/dU(...) = O(U ) for some € > 0. Furthermore, the
family of functions {k,}aca converges from below to ki because of condition (1) in
Lemma 5.3. We may therefore apply the dominated convergence theorem and take
the limit inside the integral. This gives

1
> - - Ky
g () 2 ey HZ(: )(k1(5) i (u(z,yw))) = ka () K (2, w)
d 27
Kt —
/ R(U) ( (sv0) = (U = )dU+ - k1
Integrating by parts and using that
1
/ _
F(u) = 27 (u2 — 1)’
we can simplify this to
1 1 0+1
>_ - _ . -
() 2 s 30 ((0) —Riule ) + o loe
yEI(z,w)
1 [ " 2w dau
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Next we insert the spectral representation (3.5) of K7, the formula (3.7) for hf;(%i/2)
and the fact that |@¢g|?> = 1/ volr. We then interchange the resulting sums and integrals
with the integral over U; this is permitted because the double sums and integrals
converge absolutely (this follows from Lemma 3.4 and Theorem 3.6). The result is

! 1 d+1
grr(z,w) > I WEHZZ:w)(ku((S) — k1 (u(z,yw))) + oL log 5
1 XV -_U > -
“ovolr J; 2= 1% jgmtjm(zm(w)

_Z%/ [ (0B, 4 + it) Be(w, } + it)dr,
where I; is the function defined by

1 [ hi(t)
If(t) = 27r/5 U2U_1dU.

A similar calculation gives the upper bound

1
— #IN{£1})

Z (k1(8) — k1 (u(z,yw))) + & log o+l

grp(z,w) < 5
vEIl(z,w)

1

oo
+2V011'*/5 UleU ZI(* 03 (w)

—Zm/ I; () (2 L+ it) Be(w, § + it dt,

where I is defined by

=5 [ i

The most interesting aspect of the above bounds concerns the functions

(z,w) Zji )0, (2)d; (w +Z /16 c(z, 3 +it)Ec(w, 5 +it)dt.

Imprecisely speaking, these reflect the fact that the Green function formally has the
spectral representation

e 1 - 1 [ 1 N\ B )
grp(z, w) Z % v qu(w)fzﬁ/o WEC(Z,%+Zt)EC(w,%+zt)dt.
C

j=1

The problem is that this expansion does not converge. This is the reason why our
estimates are somewhat complicated; however, it is not very surprising that a similar
expression appears in the above bounds.
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5.4. Uniform bounds on compact subsets

The next step is to derive bounds that are valid at the same time for all subgroups I'
of finite index in a given cofinite Fuchsian group I'y such that the non-zero eigenvalues
of the Laplace operator A on L?(I'\H) are bounded from below by a fixed positive
number. For example, take 'y = SLy(Z) and let T' C T’y be a congruence subgroup.
Selberg conjectured in [96] that the least non-zero eigenvalue \; of A is at least 1/4,
and he proved that A\; > 3/16. The sharpest result known so far, due to Kim and
Sarnak (see Appendix 2 of Kim [59]), is that A; > 975/4096.

We seek upper bounds for the absolute values of the functions R+ (z,w) occurring
in the bounds from §5.3. Applying the triangle inequality and the inequality (5.4),
we see that

|R*(2,0)| < 5(5%(2) + 5% (w)),

M| —

where ST and S~ are defined by
Si _ = I:I: 2 1 > I:t 1 N (2
(2) = D15 (t5)l165(2)| +Z% ; |15 (0| Ee (2, 5 + it) | "dt.
Jj=1 c

In order to bound these functions, we use the assumption that the spectrum of the
Laplace operator on L2(I'\H) is contained in {0} U [Amin,c0). We choose decreasing,
continuously differentiable functions

H5+>\ JHy L [Amin, 00) — (0, 00)

»Amin

such that
(1) Hyy  (N) =supp, oo I5 (VA —1/4)| for all X € [Awin, 1/4];
(2) Hy, (N> |15 (v/A—1/4)| for all A > 1/4.

Using the properties (1) and (2) of H(si/\mm(l/él +t2) and rewriting the result in a
similar way as in Lemma 5.1 gives

min

oo

st < [ W,
A=1/4 ’

),

min

h
wihere . i .
= Y \¢j(z>|ﬂ+zﬂ/o" |Ee(2, +2)2at.
c

§10<A; <A

We now assume I' is a subgroup of finite index in a fixed Fuchsian group I'g. Let
Yo € To\H be any compact subset, and let Y be its inverse image in T\H. Then it
follows from the bound from Corollary 3.5 and the fact that the functions H;,[Amm are
decreasing that

S%(z2) < —/ v(Yo, \)dH3, (\) forall z €Y.
)\:1/4 s\ min
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5. Bounds on Green functions of Fuchsian groups

Substituting this in the bounds from § 5.3, we see that for all z,w € H whose images
in I'\H lie in Y, we have

1 1 0+1
grp(z,w) < M 7GHZ(Z:M)(kl(‘S) — k1 (u(z,vw))) + volr log o
1 *U-T o _
2volp /5 U2 — 1dU + A_1/4 V(Yo, )‘)(_dHé,Amin)()‘)
and
1 1 0+1
grp(z,w) > m Z (/4?1(5) - kl(u(z,’yw))) + volp log o

YEI(z,w)

1 *V-U >
- au — Yo, M (—dH7 A).
STl e T MRS EWRICY

Theorem 5.4. Let 'y be a cofinite Fuchsian group, let Yy be a compact subset
of To\H, and let § > 1 and Ayin > 0 be real numbers. There exist real numbers A
and B such that the following holds. Let I be a subgroup of finite index in I'g, and
let Y be the inverse image of Yy under the map I'o)\H — I'\H. Suppose that the least
positive eigenvalue of the Laplacian on L?(T'\H) is at least Ay, and that the set

{yeT [u(z,yw) <6}

contains at most one element for all z,w € H whose images in T\H lie in Y. Then
the inequalities

grp(z,w) < B+ min{0, k1 (6) — k1 (d(z,w))}

and
grr(z,w) > A+ min{0, k1 (§) — k1 (d(z,w))}

hold for all z,w in'Y, where d(z,w) is the “distance function” defined in § 1.2.
Proof. This follows from the above inequalities. O

Remark. For simplicity, we have limited ourselves in the above theorem to groups I'
that do not contain any elliptic elements that I'g may have. One way to treat the
general case would be to take two compact subsets Yy and Yy such that Yy NY{ does
not contain any elliptic points and § is taken sufficiently small such that ITy(z,w)
contains at most one element for all z,w € H whose images in I'g\H lie in Y; and Y{,
respectively.

5.5. Extension to neighbourhoods of the cusps

The need to choose a compact subset Yy of I'g\H in § 5.4 means that we have to do
some more work to find suitable bounds on the Green function grp(z,w) in the case
where one or both of z and w is near a cusp of T.
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II. Analytic results on modular curves

Let T' be a cofinite Fuchsian group, and let ¢ be a cusp of I'.  We choose a
sufficiently small €, > 0 such that disc B,(e.) of area e, around ¢ is well-defined. For
any w ¢ B.(e.), the function grp(z,w), viewed as a function of z € B(¢.), satisfies

1

2100 grr (2, w) = _EﬂH(Z)'

We can therefore write

1
grp(z,w) = ol log(ecyc(2)) + hyw(2) for all z € B(e,),

where y.(z) is defined as in §1.2 and h,, is a real-valued harmonic function defined
on the compactification

Be(ee) ={z € T\H | ye(2) = 1/ec} U {c}.

By construction, hy,(z) coincides with grp(z, w) for y(2) = 1/€; in other words, for
z on the boundary of B.(e.). The maximum principle for harmonic functions now
implies that

1
grr(z,w) < ——log(e.ye(2)) + sup grp(z',w) for all z € Be(e.), w & Be(ec).
volp 2'€0B. (ec)

Finally, considering the case where z and w both lie in B, (e.) for some cusp ¢, we get

1 1
< or = _ _
g1 (2110) < 815, (200 + o ogece(2)) o oslecpelw)
+  sup  grp(2,w)
2w €HB. (ec)

for all z,w € Bc(e), where grg (., is the Green function for the Laplace operator on
the closed disc B.(e.). This Green function is defined by the differential equation

21005 (e.)( s W) = 0y, B
&R, ( c)( ) . for all w € Be(e,).

8B, (e.) (z,w)

if |ge(2)| = exp(—27/ec) }

It is given explicitly by

(0¢(2) — gelw)) exp(2n /e
1= e(=)aew) exp(dn /e

1
8T, (e.) (z,w) = o log

b

where ¢ is the coordinate function defined in §1.2. The function grg (. (2, w) is
non-positive for all z and w on B.(e.), and vanishes on the boundary.
Analogous lower bounds for grp hold with suprema replaced by infima.
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Chapter III

Arakelov theory for modular curves

In this chapter we describe intersection theory on arithmetic surfaces, as developed
by Arakelov [2] and Faltings [37]. We also give explicit bounds for canonical Green
functions of modular curves, using the results for Fuchsian groups proved in the
preceding chapter.

1. Analytic part

In this section we define the basic analytic concepts that are needed for Arakelov
theory, namely admissible metrics on line bundles on compact Riemann surfaces. In
the case of modular curves, we also compare the admissible metric on the line bundle
of holomorphic differentials to the Petersson metric on the line bundle of cusp forms
of weight 2.

1.1. Admissible metrics

Let X be a Riemann surface. For n =0, 1 or 2, we write £% for the sheaf of smooth
complex-valued n-forms. There is a natural decomposition

Ex =9V @ QY.

Here 8)((1 0 and E)(? D consist of differential forms that are locally of the form fdz
and g dz, respectively, where z is a holomorphic coordinate and f and g are smooth
functions. This decomposition causes each of the two differentials

0o d 1 d o2
E — & — &

to split as the sum of two partial derivatives. These four partial derivatives fit in an
anti-commutative diagram
&0 0 (1,0)
x — &x

al la
gD 2, g2
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III. Arakelov theory for modular curves
The Laplace operator on X is the C-linear map
2i00: £ — £%.

Now let X be a compact connected Riemann surface of genus g > 1. The space
HO(X, Qﬁ( /c) of global holomorphic 1-forms on X has a Hermitean inner product
defined by

(o, B) =%/Xa/\5. (1.1)

The canonical (1,1)-form on X is defined as
uEt = Zaj A @y, (1.2)

where (v, ...,q,) is any orthonormal basis of HO(X, Q%{/c)'
If £ is a line bundle on X, an admissible metric on L is a smooth Hermitean
metric | | on £ that locally on X satisfies

i8510g|s| (deg L)ue™
i

for some (hence any) local generating section s of £. An admissible line bundle on X
is a line bundle equipped with an admissible metric.

There exists a unique smooth (i.e. infinitely differentiable) function grs
the diagonal on X x X such that

can ogutside

2i00 gr™( ,y) =8y, — p¥™  and / g ( Lyt =0 forally e X.

This function is called the canonical Green function of X. For a proof of the existence
of grg", see for example Elkik [106, exposé III].

Remark. Various normalisation conventions for the Green function can be found in
the literature. Our gr@" is ;- times the Green function used by Arakelov [2] and
Faltings [37].

Let D be a divisor on X. The line bundle Ox (D) admits a canonical admissible
metric | |o(p), defined by putting

log [1lo,(p)(y) = 27 Z ng gr(z,y) (D= Z Ny (1.3)
zeX zeX

for y outside the support of D, and extending by continuity. Furthermore, there is
a canonical admissible metric on the line bundle Qﬁ( e of holomorphic differentials,
defined uniquely by

log \dz|9§/c(x) = yli_r)r;(log |2(y) — 2(2)] — 27 gr$™(w,y)) forz € X (1.4)
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1. Analytic part

if z is a local coordinate in a neighbourhood of x.
To every admissible line bundle £ on X, we associate a one-dimensional complex
vector space

ML) =det H(X, L) @ det HY(X, L)V,

called the determinant of cohomology of L. Faltings proved in [37, Theorem 1] that
there is a unique way to assign metrics to the A(£) for all admissible line bundles £
such that the following axioms are satisfied,

(1) For every isometry f:L£ — M between admissible line bundles on X, the in-

duced isomorphism

Af):AL) == A(M)

is an isometry.

(2) If the metric on £ is scaled by a factor a > 0, the metric on A(£) changes by a
factor aX(£)| where

x(£) =dimH(X, £) — dim H' (X, £)

is the Euler characteristic of L.

(3) For every admissible line bundle £ on X and every point P € X, the canonical
exact sequence

0— L(—-P) — L — P.P"L—0

induces an isometry

ML) = ML(=P)) ® P*L.
(4) The metric on
AQ%/c) = det H(X, Q% /)

comes from the inner product (1.1) on HY(X, Q%{/c)'

For later use, we extend the definition of the canonical (1, 1)-form and the canon-
ical Green function to the case g = 0, i.e. to the complex projective line P*(C). We
endow P!(C) with the volume form for the Fubini-Study metric. This is the (1,1)-

form defined as
i dzNdz

Mo = o T+ 2P

this depends on the choice of the coordinate z. The corresponding Green function
(defined as above) is given by

i+—lo |2 — wl*
ar " ar B P A+ [wP)

grp: (2, w) =
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III. Arakelov theory for modular curves

1.2. Comparison between admissible and Petersson metrics
Let T be a cofinite Fuchsian group, and let X be the compactification of I'\H obtained
by adding the cusps. We assume that I' has no elliptic elements and that g, > 1.

We equip the line bundle w®?(—cusps) of cusp forms of weight 2 for I' with the
Petersson metric

|fl2,pet(2) = (S2)[f(2)| for z€ H

as in §11.2.1. Furthermore, we have the line bundle Qﬁ( /C equipped with the admis-
sible metric (1.4). There is a canonical isomorphism

Qﬁ(/c >~ w®2(—cusps) (1.5)

constructed as follows: for a local section « of Qﬁ( /C the pull-back of a to H can be
written as

a= fdz,
where f is a local section of w®?(—cusps). Taking global sections, we obtain an
isomorphism

HO(X, QY ) = S5 (D). (1.6)
Under this isomorphism, the inner product (1.1) on H(X, Q%{/c) corresponds to the

can

Petersson inner product { , )p on Sg(I"). This implies that the two (1, 1)-forms uS
and pgy on X can be compared as follows. We consider the function

Fr: X —[0,00)
defined on the open subset T'\H by
Fr(z) = Y |f[3 pets (L.7)
feB

where B is an orthonormal basis of the C-vector space So(T") of cusp forms of weight 2
with respect to the Petersson inner product; we extend Fr by zero to the cusps. From
the isomorphism (1.6) and the definition (1.2) of u$g", we get

1
5" = Fri. (18)
X

We can now compare the metrics |a\9§(/c and |f|2,pet- As in §I1.5.1, we define

1l u+1
k = — .
1) dru—1
From the formula for the function u(z,w) = coshr(z,w) given in §I1.1.1, it follows
that ) 1503
Sz Sw
k =—log(1+ — ).
(e = - tos (14 )
We define

Hr:T"\H - R
2 lim (ky (u(z,w)) + gr™(z,w)).

We view it as a function on X with singularities at the cusps.
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1. Analytic part
Lemma 1.1. The function Hr satisfies

2nHr = —log \a|Q§(/c +log | f|2,pet + log 2 (1.10)

for all local sections « of Q}( /c and f of w®?(—cusps) corresponding to each other
via the isomorphism (1.5), and

. L1
2i00Hr = (29x ~ Dp$" ~ 5pm + > 6. (1.11)
¢ cusp
Proof. We rewrite log |a|9§{/c as
log laly, _ = log |£(2)] +log|dzla,
. 1 |Z — w|2 can
= log | fl2,pet + 1})1212 B log S 5w 21 gr¥ (2, w) ).
One easily verifies that
1 _ 2
5 log % + 27k1(u(z,w)) — log2 as w — z.

This implies the equality

1 _ 2
Log |z — w|

lim <
w—z \ 2

and hence (1.10). We are going to deduce (1.11) by applying the operator 290
to (1.10) where o and f are local generating sections of Q}(/c and w®?(—cusps)

— 27 gr$ (2, w)> =log2 — 2 Hp(2)

Sz Sw

corresponding to each other via (1.5). First we note that for any local generating
section a of Q% /c» the admissibility of | |Q§( e implies that

can

2i00 log \oz|93(/c = —27m(2gx — 2)pu".
To prove the lemma, it remains to prove that
2i0010g | f|2.pet = —pgg + 276, (1.12)

Outside the cusps, this follows from the definition of log|f|2,pes. Near a cusp ¢ we
may write f in terms of the coordinate ¢, introduced in §11.1.2 as

f:a1q6+a2q52+-~- with a1 # 0,

This implies that (1.12) holds everywhere. O
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III. Arakelov theory for modular curves

2. Intersection theory on arithmetic surfaces

In this section we give a very brief overview of the results that we need from Arakelov’s
intersection theory on arithmetic surfaces [2], as extended by Faltings [37]. Another
useful reference is Szpiro [106].

Let K be a number field. We write Ky, and K, for the sets of finite and infinite
places of K, respectively. For every place v of K we write K, for the completion
of K at v. For every v € Kjy,¢, we choose an algebraic closure K, of K,; this is (non-
canonically) isomorphic to C. We write B for the spectrum of the ring of integers
of K.

A metrised line bundle on B is a line bundle £ on B together with a Hermitean
inner product ( , ), on the geometric fibre £, of L at each infinite place v of K,
where we view £, as a one-dimensional K,-vector space. We denote by | |, the
corresponding norm, defined by

|z|? = (2z,2), forx € L,.

The degree of a metrised line bundle (£,| |) is defined as

deg(L,| [)= > ordy(s)log#k, + Y _ (—log|sly)[K, : R], (2.1)

VE Kfin vE Kint

where s is any non-zero rational section of £ and ord,(s) is the order of vanishing
of s at v. This degree is well-defined by the product formula for the places of K.
An arithmetic surface over B is a proper flat morphism

m X — B,

where X is a normal integral scheme of Krull dimension 2, such that the generic fibre
of 7 is geometrically connected. For each infinite place v of X, we let X, denote the
compact connected Riemann surface X (K,). Any line bundle £ on X gives rise to a
line bundle £, on each of the X,.

A metrised line bundle on X is a line bundle £ on X together with a Hermitean
inner product on the line bundle £, for each infinite place v of K. As above, we
denote by | |, the corresponding norm. If the genus of X is at least 1, an admissible
line bundle on X is a metrised line bundle (£, (| |v)vek,,,) such that for each v € Kius
the metric | |, on £, is admissible in the sense of §1.1.

An Arakelov divisor on X is a formal linear combination

D=Dg+ Y avk,
VE King

where Dy, is a Cartier divisor on X and the a, are real numbers; the X, play the role
of “vertical prime divisors at infinity”. We say that an Arakelov divisor D is horizontal
if all the a, are zero and every irreducible component of Dg, is flat over B. We say D
is vertical if Dg, is a linear combination of irreducible components of the fibres of X.
The principal Arakelov divisor associated to a non-zero rational function f on X is

div(f) = divan(f) + Y au(f) X0,

vEKint
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2. Intersection theory on arithmetic surfaces

where divgy, (f) denotes the usual (Cartier) divisor of f and where a,(f) is defined for
f € Kinf by

a(f) =~ [ gl flons

Let D be an Arakelov divisor on X. We make Ox (D) into a admissible line
bundle by equipping the pull-back of Ox (D) to each X, with the metric | |0, (p,)
defined by (1.3).

The Arakelov class group on X is the group Cl1 X of Arakelov divisors modulo
the subgroup of principal divisors. The Picard group of an arithmetic surface X is
the group Pic X of isomorphism classes of admissible line bundles on X. There is
a canonical isomorphism between these groups via the map that sends an Arakelov
divisor D to the admissible line bundle Ox (D).

The Arakelov intersection pairing is the unique symmetric bilinear map

(. )ClXxCX—R

with the following properties. If C' and D are effective Cartier divisors without com-
mon components, then

(C.D)= ) log#k()ia(C,D) = ) [Ky:R] 2w @i (Co, Do),

zeX v€E Kint

where x ranges over the closed points of z, the residue field at = is denoted by k(z),
and i, is the local intersection number at xz. If C is a horizontal Cartier divisor of
degree n over B, then (C'. X,) = n[K, : R] for every infinite place v of K. Finally,
(%, . Xy) = 0 for all infinite places v and w of K.

The definition of the intersection pairing implies that if S: B — X is a section
whose image is a Cartier divisor (also denoted by S), then

(S.D)=degS*Ox(D) (2.2)

for any Arakelov divisor D on X.
To any line bundle £ on X we associate a line bundle A\;£ on B, called the
determinant of cohomology of L. It is defined as

ML =det . L@ (det R'm, L)V,

where the determinant of a coherent sheaf on B is defined using a resolution by locally
free sheaves of finite rank; see Moret-Bailly [106, exposé II, §1.1]. The formation
of \;L is compatible with arbitrary base change on B. The line bundle A\, is made
into a metrised line bundle by equipping the fibre

(ML), = det HY(%,, Lx,) ® det H (X, Lx,)"

for each infinite place of K with the metric given by Faltings’s axioms as in §1.1.
From now on we assume that the morphism 7: X — B is semi-stable. In this
case there exists a line bundle €0, called the relative dualising sheaf. On the open
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III. Arakelov theory for modular curves

subscheme of X where 7 is smooth, 2, coincides with the line bundle QL of relative
differential forms. In particular, we can equip it at the infinite places of K with the
canonical admissible metric defined in §1.1.

Let S be a section of 7 such that the image of S lies in the regular part of X, so
that S is a Cartier divisor. Then we have the adjunction formula

(S.S) = —(S. ). (2.3)

The determinant of cohomology is compatible with the relative version of Serre
duality (see Hartshorne [42, II1, § 11]). More precisely, if £ is an admissible line bundle
on X, then the metrised line bundles AL and A (LY ® Q,) on B are canonically
isomorphic; see Moret-Bailly [106, exposé II, proposition 4.15.2]. Furthermore,

deg ArL = deg[det 7. L ® det m. Hom(L, Q)] — log #(H" (X, L)tor),

where the line bundle det 7. £ ® det . Hom(L, ;) is metrised according to Faltings’s
axioms and H!(X, L), is the torsion submodule of H! (X, £).
If m: X — B is semi-stable, we have Faltings’s arithmetic Riemann—Roch formula

1
deg AL = 5(5.£®Q7vr) + deg A\ Ox.

Definition. Let X be a curve over Q. Let K be a number field such that X has a
semi-stable model m: Xz, — SpecZ over the ring of integers Zx of K. The Faltings
height of X is
1
hFaltings(X) = 7[1( . Q} deg AWOXZK;

this is independent of the choice of K and of the semi-stable model.

2.1. Heights

Let K be a number field. For every place v of K, let K,, denote the completion of K
at v, and let
| o: Ky — [0,00)

denote the absolute value corresponding to v, normalised so that multiplication by x
scales the Haar measure on K, by a factor |z|,.

Let K be a number field, let 2 be an element of K, and let L C K be any finite
extension of K containing x. The height of x (relative to K) is the real number

defined by
1

[L: K]

hy(x) = > logmax{1, |z[,},

where v runs over all (finite and infinite) places of L; this is independent of the choice

of L. More generally, for any point « = (z¢ : 21 : ... : Z,) in some P"(K), we define

1

th/K(.’E) = m Zlogmax{\xg\v, ey |£L'n|y},

where L is any finite extension of K containing all the x;. This is well defined because
of the product formula for the places of K.

80



2. Intersection theory on arithmetic surfaces

2.2. The Néron—Tate pairing and points of small height

Let A be an Abelian variety over a number field K, and let £ be a symmetric ample
line bundle on A. The Néron—Tate height on A with respect to L is the real-valued
quadratic form hﬁ ! the Abelian group A(K) defined as follows. We choose an
integer m such that £®™ is very ample and a K-basis (bg,...,b,) of H(A4,L®™).
These choices define a projective embedding i: A(K) — P7"(K). Then the sequence
{n=2hpr K (i(nz))}n>1 converges as n — oo, and the limit

hﬁ/K(aj) =m~" lim n *hp- k(i(nz))

n—oo

does not depend on the choice of m and (by,...,b.). The map
W A(K) = R

is a quadratic form. The associated symmetric bilinear form is called the Néron—Tate
pairing on A and is denoted by ( )ﬁ/K.

Let K be a number field, let B denote the spectrum of its ring of integers, and let
m: X — B be a regular and semi-stable arithmetic surface with fibres of genus g > 2
whose generic fibre is smooth and geometrically connected. Let J be the Jacobian of
X over K. We write hT and ( , ) for the Néron-Tate height and the Néron-Tate
pairing on J with respect to the ample line bundle O;(©), where O is a symmetric
theta divisor. The basic relation between the Néron—Tate pairing and Arakelov theory
is the Faltings—Hriljac formula; see Faltings [37, Theorem 4(c)] or Moret-Bailly [106,
exposé II, théoreme 6.15]. It says that if £ and M are two admissible line bundles
of degree 0 and at least one of them has intersection number 0 with every irreducible
component of every fibre, then

(L. M) =—[K: Q[Lk], [MKk]).,

where the square brackets denote the point of the Jacobian corresponding to a line
bundle of degree 0.

We will later need the following fact due to Zhang [116, Theorem 5.6]: if D
is a divisor of degree 1 on X such that [(2g — 2)D — Q] is a torsion point of
the Jacobian, then for every e > 0 there are infinitely many points z € X (K) such
that the Néron—Tate height (relative to the base field K') of the point [x — D] in the
Jacobian of X is less than Qi(/K’a/(Qg —2) + €, where Qi/K)a is the self-intersection
of the relative dualising sheaf of Xy in the sense of Zhang [116]. A consequence of
this is the following generalisation.

Lemma 2.1. Let Xg be a proper, smooth and geometrically connected curve of
genus g > 2 over a number field K, let J be the Jacobian of Xk, and let D be a
divisor of degree 1 on Xy such that [(2g — 2)D — Qx, /x] is a torsion point of J.
Then for every positive integer d and every € > 0 there exist infinitely many effective
divisors R of degree d on X such that
L
NT 2 a
hJ/K([R — dD]) <d 297_2 + €.
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III. Arakelov theory for modular curves

Moreover, if L is a given line bundle of degree at most g — d — 1 without non-zero
global sections, there are infinitely many such R for which L(R) still does not have a
non-zero global section.

Proof. Consider an effective divisor R of degree d on X g, and write
R=P + - +P; (PeX(K)).
The fact that hlj/TK is a quadratic form taking non-negative values implies that

bk ([R — dD]) = hJ/K([P*DH“'HPd*D])

_ZhJ/K ([P, = D))+ ([P — D], [P; — D))
i#j

d
< Dl D)) + 5 S ([P~ D)) + W17~ D))

i#£]
=d Z hJ/K D]).

By Zhang’s theorem cited above, there are infinitely many ways to choose points P;
on X g such that

Q
([ = Dl) < 5 P55 e/,

This implies the first claim of the lemma. Now if £ is a line bundle of degree at most
g — d — 1 without non-zero global sections, then

dimHY (X7, L) =g —1—deg L

by the Riemann—Roch formula. Via Serre duality, we see that there are infinitely
many ways to choose the P; such that

dimy H (X, L(Py,...,P)=g—1—degL —i fori=0,1,...,d.

For every such choice of the P;, applying the Riemann—Roch formula again shows
that HO(X3, L(Pi, ..., P;)) = 0, which proves the second claim. O

If Xy is the generic fibre of a semi-stable arithmetic surface 7: X — B, the
real number Q3 /K is related to the self-intersection (in the sense of Arakelov’s
intersection theory) of the dualising sheaf Q, of X over B via the formula

Bi/gn= Qe Q) = D rylog #k(v)

v€E Kfin

(see [116, Theorem 5.5]), where the r, (defined in [116, §4]) are certain non-negative
real numbers that vanish for all finite places of K such that the corresponding fibre
of X is smooth.
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3. Bounds on analytic data for modular curves

3. Bounds on analytic data for modular curves

In this section we derive bounds on various analytic data associated to Riemann
surfaces that are compactifications of quotients of the hyperbolic plane by Fuchsian
groups I' that are of finite index in a fixed cofinite Fuchsian group I'y. Most impor-
tantly, in §§3.2-3.5 we derive bounds on canonical Green functions of such Riemann
surfaces. These bounds are stated in terms of those obtained in Sections I1.4 and II.5.
Another result that is proved in this section and is used later is a bound on the
function Hr defined by (1.9), which relates the difference between the admissible and
Petersson metrics on the line bundle of differentials by Lemma 1.1. Finally, in § 3.7 we
find an upper bound on a certain integral that is, roughly speaking, the average of the
logarithm of the norm of a given differential with respect to the canonical admissible
metric.

Remark. A different approach to the problem of bounding canonical Green functions
was taken by Jorgenson and Kramer in [51], who found an interesting expression for
the canonical Green function purely in terms of data associated with the hyperbolic
metric; see [51, Theorem 3.8] (we note that a minus sign is missing in the cited
theorem). All things considered, however, their methods appear to be more involved
than ours.

3.1. Notation

Let T'y be a cofinite Fuchsian group. For every cusp ¢ of I'y we fix a real number €, > 0
such that the discs B.(e.) of area €, around ¢, as defined in §11.1.2, are well-defined
and pairwise disjoint. We define a compact subset Yy of To\H by

Yy = (FO\H) \ |_|Bc(€c)7

where ¢ runs over the cusps of I'g. Furthermore, we choose a real number § > 1 such
that for all z,w € H whose images in I'y\H lie in Yy, the set

{7y € T | v is not elliptic and u(z,yw) < §}

contains at most one element. Finally, we fix a positive real number .

Let T be a subgroup of finite index in I'y, and let X be the compactification
of I"\H. We assume that X has genus gy > 1, that I' does not contain any elliptic
elements, and (as in §11.5.4) that the non-zero eigenvalues of the Laplace operator
on T'\H are bounded from below by A. For every cusp ¢ of ', we denote by m, the
ramification index at ¢ of the map from the compactification of I'\H to that of I'o\H.
We abbreviate

€c = M€y,

where ¢g is the cusp of I'g over which ¢ lies. We write Y for the inverse image of Y
in T'\H; this is the complement of the discs B.(e), where ¢ runs over the cusps of T
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III. Arakelov theory for modular curves

3.2. Comparison between hyperbolic and canonical Green functions

There are two interesting Green functions associated to the Riemann surface X. First,
we have the Green function gri outside the diagonal on I'\H x I'\H given by the
structure of T\H as a quotient of the upper half-plane by a Fuchsian group. This
Green function has doubly logarithmic singularities near the cusps; this was made
precise in §11.3.6. Second, we have the canonical Green function gr¢" outside the
diagonal on X x X, given by the structure of X as a compact Riemann surface of
genus at least 1. There is a standard way to relate these two Green functions, which
we will use to find explicit bounds on canonical Green functions.

Let ™ be the canonical (1,1)-form on X as in §1.1. We define a real-valued
function hr on T'\H by

he(z) = / O

=L [ ) Few)(w),
9x Jwel\H
where Fr is the function defined by (1.7). This integral converges since Fr is smooth
and bounded on I'\H.
By the definition of the Laplace operator A and the Green function grp in §§11.1.1
and I1.3.6, respectively, the function hr satisfies

1 1
—Ahp = —Fr — / Frpg
Ix gx volr Jx
1 1
=—Ir— —,
Ix volp
or equivalently
1

2285}11" = Mchn — EHH,

on I"'\H. Furthermore, if ¢ is a cusp of I" and ¢.: H — (0, 00) is the function defined
in §1I.1.2, then both hr(z) and grp(z,w) for fixed w have a singularity of the form
volp! log ye(2) as y(z) — oo. This implies that the canonical Green function of X
can be expressed as

B (2 0) = ()~ he() ~ () + [ e (31)
m\H
We will use this expression to find bounds on gr”.

3.3. Bounds on the function Ar

We are going to bound the function Ar on Y, uniformly in I', using the results of
§811.4.2, 11.4.3, 11.5.4 and 11.5.5. For z € Y, we decompose the integral defining hr(z)
as

1 1
hr(s) = - /Y e Fe (W) + = EB/( )grr<z7w>FF<w>uH<w>,
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3. Bounds on analytic data for modular curves

where ¢ runs over the cusps of I'. We have seen in Theorem I1.5.4 that there is a real
number B not depending on I' such that

grr(z,w) < B forall z,weY.

From this we get

/ grp(z, w) Fr(w) g (w) §Bs1¢pr/ P
Y
weY

We note that we obtained upper bounds on supy- Fr in §11.4.2.
For every cusp ¢, the results of §§11.5.5 and I1.4.3 show that furthermore

1
grr(z,w) < — log(ecyc(w))+ B forall z€Y and w € B.(e)
volp

and

Fr(w) < (ecye(w))? exp(4n/e. — 4my.(w))sup Frr  for all w € B.(e).
%

We recall that Bc(e.) is the image of the strip {z +iy | 0 < z < landy > 1/¢}
under the map H — T'\H sending z to I'o.z. Using the above bounds and integrating
over B.(w), we therefore get

| s m(w) < & sup Fr
’wGBc(Ec)

e}
1
. /1/& (E log(e.y) + B) exp(4n/e. — dmy)dy

2 4
ez supy Fr

o €
==X - 1 (1 - ) —
yr— /0 og(1l+ . exp(—u)du

2
+ -~ Bsup Fr,
47 Y

using the substitution
u=4ry —4r/e..

The integral on the right-hand side can be bounded using Jensen’s inequality on
convex functions:

/ log(1 + au) exp(—u)du < log/ (14 au) exp(—u)du
0 0

= log(T'(1) 4+ aI'(2))
= log(1 + a).

This gives

2 1
[ s Frtwto) < s Fi (- tog 1+ 5 ) + ).
4 v volr 47
wEB(€)
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III. Arakelov theory for modular curves

Summing the contributions from Y and from the discs around the cusps, we get the
upper bound

sup hr < UI;YFF< /MHJFZM( (1+;‘T)+B)>. (3.3)

X

For the lower bound, we do a computation that is identical except that by Theo-
rem I1.5.4 we get an extra (negative) term

1
S@ == [ )~ k(e w) P (w)
X wel'\H
d(z,w)<é
where . +1
U
k1(u) = Elogu_ T
This term can be bounded as
supx Fr
S(z) = e (k1(6) — k1 (d(z, w))) pgg (w);
X d(z,w)<é

we note that an upper bound for sup y Fr is given by Lemma I1.4.1. The integral can
be evaluated as follows:

)
/ (k1(8) — by (d(z, ) )pgg (1) = 2(6 — 1)y (5) — 2 / b ()

wel'\H
d(z,w)<68 6+ 1
—log >

This gives the lower bound

. sup Fr €
o= 03 s S (G0 0)
7supXFrlog5+1. .

9x 2

We now extend our bounds on hr to the discs B, (e.). By construction, hr satisfies

the differential equation

1
QZaahF = Can EMH

This implies that hr can be written on B.(e.) as

h@) = [ et ) + o loslea(=)) + H:),
wEB. (€.)
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3. Bounds on analytic data for modular curves

where grp (. is the Green function on the closed disc B.(e.) as defined at the end of
§11.5.5, and where H is the unique harmonic function on the compactification B, (e)
that is equal to hr on the boundary. It follows from the non-positivity of grz () and
the maximum principle for harmonic functions that

1
hr(z) < ——log(eyc(2)) + sup hr for all z € B.(e.). (3.5)
VOIF 8Bc(5c)

Similarly, it follows from the bound for Fr given in §I1.4.3 and the differential equation
satisfied by grg () in §11.5.5 that

F
ble#rez exp(4n/e.)

v

/ 85 ey (22 WIS ()

wEBc(ec)

X

/ 85 ey (22 )y (0)? exp(—Amye (w)) g (0)

we B (ec)
_ S“piFFe? exp(dr/el)
. ﬁ(exp(_zmgc(z)) — exp(—dr/ec))
_ _T(;)Qu — exp(dm/ec — 4y (2))

o _Supy Fr (3)2.
- Ix 4

Therefore a lower bound is given by

supy Fr / €. \2 1 _
> f — = —1 for all B . .
he(z) 2 inf e = S (i) + o loslecnn(=)) for all = € Be(eo). (37)

can

3.4. Bounds on the integral fF\H hrp$g

We are now going to bound the constant term in (3.1), which we split up as

/ hruS$™ = / hruS™ + Z / hru$™.
Be(ec)

Plugging in the upper bound (3.5), we obtain

hrp$™ < sup hr/ S+ Z/ ( sup  hr + 71 log(ecyc)> px"
Y

'\H OB, (me)

Next we use the fact that fX use™ = 1, the equation (1.8), which relates pu®" to pig
via the function Fr, and the bounds

Fr(z) < {supy Fr if zeY;
= | (ecye(2))? exp(dr/e. — dmyc(2)) supy Fr if 2 € Be(e.)
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III. Arakelov theory for modular curves

proved in §§11.4.2 and I1.4.3. This gives

can . Supy Fj
/ hppft < —Y = > / log(€cye)(ecye)® exp(4/ec — 4myc) gy + sup hr.
I\H gx volp < € Y

The integral over B.(e;) can be bounded as follows:

o0

/ sl (ce)? explimec — dmy g = € / log(ecy) exp(dfec — dry)dy
B (e 1/ec
2 [e'e)

= Z—;_ ; log(l + ZI—;u> exp(—u)du

€2 €
< gloe(1+ 1)
~ Ar log {1+ A/’
where the last inequality follows from (3.2). We therefore get
/ hrpSe™ < sup h +MZ log(1+ %)
I\H rhx = yp r g volp 4 dm /)’
Finally, plugging in the upper bound (3.3) for hr, we conclude that
hppsen < Sy IT (g / +Z (—o(1+—)+B>
- rHx gx 032 A7 \volp g A

supy Fr Z ¢
+ Zhlog@—i— E)

gx volr

(3.8)

An entirely analogous computation using (3.7) and (3.4) leads to the lower bound

can - Supy Fr €2 ( 1 ( € ) )
h > — (A E —(—1 1+ — A
/F\H T = 9x < /Y Mt — 4w volp s\l + 4m *

Supy- Fp)2z ek supy It 0+1
— ( — log .
(

Jx 47)3 Ix 2

(3.9)

3.5. Bounds on canonical Green functions

From (3.1), the upper bound for grp from Theorem I1.5.4, the lower bound for hr
given by (3.4) and the bound (3.8), we can now conclude that

sup gr$” < B+ min{0, k1 (6) — k1 (d(z,w))}
Y XY
2supy Fr /
B — — 1+—)+A
Ix ( MH+Z47T<V01F og( +4 )+ )
supy Fr 2 q .
— B < (——log(l1+-=)+B
* Ix ( /MH+Z47T(VOIF 0g< +47T>+ ))

3 F 3 F 0+1
+ v T Z 1o g1+ 5) +27 X L 1o Y
gx volr 47 47 Ix 2
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3. Bounds on analytic data for modular curves
Simplifying this, we obtain

sup gr” < B+ min{0, k1(0) — k1 (d(z,w))}

Y XY
B —2A)s F s g 6+1
4 & ) supy F(/MH+Z > IPX T 1op o
9x Ix

(3.10)
Similarly, combining the lower bound for gri- from Theorem I1.5.4 with the inequalities
(3.3) and (3.9) leads to the following bound for all z,w € Y:

er¢" (z,w) > A+ min{0, k1 (8) — k1 (d(z,w))}

A — 2B)supy F] €2
+( ) supy F(/“H+247CT>

Ix
supy Fl" Z ( ) (311)
1+ —
gx volr 47
_(suppr) Z €l _ supx Fr log5+1
9x (47)? 9x 2

We now imitate §I11.5.5 to extend the above bounds on the canonical Green
function gri@”(z,y) to the case where one or both of z and y lies in a neighbourhood
of a cusp ¢ of I". For any y not in the disc B (e.), we consider gri@"(z, y) as a function
of € B(e.). This function satisfies

2000 x5 (. y) = —" (),

SO we can write

are (2, y) = — / €. ey (0, DU () + hy(z) for all € Be(eo),
ZEB:(Ec)

where grp (.,) is the Green function on the disc Bc(e.) as defined in §I1.5.5. By
construction, the function hy(x) coincides with gr@@"(z,y) for « on the boundary
of Bc(e). The inequality (3.6) now implies that

supy Fr / €.\ 2 an _ _
B (y) < T (40) +supar(y) for all v € Be(eo)y ¢ Belee):
X z€

Finally, considering the case where  and y are both in a disc B.(e.), we get

can 2SL1p FF € can
aret (@, y) < grp (T y) + —— (f) + sup gr (3.12)
Ix ™ Y XY

for all z,y € Bc(e).
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III. Arakelov theory for modular curves

3.6. A lower bound for the function Hr

Now that we have a lower bound for gr¢", we can deduce a lower bound for the

function Hr defined by (1.9). Namely, it follows immediately from (1.9) and (3.11)
that

. (A —2B)supy Fr €2
> -
inf Hp > A + k1 (6) + AuH+ EC o

9Ix
supy Fr €2 ( €c ) (supy Fp)2 €t
— < log(1+4+ =) — 3.13
gx volp Z ir ® + 47 gy Z (4m)3 (8.13)
_ supy Fr log5+ 1
Ix 2

We extend this to the cusps using the differential equation

-9 can 1
2i00Hr = (2gx — 2)u$" — o HE + Z .

¢ cusp

proved in Lemma 1.1. This differential equation implies that

1 1
)= Qox—2) [ a0 (o A2 0) + oo log(eare2) + - ) + ()
weB, (Gc)

for 2 € Bc(e.), where h is the unique harmonic function on B.(e.) that coincides
with Hr on the boundary of B, (e.). By (3.6) and the minimum principle for harmonic
functions, we get

supy Fr (s

H > —(29x —2
(2) 2 ~(20x =) LT (3

2 1 1 .
) + Py log(ecyc(2)) + i ye(z) + 11}}f Hr (3.14)

for all z € B.(e).
3.7. An upper bound for the integral [, log |o¢|Q§(/cu§?“

Let a be a non-zero element of HY(X, Qﬁ( /C). We are interested in an upper bound
for the integral

I(a) = /Xlog\alg;(/cux

in terms of the norm

(a,a)zz/a/\@.
2 Jx

Let f be the element of So(T") corresponding to « via the isomorphism (1.6). We
rewrite I(c) using Lemma 1.1 as

I(a) = / log | fl2,pespt™ + log 2 — 277/ Hru$*. (3.15)
X X
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3. Bounds on analytic data for modular curves

Jensen’s inequality implies that

/ log(\f|2 pet ) HE" < log/ \f|2 PethX -
I\H MH

From (1.8) we now get

supy Fr
/ ‘f@,Pet:u’g?n = L/ |f|§,Pct/~LH
MNH Ix N\H

supy Fr

. (£, f)r (3.16)

supy Fr

= —(a,q).

9x

N

Furthermore, the bound (3.14) implies

an n sup FF € 2
/HFM.CX Z/y(lanr ps +Z/ lanr—(QgX 2)L<ﬁ)

B (e¢) 9x

1
+ o op(ect(2) + = = ()"
2

supy 1 €
> inf Hp — 2 —2)——
1n r Z/ e (29x ) Jx (471')2

1
T or IOg(chc) - + yc)ﬂ.c;(m

Supy Fp €2 0
>1anF— / (29x —2)———— —i—y)/fa
Z B (ec) X ) 9x (47T)2 ¢ X
. supy Fy €2
= inf Hr — ((Qg -2)——— user
Y Z * 9x (47 Jpen'

1
s (e D).
Bc(ec) €c

The integrals can be bounded as follows:

can 1
/ bx = */ Frpg
Bc(ec) gX Br(ec)

F o0
Mt [ explanec — amy)dy
Ix 1/ec

Supy Fri
gx 4rm

IN

and similarly

1\ o 1 1
/ (yc - *)MSE = <yc - *)FFNH
Be(ec) €c B, (Ec €c

9Ix
e 1
/ (y — —) exp(4n /e — dmy)dy
1/ee €e

supy Fr 2
2
supy Fr €

IN

9Ix
_fe
gx  (4m)?
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III. Arakelov theory for modular curves

This gives
can . Supy FF 2 6? Supy FF 6?
Hpp™ > inf Hy — (29 72( ) +
/X Y Z ( X ) 9x (471')3 Ix (477)2
. Supy Fp>2 6‘3
=inf Hr — (295 — 2
_ supy Fp €2
2T

From (3.15), (3.16), (3.17) and (3.13), we now get the desired upper bound for I(«).
Because the resulting formula is not very enlightening, we do not write it down.

4. Intersection theory at the finite places

Let R be a complete discrete valuation ring with field of fractions K and algebraically
closed residue field k. Let X be a proper, smooth and geometrically connected curve
over K. To X there is attached a graph Gx describing the system of all regular and
semi-stable models of X over finite extensions of R. This Gx will be a metrised graph,
as will be defined below. In the spirit of Zhang [116], we will describe the relevance
of such graphs for arithmetic intersection theory.

4.1. Metrised graphs

We first make precise what we mean by piecewise smooth functions. We then define
metrised graphs in essentially the same way as Zhang [116, Appendix], and we define
the Laplace operator and the corresponding Green function on a metrised graph.

By an interval we mean a subset of R of the form {z € R | a < z < b}, where
a < b are real numbers. Let I C R be an interval, and let f: I — R be a continuous
function. Then f is called piecewise linear (resp. piecewise smooth) if I can be written
as a finite union of intervals Iy, ..., I such that the restriction of f to each Ij is
linear (resp. infinitely continuously differentiable). Here “differentiable” means “left
(resp. right) differentiable” at the endpoints.

Definition. A metrised graph is a topological space G with a measure p such that
G is isomorphic to a quotient of a finite disjoint union of intervals I, ..., I,, by some
equivalence relation on the set of endpoints, and such that g is induced from the
Lebesgue measure on the Ij.

If G is a metrised graph given as a quotient
¢hLu...ul, -G

by an equivalence relation on the endpoints, the continuous functions G — R are (by
definition of the quotient) the continuous functions on I3 U... U I,, that respect the
equivalence relation. The R-vector space of piecewise linear functions on G, denoted
by PL(G), is the space of continuous functions f: G — R such that the restriction
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of f to each Iy is piecewise linear. The R-vector space PS(G) of piecewise smooth
functions is defined analogously.

By construction, a metrised graph G has a natural measure . We write volg for
the volume of G with respect to u. Furthermore, we have the Laplace operator

A:PS(G) — PS(G)Y.
This is an R-linear map which is positive semi-definite in the sense that
(Af)(f) >0 forall f e PS(G);

the kernel of A consists of the locally constant functions. For the definition we refer
to Zhang [116, Appendix].

From now on we assume for simplicity that G is connected. The Green function
for the Laplace operator on G is the unique continuous function

gra:GxG—R

that is symmetric, piecewise smooth in both variables, and satisfies the differential
equation

—Agrg(p,q) =04 — p and / Ggrc(p, @u(p) =0  forallgeG.
pe

VOIGX

(In keeping with our convention for the other Green functions employed in this thesis,
our Green function is minus that of Zhang.) We also define

gqr:G— R
p gra(p,q) — grg(p, 7).
Then gq., is the unique function satisfying
—Agqr =064 — 0, and Ggr@p(p) =0 for all ¢,7 € G.
peG

By viewing G as a one-dimensional object made of electrically conducting material
and gq, as the potential function corresponding to point charges +1 and —1 at ¢
and r, we see that

Slcl;p 9q,r — Héf 9q,r = gq,r(r) - gq,r(‘])

<d(q,7),

where d is the distance between ¢ and r. Since infg gq» < 0, we get

sup (grg(p,q) — grg(p,7)) = sup gq.r(p)
p,q,7€EG p,q,r€EG

< diam(G),

where diam(G) denotes the diameter of G.
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4.2. Reduction graphs

Let R be a complete discrete valuation ring with field of fractions K and algebraically
closed residue field k. Let X be a proper, smooth and geometrically connected curve
over K. We associate to X a metrised graph Gx in the following way. By the
semi-stable reduction theorem [22], there exists a finite extension K’ of K such that
X Xgpec k Spec K’ has a regular and semi-stable model X g over the integral closure
R’ of R in K’'. We can identify the residue field of R’ with k, and we write e(K'/K)
for the ramification index of K’ over K. Furthermore, we write

Xk = Xn' Xspee r SpECK,

and we let V(X g+) denote the set of irreducible components of Xx+. We take a set of
intervals of length 1/e(K’/K) in R indexed by the set of singular points of X g (k),
and we label the endpoints of the interval corresponding to a singular point x by
the two irreducible components on which z lies; these are possibly equal. For each
C € V(Xg+) we identify the set of endpoints labelled C'. The result is by definition a
metrised graph G(Xx+). We may identify V(Xg+) with a finite subset of G(Xx). If
K C K’ C K" are finite extensions such that X has semi-stable reduction over K’,
and if X and X are the corresponding regular and semi-stable models, then there
is a canonical isomorphism ~ ~
G(Xkr) = G(Xgn)

of metrised graphs. We may therefore denote the graph by Gx, the choice of an
extension K’ of K being understood. We call Gx the reduction graph of X.
We define a non-negative real number (X)) as

VX)) = sup  (gray (2,y) — gray (2,2)),
z,y,2€EGx

where gro, is the Green function of the metrised graph Gx. It follows from the
results of §4.1 that
7(X) < diam(Gx).

For any finite extension K’ of K over which X has semi-stable reduction, we
define the finite dimensional R-vector space

D(Xy)) = RVEr)

of formal R-linear combinations of the irreducible components of the special fibre.
The intersection pairing between irreducible components gives rise to an R-linear
map

MD(XK/) — D(XK/)

> acCr— Z(Z(c. C')ac,>c.
c c N
Lemma 4.1. Consider an element w € D(Xg) of the form

w = Z boC  with Z be = 0.

ceV(Xgr) ceV(Xgr)
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Then there is an element

such that

This v is unique up to addition of a multiple of )"~ C. For any v as above the
inequality
— mi < ! /
maxac — minac < 2¢(K'/K)v(X) Z bc
C/Zbcl >0

holds for all C € V(Xg/).

Proof. The existence of v and its uniqueness up to addition of multiples of > . C
follow from the symmetry of the matrix M and the fact that the kernel of M is
spanned by " C. For the bound on the ac, we use the inclusion

i: D(Xg) — PS(Gx)

sending an element } ey (5, ,)acC € D(Xg+) to the unique continuous function

that takes the value ac at C for every C € V(Xg) and is linear outside V(Xg).
There is a second inclusion

VE D(XK/) — PS(Gx)V

Z acC — Z ac5c,
C C

where ¢ is the Dirac §-distribution at C', defined by

The above maps fit in a commutative diagram

D(Xy/) —— PS(Gx)
—e(K'/K)M | |a
D(Xg) —L PS(Gx)V.

This can be seen by means of a straightforward calculation going along the same lines
as Zhang [116, (a.5)]. The assumption that )., bcr = 0 implies that one solution v

of Mv = w is given by
v = Z acC,

where

ac = e(K'/K) Z ber gra, (C,C").
CTEV(Xgr)
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III. Arakelov theory for modular curves

In particular, this implies

lac| < e(K'/K) Z bersupgrg, (C, )+ Z bc/ianngX(C,)
Clibgr>0  Gx C':ber <0 X

—ew /) 3 ko (supsr. (€. ) - infere, (€ )
<K KN(X) Y e

C':bgr>0

The proposition follows since maxc ac —ming a¢ is independent of the choice of v. [

5. Bounds on some Arakelov-theoretic invariants of
modular curves

For every positive integer n, let X (n) denote the coarse moduli space for the modular
stack Mr, () over SpecZ defined in §1.1.1. We only consider n such that that the
fibres of X;(n) are of genus at least 1. In this section we will find bounds on certain
Arakelov invariants of the arithmetic surface Xj(n).

5.1. Self-intersection of the relative dualising sheaf
We consider the map

T:Spec Z[[q]] — X1(n)

corresponding to the Tate curve Tate(q™) over Spec Z[[g]] together with the n-torsion
point ¢ modulo ¢”, as defined in §1.2.4. The zero locus of ¢ gives a section

O:SpecZ — Xy(n).

Although X;(n) is not semi-stable, the image of O lies in the open subset where the
morphism X;(n) — SpecZ is smooth and has reduced fibres, so in this open subset
the relative dualising sheaf exists and coincides with the line bundle of differentials.
This means that O*(Q2x, (n)/z is a metrised line bundle on SpecZ. To find an upper
bound for its degree, we use the fact that 7" is unramified, so that

T*Qx, (n)/2 = Qgjiq)/2
= Z[[q]]dq.

This implies that O*Qx, (»),z is a free Z-module of rank 1 generated by dq. We
deduce from (2.2), (2.1) and (1.4) that

deg O*Qx, (ny/z = —log |dqo|a: (0)

Xy (n)/C

= lené(Qw 8% (n)(c) (2, 0) — log lqo(2)]),
where go is the standard coordinate around the cusp O.
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We choose a real number € € (0,1), and we write B (€) for the standard disc
of area € around the unique cusp oo of SLy(Z)\H as in §11.1.2, and we define Yy as
the complement of By (€) in SLy(Z)\H. Furthermore, we define a compact subset ¥’
of X1(n)(C) as the inverse image of Y; under the map I'y (n)\H — SL2(Z)\H. Then
the complement of Y is the disjoint union of the discs B.(e.), where ¢ runs over the
cusps of 'y (n) and € is € times the the ramification index at ¢. In particular, the fact
that the ramification index at O equals n implies that eo = ne. By (3.12) and the
explicit formula for grz () given in §IL.5.5, we therefore have

« . supy Fr n?e?
deg O*Qx, (ny/z < lim (27r grgo(nﬁ)(z, 0) — log |qo(z)|) + $4—
z—0 gXl(n) m

+ 27 51;}:; grgfln(n)(c)

21 supy Fr n?e?
= — + ———— + 27 sup gry{y .
e Ixi(m) AT N Ty Exm©)

We now consider a number field K such that X;(n) has a semi-stable model X
over Spec Z g, where Zp is the ring of integers of K. We abbreviate

1
0%\ (nyyz = m(ﬂwzk Qxyz,)xs

this does not depend on the choice of K. It follows from the Hodge index theorem
for Arakelov’s intersection pairing that

Qgil(n)/z < 4gX1(n) (gxl(n) — 1) deg O"Qx, (n)/2;

see Faltings [37, Theorem 5]. This also gives us an upper bound for Qil(n) /Qa’ the
self-intersection of the relative dualising sheaf in the sense of Zhang, via the inequality

2 2
0%, (/@ < 0%, (n)/2

from §2.2.

5.2. Bounds on Green functions on reduction graphs of modular curves
We fix a positive integer a. We consider integers n of the form ab, where b is a
squarefree positive integer coprime to a.
Let p be a prime number, let W(F,) be the ring of Witt vectors of F,, and let
W, = W(F,)[1/p] be its field of fractions. We will study how (X1 (n)w,) varies as a
function of n. We distinguish several cases, depending on how often p divides n.
First we assume p {n. Then X;(n) has a smooth model over W(F,), so we get

1Xa(n)w,) = 0.

Next we assume p divides n exactly once and that n/p > 5. Then X;(n) has a regular
and semi-stable model over the tame extension W(F,)[(,] of degree p — 1 of W(F},),
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III. Arakelov theory for modular curves

and the special fibre is the union of two smooth curves intersecting transversally in m
points for some positive integer m; see Katz and Mazur [53, Theorem 13.11.4]. This
implies that the reduction graph of X;(n)w, consists of two vertices connected by
m edges of length 1/(p — 1), so the observation in §4.2 that (X1 (n)w,) is bounded
above by the diameter of the reduction graph implies that

1
X < —.
WKa(mw,) € ——
Remark. In fact, one can explicitly compute the Green function of the reduction
graph and thereby show that

V(Xl(”)Wp) = ﬁ

We continue with the case where p divides n exactly once and n/p < 4. The
assumption that X;(n) has genus at least 1 implies that we have the following possi-
bilities:

(1) n=p =1L

(2) n=2pandp>T;
(3) n=3pand p > 5;
(4) n=4p and p > 5.

As before, X;(n) has a semi-stable model over W(F,)[(,] consisting of two smooth
curves intersecting transversally in a finite number of points. This model is, however,
not necessarily regular, since certain supersingular points in the special fibre of X;(n)
over W(F,,) correspond to objects with extra automorphisms. These are supersingular
elliptic curves over F,, with j-invariant 0 (in which case p = 2 mod 3) or 1728 (in
which case p = 3 mod 4), together with a torsion point of order n/p. Let x be
such a non-regular supersingular point, and let G be the automorphism group of the
corresponding object. Then G is cyclic of order g, where the possibilities for g are

given by the table below.

n=p n=2p n=3p n=4p
j=0mod p and p =2 mod 3 6 2 lor3 1
7 =1728 mod p and p = 3 mod 4 4 20r4 1 1

We choose a moduli problem P on elliptic curves over W(F,) that is representable,
finite étale and Galois with group G. Then we have a finite surjective morphism

X(P;T1(n)) — Xi(n),

where X(P;T'1(n)) is the fine moduli scheme classifying elliptic curves together with
a P-structure and I'y (n)-structure. This is a regular two-dimensional W(F,,)-scheme.
For any point z as above, we choose a point & mapping to z. Let Gz denote the
stabiliser of # in G, and let O, and O; denote the complete local rings of X1(n)
and X(P;I'1(n)) at x and Z, respectively. Then O, can be identified with the ring of
Gz-invariants in (/9\50 We apply the following algebraic result to this situation.
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5. Bounds on some Arakelov-theoretic invariants of modular curves

Lemma 5.1 (Edixhoven and A. J. de Jong; see de Jong [19, Lemma 4.3]). Let R be
a complete local Noetherian domain, and let A be an R-algebra. Let H be a finite
subgroup of Autgp A, and let A” denote the R-algebra of A-invariants.

(1) If A= R[[u]], then A7 = R[[x]].

(2) If A = R[[u,v]]/(uv — f) for some f in the maximal ideal of R, then A" is
isomorphic to R[[x]] or to R[[x,y]]/(zy — f#*H). O

The regularity of the complete local W(F,)[¢,]-algebra 0: implies that it is
isomorphic to W(F,)[(p][[u, v]]/(uv —7) for some uniformiser = of W(F,,)[(,]. Taking
(z-invariants, we see that

O, = W(F,)[G ][z, )]/ (wy — 7# ).

This implies that in passing from the semi-stable model of X;(n) over W(F,)[(,] to
its minimal regular model, the point z is replaced by a chain of e — 1 projective lines,
where e < 6. From this it follows that the diameter of the reduction graph is at most
6/(p — 1), so we conclude

6
X < —
Y(Xi(n)w,) < o1
Next we treat the general situation where n = p®m with ¢ > 2 and m > 5
not divisible by p. In this case X;(n) still has a model over the discrete valuation
ring W(F,)[(,] whose special fibre consists of a+1 smooth and irreducible components;
see Katz and Mazur [53, Theorem 13.11.4]. We denote this model by X1 (n)w,)c,]-
However, the special ﬁbrf Xl(n)f«‘p of Xl(n)W(F‘p)[cp] is not semi-stable. We choose a
finite extension R of W(F,)[(,] over which X;(n) acquires semi-stable reduction. We
consider the minimal resolution

m: X1 (n)r = Xi(0)wE,)(c,] Dspec W(F,)(c,) SPEC F-

Then X, (n)g is a regular model of X;(n) whose special fibre X; (n)g, is semi-stable,
and 7 induces a morphism

g, X1(n)g, — Xi(n)g, -

We write G, for the reduction graph of X;(n) over W(F,,) as defined in §4.2. For
every singular point x of Xl(n)Fp, we write H, for the union of the edges in G,

corresponding to singular points = € Xl(n)Fp with WFPQE = z. For every irreducible
component I of X, we write I for the unique irreducible component of X that maps
isomorphically to I under g, We let T' denote the finite subset of G,, consisting of

the points that correspond to one of the I. Then G,, is the union of the H,, with
running over the singular points of X; (n)Fp, and the intersection of any two distinct
H, equals T'. For every singular point x of Xl(n)Fp, we define

d, = max max (distance between I and g).
I1€eT geH,
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III. Arakelov theory for modular curves

If g and h are two points of G, lying on H, and H,, respectively, there is a path of
length at most d, from g to any I € T, and there is a path of length at most d, from
I to h. This implies that

diam(G,,) < 2m3x dy.

Now let m and m’ be positive integers with m | m/, m > 5 and p t m’/, and write
n = p®m and n’ = p®m’. Let = be a singular point of X; (n)va and let 2’ be a point
of X;(n')p, mapping to z under the map

b7 X () — X (n).

The map b?,’n is étale at 2/, so the subgraphs H,s of G, and H, of G,, are isometric.
This implies that
max d, = maxdy,,
T x’

where z and 2’ run over the singular points of Xl(n)FP and X (n/ )Fp, respectively.
We conclude that the diameter of G, (pam) is bounded for all m such that m > 5 and
p1n by areal number ¢(p®) that does not depend on m.

Finally, for m < 4, the same reasoning as that used above for the case a = 1
implies that the diameter of Gx, () is bounded by 6¢(p®).
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Chapter IV

Computational tools

In this chapter we describe the computational techniques that will be used in the next
chapter to compute modular Galois representations.

Most of the chapter is taken up by a “toolbox” for computing with divisors on
curves over (finite) fields. Roughly speaking, we describe and extend the methods of
Khuri-Makdisi for computing with projective curves, and we show that certain results
of Couveignes [16] and Diem [27] can be transferred to this setting. The remainder
of the chapter is devoted to some computational questions related to finite F-vector
space schemes over Q and to finite-dimensional F-linear representations of Gal(Q/Q),
where F is a finite field.

Many of the algorithms we describe are probabilistic. All of these are of the Las
Vegas type. This means that the running time depends on random data generated
during the execution of the algorithm, but that the outcome is guaranteed to be
correct. The epithet Las Vegas distinguishes such algorithms from those of the Monte
Carlo type, in which the randomness influences the correctness of the outcome instead
of the running time.

1. Algorithms for computing with finite algebras

In this section, we describe some techniques for solving two computational problems
about finite algebras over a field. The first is how to find the primary decomposition
of such an algebra; the second is how to reconstruct such an algebra from a certain
kind of bilinear map between modules over it.

The algebras to which we are going to apply these techniques in the next section
are of the form I'(E, Op), where E is an effective divisor on a smooth curve over a
field k. In this section, however, we place ourselves in the more general setting of
arbitrary finite commutative k-algebras.

1.1. Primary decomposition and radicals

Let k be a perfect field. We assume that we have a way to represent elements of k,
to perform field operations in k£ and to test whether an element in our representation
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1V. Computational tools

is zero. We assume furthermore that have a (probabilistic) algorithm to factor poly-
nomials f € k[z] in an (expected) number of operations in & that is bounded by a
polynomial in the degree of f.

In this situation, there are (probabilistic) algorithms to find the primary decom-
position of a finite commutative k-algebra A that finish in an (expected) number of
operations in k that is bounded by a polynomial in [A : k]. Such algorithms have
been known for some time, but do not seem to be easily available in published form;
see Khuri-Makdisi’s preprint [57, draft version 2, §7]. For an algorithm to find the
primary decomposition of arbitrary (not necessarily commutative) finite algebras over
finite fields, see Eberly and Giesbrecht [30].

1.2. Reconstructing an algebra from a perfect bilinear map

Let A be a commutative ring. If M, N and O are free A-modules of rank one and
wMxN—O

is an A-bilinear map, we say that p is perfect if it induces an isomorphism
M®a N -0

of free A-modules of rank 1.

Now let k be a field, and let a finite commutative k-algebra A be specified im-
plicitly in the following way. We are given k-vector spaces M, N and O of the same
finite dimension, together with a k-bilinear map

wMxN—O

We assume there exists a commutative k-algebra A such that M, N and O are free
A-modules of rank 1 and p is a perfect A-bilinear map. The following observation
implies that A is the unique k-algebra with this property, and also shows how to
compute A as a subalgebra of Endy M, provided we are able to find a generator of N
as an A-module. We note that the roles of M and N can also be interchanged.

Lemma 1.1. In the above situation, let g be a generator of the A-module N. The
ring homomorphism A — Endy M sending a to multiplication by a is, as an A-linear
map, the composition of

AN
av+— ag
and
N — Endy M
ni— pu( ,9)" ou( ,n).

In particular, the image of A in Endy M equals the image of the second map.

Proof. This is a straightforward verification. O
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1. Algorithms for computing with finite algebras

In the case where k is a finite field, a way to find a generator for N as an A-
module is simply to pick random elements g € N until we find one that generates N.
Since p is perfect, checking whether g generates N comes down to checking whether
u( ,9): M — O is an isomorphism. In particular, we can do this without knowing A.

To get a reasonable expected running time for this approach, we need to ensure
that N contains sufficiently many elements n such that N = An. Since N is free of
rank 1, the number of generators equals the number of units in A. Let us therefore
estimate under what conditions a random element of A is a unit with probability at
least 1/2. Write d for the degree of A over k. Decomposing A into a product of finite
local k-algebras, and noting that the proportion of units in a finite local k-algebra is
equal to the proportion of units in its residue field, we see that

#AX (#hX)4 ( 1 >d
> =(1-—) ;
#A H#kd #k)

equality occurs if and only if A is a product of d copies of k. Now it is not hard to
show that

S>>0 — (1 — d>1
= #k) — 2

Taking a finite extension k' of k of cardinality at least 2d, we therefore see that a
random element of Ay is a unit with probability at least 1/2. There are well-known
algorithms to generate such an extension, such as that of Rabin [83], which runs in
probabilistic polynomial time and simply tries random polynomials until it finds one
that is irreducible, and the deterministic algorithm of Adleman and Lenstra [1].

Algorithm 1.2 (Reconstruct an algebra from a bilinear map). Let k be a finite field,
let A be a finite k-algebra, and let

wMxN—O

be a perfect A-bilinear map between free A-modules of rank 1. Given the coefficients
of u with respect to some k-bases of M, N and O, this algorithm outputs a k-basis
for the image of A in Endy M, consisting of matrices with respect to the given basis
of M.

1. Choose an extension k' of k of degree {W—" Let M', N', O" and 1/
denote the base extensions of M, N, O and u to k'.

2. Choose a uniformly random element g € N'.

3. Check whether p/( ,g): M’ — O’ is an isomorphism; if not, go to step 2.

4. For n ranging over a k’-basis of N’, compute the endomorphism
an=p'(,9)" op/(,n) € Endy M".

Let A’ C Endys M’ denote the k’-span of the a,,.
5. Output a basis for the k-vector space Endy M N A’
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1V. Computational tools

Analysis. Tt follows from Lemma 1.1 that A’ equals the image of k' ®; A in Endy M.
This implies that the basis returned by the algorithm is indeed a k-basis for the image
of A in Endy M. Because of the choice of &, steps 2 and 3 are executed at most twice
on average. It is therefore clear that the expected running time of the algorithm is
polynomial in [A : k] and log #k. o

If k is infinite (or finite and sufficiently large), we have the following variant. Let
> be a finite subset of k, and let V' be a k-vector space of dimension d with a given
basis v1, ..., vg. Consider the set

d
Vs Z{ZUﬂh‘ | o1,...,00 € X}
i=1

of X-linear combinations of vy, ..., v,. Choosing the o; uniformly randomly in ¥, we
get the uniform distribution on Vy. If Hy, ..., H; are proper linear subspaces of V,
then a uniformly random element of Vy lies in at least one of the H; with probability
at most [/#X. Now if A is a finite commutative k-algebra, it contains at most [A : k]
maximal ideals. This implies that if ¥ is a finite subset of k with #X > 2[A : k],
then a X-linear combination of any k-basis of A is a unit with probability at least
1/2. This leads to the following variant of Algorithm 1.2.

Algorithm 1.3 (Reconstruct an algebra from a bilinear map). Let k be a field, let
A be a finite k-algebra, and let

wMxN—O

be a perfect A-bilinear map between free A-modules of rank 1. Suppose that we can
pick uniformly random elements of some subset ¥ of k with #3 > 2[A : k]. Given the
coefficients of 1 with respect to some k-bases of M, N and O, this algorithm outputs
a k-basis for the image of A in Endy M, consisting of matrices with respect to the
given basis of M.

1. Choose a uniformly random X-linear combination g of the given basis of V.

2. Check whether p( ,g): M — O is an isomorphism; if not, go to step 2.

3. For n ranging over a k-basis of N, compute the endomorphism
an = ﬂ( 79)_1 o,u( 7n) € Endy M,

and output the a,.
Analysis. This works for the same reason as Algorithm 1.2. o

Let us sketch how to solve the problem if k is an arbitrary field. Let p be the
characteristic of k. If p = 0 or p > 2[A : d]|, we can apply Algorithm 1.3 with
¥ ={0,1,...,2[A: d] — 1}. Otherwise, we consider the subfield kg of k generated by
the coefficients of the multiplication table of A over k. Then A is obtained by base
extension to k of the finite kg-algebra Ay defined by the same multiplication table.
We can check whether kg is a finite field with #ko < 2d by checking whether each
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1. Algorithms for computing with finite algebras

coefficient of the multiplication table satisfies a polynomial of small degree. If this
is the case, then we compute an F,-basis and multiplication table for ko and apply
Algorithm 1.2 to Ay over ky. Otherwise we obtain at some point a finite subset X
of k, with #X > 2d, consisting of polynomials in the coefficients of the multiplication
table. We then apply Algorithm 1.3 to A over k with this 3.

2. Computing with divisors on a curve

In this section and the next we describe a collection of algorithms, developed by
Khuri-Makdisi in [56] and [57], that allow us to compute efficiently with divisors on
a curve over a field. In particular, we will describe algorithms for computing in the
Picard group of a curve. Many of the results of this section can be found in [56]
and [57]. In contrast, §§2.6, 2.9 and 2.11 seem to be new.

The curves we consider are complete, smooth and geometrically connected curves
over a field k. In this section, the base field is arbitrary, although for some of the
algorithms we assume that given a finite k-algebra we can find its primary decompo-
sition. In Section 3, we will study a few computational problems particular to curves
over finite fields.

The basic idea is to describe such a curve using a projective embedding via a
very ample line bundle £, and to represent divisors as subspaces of the k-vector
space I'(X, £) of global sections of £. Using this representation of the curve and of
divisors on it, Khuri-Makdisi [56] has given algorithms for computing with divisors and
elements of the Picard group. Taking advantage of some improvements to this basic
idea, described in [57], his algorithms are at the time of writing the asymptotically
fastest known algorithms (measured in operations in the field k) for general curves.

Remark. When the field k is finite (as it is in the applications that we will describe
in Chapter V), the fact that the complexity is measured in field operations is no
problem. However, if k is a number field, one cannot avoid numerical explosion of
the data describing the divisors during computations, even when lattice reduction
algorithms are used to reduce the size of the data between operations; see Khuri-
Makdisi [57, page 2214].

2.1. Representing the curve

Let X be a complete, smooth, geometrically connected curve over a field k. We fix a
line bundle £ on X such that
deg £ > 2¢g + 1.

Then L is very ample (see for example Hartshorne [43, IV, Corollary 3.2(b)]), so it
gives rise to a closed immersion

ir: X — PT(X, L)

into a projective space of dimension deg £ —g. (We write PV for the projective space
of hyperplanes in a k-vector space V.) The assumption that deg £ > 2¢ + 1 implies
moreover that the multiplication maps

i T(X, L8 @5, T(X, L27) — T(X, L20H)),
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1V. Computational tools

are surjective for all 7,5 > 0, or equivalently that the embedding i, is projectively
normal. This is a classical theorem of Castelnuovo [13], Mattuck [75, page 194] and
Mumford [81, page 55]. Below we will state a more general result due to Khuri-
Makdisi [56, Lemma 2.2].

Remark. In the context of projective embeddings, the line bundle £ is usually denoted
by Ox(1). However, we often need to deal with line bundles of the form £(D) for a
divisor D, and the author does not like the notation Ox(1)(D).

We write Sx for the homogeneous coordinate ring of X with respect to the
embedding is. By the fact that i, is projectively normal, we have a canonical iso-
morphism

Sx — EPr(x, £

i>0

of graded k-algebras; see Hartshorne [43, Chapter II, Exercise 5.14]. It turns out
that to be able to compute with divisors on X we do not need to know the complete
structure of this graded algebra. For all h > 0 we define the finite graded k-algebra
Sgg) as Sx modulo the ideal generated by homogeneous elements of degree greater
than h. The above isomorphism shows that specifying Sg?) is equivalent to giving the
k-vector spaces I'(X, £L®%) for 1 < i < h together with the multiplication maps p; ;
for e +j5 < h.

When we speak of a projective curve X in the remainder of this section, we
will assume without further mention that X is a complete, smooth and geometrically
connected curve of genus g > 0, and that a line bundle £ of degree at least 2g + 1 has
been chosen. We will often write L£x for this line bundle and gy for the genus of X
to emphasise that they are part of the data.

In the algorithms in this section, the curve X is part of the input in the guise of
the graded k-algebra Sg?) for some sufficiently large h. A lower bound for h is specified
in each case. One way to specify the multiplication in SE?) is to fix a basis for each
of the spaces I'(X, £L#?), and to give the matrices for multiplication with each basis
element. However, as Khuri-Makdisi explains in [57], a more efficient representation
is to choose a trivialisation of £ (and hence of its powers) over an effective divisor of
sufficiently large degree or, even better, at sufficiently many distinct rational points
of X, so that the multiplication maps can be computed pointwise.

Remarks. (1) The integers g and deg £ can of course be stored as part of the data
describing X. However, they can also be extracted from the dimensions of the k-vector
spaces I'(X, £) and T'(X, £L®?2); this follows easily from the Riemann—Roch formula.

(2) If the degree of L is at least 2g + 2, then the homogeneous ideal defining the
embedding i, is generated by homogeneous elements of degree 2, according to a
theorem of Fujita and Saint-Donat; see Lazarsfeld [64, §1.1]. This makes it possible
to deduce equations for X from the k-algebra Sg?). However, we will not need to do
this.

(3) The way of representing curves and divisors described by Khuri-Makdisi in [56]
and [57] is especially suited for modular curves. Namely, we can represent a modular
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curve X using the projective embedding given by a line bundle of modular forms, and

. ] (h) . . ) .
computing the k-algebra S5’ for a given h comes down to computing g-expansions
of modular forms of a suitable weight to a sufficiently large order. This can be done
using modular symbols; see Stein [104] and Section 4 below. If the modular curve has
at least 3 cusps (which is the case, for example, for X;(n) for all n > 5), then we can
restrict ourselves to modular forms of weight 2, for which the formalism of modular
symbols is particularly simple [104, Chapter 3].

2.2. Representing divisors

Let X be a projective curve of genus ¢ in the sense of §2.1, and let £ be the line
bundle of degree at least 2g + 1 giving the projective embedding of X. To represent
divisors on X, it is enough to consider effective divisors, since an arbitrary divisor
can be represented by a formal difference of two effective divisors.

Consider an effective divisor D on X such that £(—D) is generated by global
sections. (In terms of the projective embedding, this means that D is the intersection
of X and a linear subvariety of PT'(X, £), or equivalently that D is defined by a system
of linear equations.) Such a divisor can be represented as the subspace I'(X, £L(—D))
of I'(X, £) consisting of sections vanishing on D. The codimension of I'(X, £L(—D))
in I'(X, £) is equal to the degree of D.

A sufficient condition for the line bundle £(—D) to be generated by global sections
is

deg D < deg L — 2g; (2.1)

see for example Hartshorne [43, IV, Corollary 3.2(a)]. However, we note that in general
not every subspace of codimension at most deg £ — 2g is of the form I'(X, £L(—D)) for
an effective divisor D of the same degree.

Remark. This way of representing divisors comes down (at least for divisors of degree
d < deg £ —2g) to embedding the d-th symmetric power of X into the Grassmannian
variety parametrising subspaces of codimension d in I'(X, £) and viewing divisors of
degree d as points on this Grassmannian variety.

It will often be necessary to consider divisors D of degree larger than the bound
deg £ — 2g of (2.1). In such cases we can represent D as a subspace of I'(X, £L®?) for
i sufficiently large such that

deg D < ideg L — 2g, (2.2)

provided of course that we know S’g?) for some h > 1.

Khuri-Makdisi’s algorithms rest on the following two results. The first is a gen-
eralisation of the theorem of Castelnuovo, Mattuck and Mumford mentioned above.
It says in effect that to compute the space of global sections of the tensor product of
two line bundles of sufficiently large degree, it is enough to multiply global sections
of those line bundles.

Lemma 2.1 (Khuri-Makdisi [56, Lemma 2.2]). Let X be a complete, smooth, geo-
metrically connected curve of genus g over a field k, and let M and N be line bundles
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on X whose degrees are at least 2g + 1. Then the canonical k-linear map
MNX, M) @ T(X,N) —T(X,M R0, N)
is surjective.

The second result shows how to find the space of global sections of a line bundle
that vanish on a given effective divisor, where this divisor is represented as a subspace
of global sections of a second line bundle.

Lemma 2.2 (Khuri-Makdisi [56, Lemma 2.3]). Let X be a complete, smooth, geo-
metrically connected curve of genus g over a field k, let M and N be line bundles
on X such that N is generated by global sections, and let D be any effective divisor
on X. Then the inclusion

I'(X,M(-D)) C {s e (X, M) | sT'(X,N) CT(X,M@N(-D))} (2.3)

is an equality.

Thanks to these two lemmata, one can give algorithms to do basic operations
on divisors; see Khuri-Makdisi [56, §3]. For example, we can add, subtract and
intersect divisors of sufficiently small degree, and we can test whether a given subspace
of T'(X, £%%) is of the form I'(X,L®(—D)) for some effective divisor D. See also
Algorithm 2.11 below for an example where Lemmata 2.1 and 2.2 are used.

2.3. Deflation and inflation

An ingredient that Khuri-Makdisi uses in [57] to speed up the algorithms is deflation
of subspaces. Suppose we want to compute the space T'(X, M(—D)) using (2.3) in
the case where M = L& and N = L%/ (—F) with i and j positive integers and
where D and F are effective divisors satisfying (2.2). On the right-hand side of (2.3),
we may replace T'(X, N) by any basepoint-free subspace; this is clear from the proof
of [56, Lemma 2.3]. It turns out that there always exists such a subspace of dimension
O(log(deg V), and a subspace of dimension 2 exists if the base field is either infinite
or finite of sufficiently large cardinality. Moreover, one can efficiently find such a
subspace by random trial; see Khuri-Makdisi [57, Proposition/Algorithm 3.7].

Remark. This random search for small basepoint-free subspaces is the reason why
Khuri-Makdisi’s algorithms in [57] are probabilistic, as opposed to those in [56].

Suppose we are given a basepoint-free subspace W of I'(X, L2!(—D)) for some i
and D such that T'(X, £L%/(—D)) is basepoint-free. Then we can reconstruct the com-
plete space I'(X, L®(—D)) from W. This procedure is called inflation. To describe
how this can be done, we first state the following slight generalisation of a result of
Khuri-Makdisi [57, Theorem 3.5(2)].

Lemma 2.3. Let X be a complete, smooth, geometrically connected curve of genus g
over a field k, and let M and N be line bundles on X. Let V be a non-zero subspace
of I'(X, M), and let D be the common divisor of the elements of V. If the inequality

—deg M + deg N +degD >2g — 1
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2. Computing with divisors on a curve

is satisfied, the canonical k-linear map
Ve T(X,N) — T'(X,M®o, N(—D)) (2.4)

is surjective.

Proof. We note that M(—D) is generated by global sections, since we can view V
as a subspace of I'(X, M(—D)) and the elements of V' have common divisor 0 as
sections of M(—D). We also note that deg M > deg D. Therefore the assumption
on the degrees of M, N and D implies the inequalities

deg N >2g—1

and
deg( M @ N (=D)) > 2g — 1.

After extending the field k, we may assume it is infinite. Then there exist elements
s,t € V with common divisor D; see Khuri-Makdisi [57, Lemma 4.1]. The space

sI(X,N) + (X, N)
lies in the image of (2.4), so it suffices to show that
dimy, (sT'(X, N) + tI'(X, N)) = dimy, T(X, M @ N(—D)).

Write
divs=D+F and divs=D+ F

where E and F' are disjoint effective divisors. Then we have
dimg (sT'( X, N) + tT(X, N)) = 2dim; T'(X, N) — dimy (sT'(X, N) NtT'(X, N))
= 2dim;, I'(X,N)
—dim (X, M@N(-D — E — F))
= 2dimy ['(X, N) — dim;, T'(X, M"Y @ N(D)).

The last equality follows from the fact that multiplication by st induces an isomor-
phism
MY(D) = M(-D - E - F).

Using the fact that the various line bundles have degrees at least 2g — 1, we see that

dimy (sT' (X, N) + tD(X,N)) =2(1 — g+ deg V) — (1 — g + deg M"Y @ N(D))
=1—g+degM+ degN —deg D
= dim;, I'(X, M @ N'(-D)).

This finishes the proof. O
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To find the inflation of a basepoint-free subspace W of I'( X, £L®*(— D)), we choose
a positive integer j such that

(j—i)deg L+ degD >2g — 1.

By Lemma 2.3 we can then compute I'(X, L2047 (—D)) as the image of the bilinear
map

W @, D(X, £%7) — T(X, L)),

Then we compute
['(X, L% (-D)) = {s € I(X, L% | sT'(X,£%7) C [(X, 20 (-D))}

using Lemma 2.2. We note that for this last step we can use a small basepoint-free
subspace of I'(X, £%7) computed in advance.
2.4. Decomposing divisors into prime divisors

Let X be a complete, smooth, geometrically connected curve of genus g over a field k&,
with a projective embedding via a line bundle £ as in §2.1. The problem we are
now going to study is how to find the decomposition of a given divisor on X as a
linear combination of prime divisors. We will see below that this can be done if we
are given the algebra Sg?) for sufficiently large h and if we are able to compute the
primary decomposition of a finite commutative k-algebra. We have seen in § 1.1 that
this is possible in the case where k is perfect and we have an algorithm for factoring
polynomials in one variable over k.
Let i be a positive integer, and let D be an effective divisor such that

deg D <idegl —2g+ 1.
We view D as a closed subscheme of X via the canonical closed immersion
Iip: D — X.

For every line bundle M on X, the k-vector space I'(D, j5M) is in a natural way a
free module of rank one over I'(D, Op). The multiplication map

Hi@IF(X, £®1) X F(X’ E®Z) N F(X, £®2i)
descends to a bilinear map
P T (D, 5 L8 x T(D, j5H L8 — T(D, jp L9%)

of free modules of rank 1 over I'(D, Op). This map is perfect in the sense of §1.2.

We now assume that the graded k-algebra S%l) as in §2.1 is given for some h > 2.
From the subspace I'(X, L& (—D)) of T'(X, £L®") we can then determine I'(D, j} £L®?)
as a k-vector space by means of the short exact sequence

0 — I'(X, L% (—-D)) — I'(X, L®") — T\(D, j5L£%) — 0. (2.5)
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2. Computing with divisors on a curve

(Note that exactness on the right follows from the assumption that deg £L&¢(—D) >
2g — 1.) Similarly, we can compute I'(D, j5£%%) from I'(X, £L®%(—D)) using the
same sequence with ¢ replaced by 2¢. We can then determine the bilinear map ufi
induced by 1, ; by standard methods from linear algebra.

We then use the method described in §1.2 to compute the k-algebra I'(D, Op)
together with its action on I'(D,j5L®"). Next we find the primary decomposition
of T'(D, Op), say

I'(D,0p) 2 A; X Ay X -+ X A,

where each factor A; is a finite local k-algebra with maximal ideal P;; we assume the
field k is such that we can do this (see §1.1). Such a prime ideal P; corresponds to a
prime divisor in the support of D, and the corresponding multiplicity equals

m; =

Algorithm 2.4 (Decomposition of a divisor). Let X be a projective curve over a
field k. Let ¢ be a positive integer, and let D be an effective divisor such that

degD <idegLx —2gx + 1.

Suppose that we have a (probabilistic) algorithm to compute the primary decompo-
sition of a finite commutative k-algebra A with (expected) running time polynomial
in [A : k|, measured in operations in k. Given the k-algebra Sg?i) and the sub-
spaces T'(X, LY (=D)) of T(X, LY and T'(X, LS*(—D)) of T(X,LE*), this algo-
rithm outputs the decomposition of D as a linear combination of prime divisors as a
list of pairs (P, mp), where P is a prime divisor and mp is the multiplicity of P in D.

1. Compute the spaces F(D,j;ﬁ?}i) and P(D,jf)[,}@}%) using (2.5) and the analogous
short exact sequence with 2i in place of 1.

2. Compute the k-bilinear map ufi from p1; ;.

3. Using the method of §1.2, compute a k-basis for I'(D,Op) as a linear subspace
of Endy I'(D, j5 L"), where elements of the latter k-algebra are expressed as
matrices with respect to some fixed basis of ['(D, j5L£%").

4. Compute the multiplication table of I'(D, Op) on the k-basis of I'(D, Op) found
in the previous step.

5. Find the primary decomposition of T'(D, Op).

6. For each local factor A computed in the previous step, let P4 denote the maximal
ideal of A, output the inverse image of P4 - T'(D,j5L%") in T'(X, L") and the
integer [A : k] /[A/Pa : k].

Analysis. It follows from the above discussion that the algorithm returns the cor-
rect result. It is straightforward to check that the running time is polynomial in ¢
and deg L x, measured in operations in k. o
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1V. Computational tools

A special case of this algorithm is when D is the intersection of X with a hypersur-

face of degree i — 1. Let s be a non-zero section of E?}(Fl) defining this hypersurface.

The subspaces that are used in this algorithm can then be computed as

F(Xa L?}Z(_D)) = SF(X7 ‘CX)
and
(X, LP (D)) = sT(X, L"),

2.5. Finite morphisms between curves

Let us now look at finite morphisms between curves. A finite morphism
[ X—-Y
of complete, smooth, geometrically connected curves induces two functors

f*:{line bundles on Y} — {line bundles on X}
and
N: {line bundles on X} — {line bundles on Y}.

Here f*N denotes the usual inverse image of the line bundle A on Y, and Ny M is
the norm of the line bundle M on X under the morphism f.

Let us briefly explain the notion of the norm of a line bundle. The norm functor
is a special case (that of Gy,-torsors) of the trace of a torsor for a commutative group
scheme under a finite locally free morphism; see Deligne [100, exposé XVII, n® 6.3.20—
6.3.26]. We formulate the basic results for arbitrary finite locally free morphisms of
schemes

[ X ->Y.

In this situation there exists a functor
Ny:{line bundles on X} — {line bundles on Y}
together with a collection of homomorphisms
Nf: fol — NgL

of sheaves of sets, for all line bundles £ on X, functorial under isomorphisms of line
bundles on X, sending local generating sections on X to local generating sections
on Y and such that the equality

N#(al) = Ny () - NE()

holds for all local sections = of f,Ox and [ of f.L. Here Ny: f,.Ox — Oy denotes the
usual norm map for a finite locally free morphism. Moreover, the functor Ny together
with the collection of the Nf is unique up to unique isomorphism. Instead of Ny we
also write Nx/y if the morphism f is clear from the context.
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2. Computing with divisors on a curve

The basic properties of the norm functor are the following (see [100, exposé XVII,
n° 6.3.26)):

(1) the functor Ny is compatible with any base change Y’ — Y;

(2) if £1 and Ly are two line bundles on X, there is a natural isomorphism

N; (L1 ®ox L2) = NfL @y NypLo;

(3) if X L.y 9. 7 are finite locally free morphisms, there is a natural isomorphism
Ngor — Ny oNjy.
Furthermore, there is a functorial isomorphism
N;L = Homp, (deto, fiOx,deto, f.L); (2.6)

see Deligne [100, exposé XVIII, n°1.3.17], and compare Hartshorne [43, IV, Exer-
cise 2.6].
We now consider projective curves X and Y as defined in §2.1. Suppose we have

a finite morphism
[ X->Y

with the property that f is induced by a graded homomorphism
f #.8y — Sy
between the homogeneous coordinate rings of Y and X, or equivalently by a morphism
of the corresponding affine cones over X and Y. Then f# induces an isomorphism
f*Ly = Lx

of line bundles on X; see Hartshorne [43, Chapter II, Proposition 5.12(c)]. In partic-
ular, this implies
deg Lx =deg f-degLy.

We represent a finite morphism f: X — Y by the k-algebras Sg?) and Sg/h) for
some h > 2, together with the k-algebra homomorphism
#. S)(,h) _ Sg?)

induced by f#: Sy — Sx, given as a collection of linear maps I'(Y, £y") — I'(X, LY)
compatible with the multiplication maps on both sides.

In the following, when we mention a finite morphism f: X — Y between pro-
jective curves, we assume that the k-algebras Sg?) and S}(,h ) and the homomorphism
i S}(,h) — Sg?) are given for some h > 2. In the algorithms described below, we will
indicate where necessary how large h needs to be.

Remark. The homomorphism f# gives rise to an injective k-linear map
LY, Ly) = T'(X, Lx).

Given this map we can reconstruct S(Y') as a subalgebra of S(X) by noting that S(Y")
is generated as a k-algebra by T'(Y, Ly ).
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2.6. Images, pull-backs and push-forwards of divisors

Let us consider a finite morphism f: X — Y between complete, smooth, geometrically
connected curves over a field k. Such a morphism f induces various maps between
the groups of divisors on X and on Y.

First, for an effective divisor D on X, we write f(D) for the schematic image
of D under f. The definition implies that the ideal sheaf Oy (—f(D)) is the inverse
image of f.Ox(—D) under the natural map Oy — f.Ox.

Second, for any divisor D on X, we have the “push-forward” f.D of D by f; see
Hartshorne [43, IV, Exercise 2.6]. If P is a prime divisor on X, then its image f(P)
under f is a prime divisor on Y, the residue field k(P) is a finite extension of k(f(P)),
and f,P is given by the formula

f+P = [k(P) - k(f(P))] - f(P). (2.7)
The residue field extension degree at P can simply be computed as
, __[k(P) : K]
_ degP
~ deg f(P)’

Third, for any divisor E on Y, we have the “pull-back” f*FE of E by f; see for
example Hartshorne [43, page 137]. If @ is a prime divisor on Y, then f*@Q is given
by the formula

Q=Y eP)-P (2.8)
P: f(P)=Q
where P runs over the prime divisors of X mapping to @ and e(P) denotes the
ramification index of f at P.

We extend both f, and f* to arbitrary divisors on X and Y by linearity. Note

that (2.7) and (2.8) imply the well-known formula

fof"E = (deg f)E

for any divisor £ on Y. Furthermore, if E is an effective divisor on Y, we have an
equality
ffTE=Exy X

of closed subschemes of X, and if Zg denotes the ideal sheaf of F, then its inverse
image f~'Zg is the ideal sheaf of f*E.

Remark. The map D — f(D) is not in general linear in D. We do not extend it to
the divisor group on X, and in fact will only need schematic images of prime divisors
on X in what follows. In contrast, the maps f, and f* are linear by definition.

Now assume f is a finite morphism between projective curves, in the sense of § 2.5.
In particular, we have a homomorphism f#:Sy — Sx of graded k-algebras. We will
give algorithms to compute the image and the push-forward of a divisor on X as well
as the pull-back of a divisor on Y.

The schematic image f(D) of an effective divisor D on X can be computed using
the following obvious algorithm.
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2. Computing with divisors on a curve

Algorithm 2.5 (Image of a divisor under a finite morphism). Let f: X — Y be
a finite morphism between projective curves, let ¢ be a positive integer, and let D
be an effective divisor on X. Given the k-algebras Sg? and Sg,i), the homomorphism
f#* ng) — Sg? and the subspace I'(X, LY (—D)) of T(X, £LY"), this algorithm outputs
the subspace T'(Y, L (— f(D))) of T(Y, LY").
1. Output the inverse image of the subspace T'(X, LY (—D)) of T'(X, £$") under the
linear map I'(Y, /j?ﬁi) — (X, /j}e}i).

Analysis. The definition of f(D) implies that the line bundle £ (— (D)) equals the
inverse image of f*ﬁ?}i(fD) under the natural map E%i — f*L?}i. Taking global
sections, we see that I'(Y, L' (— f(D))) is the inverse image of I'(X, LY (—D)) under
the natural map T'(Y, £$") — T'(X, £Y"). Tt is clear that the algorithm needs a number
of operations in k that is polynomial in deg £Lx and 1. o

Remark. In the above algorithm, we have not placed any restrictions on the degrees
of D and f(D). However, f(D) is not uniquely determined by I'(Y, LY (—f(D))) if
its degree is too large.

The algorithm to compute pull-backs that we will now give is based on the fact
that the pull-back of an effective divisor F is simply the fibred product F xy X,
viewed as a closed subscheme of X. In particular, the algorithm does not have to
compute the ramification indices, so instead we can use it to compute ramification
indices. Namely, if P is a prime divisor on X, we see from (2.8) that the ramification
index at P equals the multiplicity with which P occurs in the divisor f*(f(P)).

Algorithm 2.6 (Pull-back of a divisor under a finite morphism). Let f: X — Y be
a finite morphism between projective curves. Let ¢ and j be positive integers, and let
E be an effective divisor on Y such that

deg f-degE <idegLx —2¢gx, degFE <idegLly — 2gy
and
(j—i)degLx +deg f-degE > 2gyx — 1.

(If we take j > i+ 1, the last equality does not pose an extra restriction on E.) Given
the k-algebras S’;H) and S§f+j), the k-algebra homomorphism f#:S$+j) — Sggﬂ)
and the subspace T'(Y, LY (—E)) of T'(Y, L"), this algorithm outputs the subspace
(X, LY (= f*E)) of T(X, LY.

1. Compute the image W of I'(Y, £*(—E)) under the linear map
(Y, L9 — T(X, LY.

2. Compute the space I'(X, LS (— f*E)) as the product of W and T'(X, £LY) (see
Lemma 2.3).

3. Compute I'(X, LY (— f*E)) using Lemma 2.2, and output the result.
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Analysis. The ideal in Sy defining F is generated by the linear forms vanishing on F,
and the ideal of Sx defining f*F is generated by the pull-backs of these forms. This
shows that f*FE is defined by the forms in W. In the second and third step, we compute
the space of all forms vanishing on f*F, i.e. the inflation of W. That the method
described is correct was proved in §2.3. The running time is clearly polynomial in
deg Lx, i and j. o

Algorithm 2.7 (Push-forward of a divisor under a finite morphism). Let f: X — Y
be a finite morphism between projective curves over a field k, let ¢ be a positive
integer, and let D be an effective divisor on X such that

degD <idegLx —2gx —1 and degD <idegly — 2¢gy.

Suppose that we have a (probabilistic) algorithm to compute the primary decompo-
sition of a finite commutative k-algebra A with (expected) running time polynomial
in [A : k], measured in operations in k. Given the k-algebras Sg?i) and Sl(/%), the
homomorphism f#: S — §29 and the subspace T'(X, L& (—D)) of T'(X, £2%), this
algorithm outputs the subspace T'(Y, LY (—f.D)) of T(Y, LY").
1. Compute T'(X, L$*(—D)) as the product of I'(X, £Y") and T'(X, L' (—D)) (see
Lemma 2.1).

2. Find the decomposition of D as a linear combination ), npP of prime divisors
using Algorithm 2.4.

3. For each prime divisor P in the support of D, compute I'(Y, L& (—f(P))) using
Algorithm 2.5, and compute [k(P) : k(f(P))].

4. Compute the space I'(Y, E%?i(ff*D)), where

1D =Y nplk(P) : k(F(P))F(P),
P

and output the result.

Analysis. The correctness of the algorithm follows from the definition of f,. It runs in
(probabilistic) polynomial time in deg £x and 4, measured in field operations in k. ¢

We include here another algorithm that computes the push-forward of an effective
divisor under a non-constant rational function X — P in a slightly different setting
than before. We only assume X to be given as a projective curve in the sense of § 2.1,
and we represent effective divisors on P! as zero loci of homogeneous polynomials.
For simplicity, we only consider divisors of degree at most deg Lx.

Algorithm 2.8 (Push-forward of an effective divisor by a rational function). Let X
be a projective curve over a field k, let ¢ be a positive integer, let 1) be a non-constant
rational function on X given as the quotient of two sections s,t € I'(X, E}e}i) with-
out common zeroes, and let D be an effective divisor on X of degree d < deg Lx.
Suppose that we have a (probabilistic) algorithm to compute the primary decompo-
sition of a finite commutative k-algebra A with (expected) running time polynomial
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in [A : k], measured in operations in k. Given the k-algebra Sg?lax{zl’i}) and the
subspace I'( X L:?}Q(—D))7 this algorithm outputs the homogeneous polynomial of de-
gree d defining the closed subscheme 1, D of PL. (This polynomial is unique up to
multiplication by elements of k*)

1. Compute the space I'(X, E?}‘l(fD)), and use Algorithm 2.4 to compute the de-
composition of D as a linear combination D = ZQ ngQ of prime divisors.

2. For each prime divisor @) occurring in the decomposition of D:

3. Compute the base change Xy, where k(Q) is the residue field of Q. Com-
pute the primary decomposition of Qg and pick a rational point Q" in
it.

4. Compute I'(Xy (), L5 (—Q")), then compute the (one-dimensional) inter-
section of this space with k- s+ k - ¢, and express some generator of this
intersection as bgs—agt with ag, bg € k(Q). The element 1(Q’) € P (k(Q))
now has homogeneous coordinates (aq : bg).

5. Compute the homogeneous polynomial

Jv.@ = Ny /u(bou — aqu) € klu,v]
defining 1, Q.
6. Output the homogeneous polynomial

fu.D = Hfo’Q € klu,v]
Q

of degree d defining v, D.

Analysis. 1t is straightforward to check that the algorithm is correct and has expected
running time polynomial in ¢ and deg Lx, counted in operations in k. o

2.7. The norm functor for effective divisors

Let X be a proper, smooth, geometrically connected curve over a field k, and let E
be an effective divisor on X. We view E as a closed subscheme of X, finite over k,

and we write
i E— X

for the closed immersion of E into X. For the purposes of §3.6 below, we will
need an explicit description of the norm functor N, (for the canonical morphism
E — Speck) that we saw in §2.5. We view N/ as a functor from free Og-modules
of rank 1 to k-vector spaces of dimension 1.

Let M be a line bundle on X. We abbreviate

D(E,M)=T(E,jpM)
and
Ng/xM = Ng/p(jgM).
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Suppose we have two line bundles M™ and M ™, both of degree at least deg E+2g—1,
together with an isomorphism

M = Homo, (M, M),
Then we can compute I'(E, M™) and T'(E, M™) using the short exact sequences
0 — (X, M*(-E)) — I'(X,M*) — T'(E, M%) — 0,
and we can express N/, via the isomorphism
Ng kM = Homy, (dety, I'(E, M ™), dety, D'(E, M™)) (2.9)
deduced from (2.6). We fix k-bases of I'(E, M™) and I'(E, M™). From the induced
trivialisations of detj, I'(E, M*) we then obtain a trivialisation of Ng /M.
We now consider three line bundles M, N and P together with an isomorphism
pM®eo, N — P.
By the linearity of the norm functor, x4 induces an isomorphism
Ng/M @k Np N — Ng /i, P. (2.10)
As above, we choose isomorphisms
M= Homo, (M~ M), N =Homeo,(N",NT), P=Home, (P ,P")

on X, where M*, N+ and P* are line bundles of degree at least deg E +2g + 1. We
fix bases of the six k-vector spaces

D(E,M%), T(E,NT), T(E,P*).

Then (2.9) gives trivialisations of Ng,, M, Ng N and Ng/,P. Under these triviali-
sations, the isomorphism (2.10) equals multiplication by some element A € k*.

To find an expression for A, we choose generators af/l and aff of I'(E, M*) and
I'(E,N%*). To these we associate the isomorphisms

ap:T(E,M7) = T(E,M™)
and
ay:T(E,N7) = T(E,NT)

sending o, to aj(,l and o), to aj{/, respectively. Viewing aaq and aa as generators
of T'(E, M) and T'(E, ') and applying the isomorphism

o F(E7M) ®F(E,OE) F(E7N) — F(E>7))
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to apm ® an we obtain a generator of I'(E, P), which we can identify with an isomor-
phism

ap:T(E,P7) = T'(E,PT).
We define dpq as the determinant of the matrix of apq with respect to the chosen
bases. Under the given trivialisations of N/, M, the element Ng’}ka M corresponds

to dpq. The same goes for NV and P. On the other hand, the isomorphism (2.10)
maps Ng’}kaM ® N/}Ef/ka/\/ to NE/kOAP. We conclude that we can express \ as

_ 0p
OO

(2.11)

Let us turn the above discussion into an algorithm. Let X be a projective curve
over k, embedded via a line bundle £ as in §2.1, and let E be an effective divisor
on X. For simplicity, we restrict to the case where

deg E' = deg L.
We consider line bundles
M= £®Z(—D1) and N = L(X)j(—ljg)7

where ¢ and j are non-negative integers and Dy and D5 are effective divisors such
that
deg Dy =idegL and degDy = jdegckL.

We take
M~ =N" =P =%

and

MT = £®(i+2)(—D1), Nt = £®(j+2)(—D2),
pt = £®(i+j+2)(_D1 —Dy).

Algorithm 2.9 (Linearity of the norm functor). Let X be a projective curve over a
field k, and let E, Dy and D5 be effective divisors on X such that

deg E =degL, degD;=1idegl, degDy;=jdegcL.
Fix bases of the four k-vector spaces

D(E,£%?), T(E,L°0F?(-Dy)),
F(E’£®(j+2)(_D2)>7 F(E7£®(i+j+2)(_D1 — Dy)).

and consider the corresponding trivialisations

titk = Np/ L2 (=Dy), tark —> N L% (=Dy),
tsrk = N/, L2 (—Dy — Ds)
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defined by (2.9). Given the k-algebra S;H +4)7 bases for the k-vector spaces

D(X,L9%), T(X,L20+),
F(X7 £®(j+2)(_D2))7 F(Xa ‘C®(i+j+2)(—D1 - DQ))

and the quotient maps

(X, L% — T(E, £L%?),
D(X, L2 (=Dy)) — (B, L¥*2(=Dy)),
I'(X, £®“+2)( 2)) — D(E, LY (= Dy)),
F(X, £®(z+3+2)( )) . F( £®z+2(_D1))

as matrices with respect to the given bases, this algorithm outputs the element A € k*
such that the diagram

k t@e Ng/k L2 (—=D1) @k Ngp L& (—Dy)

Al I~

th) NE/k£®(i+j)(,D1 — Dy)

is commutative.

1. Compute the spaces
D(E, L2 (—Dy)) and T(E,L20HH)(_D; — Dy))
and the multiplication maps
D(E,L£%%) x T(E, £L2F2) (D)) — [(E, L&Y (D)),
D(E, L2 (—Dy)) x T(E, L2V (=Dy)) — D(E, L2+ (—D; — Dy)),
T(E, £2%) x T(E, L2042 (—Dy — D)) — I(E, L2069 (—Dy — Dy)).
2. Apply the probabilistic method described in §1.2 to the bilinear maps just com-

puted to find generators 3y, 41 and By of the free I'(E, Og)-modules I'(E, £L®?),
['(E, £20+2)(~Dy)) and T'(E, L20+2)(—Dy)) of rank 1.

(Note that we do not need the k-algebra structure on I'(E, £%2). If k is small,
we may have to extend the base field, but it is easy to see that this is not a
problem.)

3. Compute the matrix (with respect to the given bases) of the isomorphism ay
defined by the commutative diagram

I'(B,L£%?) 25 I(B, L2042 (—Dy))
| ~ 8o

T(E,£%%) 2 D(B,£20+9 (D)),
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2. Computing with divisors on a curve

of the isomorphism s defined by the similar diagram for £%7(—D,) instead of
L% (—Dy) and of the isomorphism a3 defined by the commutative diagram

I'(E, £L®?) 25 (B, L8+ (—Dy — Dy))

Oc1l~ Nl'ﬁo

T(E, £90+2)(=Dy)) "2 (B, £80++9 (=D, — Dy)).

4. Compute the elements d1, d2 and d3 of k* as the determinants of the matrices of
aq, as and ag computed in the previous step.

0
5. Output the element —— € k.

0102
Analysis. We note that 3y plays the role of o, a, and ay in the notation of the
discussion preceding the algorithm, and that £y, B2 and B182/80 play the roles of
axl, ajf/ and a;. This means that aj, as and a3 are equal to axrg, an and ap.
It now follows from (2.11) that the output of the algorithm is indeed equal to A. Tt
is clear that the algorithm runs in (probabilistic) polynomial time in deg £, i and j
(measured in field operations in k). o

2.8. Computing in the Picard group of a curve

We now turn to the question of computing with elements in the Picard group of a
curve X, using the operations on divisors described in the first part of this section.
We only consider the group Pic’ X of isomorphism classes of line bundles of degree 0.
This group can be identified in a canonical way with a subgroup of rational points of
the Jacobian variety of X. If X has a rational point, then this subgroup consists of
all the rational points of the Jacobian.

We will only describe Khuri-Makdisi’s medium model of Pic® X relative to a fixed
line bundle £ of degree

deg L >2g+1,

but at the same time
deg L <ec(g+1)

for some constant ¢ > 1, as described in Khuri-Makdisi [56, §5].

Remark. Khuri-Makdisi starts with a divisor Dy whose degree satisfies the above
inequalities and takes £L = Ox(Dp). This is of course only a matter of language.
Another difference in notation is that Khuri-Makdisi writes £g for £ and uses the
notation £ for £5* (in the medium model) or £§? (in the large and small models,
which we do not describe here).

We represent elements of Pic? X by effective divisors of degree deg £ as follows:
the isomorphism class of a line bundle M of degree 0 is represented by the divisor
of some global section of the line bundle Hom(M, L) of degree deg L, i.e. by any
effective divisor D such that

M= L(-D,).
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1V. Computational tools

It follows from the inequality deg £ > 2¢g that we can represent any effective divisor D
of degree deg £ by the subspace I'(X, L#2(—D)) of codimension deg £ in T'(X, £L®?).
There are a few basic operations:

e membership test: given a subspace W of codimension deg £ in I'(X, £L®?), de-
cide whether W represents an element of Pic® X, i.e. whether W is of the form
['(X, L®2(-D)) for an effective divisor D of degree deg L.

e zero test: given a subspace W of codimension deg £ in I'(X, £#?), decide whether
W represents the zero element of Pic® X.

e zero element: output a subspace of codimension deg £ in T'(X, £L%?) representing
the element 0 € Pic® X.

e addflip: given two subspaces of I'(X, £L®2) representing elements z,y € Pic® X,
compute a subspace of I'(X, L®?) representing the element —x — y.

From the “addflip” operation, one immediately gets negation (—z = —x —0), addition
(r +y = —(—z — y)) and subtraction (z —y = —(—x) —y). Clearly, one can test
whether two elements x and y are equal by computing x — y and testing whether the
result equals zero.

Remark. With regard to actual implementations of the above algorithms, we note
that some of the operations can be implemented in a more efficient way than by
composing the basic operations just described. We refer to [57] for details.

By Khuri-Makdisi’s results in [57], the above operations can be implemented
using randomised algorithms with expected running time of O(g3+¢) for any € > 0,
measured in operations in the field k. This can be improved to O(g%37%) by means
of fast linear algebra algorithms. (The exponent 2.376 is an upper bound for the
complexity of matrix multiplication.)

Multiplication by an integer n can be done efficiently by means of an addition
chain for n. This is a sequence of positive integers (a1, as,...,am,) with a; = 1 and
am = n such that for each [ > 1 there exist i(I) and j(I) in {1,2,...,1 — 1} such
that a; = a;(;) + a;@y. (We consider the indices i(l) and j(I) as given together with
the addition chain.) The integer m is called the length of the addition chain. A
more general and often slightly more efficient method of multiplying by n is to use an
addition-subtraction chain, where a; is allowed to be either a;) + a;() or a;) — a;()-
However, since the “addflip” operation in our set-up takes less time than the addition
or subtraction algorithms, the most worthwhile option is to use an anti-addition chain,

which is a sequence of (not necessarily positive) integers (ag, a1, ..., @) such that
0 if I =0;
=11 if 1= 1;

—Q51) — (1) if 2 < l <m

and a,, = n; the i(l) and j(I) are given elements of {0,1,...,l —1} for 2 <[ <m.

It is well known that for every positive integer n there exists an addition chain of
length O(logn), and there are algorithms (such as the binary method used in repeated
squaring) to find such an addition chain in time O((logn)?). We leave it to the reader
to write down a similar algorithm for finding an anti-addition chain.
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2. Computing with divisors on a curve

For later use, we give versions of the “zero test” and “addflip” algorithms that
are identical to those given by Khuri-Makdisi, except that some extra information
computed in the course of the algorithm is part of the output.

Algorithm 2.10 (Zero test). Let X be a projective curve over a field k, and let = be
an element of Pic’ X. Given the k-algebra Sg?) and a subspace I'(L%?(—D)) of T'(L$?)
representing x, this algorithm outputs false if = # 0 (i.e. if the line bundle Lx (—D)
is non-trivial). If Lx(—D) is trivial, the algorithm outputs a pair (true,s), where s
is a global section of Lx with divisor D.

1. Compute the space
D(Lx(=D)) = {s € T(Lx) | sT(Lx) CT(LF(~D))}.

(The truth of this equality follows from Lemma 2.2.)

2. f I'(Lx(=D)) = 0, output false. Otherwise, output (true,s), where s is any
non-zero element of the one-dimensional k-vector space I'(Lx (—D)).

Algorithm 2.11 (Addflip). Let X be a projective curve over a field k, and let x

and y be elements of Pic’ X. Given the k-algebra Sg?) and subspaces T'(L5?(—D))
and F(E?f(fE)) of F(C?}Q) representing x and y, this algorithm outputs a subspace
F(ﬁ?f(—F )) representing —x — y, as well as a global section s of E?}S such that

divs=D+ E + F.

1. Compute I'(LY*(—D — E)) as the product of ['(L%*(—D)) and T(L$*(—E)) (see
Lemma 2.1).

2. Compute the space
DL (=D — B)) = {s € T(LSY) | sT(Lx) S T(LY(~D — B))}

(see Lemma 2.2).

3. Choose any non-zero s € I'(LS*(—D — E)). Let F denote the divisor of s as a
global section of L*(—D — E).

4. Compute the space
N(LY (=D - E - F)) = sT(£$?).
5. Compute the space
DL (=F) = {t e T(LY?) [HD(LK (=D — B)) CT(LY (=D — E — F))}
(see again Lemma 2.2).

6. Output the space T'(L$?(—F)) and the section s € T(£$?).
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1V. Computational tools

2.9. Normalised representatives of elements of the Picard group

Let X be a projective curve over a field k in the sense of §2.1, and let O be a k-rational
point of X. Let z be an element of Pic® X, and let M be a line bundle representing
£x,0 be the greatest integer r such that

T(Hom(M, Lx (—r0))) # 0.

x. Let r

Then T'(Home, (M, Lx(—r5x:©0))) is one-dimensional, so there exists a unique
effective divisor R such that

M= Ly (=R —r5xC0).
We define the (Lx, O)-normalised representative of x as the effective divisor
REXC = R+ r£%00

of degree deg Lx; it is a canonically defined divisor (depending on O) with the prop-
erty that x is represented by Lx(—R5x:©).
Remark. Since for any line bundle A we have
degN >g = T(N)#£0
and
degN <0 = T'W) =0,

the integer r5x:© satisfies

degLx — gy < rfx’o < degLx.

Algorithm 2.12 (Normalised representative). Let X be a projective curve over a
field k, and let O be a k-rational point of X. Let & be an element of Pic® X, and let
REX:O be the (Lx,O)-normalised representative of z. Given the k-algebra Sg?), the
space I'(L$?(—0)) and a subspace of ['(L%?) representing , this algorithm outputs
the integer 75%+O and the subspace I'(L$?(—REXO)) of T(LF?).

1. Using the negation algorithm, find a subspace I'(£L$?(—D)) of I'(£L$?) represent-
ing —z. Put r =deg Lx.

2. Compute the space T'(LE?(—r0)), then compute T'(LL*(—D — r0)) as the prod-
uct of T(LY?(—D)) and T'(L$?(—r0)), and then compute

(LY (—D —r0)) = {t e (L) | t1(LY?) S T(LL (-D — r0))}.
3. HT(LL* (=D — r0)) = 0, decrease r by 1 and go to step 2.
4. Let s be a non-zero element of T'(L5?(—D — r0O)). Compute
DL (=D = Rg¥9)) = sT(LS?),
and then compute
DL (—Ry*9)) = {t e D(LK?) [P (LS (D)) S T(LK (=D — Rg¥9))

5. Output T£X=O =7 and F(£§2(_R£X,O))_
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2. Computing with divisors on a curve

Analysis. Tt follows from the definition of R5X:© that this algorithm is correct. It
is straightforward to check that its running time, measured in operations in k, is
polynomial in deg Lx. o

Let us give a variant involving a different kind of representative, in which the
line bundle L£x does not play a role. Again we fix a k-rational point O of X. Let z
be an element of Pic’ X, and let M, be a line bundle on X representing z, and let
d9 denote the least non-negative integer d such that

dimy, H°(X, M, (dO)) = 1.
Let s be a non-zero global section of M, (d90), and define
DY = div(s) + (gx — d9)O.
This is an effective divisor of degree gy, and is independent of the choice of s since

H%(X, M, (dO)) is one-dimensional. We call DY the O-normalised representative
of x. It is straightforward to check that

d9 = deg Lx — rfx’o

and that
D9 = REX9 — (deg Lx — gx)O, (2.12)

where # € Pic® X is defined by
T =[Lx(—(deg Lx)O)] — .

This means that we can compute DY by finding #, computing its (£x, O)-normalised
representative and then using (2.12).

2.10. Descent of elements of the Picard group
Now let &’ be a finite extension of k, and write
X' = X Xspeck Speck’.
Consider the natural group homomorphism
i: Pic’ X — Pic’ X'.

It is injective since a line bundle £ of degree 0 on X is trivial if and only if T'(X, £) # 0,
and this is equivalent to the corresponding condition over k’.

Let 2/ be an element of Pic’ X’. We now explain how to use normalised repre-
sentatives to decide whether z’ lies in the image of i, and if so, to find the unique
element z € Pic’ X such that 2/ = i(x).
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Algorithm 2.13 (Descent). Let X be a projective curve over a field k, and let O be
a k-rational point of X. Let k’ be a finite extension of k, write

X' =X Xspeck Speck’,

and let Lx/ denote the pull-back of the line bundle Lx to X'. Let 2’ be an element
of Pic® X’. Given the k-algebra Sg?), the spaces

(X, L$?(—r0)) for deglx —gy <r <degLx

and a subspace of I'(X’, £L$?) representing z’, this algorithm outputs false if ' is
not in the image of the canonical map

i: Pic® X — Pic® X',

Otherwise, the algorithm outputs (true, I'(X, £L$?(—D))), where T'(X, L$?(—D)) rep-
resents the unique element € Pic® X such that i(x) = .

1. Compute the (Lx/,O)-normalised representative Rf/x/’o of 7.

2. Compute the k-vector space
V =T(X', LZ(-R,)) NT(X, L)

3. If the codimension of V in I'(X, E?}Z) is less than deg Ly, output false; other-
wise, output (true, V).

Analysis. In step 3, we check whether R5x-C is defined over k or, equivalently,
whether x is defined over k. If this is the case, the space V equals T'( X, E?}Q(—Rm)),
where z is the unique element of Pic” X such that i(z) = 2’. This shows that the
algorithm is correct; its running time, measured in operations in k and k', is clearly
polynomial in deg Lx. o

2.11. Computing Picard and Albanese maps
A finite morphism

[ X—>Y

between complete, smooth, geometrically connected curves over a field £ induces two
group homomorphisms

Pic f: Pic’ Y — Pic’ X
and
Alb f:Pic’ X — Pic"Y,

called the Picard and Albanese maps, respectively. In terms of line bundles, they can
be described as follows. The Picard map sends the class of a line bundle N on Y to
the class of the line bundle f* on X, and the Albanese map sends the class of a line
bundle M on X to the class of the line bundle Ny M on Y.
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2. Computing with divisors on a curve

Alternatively, these maps can be described in terms of divisor classes as follows.
The group homomorphisms

f:DivP X = Div'Y and f*:Div’Y — Divl X

between the groups of divisors of degree 0 on X and Y respect the relation of linear
equivalence on both sides. The Picard map sends the class of a divisor F on Y to the
class of the divisor f*E on X, and the Albanese map sends the class of a divisor D
on X to the class of the divisor f,D on Y.

Let us now assume that f: X — Y is a finite morphism of projective curves in
the sense of §2.5; in particular, we are given an isomorphism f*Ly — Lx. Using
the following algorithms, we can compute the maps Pic f and Alb f. The algorithm
for the Albanese map actually only reduces the problem to a different one, namely
that of computing traces in Picard groups with respect to finite extensions of the base
field. If A is an Abelian variety over a field k and £’ is a finite extension of &, then
the trace of an element y € A(k’) is defined by

try iy = [k k] Za(y),

o

where o runs over all k-embeddings of &’ into an algebraic closure of k and [k’ : k]; is
the inseparable degree of k' over k. Computing traces is a problem that can be solved
at least for finite fields, as we will see in §3.4.

Algorithm 2.14 (Picard map). Let f: X — Y be a finite morphism of projective
curves, and let y be an element of Pic’Y. Given the k-algebras Sg?) and S$), the
homomorphism f#: Sé}) — Sg?) and a subspace (Y, L£2(—E)) of T'(Y, L$?) repre-
senting y, this algorithm outputs a subspace of I'(X, L%?) representing (Pic f)(y) €
Pic’ X.
1. Compute the subspace I'(X, E?}Q(—D)) for the divisor D = f*E using Algo-
rithm 2.6 (taking i = j = 2 in the notation of that algorithm), and output the
result.

Analysis. Since (Pic f)(y) is represented by the line bundle Lx(—f*D), the correct-
ness of this algorithm follows from that of Algorithm 2.6. Furthermore, the running
time of Algorithm 2.6, measured in operations in k, is polynomial in deg £ x for fixed
i and j; therefore, the running time of this algorithm is also polynomial in deg Lx. <

Algorithm 2.15 (Albanese map). Let f: X — Y be a finite morphism of projec-
tive curves over a field k. Let  be an element of Pic’ X, and let O be a k-rational
point of Y. Suppose that we have a (probabilistic) algorithm to compute the pri-
mary decomposition of a finite commutative k-algebra A with (expected) running
time polynomial in [A : k|, measured in operations in k. Suppose furthermore that
for any finite separable extension k' of k and any element y € PicO(Yk/), we can
compute try / y in time polynomial in deg Ly and [k" : k], measured in operations
in k. Given the k-algebras Sg?) and S)(,ﬁ), the homomorphism f#: 53(,6) — Sg?), the
space T'(Y, £?(—0)) and a subspace T'(X, L5?(—D)) of T'(X, L$?) representing ,
this algorithm outputs a subspace of I'(Y, £L$?) representing (Alb f)(x) € Pic’ Y.
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1. Compute T'(X, LE*(—D)) as the product of I'(X, £$?) and T(X, L$*(—D)).
2. Find the decomposition of D as a linear combination ), npP of prime divisors
using Algorithm 2.4.

3. For each P occurring in the support of D:

4. Compute the base changes Xj,(p) and Yy (p).

5. Find the primary decomposition of the divisor Pypy on X (p), and pick a
rational point P’ in it.

6. Compute the space I'(Yy,(py, L57(— f(P") — (deg Ly —1)O)); this represents

an element ypr € Pic’(Yy(p)).

7. Compute the element yp = try(p/x ypr of Pic’ Yi(p)- Apply Algorithm 2.13
to get a representation for yp as an element of Pic’ Y.

8. Compute the element y = 3", npyp of Pic’(Y).

9. Output the element y — (deg f)(deg Ly — 1)yo of Pic’ Y, where yq is the element
of Pic’ Y represented by T'(Y, L?(—(deg Ly)0)).

Analysis. The definition of yp; implies that
yp = [Ly (= f(P') — (deg Ly — 1)O)],
the definition of yp implies that
yp = (LY P — [K(P) - K(deg Ly —1)O)]

and the definition of y, together with the fact that deg Lx = (deg f)(deg Ly ) implies

that dow £
y = [LYYFX (= f,D — (deg Lx)(deg Ly —1)0)]

= (€3 (= £.D)] + (deg f)(deg Ly — 1)[Ly (—(deg Ly)O)].
Together with the definition of yg, this shows that
y — (deg f)(deg Ly — )yo = [£7 %P (—f.D)]
=NyLx(=D),

and therefore that the output of the algorithm is indeed (Alb f)(x). Our computa-
tional assumptions imply that the running time is polynomial in deg £Lx, measured
in field operations in k. o

Finally we consider correspondences, i.e. diagrams of the form

X
s\
Y Z,

where X, Y and Z are proper, smooth, geometrically connected curves over a field k.
Such a correspondence induces group homomorphisms

Albg o Pic f: Pic’ Y — Pic’ Z

and
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2. Computing with divisors on a curve
Alb f o Pic g: Pic® Z — Pic" Y.

We suppose that X, Y and Z are given by projective embeddings using line bundles
Lx, Ly and Lz as in §2.1, and that we are given isomorphisms

f*ﬁy > Ly g*ﬁz.

Then Alb goPic f and Alb foPic g can be computed by composing the two algorithms
described above.

3. Curves over finite fields

In this section we give algorithms for computing with divisors on a curve over a
finite field. After some preliminaries, we show how to compute the Frobenius map
on divisors and how to choose uniformly random divisors of a given degree. Then we
show how to do various operations in the Picard group of a curve over a finite field,
such as choosing random elements, computing the Frey-Riick pairing and finding
a basis of the [-torsion for a prime number [. Many of the results in this section,
especially those in §3.7, §3.8 and §3.9, are variants of work of Couveignes [16].

We switch from measuring the running time of algorithms in field operations to
measuring it in bit operations. The usual field operations in a finite field k£ can be
done in time polynomial in log #k.

Let k be a finite field of cardinality ¢, and let X be a complete, smooth, geomet-
rically connected curve of genus g over k. The zeta function of X is the power series
in Z[[t]] defined by

Zx = Z tles D — Z(#Eff”X)t"
DeEff X n=0

| |
1
H 1 _tdegP -

PePDiv X d

(1 . td)f# PDiv? X

2

1

Here Eff X and PDiv X are the sets of effective divisors and prime divisors on X,
respectively; a superscript denotes the subset of divisors of the indicated degree. The
following properties of the zeta function are well known.

Theorem 3.1. Let X be a complete, smooth, geometrically connected curve of
genus g over a finite field of cardinality q.

(1) The power series Zx can be written as a rational function

Lx
(L=8)(1—qt)’

where Lx € Z[t] is a polynomial of the form

Ty = (3.1)

Lx =1+agt+ -+ ag 11> + ¢9t*.
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(2) The factorisation of Lx over the complex numbers has the form

2g

Ly =[] - ait), (3.2)

i=1
where each «; has absolute value \/q.

(3) The polynomial Lx satisfies the functional equation
¢t*9 Lx (1/qt) = Lx(t). (3.3)

From the definition of Zx and from (3.1) it is clear how one can compute the
number of effective divisors of a given degree on X starting from the polynomial Lx.
We now show how to extract the number of prime divisors of a given degree from Lx.
Taking logarithmic derivatives in the definition of Zx and the expression (3.1), we

obtain
/N 4 L 1 q
—=f§ §d~ POiVYX |tn=X 4 — 4 1 3.4
Zx tn1<d| # PDiv ) Ix 1-i 1—q (34)

From Lx we can compute the coefficients of this power series. We can then compute
#PDiv? X using the Mobius inversion formula. More explicitly, taking logarithmic
derivatives in the factorisation (3.2), we obtain Newton’s identity

[e%S)

!/

X/LX = - Z anrltna
n=0

where the s,, are the power sums
29
sn:Za?eZ (n>0).
i=1

Expanding the right-hand side of (3.4) in a power series and comparing coefficients,
we get

> d#PDIV'X =1+ q" — sy,

d|n

or equivalently, by the Mobius inversion formula,
n#PDIV" X =" pu(n/d)(1+ ¢* — s4),
d|n
where p is the usual Mobius function. We note that this simplifies to

14+qg—s1 ifn=1;

# PDiv" X = { = g/ d)(g* = sa) ifn>2.

(3.5)

Let J = Pic% /i, denote the Jacobian variety of X. From the fact that the Brauer
group of k vanishes it follows that the canonical inclusion

Pic’ X — J(k)
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is an equality. In other words, every rational point of J can be identified with a linear
equivalence class of k-rational divisors of degree 0.
We note that from the functional equation (3.3) one can deduce that

qlngrn -1

#EH" X =
q—1

Lx(1) forn > 2g,

which in turn is equivalent to the “class number formula”

#J(k) = #Pic® X = Lx(1). (3.6)
3.1. The Frobenius map
Let k be a finite field of cardinality ¢, and let X be a projective curve over k in the
sense of §2.1. We write d = deg Lx. Let Sym? X denote the d-th symmetric power
of X over k, and let Gr?T'(X, E?éz) denote the Grassmann variety of linear subspaces
of codimension d in the k-vector space I'(X, E?}Q). Then we have a commutative
diagram

Crin(X, L5?) «— Sym? X

F‘robql lF‘robq

GriT(X, 5?22) — Sym? X
of varieties over k, where the vertical arrows are the g-power Frobenius morphisms.
Now let £’ be a finite extension of k, write

X" = X Xspeck Speck’,

and let D be an effective divisor on X’. The commutativity of the above diagram
shows that the divisor (Frob,).D on X’ can be computed using the following algo-
rithm.

Algorithm 3.2 (Frobenius map on divisors). Let X be a projective curve over a
finite field k of ¢ elements, and let Frob, be the Frobenius map on the set of divisors
on X. Let k' be a finite extension of k. Let X' = X Xgpeck Speck’, and let Lx+ be
the pull-back of the line bundle Ly to X’. Let 7 be a positive integer, and let D be
an effective divisor on X’. Given the matrix M of the inclusion map

DX, L(=D)) — D(X', L))

with respect to any k’-basis of the left-hand side and the k’-basis induced from any
k-basis of I'(X,£5") on the right-hand side, this algorithm outputs the analogous
matrix for the inclusion map

T(X', £ (—(Frob,).D)) — T(X', £53).
1. Apply the Frobenius automorphism of k' over k to the coefficients of the ma-
trix M, and output the result.

Analysis. Tt follows from the discussion preceding the algorithm that the output is
indeed equal to T'(X’, LS. (—(Frob,).D)). The algorithm involves O((deg £x)?) com-
putations of a g-th power of an element in &', which can be done in time polynomial
in deg Lx, i and log #k'. S
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3.2. Choosing random prime divisors

Let X be a projective curve (in the sense of §2.1) over a finite field. Our next goal is to
generate random effective divisors of given degree on X. We start with an algorithm
to generate random prime divisors. For this we do not yet need to know the zeta
function of X, although we use its properties in the analysis of the running time of
the algorithm.

Algorithm 3.3 (Random prime divisor). Let X be a projective curve over a finite
field k. Let d and i be positive integers such that

d<idegLx —2¢gx.

Given d, i and the k-algebra Sg?i+2), this algorithm outputs a uniformly distributed
prime divisor P of degree d on X, represented as the subspace T'(LY' (—P)) of T(LY),
provided PDiv¢ X is non-empty. (It PDiv? X = (), the algorithm does not terminate.)

1. Choose a non-zero element s € F(E?}i) uniformly randomly, and let D denote the
divisor of s. (In other words, choose a random hypersurface section of degree 4
of X.)

2. Compute the set Irr? D of (reduced) irreducible components of D of degree d
over k using Algorithm 2.4.

3. With probability %, output a uniformly random element P € Irr D

and stop.
4. Go to step 1.

Analysis. Let g denote the cardinality of k, and let H denote the set of divisors D
that are divisors of non-zero global sections of E?}l. By the Riemann—Roch formula,

the cardinality of H is
ql—g—i-idegE -1
=1
qg—1
When the algorithm finishes, the probability p(D, P) that a specific pair (D, P) has
been chosen is

1 #m’D 1
p(D, P) = #H [(ideg £)/d] #Trr? D
q—1 1

~ ot 1 [(ideg £)/d]”
For all prime divisors P of degree d, the number of D € H for which P is in the
support of D is equal to

ql—g+ideg£—d -1
#{D | P € supp D} =

)

q—1
so the probability p(P) that a given P is chosen equals

p(P)=#{D | P € supp D} - p(D, P)
ql—g+idcg£—d -1 1

gioridesL — 1 |(idegL)/d]
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3. Curves over finite fields

This is independent of P and therefore shows that when the algorithm finishes, the
chosen element P € PDiv? X is uniformly distributed. Furthermore, the probability p
that the algorithm finishes in a given iteration is

1—g+ideg L—d __ 1 1
g'-otidest — 1 [(idegL)/d]
_ #PDiv! X gl otidesl —gd 1

gt glotidest —1 [(ideg £)/d]

L # PDiv? X
qd

p=#PDivix .4

1—g o) 2
(1-q )idee L

We claim that the expected running time is polynomial in deg L, i and log ¢, under
the assumption that # PDiv? X # ). We distinguish two cases:

¢?? < 200(d)(29x +1) and %% > 200(d)(29x + 1).

Here o¢(d) denotes the number of positive divisors of d. In the first case, we see that

p > (200(d)(29x +1))*(1 — ¢~ 7%%)

ideg L’

which shows that 1/p is bounded by a polynomial in deg £ and 4. In the second case,
we deduce from (3.5) the following estimate for # PDiv? X:

[d#PDIVX — g% <> ¢ + ) [sel

eld eld
e#d
< (00(d) = 1)¢"* + 00(d) - 294"
< ao(d)(29x + 1)g"*
1 d
< =
= 2(}

This implies that # PDiv? X > ¢%/(2d), and hence

1—q 179x

P> oides L

In both cases we conclude that the expected running time is bounded by a polynomial
in deg £, ¢ and loggq. o

3.3. Choosing random divisors

As before, let X be a projective curve over a finite field k. From now on we assume
that we know the zeta function of X, or equivalently the polynomial Lx.

Below we will give an algorithm for generating uniformly random effective divisors
of a given degree on the curve X. These divisors will be built up from prime divisors,
so it will be useful to speak of the decomposition type of an effective divisor D. This
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1V. Computational tools

is the sequence of integers (l1,lo,...), where Iz is the number of prime divisors of
degree d (counted with multiplicities) occurring in D.

One of the ingredients is the concept of m-smooth divisors and decomposition
types. An m-smooth divisor is a linear combination of prime divisors whose de-
grees are at most m, and an m-smooth decomposition type of degree n is an m-
tuple (l1,...,ly) such that >_," | lqd = n. For every m-smooth effective divisor D of
degree n, we may view the decomposition type of D as an m-smooth decomposition
type, since only its first m coeflicients are non-zero.

The algorithm that we will describe takes as input integers n > 0 and m > 1,
and outputs a uniformly random m-smooth effective divisor of degree n. Clearly, all
effective divisors of degree n are n-smooth, so that the algorithm can be used with
m = n to produce uniformly random effective divisors of degree n.

The first step is to generate the decomposition type of a uniformly random m-
smooth effective divisor of degree n. The method we use for doing this is described
by Diem in [27, page 150] and in [28]. The algorithm works by recursion on m.
For every m > 1, we write EffZ, X for the set of m-smooth effective divisors D of
degree n. Furthermore, for [ > 0 and m > 1 we write Effl:mm X for the set of divisors
of degree Im that are linear combinations of prime divisors of degree m. We note that
the set EffZ, X can be decomposed as

Eff?, X ifm=1;

n Ln/m]

Eff7,, X = 3.7

=m | | EffZ, X < BffL™ X if m > 2. (37)
=0

The cardinality of Effl:mm X equals the number of ways to choose [ elements from the
set PDiv"™ X with repeats. For this we have the well-known formula

PDiv"* X — 1
LR X — <# A + l). (3.8)
Furthermore, from the description (3.7) of EffZ, X we see that
#Eff", X ifm=1;
#BAT,, X = P (3.9)

=m

> #EfT X #EHL X ifm > 2.
=0

From these relations we can compute # EffZ X recursively, starting from the num-
bers #PDiv? X for 1 < d < m. An alternative way to describe these recurrence
relations is to use generating functions; see Diem [27, page 149] or [28, Lemma 3.14].

In order to generate decomposition types of uniformly random m-smooth divi-
sors of degree n, we define a probability distribution pu]», on the set of m-smooth
decomposition types of degree n by defining p” (I1,...,L,) as the probability that
a uniformly randomly chosen effective m-smooth divisor of degree n has decompo-
sition type (l1,...,0n). The algorithm now works as follows. We first select an
integer I, € {0,1,...,|n/m]}—the number of prime divisors of degree m (counted

13/



3. Curves over finite fields

with multiplicities) occurring in the decomposition—according to the marginal dis-
tribution v}, of the m-th coordinate. We then apply the algorithm recursively with
(n — lym,m — 1) in place of (n,m).

The marginal distribution v}, of the coordinate [, in an m-tuple (I1,...,0y)
distributed according to pjy, is the following. If m = 1, then l; = n with probability 1.
When m > 2, the probability that ,,, equals a given [ € {0,1,...,|[n/m]|} is

X - # B X

# Effl’m
v (l) = 7
#Eff2 X

(0 <1< [n/m]). (3.10)

We compute # EffZ, X, as well as #Effl:mm and #Effg;f:"l X for 0 <1< |n/m|,
using (3.5), (3.8) and (3.9). We then generate a random I,, € {0,1,...,[n/m]|},
distributed according to v}, in the following way. We subdivide the interval

I1={0,1,... #Eff2 X —1}

into |n/m|+1 intervals I;, with 0 < I < |n/m| and each I, having length # Eff™" X
#Effg;f:”l X, we generate a uniformly random element z € I, and we select the
unique [ such that z € I;.

Algorithm 3.4 (Decomposition type of a random divisor). Given the polynomial Lx
for a curve X over a finite field and integers n > 0 and m > 1, this algorithm outputs a
random m-smooth decomposition type (l1,...,1;) of degree n, distributed according
to the distribution u2,.

1. If m = 1, output the 1-tuple (n) and stop.

2. Choose a random element I,,, € {0,1,..., |n/m|} according to the distribution v/,
from (3.10).

3. Call the algorithm recursively with (n — l,,m, m — 1) in place of (n,m) to obtain
an (m — 1)-smooth decomposition type (l1,...,l,—1) of degree n — I,,m.

4. Output the m-tuple (I1,...,0n).

Analysis. The correctness of the algorithm follows from the above discussion. It is
straightforward to check that it runs in time polynomial in gy, log #k, n and m. <

The preceding algorithm reduces our problem to generating random linear com-
binations of [ prime divisors of a given degree d. In other words, we have to pick a
random multiset of cardinality [ from PDiv? X. This can be done using the following
algoritm.

Algorithm 3.5 (Random multiset). Let S be a finite non-empty set of known car-
dinality. Suppose we have algorithms to pick uniformly random elements of S and
to decide whether two such elements are equal. Given a non-negative integer [, this
algorithm outputs a uniformly random multiset of | elements from S.

1. Generate a uniformly random subset {z1,...,2;} of {1,2,...,1+ #S — 1}, with
X1 < Ty < ... <@y
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1V. Computational tools

2. Define a multiset (y1,...,y;) of | elements from {0,1,...,#S —1} by y; = x; — ¢;
then 1y <yo < ... <.

3. For each ¢ with 1 <4 <1, let a; be the number of elements of {0,1,...,#S5 — 1}
that occur with multiplicity ¢ in (y1,...,y).

4. Generate a uniformly random sequence

1.1 1
81,89, 184,
2 .2 2
81,85 184,
1ol l
51,8955 8q,

of a1 + ag + - - - + a; distinct elements of S.

J

5. Output the multiset consisting of the elements s{ of S, where s] occurs with

multiplicity j.

Analysis. By construction, (y1,...,4;) is a uniformly random multiset of ! elements
from {0,1,...,#S — 1}, so the “multiplicity vector” (ai,...,q;) is the same as that
of a uniformly random multiset of [ elements from S. The multiset generated in the
last step is uniformly random among the multisets with this “multiplicity vector”.
This implies that the result is a uniformly random multiset of [ elements from S, as
required. o

Combining Algorithms 3.3, 3.4 and 3.5, we obtain the following algorithm to
generate a uniformly random effective divisor of a given degree.

Algorithm 3.6 (Random divisor). Let X be a projective curve over a finite field k.
Given positive integers m and 4, an integer n satisfying

0<n<ideglx — 29y,
the graded k-algebra Sg?iJrQ) and the polynomial Lx, this algorithm outputs a uni-

formly random‘ m~smooth effeqtive divisor D of degree n on X, represented as the
subspace I'(LS'(—D)) of T(LY).

1. Generate a random m-smooth decomposition type (ly,...,l;,) of degree n using
Algorithm 3.4.
2. Ford =1,...,m, generate a uniformly random linear combination Dy of [ prime

divisors of degree d on X using Algorithm 3.5 (with S = PDiv? X, and [ = ),
where we use Algorithm 3.3 to generate random elements of PDiv? X.

3. Compute the subspace I'(Lx (—D)) for the divisor D = Dy + - - -+ D, using the
addition algorithm described in § 2.2, and output I'(Lx (—D)).

Analysis. It follows from the above discussion that the algorithm outputs a uniformly
random m-smooth divisor of degree n on X. The running time is clearly polynomial
in m, n, i and deg Lx (measured in field operations in k). o
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3. Curves over finite fields

Remark. In practice, the following method for picking a random effective divisor of
degree n is faster, but does not give a uniformly distributed output. We first choose a
uniformly random non-zero section s of I'(X, £L®%), where i is a non-negative integer
such that

idegL—n>2g+ 1.

Then if the set of effective divisors D of degree n with D < div s is non-empty, we
pick a uniformly random element from it; otherwise we keep going with a different
section s.

3.4. The Frobenius endomorphism of the Jacobian

As before, let k& be a finite field of cardinality ¢, and let X be a proper, smooth and
geometrically connected curve over k. Let J be the Jacobian variety of X, and let
Frob, denote the Frobenius endomorphism of J; it is an isogeny of degree ¢7. The
Rosati dual of Froby is called the Verschiebung and denoted by Ver,. The Albanese
and Picard maps associated to the Frobenius morphism on X are the endomorphisms
Frob, and Ver, of J, respectively.

Assume we have a point O € X (k). Then we have a commutative diagram

Sym?X — J
Frob, | | Fron,

Sym?X — J

of varieties over k, where the horizontal maps send a divisor D to the class of D —dO
and the vertical arrows are the g-power Frobenius morphisms. This shows that the
Frobenius endomorphism of J is equal to the endomorphism Alb(Frob,) induced by
the Frobenius map on X via Albanese functoriality.

We write X' = X Xgpeck Speck’. The results of §3.1 imply that for any finite
extension k' of k, the endomorphism Frob, of J(k') = Pic’(X’) can be computed by
applying Algorithm 3.2 to any subspace I'(X”, ﬁ?}?(—D)) of the k’-vector space

D(X', L) =k @, T(X, £5?)

with D an effective divisor of degree deg Lx on X’ such that £x:(—D) represents x.
If O is a k-rational point of X, then we can compute the trace map

trgs g Pic’ X' — Pic® X

in the following way. For z € Pic’ X', we compute a subspace of ['(X’, L$7) repre-

senting the element
[k":k]—1

y = Z Frobfzx e Pic® X".
i=0
Now y is in fact the image of the element try/ ,,z € Pic® X under the inclusion
Pic® X — Pic’ X', so we can apply Algorithm 2.13 to find a subspace of (X, [,}8}2)
representing try .
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1V. Computational tools

In §2.11, the problem of computing the Albanese map for a finite morphism of
curves was reduced to the problem of computing trace maps. Since we can solve
the latter problem, we can therefore compute Albanese maps for finite morphisms of
curves over finite fields.

3.5. Picking random elements of the Picard group

The next problem we will study is that of picking uniformly random elements in the
finite Abelian group J(k) = Pic® X. We recall from §2.8 that in the medium model
of the Picard group, the class of a line bundle M of degree 0 is represented by an
effective divisor D of degree deg £ such that M = £(—D). Consider the map

Eff'°e£ X — Pic’ X
D — [L(-D)].
It follows from the Riemann-Roch theorem and the fact that deg £ > 2gy — 1 that
all fibres of this map have cardinality %. This means that to pick a uni-
formly random element of Pic’ X it suffices to pick a uniformly random divisor of
degree deg L. A method for doing this is given by Algorithm 3.6, provided that we
know Sg?).

3.6. Computing Frey—Riick pairings
Let n be a positive integer. We assume k contains a primitive n-th root of unity; this
is equivalent to
n|#k*=q—1
and implies that n is not divisible by the characteristic of k.

Let X be a complete, smooth, geometrically connected curve over k, and let J
be its Jacobian variety. The Frey-Riick pairing of order n on J(k) = Pic® X is the
bilinear map

[ In: J[nl(k) x J(k)/nJ (k) — pn(F)
defined as follows (see Frey and Riick [39] or Schaefer [93]). Let z and y be elements
of J(k) such that nz = 0. Choose divisors D and E such that = and y are represented
by the line bundles Ox (D) and Ox(FE), respectively, and such that the supports of
D and FE are disjoint. By assumption, there exists a rational function f on X such
that nD = div(f); now [z,y], is defined as

[yl = FE)FF/m

Here f(FE) is defined on k-valued points (where k is an algebraic closure of k) by
function evaluation, and then extended to the group of divisors on Xy, by linearity
in the sense that

HE+E)=fE) f(E)
It is known that the Frey—Riick pairing is perfect in the sense that it induces isomor-
phisms

T[] (k) < Hom(J (k) /nJ (k), 1 (K))

and
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3. Curves over finite fields
J(k)/nJ (k) — Hom(J[n](k), pn(k))

of Abelian groups.

Let us now give a slightly different interpretation of f(E) that brings us in the
right situation to compute [z, y],. We consider an arbitrary non-zero rational func-
tion f and an arbitrary divisor E such that the divisors

D = div(f)

and E have disjoint supports. Since f(F) is by definition linear in E, it suffices to
consider the case where F is an effective divisor. As in §2.7, we write

g B — X
for the closed immersion of E into X, and if M is a line bundle on X we abbreviate
Ng/xM = Ng/(jgM).
Since D and F have disjoint supports, we have a canonical trivialisation
tp:k = Ng/;Ox = Ng/kOx (D).
On the other hand, multiplication by f induces an isomorphism
Ng/kf:Ng/Ox (D) = Ng/Ox = k.
of one-dimensional k-vector spaces. We claim that the composed isomorphism

N
k2 Np i Ox (D) 24T (3.11)

is multiplication by f(E). This is true in the case where E is a single point, since
then N, is (canonically isomorphic to) the identity functor. We deduce the general
case from this by extending the base field to an algebraic closure of k and using the
fact that both f(F) and the norm functor are linear in E. For the latter claim, we
refer to Deligne [100, exposé XVII, n®6.3.27].

Remark. The isomorphism (3.11) could be taken as a definition of f(FE) for effective
divisors E.

Lemma 3.7. Let x and y be elements of J(k) with nx = 0, let M be a line bundle
representing x, and let ET and E~ be effective divisors such that Ox(E+t — E™)
represents y. (In particular, M has degree 0, and E* and E~ have the same degree.)
For any pair of trivialisations

Tk = NEi/kM
of k-vector spaces and any trivialisation
S: OX AN M®n

159



1V. Computational tools

of line bundles on X, the isomorphism

NE,/ks

k —> Np-pM®" (tiT)i’n k

—1
Ng+ /58
—/

kO N oMmn

is multiplication by an element of k* whose (#k* /n)-th power equals [z, y],.

(We have implicitly used the isomorphisms N g /5, (M®") 2= (Np+ , M)®" expressing
the linearity of Ng/;, and denoted both sides of the isomorphism by NEi/kM®”.)

Proof. We fix a non-zero rational section h such that the divisor
D =divh
is disjoint from E*. Then we have canonical trivialisations
thik — Np= ,Ox (D)
as above. Composing these with the isomorphism
Ng+ /ph:Ng= ,,0x (D) — Np= /M

induced by multiplication by h gives trivialisations

tif =Np+ photpik — Ngs M.
Now consider any isomorphism

5:0x — M®"
of line bundles on X, and define
f=s5"1oh™Ox(nD) " Ox;

then f can be viewed as a rational function with divisor nD. We now have commu-
tative diagrams

:l: n N f
k —)> NEi/kOX(TLD) E%;C
| ~Npehn |
+\n N 371
B Npemen CFEA

As we saw above, the top row is multiplication by f(E¥); by the commutativity of
the diagram, the same holds for the bottom row. Finally, we note that replacing tf
by any pair of trivialisations

Yk = NEi/kM

changes the isomorphism in the bottom row of the above diagram by some n-th power
in k*. This implies that the isomorphism

fi)n

k' — NEi/kM®n

-1
Np+ 58
—/

k

~

equals multiplication by an element of k* whose (#k/n)-th power is f(E®)#F*/n,
The lemma follows from this by the definition of [z, y],. O
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3. Curves over finite fields

Lemma 3.7 reduces the problem of computing the Frey—Riick pairing of order n
to the following: given a line bundle M such that M®™" is trivial, find an isomorphism

5:0x = M",
and, given moreover an effective divisor F and a trivialisation
t:k — NE/kM,

compute the isomorphism

n N s7!
1Pk o N MO 5k (3.12)

~

We assume that the curve X is specified by a projective embedding via a line
bundle £ as in §2.1. We will describe an algorithm to compute isomorphisms of the
type 1, ft, based on Khuri-Makdisi’s algorithms for computing with divisors on X.
Suppose we are given a line bundle M of degree 0 such that M®" is trivial and an
effective divisor F. For simplicity, we assume that deg F = deg L. As in §2.2, we
represent the class of M in J(k) by the subspace I'(X, L22(—D)) of I'(X, £L®?), where
D is any effective divisor of degree deg £ (not necessarily disjoint from E) such that

M= L(-D).

Likewise, we represent E as the subspace I'(X, L22(—F)) of I'(X, £L®?).
First, we will describe a construction of a trivialisation

5:0x — L(—D)®",

For this we fix an anti-addition chain (ag, a1, ...,a:) for n, as described in §2.8. In
particular, for each I with 2 <[ < m we are given i(l) and j(I) in {0,1,...,1—1} such
that

ar = —aiq) — 4i@)-

We fix any non-zero global section u of £, and we put

Dy =div(u), D;=D.
For [ =2, 3, ..., m, we iteratively apply Algorithm 2.11 to D;(;y and Dj(;; this gives
an effective divisor D; of degree deg £ and a global section s; of £%2 such that the

line bundle L& (—D; — D;y — Dj(y) is trivial and

div(s;) = Dy + D;q) + Dj(y-

We recursively define rational sections Ay, hg, ..., hm of LE(@=D by
ut for [ = 0;
hy=<1 for [ = 1;

(hiyhjays)) ™t for1=2,3, ..., m.
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Then it follows immediately that each h; has divisor ;D — D;. In particular, since
L(—D)®™ is trivial, so is £L(—D,,) and Algorithm 2.10 provides us with a global
section v of £ such that

div(v) = Dpy,.

The rational section
s = h,v

of £®" has divisor nD and hence induces an isomorphism
5:O0x — L(—D)®".

Next, we assume that an effective divisor E' has been given. We assume for
simplicity that deg E = deg L. We fix bases of the following k-vector spaces:

L(E,L%%);
D(E,L%(—Dy)) for 1 <1< m;
L(E, L% (=D;qy — Djq))) for 2< 1 < m.

In addition, we fix a k-basis of I'(E, L®3(—Dy)) by defining it as the image of the
chosen basis of T'(E, £%?) under the multiplication map

uw:T(E, £L%?) =5 T(E, L23(=Dy)).
For 0 <! < m we define a trivialisation

tik — NE/kﬁ(—Dl)
= Homy, (dety, I'(E, £&?), det, T'(E, L2*(=Dy)))

using the given bases of I'(E, £L®?) and ['(E, L®3(—D;)), and we define an element ~,
of k* by requiring that the diagram

k 5 Nppl(-Dy)
We el
kL5 N L(-D)®™
be commutative. For 2 <[ < m, we define a trivialisation
ti:k == Np L (=Digy — Djqy)

by (2.9) using the given bases of I'(E, L2*(—D;) — D;())) and I'(E, £L%?). Further-
more, we endow ['(E, L25(—D; — D;y — Dj(y)) with the basis obtained by transfer-
ring the given basis of I'(E, £%?) via multiplication by s;. This gives a trivialisation

t;lt ]C ; NE/k,C®3(—Dl — D'L(l) — Dj(l))

by (2.9) using the basis of I'(E, L2*(—D; — D;y — D)) just defined and the given
basis of I'(E, £L&?).
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3. Curves over finite fields

Algorithm 3.8 (Compute isomorphisms of the form I ft) Let X be a projective
curve over a field k, let D and E be effective divisors of degree deg £ on X, and let
n be a positive integer such that £(—D)®" is trivial. Given the k-algebra Sg), an
anti-addition chain (ag, ay,...,a,;,) for n, a global section u of L, effective divisors
Dy, Dy, ..., D,,, global sections sg, ..., s, of £3 such that

Do =div(u),D1 =D and div(s;) = Dy + D;q) + D) for2 <1 <m

and a global section v of the trivial line bundle £(—D,,), this algorithm outputs the
isomorphism 7 ft defined by (3.12), where s is defined using the given data, and where
t is chosen by the algorithm. (Note that this means that the output of the algorithm
is an element of k* defined up to n-th powers in k*.)

1. Put =7 =1

2. Forl =2, 3,

3. Using Algorlthm 2.9, compute the elements )\( ) and )\ ) of kX such that
the diagrams

z<z)®t

k o Ng/kL(—=D;qy) @ Ng /i L(—=Djqy)

MY L~ L~

!’
2]

koo— Ng/kL9(=Diqy — Djw))

and
L@t
ko — Ng/L(—D;) @ Ng /i, LE2(=D;y — Djy)

ol I~

1"
tl

k —) NE/k,C@g(*Dl - Di(l) - D](l))
are commutative. Define \; = /\l(l))\l(2
A
4. Put v, = .
Vi)V

5. Compute § € k* as the determinant of the matrix of the isomorphism
v:T(E, L?) == T(E,L3(—=D,,))
with respect to the given bases.

1
6. Output the element P € kx.
Tm

Analysis. The definition of A\; given in the algorithm implies that the diagram

L ®t; )&t
PLLTOLLTOIN g/kL(—=Dy) ® Ng/pL(—D;q)) ® Ng /i L(=Djqy)

M|~ I~

"
tl

k’ E— NE/]CL@:S(*DI - Dl(l) - D](Z))
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is commutative; furthermore, ] is induced by multiplication by s;. The recursive
definition of the h; implies that the recurrence relation between the ; is as stated in
the algorithm. Namely, it follows from the definition of Dy, from the special choice
of basis of T'(E, L#3(—Dy)) and from the fact that t; = ¢ that

Yo=m =1

Furthermore, the definitions of hy, i, v;1y, vj) and the property of \; that we have
just proved imply that

A
Y= — forl=2,3,...,m.
Vi) Vi)

Finally, it follows from the definitions of s, v, and the isomorphism IZ, from (3.12)
that the relation between v, t.,, vm and [ ft is given by the commutativity of the

diagram
E

WmTN NJ,NE/W

k % Ng/il(—Dp).

This proves that the element of k™ output by the last step is indeed I ft
It is straightforward to check that the running time of the algorithm, measured
in operations in k, is polynomial in deg £ and m. o

Algorithm 3.9 (Frey—Riick pairing). Let X be a projective curve over a finite field k,
let » be an integer dividing #k*, and let x and y be elements of J(k) with nax = 0.
Given the k-algebra Sgg) and subspaces T'(L%?(—D)) and T(LS*(—E7)) of T(LE?)
representing « and y, this algorithm outputs the element [z, y], € un (k).

1. Find an anti-addition chain (ag, a1, ..., an) for n.

2. Choose any non-zero global section u of Lx, and let Dy denote its divisor. Com-
pute the space

D(£5(~Dy)) = ul(Lx).

Write D1 =D.

3. Using Algorithm 2.11, find effective divisors Do, D3, ..., D,, of degree deg Ly,
where each D; is represented as the space T'(£$?(—D;)), and non-zero global
sections sz, 83, ..., Sm Of E?}?’ such that the line bundle ﬁ?}g(—DiU) —Djq—Dy)

is trivial and
div(s;) = Diqy + Doy + Dy

4. Using Algorithm 2.10, verify that £x (—D,,) is trivial and find a non-zero global
section v of Lx(—D,,).
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5. Choose a non-zero global section w of Lx, let E™ denote its divisor, and compute
D(LP(—EY)) = wl(Lx).

6. Compute [ SE; and [ ft__, viewed as elements of k*, using Algorithm 3.8, where

tT and ¢t~ are certain trivialisations chosen by that algorithm.
7. Output (If; JI1E, Y#R
Analysis. The correctness of this algorithm follows from Lemma 3.7. The running
time is polynomial in deg Lx, log #k and logn. o
3.7. Finding relations between torsion points

Let X be a projective curve over a finite field k, represented as in §2.1, let J be
its Jacobian, and let [ be a prime number different from the characteristic of k. We
will show how to find all the F;-linear relations between given elements of J[I|(k). In

particular, given a basis (b1, ..., b,) for a subspace V of J[I](k) and another point = €
J[I](k), this allows us to check whether x € V, and if so, express = as a linear
combination of (by,...,b,).

Let k' be an extension of k containing a primitive [-th root of unity. It is well
known that the problem just described can be reduced, via the Frey—Riick pairing,
to the discrete logarithm problem in the group (k). Algorithm 3.11 below makes
this precise. We begin with a bound on the number of elements needed to generate a
finite-dimensional vector space over a finite field with high probability.

Lemma 3.10. Let F be a finite field, and let V be an F-vector space of finite
dimension d. Let o be a real number with 0 < a < 1, and write

0 if d=0;
_ log —~
m = 1—ql/d .
d—1 —_— fd>0.
+ { log #F —‘ 1 >
Ifvy, ..., vy, are uniformly random elements of V', the probability that V is generated

by vy, ..., v, is at least a.
Proof. Fix a basis of V. The matrix of the linear map

F" —V
m

(cl,...,cm) — E C;U;
i=1

is a uniformly random d X m-matrix over F. The probability that it has rank d is the
probability that its rows (which are uniformly random elements of F"™) are linearly
independent. This occurs with probability

(#F™ — 1)(#F™ = #F)--- (#F™ — #F)
#de

S (#Fm _ #Fd—l)d
- #de
_ (1 _ (#F)f(mfdJrl))d
The choice of m implies that p > a. O
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logd

Tog #F > 1

Remark. The integer m defined in Lemma 3.10 is approximately d — 1 +
the sense that for any fixed « the difference is bounded for d > 1.

Algorithm 3.11 (Relations between torsion points). Let X be a projective curve
over a finite field &, let J be its Jacobian, and let [ be a prime number different from
the characteristic of k. Let x1, ..., 2, be elements of J[I](k). Given the k-algebra Sg)
and subspaces T'(LS2(—D;)) of T(L$?) representing x; for 1 < i < n, this algorithm
outputs an F;-basis for the kernel of the natural map

S FY s J[I(K)

n
(Cla <. 'acn) — chzz
i=1

The algorithm depends on a parameter a € (0,1).

1. Generate a minimal extension k' of k such that &’ contains a primitive I-th root
of unity (. Let

A (k') — Fy

denote the corresponding discrete logarithm, i.e. the unique isomorphism of one-
dimensional F;-vector spaces sending ¢ to 1.

2. Define an integer m > 0 by

0 if n=0;
m = log ﬁ
n—1+|——2—| ifn>0.
log
3. Choose m uniformly random elements y1, ..., ¥y, in J(k') as described in §3.5;

their images in J(k')/lJ(k’) are again uniformly distributed.

4. Compute the m X n-matrix
M= (Mlyi z;1)) (1<i<m, 1<j<n)

with coefficients in p;(k’), where the pairing [ , ]; is evaluated using Algo-
rithm 3.9 and the isomorphism A is evaluated using some algorithm for computing
discrete logarithms in py (k).

5. Compute an Fj-basis (by,...,b,) for the kernel of M.
6. If X(by) =... =X(b.) =0, output (by,...,b,) and stop.
7. Go to step 3.

Analysis. We write V' for the image of ¥ and V” for the quotient of J(k')/lJ (k") by
the annihilator of V' under the pairing [ , ];. Then we have an induced isomorphism

V = Homg, (V', i (K')).
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3. Curves over finite fields

Consider the map
YF — V!

m
(C1y-eyCm) — Z CiYi-
i=1

Now we have a commutative diagram

F} — Home, (F", u(K))
2| T s fox
V. Home, (V) (k)

We identify py(k") with F; using the isomorphism A and equip Hompg, (F}*, 1 (k')
with the dual basis of the standard basis of Fj". Then the top arrow in the diagram
is given by the matrix M defined in step 4. This means that we have an inclusion

ker ¥ C ker M.

In step 6 we check whether this inclusion is an equality. The surjectivity of 3 implies
that this is the case if and only if the rightmost map in the diagram is injective, i.e. if
and only if 3’ is surjective. Since dimg, V' < n, this happens with probability at least
a by Lemma 3.10. Therefore steps 3-7 are executed at most 1/« times on average.
This implies that (for fixed «) the algorithm runs in time polynomial in gy, log #k,
[ and n. o

Remarks. (1) If we know an upper bound for the dimension of the F;-vector space
generated by the z;, then we can use this upper bound instead of n in the expression
for m in step 2.

(2) Tt does not matter much what algorithm we use for computing the discrete loga-
rithm in g (k'), since the running time of Algorithm 3.11 is already polynomial in {.
For example, we can simply tabulate the function A.

3.8. The Kummer map on a divisible group

Let k be a finite field of cardinality ¢, and let [ be a prime number. Let G be an étale
I-divisible group over k. (The étaleness is automatic if [ is different from the charac-
teristic of k.) We denote by Frob,: G — G the (g-power) Frobenius endomorphism
of G; this is an automorphism because of the assumption that G is étale.

For any non-negative integer n such that all the points of G[I"] are k-rational,
the Kummer map of order {™ on G over k is the isomorphism

KS*: G(k)/1"G (k) = G (k)
z — Frobg(y) — v,

where y is any point of G over an algebraic closure of k such that the image of [y
in G(k)/I"G(k) equals z.
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1V. Computational tools

Let x € Z;[t] be the characteristic polynomial of the Frobenius automorphism
of G on the Tate module of G. Then the element ¢t mod x of Z;[t]/(x) is invertible.
Let n be any non-negative integer, and let a be a positive integer such that

t* =1 in (Zt]/(I",x))>.

Then t* — 1 is divisible by 1™ in Z;[t]/(x), and we let h, be the unique element
of Z;[t]/(x) such that
t* —1=1"he € Zi[t]/(x)-

By the Cayley—Hamilton theorem, Z;[t]/(x) acts on G with ¢ acting as Frob,. The
above identity therefore implies that

Froby —1 = "h,(Frob,) on G.
Let k&, be an extension of k with
(ko @ k] = a.

Then G[I"] is defined over k,, and we can express the Kummer map over k, in terms
of the Frobenius endomorphism over k as

K5 Gka) J1"G (ka) == GI"](ka)
x +—— hq(Frob,)(z).

In §3.9 we are going to apply this to a certain [-divisible subgroup of the [-power
torsion of the Jacobian of a projective curve over k.

3.9. Computing the [-torsion in the Picard group

Let X be a projective curve over k, represented as in §2.1, and let J be its Jacobian.
Let Frob, denote the Frobenius endomorphism of J over k, and let x € Z[t] be the
characteristic polynomial of Frob,.

Let [ be a prime number different from the characteristic of k. We are going to
apply the results of §3.8 to a certain [-divisible subgroup G of the group J[I*°] of
l-power torsion points of J. This G is defined as follows. Let f = (t — 1)® be the
largest power of ¢t — 1 dividing x mod [, so that y mod [ has the factorisation

(xmod ) = f- F*

in coprime monic polynomials in F;[t]. Hensel’s lemma implies that this factorisation
can be lifted uniquely to a factorisation

X:f'fLa

where f and f* are coprime monic polynomials in Z;[t]. The Chinese remainder
theorem gives a decomposition

Zilt]/ () = Zalt]/(f) < Zult)/ (f), (3.13)
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3. Curves over finite fields
which in turn induces a decomposition
J[I*®°] =G x G*

of [-divisible groups. We note that G is of rank b and that f is the characteristic
polynomial of Frob, on G. Let a be a positive integer such that

=1 (F/D (3.14)
let h, be the unique element of Z;[t]/(f) such that
t* —1=1h, € Zi[t)/(f), (3.15)

and let k, be an extension of degree a of k. All the points of G[l] are k,-rational, and
the b-dimensional F;-vector space G[l](k,) is the generalised eigenspace corresponding
to the eigenvalue 1 of Frob, inside the F;-vector space of points of J[I| over an algebraic
closure of k,. In particular, we have the identity

JI)(k) = {z € G[l](kq) | Froby(z) = x}.
As explained in § 3.8, the map

G(ka)/1G(ka) — G[I](ka)
x — he(Frobg)(x)

is well-defined and equal to the Kummer isomorphism
KM G (ko) /1G (ko) > Gl (k)

of order {.
We use the above results to generate uniformly random elements of the F;-vector
space Gll](k,). We factor #J(k,) as

(ko) = 1°my

with ¢, > 0, mg > 1 and [ m,. Let e be the idempotent in Z;[t]/(x) corresponding
to the element (1,0) on the right-hand side of (3.13). Composing the maps

T(ka) % T (k) 227 G(k) — Gka) /1G(ke) "2 Gl (k) (3.16)

we get a surjective group homomorphism from J(k,) to G[l](ks). We can use this
map to convert uniformly random elements of J(k,) into uniformly random elements
of G[l](k,), provided we know e and h, to sufficient l-adic precision. It is clear that
to compute the Kummer map we only need to know the image of h, in Z;[t]/(f,1) =
F[t]/((t — 1)%). Since G(k,) can be identified with a subgroup of #J(k,), it is
annihilated by (¢, and we have

JI=](ka) = J[I](ka) and  G(ka) = G[I*](ka).
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1V. Computational tools

This implies that it suffices to know e to precision O(I°).
Let us check that there is a reasonably small ¢ for which (3.14) holds. For any
non-negative integer v the identity

1Y

7 —1=-1)"

holds in Fy[t], and the right-hand side maps to zero in F;[t]/(t — 1)® if and only if
7 > b. Since [ is a prime number, we conclude that the order of  in F;[t]/((t — 1)?)
equals [7, where 7 is the least non-negative integer such that [7 > b.

Algorithm 3.12 (Computing the l-torsion of the Picard group). Let X be a pro-
jective curve over a finite field k with ¢ elements, let J be its Jacobian, and let [
be a prime number different from the characteristic of k. Given the k-algebra Sg)
and the characteristic polynomial y of the Frobenius endomorphism of J over k, this
algorithm outputs an F;-basis for J[I](k) = (Pic X)[I]. The algorithm depends on a
parameter « € (0, 1).

1. Factor y mod [ in F,[t] as
(xmod ) = f- f,
where f is the greatest power of ¢ — 1 dividing x mod I, say f = (¢ — 1)?, and lift
this to a factorisation
x=/f-ft
in coprime monic polynomials in Z;[t].
2. Compute the non-negative integer r defined by

0 if b=0;
_ log ———
r= b_1+{g1—a”b—‘ ifh> 1.

3. Define a = [7, where « is the least non-negative integer such that [Y > b. Generate
a finite extension k, of degree a of k. Factor #J(k,) as

#J(ky) =1°m, with 1 m,.

Compute the image of the idempotent e in (Z/I°Z)[t]/(x) using the extended
Euclidean algorithm, and compute the image of h, in Fy[t]/((t — 1)?) using the
definition (3.15) of hy,.

4. Generate r uniformly random elements of J(k,) as explained in §3.5, and map
them to elements x1,...,z, € G[l](k,) using the homomorphism (3.16).

5. Using Algorithm 3.7, compute a basis for the kernel of the F;-linear map

Y F] — Gll|(ka)
(c1y...y00) — chmi
i=1

If the dimension of this kernel is greater than r — b, go to step 4.
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3. Curves over finite fields
6. Use the F-linear relations between x4, ..., x, computed in the previous step to
find a subsequence (y1,...,yp) of (x1,...,x,) that is an F;-basis of G[l](k,).

7. Let M be the matrix with respect to the basis (y1,...,ys) of the F;-linear auto-
morphism of G[l](k,) induced by the Frobenius endomorphism Frob, of J over k.

Compute M by computing Frob,(y;) for ¢ = 1, ..., b using Algorithm 3.2 and
then applying Algorithm 3.7 to express the Frob,(y;) as linear combinations of
the y;.

8. Compute a basis for the kernel of M — I, where I is the b x b identity matrix.
Map the basis elements to elements zq, ..., z; of G[l](k,) using the injective
homomorphism

F? - G[l](ka)
b
((11, oo ;ab) L — Zaz%
i=1

Output (21, ..., 2t).

Analysis. As we remarked earlier, the definition of a implies that a equals the order
of tin (F,[t]/(t—1)®); furthermore, J[I](k) equals the kernel of Frob, —id on G[I](k,).
The elements x1, ..., 2, of G[l](k,) are uniformly random by the fact that (3.16) is
a homomorphism. By Lemma 3.10, they generate the b-dimensional F;-vector space
G[l](k,) with probability at least «. The definition of a also implies that

a < max{1,2gyx! — 1},
while the “class number formula” (3.6) gives the upper bound

_ log #J (ko)
¢ = log

< 29x log(1 +qa/2).
- log

This shows that ¢, is bounded by a polynomial in gy, logg and [. For fixed a we
therefore reach step 6 in expected polynomial time in deg Lx, logq and . In steps
6-8 we compute a basis for the kernel of Frob, —id, which is J[I](k). We conclude
that the algorithm is correct and runs in probabilistic polynomial time in deg Lx,
log ¢ and [. o

Remark. The elements z; € J[l](k,) output by the preceding algorithm are in fact
defined over k. In general, I do not know how to generate k-vector spaces (instead of
kq-vector spaces) representing them. However, if we know a k-rational point on X,
then we can use Algorithm 2.13 to accomplish this.
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1V. Computational tools

4. Modular symbols

In this section we collect some results on the problem of computing the Hecke algebra
T(Sk(T1(n), Z)), defined in §1.2.2 for given positive integers n > 1 and k > 2. We also
give applications to finding an Atkin—Lehner basis of Si(I'1(n), C), to computing zeta
functions of modular curves over finite fields and to finding cusp forms of weight &
for Ty (n) consisting of forms with integral g-expansion and small Petersson norm.

4.1. Computing Hecke algebras

The Hecke algebra can be computed by means of the technique of modular sym-
bols, developed by Manin [73], Shokurov [103], Merel [79], Cremona [18] and others.
We refer to Stein [104, Chapter 8] for more details. The results can be phrased
as follows. Given integers n > 1 and k > 2, one can compute the Hecke algebra
T(Sx(T'1(n),Z)) in the form of the multiplication table with respect to some Z-basis
(t1,...,tn) of T(Sk(T'1(n)),Z). This computation can be done in time polynomial
in n and k. Furthermore, given a positive integer m one can compute the matrix of
the Hecke operator T, with respect to the basis (¢1,...,tx) in time polynomial in
n, k and m, and one can compute the diamond operators (d) for d € (Z/nZ)* on
this basis in time polynomial in n and k. Similar results as above hold with T'y(n)
replaced by I'1(n;p), where p is a prime number possibly dividing n.

Since the exact result we need does not seem to have been published, let us sketch
how to compute T(Sg (T, Z)), where T is either I'y(n) or I';(n;p). There is a certain
Q-vector space Si(T', Q)", the plus one quotient of the Q-vector space of modular
symbols of weight k for T, which is canonically isomorphic to Hom(S (T, Q), Q); see
Stein [104, §9.3]. Let m be the least positive integer that is larger than the degree
of the line bundle of cusp forms of weight k& on the modular curve in question. We
compute the matrices of the Hecke operators 11, ..., T, with respect to some Q-
basis of Si(I', Q)™ in time polynomial in k and m. We then use the LLL lattice basis
reduction algorithm (see for example Lenstra, Lenstra and Lovéasz [66] or Lenstra [68])
to find a Z-basis for the Hecke algebra

T(Sk(I',Q)") = T(Sk(T,2))

and the corresponding multiplication table. Since we can compute the matrix of any
Hecke operator ¢ on S (I, Q)™, we can also express t on the Z-basis of T(S,(T',Z))
found by the LLL algorithm.

Let Si"®(T'y(n)) be the Z-module of cusp forms whose g-expansions at the cusp 0
have coefficients in Z. We can compute Si*(I'; (n)) itself by using that it is isomorphic
(as a T(Sk(T'1(n), Z))-module) to the Z-linear dual of T(S(T'1(n),Z)) via the perfect
pairing

T(St(T'1(n), 2)) x S*(T1(n) — Z
t

f) — ar(tVf) 1)

1
(
from §1.2.4.

The new quotient of T(S;(I'1(n),Z)) is the quotient of T(Sx(I'1(n),Z)) by the
annihilator of SV (I'1(n), C); we denote it by TV (Si(I'1(n),Z)). We can compute
this quotient as follows. Using standard methods from linear algebra, we compute
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a basis of primitive forms of weight k for each I';(d), with d | n. This gives us the
Atkin—Lehner basis of Si(I'1(n)). We then compute the annihilator of Sp°%(I'y (n), C),
and from this we compute T""(S(I'1(n),Z)). The whole computation takes time
polynomial in n and k.

We define T™% (S (I'1(n), Z))-modules

S'}Cnt,neW(rl (n)) — S}Cnt (Fl(n)> n Sgew (Fl (n)7 C)

and

Sp™(l1(n), Q) = Sk(T'1(n), Q) N ST (I'1(n), C).
These can be computed from T"V (S, (T'1(n), Z)) in the same way as described above.

4.2. Computing the zeta function of a modular curve

Let n > 5 be an integer and p a prime number not dividing n. Applying the results
of §4.1 with k£ = 2 and using the isomorphism

T1(n) — T(S2(T'1(n), Z))

from §1.2.3, we see that we can compute the Hecke algebra T;(n) in time polynomial
in n. It is well known that from the elements T}, and (p) of T1(n) one can compute
the characteristic polynomial x of the Frobenius operator Frob, on the I-adic Tate
module

TiJi(n)r, = l%ﬂ Ji(n)r, [I"](Fy),

where [ is any prime number different from p. From the polynomial y we get the zeta
function of X;(n)r, using the formula

g )
B 1= pt)

Let us describe in some more detail how to compute x. We know from §1.1.3 that
Q: ®z, TiJ1(n)r, is a free Q; ®z T1(n)-module of rank 2 and that the characteristic
polynomial of Frob,, on it equals 2% — T,z + p(p) € T1(n)[z]. This implies that the
characteristic polynomial of Frob, viewed as a Q;-linear map is

X = N, (n)[z]/22] (172 — Tpx +p(p)) € Z[z].

To compute the right-hand side, we apply the following standard algorithm for com-
puting norms. We choose a Z-basis of T (n); this can also be interpreted as a Z[x]-
basis of Ti(n)[z]. We write My, and M, for the matrices of T}, and (p) with
respect to the chosen basis. Then we compute y as the determinant of the matrix
2?-id — x - My, +p - My, with coefficients in Z[z].
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4.3. Finding a basis of cusp forms with small Petersson norm

Let n and k be integers with n > 1 and k& > 2. Let ( , )p,(,) denote the Petersson
inner product on Sg(I'1(n), C), as defined in §I1.2.1. We will explain how to find a
Q-basis of Si(I'1(n), Q) consisting of forms with integral g-expansions at the cusp 0
and with “small” Petersson norms, using the results of §11.2.4 and §4.1.

Let T be the subring of Endc(Si(T'1(n), C)) generated by T"% (S, (T (n),Z))
and the T,/ for p | n. Then T' is a commutative free Z-algebra of finite rank, con-
taining T"*%(S;(T'1(n),Z)) as a subring of finite index. On T’ there is an involution
t — t¥ sending each Hecke operator to its dual; see §1.2.2. We equip T’ with the
modified trace pairing

< s >T/2T/ xT —Z
(t,u) — trp 7 (tu”).
We put
S ={f eSS ([T1(n),C) | ai(tf) € Z for all t € T'}.

The pairing (4.1) induces a perfect pairing

T xS —1Z

(tv f) = al(tvf)

and hence an isomorphism

T’ — Hom(S', Z) (4.2)

of T’-modules, where the action of an element ¢ € T/ on Hom(S’,Z) is induced from
the action of t¥ on S’. We extend the base field to C in (4.2) and decompose the
right-hand side into simple (T’ ® C)-modules corresponding to primitive forms. This
gives an isomorphism
TeC— P c
JFE€P,(T1(n)) (4.3)
t— (er(t"))

where Py (I'1(n)) is the set of primitive cusp forms of weight k for I'1(n) and e;(t)
denotes the eigenvalue of ¢ on f. For every ¢t € T', the adjoint of ¢ with respect to
the inner product ( , )r,(n) equals tV. This implies that

er(tV) =es(t) forall f € Py(T'1(n)) and all t € T".

If R is a ring and M a free R-module of finite rank, we write trg (¢ | M) for the trace
of an endomorphism ¢ of M. Then (4.2) implies

(t,u)p = trz(tu” | T)
= trz(tu” | Hom(S’,Z))
=trz(tVu| S
= tre(t’u | Sp™(T1(n), C))
= er(tVu).
fepk(T1(n))
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This implies that under the isomorphism (4.3), the unique sesquilinear form on T'® C
extending ( , ) corresponds to the standard Hermitean inner product on @ P C.
We conclude that the bilinear form ( , )p on T’ is symmetric and positive definite,
and that the dual inner product

( ,)g:S8" xS =R

induced by (4.2) has the property that the set of primitive forms is orthonormal for
the extension of ( , )s to a Hermitean inner product on S;°¥(I'1(n), C).

Algorithm 4.1 (Find a small basis of SV (T'1(n),Q)). Given integers n > 1 and
k > 2 as well as a real number ¢ > 4/3, this algorithm outputs a Q-basis (g1,---,9N)
of SPe¥(T'y(n), Q) such that for each i we have g; € S;"""V(T';(n)) and

— € N-—1
(96, 9i)r,(n) < N 1)/2(14167671 VOlFl(n))N(47T(D + 1) exp(4dn(D + 1)))

for any € > 0, where Ay . > 0 is defined in Lemma I1.2.1, N = dim¢ S} (I'1(n), C)
and D is the degree of the line bundle w®*(—cusps) on the stack Mr, ().

1. Using modular symbols, compute a Z-basis (¢1,...,tx) of the ring TV defined
above. We denote by (fi1,..., fn) the dual basis of S’.

2. Compute the matrix M of the inner product {( , )7/ with respect to (¢1,...,txN).

3. Compute M ~1; this is the matrix of ( , )g with respect to (fi,..., fn).

4. Using the LLL algorithm, compute a basis of S’ that is c-reduced with respect
t0< ) >S/'

Analysis. Tt is clear that for fixed ¢, the running time of the algorithm is polynomial
in n and k. It remains to prove the upper bound on (g;, gi)r, (n). We note that

det((g:,95)s); 5, =det(M ") € {1/m | m=1,2,3,...}.

The c¢-reducedness of the basis (g1, ..., gn) implies
N N
[ 199005 < NV det((gi,95)50),
i=1

< (JNIN-1)/2,

Fori=1, ..., N, we now write g; as a C-linear combination
9i = Z a{f'
fePL(T1(n))

The upper bound on Petersson norms of primitive forms proved in Lemma II1.2.1
implies that for every e > 0 there is an explicitly computable real number Ay . such

that
(96, 9i)r,(n) = Z a2 (fs £y (n)
fEPL(T1(n))
< Ag,enfvolp, () Z |o<1f\2

fE€PL(T1(n))

= Ap,envolp, () (i, 9i) s
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This implies
N

H(gi,9i>rl(n) < N4 nfvolp, ()Y

i=1

For each j # 4, we bound (g;, g;)r,(n) from below as in Lemma II.2.2. This implies
the claimed bound on (g;, gi)r, (n)- o

Algorithm 4.2 (Find a small basis of Si(I'1(n),Q)). Given integersn > 1 and k > 2
as well as a real number ¢ > 4/3, this algorithm outputs a Q-basis (hi,...,hxn) of
Sk(T'1(n), Q) such that for all i we have h; € SI"*(I';(n)) and

- € N-1
(hishi)r, ny < NETD2( A nfvolp, ()Y (47(D + 1) exp(dr(D + 1))

for any € > 0, where Ay > 0 is defined in Lemma I1.2.1, N = dim¢ Sk(I'1(n), C)
and D is the degree of the line bundle w®*(—cusps) on Mr ().

1. Using Algorithm 4.1, compute a Q-basis By of SV (I'1(d), Q) for each divisor d
of n.

2. Output the basis B =| |, Ue‘n/d(bnvd)*Bd of S;(T'1(n), Q).

e

Analysis. Tt is clear that for fixed ¢, the running time of the algorithm is polynomial
in n and k. The claimed bounds on the Petersson norms of the b; follow from those
in Algorithm 4.1 together with the equality

n,d\* n,d\* _ <gvg>1“1(n)
() *g, 0 ) g)ry(n) = W for all g € Sg(I'1(n), C),
which follows from the definition of the Petersson inner product. o

5. Computing with vector space schemes and Galois
representations

In this section we explain how to find the Galois representation attached to a finite-
dimensional F-vector space scheme over Q, where F is a finite field. We also describe
how to find the minimal non-trivial subrepresentations of such a Galois representation.
Finally, we give an algorithm to compute the Frobenius conjugacy classes at prime
numbers at which such a representation is unramified.

To solve the first two problems we need to be able to factor polynomials over
number fields efficiently. There exist deterministic algorithms that accomplish this.
For these we refer to Lenstra, Lenstra and Lovész [66], Lenstra [65], van Hoeij [109],
Belabas [6], and Belabas et al. [7].

5.1. Computing Galois groups

We start by describing a well-known algorithm for computing the Galois group of a
finite Galois extension of a number field; see for example Lenstra [67, Theorem 3.2].
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5. Computing with vector space schemes and Galois representations

Suppose we are given a Galois extension K C L of number fields. By the primitive
element theorem, we can choose an isomorphism

Klz]/(f) — L,

over K, where f € K|[z] is some monic irreducible polynomial. Because K C L is a
Galois extension, L is the splitting field of f over K. We compute all the roots of f
in L by factoring f, and we fix one root « (say  mod f). Then the map

Gal(L/K) — {roots of f in L}
o— o)
is a bijection. Since all the roots can be expressed as polynomials in «, we can, for
each root 8 of f, compute the corresponding element of Gal(L/K) as a group of

permutations of the roots of f. In other words, if [L : K] = n, we can give Gal(L/K)
as a subgroup of order n in the symmetric group 5, .

Remark. Suppose the extension K C L is given by the multiplication table of L
with respect to some K-basis rather than by the minimal polynomial of a primitive
element. It is well known that in this situation one can find a primitive element as a
small linear combination of the given basis elements, because all elements of L that
do not generate L over K lie in the union of the finitely many strict subfields of L
containing K.

5.2. Representing Galois representations

Let F be a finite field, and let

p:Gal(Q/Q) — GLx(F)

be a two-dimensional representation. Let K, denote the finite Galois extension of Q
such that p factors as

Gal(Q/Q) — Gal(,/Q) — GLy(F).

For algorithmic purposes, the representation p can be described using the following
data:

(1) the characteristic p of F;

(2) the multiplication table of F with respect to some F-basis of F;
(3) the multiplication table of K, with respect to some Q-basis of K;
(4)

4) the list of pairs (M,, p(0)), where o runs over Gal(K,/Q) and M, is the matrix
of o with respect to the given Q-basis of K.
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5.3. Representing vector space schemes

Let k£ be a field, let F be a finite field, and let V' be a finite F-vector space scheme
over k. We suppose given a closed immersion

L:V—>A}c

over k, giving an F-vector space scheme structure on the image of (. This structure
is given by the following data:

(1) the monic polynomial P € k[z] defining the image of ¢;
(2) an element S € k[x1, z2]/(P(x1), P(z2)) such that

P(S) =0in k[zy, 22]/(P(z1), P(x2))
and such that the addition morphism
+:V XSpec k V-V

corresponds via ¢ to the k-algebra homomorphism

k[z]/(P) — klz1, 22]/(P(x1), P(22))

T S;

(3) for all @ € F an element M, € k[z]/(P) with P(M,) = 0 in k[z]/(P) and such
that the multiplication morphism

a:V =V
corresponds via ¢ to the k-algebra homomorphism

klz]/(P) — k[x]/(P)
T — M,.
Let ¢ be the “coordinate” of the zero section of V, i.e. the element ¢ € k such
that the ideal (z — q) of k[x]/(P) corresponds to the trivial subgroup scheme {0}

of V. This ¢ can be extracted from P and Mj; namely, it is the unique root of P
in k such that the map =z — M, factors as

klz]/(P) — k — K[2]/(P),

where the first map sends x to q.

Remark. Tt is not the case that an embedding ¢ as above exists for all k£ and V. For
example, if V' is the constant vector space scheme F and k is finite with #k < #F,
there is no such .
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5.4. Finding minimal components of a vector space scheme

Let V be a finite F-vector space scheme over Q, represented as in §5.3. We will give
an algorithm to find the minimal non-trivial F-vector space schemes contained in V.
These correspond to the minimal elements (with respect to division) in the set of
monic polynomials R with

(z—q@)|R[P, R#r—q

that have the property that the maps giving the F-vector space scheme structure on V'
induce maps Q[z]/(R) — Q[z]/(R) and Qz]/(R) — Qlx1,z2]/(R(x1), R(x2)). The
first step in the algorithm is to factor the polynomial P over Q. As remarked before,
there are (deterministic) algorithms for doing this that run in polynomial time in the
degree of P and the largest among the heights of its coefficients.

Algorithm 5.1 (Finding minimal components of a vector space scheme). Let F be a
finite field, and let V' be a finite F-vector space scheme over Q. Given polynomials P,
S, and M, for a € F describing V as in §5.3, this algorithm outputs the polynomials
R defining the minimal non-trivial F-vector space schemes contained in V.
1. Factor P as a product
P=PFyP,...P,,

where Py, ..., P, are distinct monic irreducible elements of Q[z] and such that
Py = x — g with ¢ as above.

2. Choose a generator a of the cyclic group F*.
3. Put T = 0.

4. Fori=1, ..., n:

5. Put R = Py P;.

6.

Replace R by the monic generator of the kernel of the ring homomorphism

Qlz] = Qlz1, 22]/(R(21), R(x2))

T — S.

Then replace R by the monic generator of the kernel of the ring homomor-
phism
Qlz] — Q[z]/(R)
x — M,.
Repeat this step until R does not change anymore.
7. Remove all R € T such that R strictly divides R’, and add R to T
8. Output the set T'.
Analysis. Tt follows from the construction of T' that its elements are, as required, the
minimal elements of the set of polynomials R as above. Furthermore, R remains a
divisor of P, so step 6 is executed at most deg P times. This shows that the algorithm

runs in time polynomial in deg P = #F4™F V" and in the largest among the heights
of the coefficients of P. o
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5.5. Computing Galois representations attached to vector space schemes

Let F be a finite field, and let V' be a finite F-vector space scheme over Q. There is
an associated Galois representation

pv:Gal(Q/Q) — Autr V(Q).

Let Ky denote the finite Galois extension of Q such that py factors as

Gal(Q/Q) — Gal(Ky/Q) — Auty V(Q).

We now assume V' is two-dimensional over F and is given by polynomials P, S
and M, for a € F, as in §5.4. The following algorithm, which is the same as the one
described by Couveignes and Edixhoven in [17, § 14.7], computes py in this situation.
It is based on the following observation. Under the usual correspondence between
finite Gal(Q/Q)-sets and finite étale Q-algebras, let A be the Q-algebra corresponding
to V(Q), and let B be the Q-algebra corresponding to Isomg(F2,V(Q)). Then there
is an isomorphism

A= Qlz]/(P)
of Q-algebras, and the inclusion
somp(F?,V(Q)) — V(Q)?
a— (a(1,0),a(0,1))
induces a surjection
Qlz1, z2]/(P(21), P(22)) — B.

The natural right action of GLy(F) on Isomg(F?,V(Q)) gives a left action of GLy(F)
on B.

The elements of Isomp(F?,V(Ky)) = Isomg(F2,V(Q)) correspond bijectively
to the Q-algebra homomorphisms B — Ky. We fix one isomorphism

¢ € Isomp (F2, V(Ky)).

Since V is generated by the image of ¢ and Ky is the splitting field of V', the Q-
algebra homomorphism B — Ky corresponding to ¢ is surjective. This means that
the choice of ¢ gives an identification of Ky with a quotient of B.

Let T C Isomg (F2, V(Ky)) be the Gal(Ky /Q)-orbit of ¢, and let G be the sub-
group of GLo(F) consisting of elements that preserve T'. Since Isomg (F2, V(Ky)) is a
right GLs(F)-torsor, T is a right Gp-torsor, and the choice of ¢ gives an isomorphism

Gr =T
g— ¢og.
By definition, T is also a left Gal(Ky /Q)-torsor, and ¢ gives an isomorphism

Gal(Ky/Q) > T

o pr(a) 0.
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Composing the second isomorphism with the inverse of the first, we get an embedding

Gal(Ky /Q) — GLo(F)

5.1
o ¢ topy(o)od 51)

whose image equals Gp.

Algorithm 5.2 (Compute the Galois representation associated to a finite Q-vector
space scheme). Given a finite field F and an F-vector space scheme V over Q given
by polynomials P, S and M, for a € F as in §5.3, this algorithm outputs a Galois
representation p: Gal(Q/Q) — GLy(F) isomorphic to py, in the format described
in §5.2.

1. Compute the left action of GLy(F) on the Q-algebra Q[z1,x2]/(P(z1), P(z2)),

using S and the M, with a € F.
2. Write P = PyPy, with Py = z—q asin §5.4, and put @ = 1—P.o/Pxo(q) € Q[z].

3. Compute the element

b= I 9 (@®1) € Qlar.as)/(P(wr). Plas)).

gEGLy(F)

4. Compute the Q-algebra

B = (Qla1, x2]/(P(x1), P(a2))) /(1 = b).

5. Find a maximal ideal I of B, and compute the field K = B/I.

6. Compute the left action of GL2(F) on B, and find the subgroup G; C GLy(F)
that stabilises 1.

7. For all g € G, compute the matrix o(g) of the automorphism of K induced by g.
8. Output K and the list of pairs (o(g), g) with g € G.

Analysis. The definition of a implies that the canonical isomorphism

Q[zl/(P) — Q[z]/(Po) x Qz]/(Pyro)

sends a to (0, 1); in other words, a is the idempotent in Q[z]/(P) that, as a function
on V,is 1 on V\ {0} and 0 on {0}. By definition, b € Qx1,z2]/(P(x1), P(z2))
is the idempotent that, as a function of V(Q)?, is 1 on Isomg(F?,V(Q)) and 0
on its complement, so B is the same Q-algebra as in the discussion preceding the
algorithm. The choice of a quotient B — K identifies K with Ky and fixes an
element ¢ € Isomp(F2,V(K)). The group Gy computed in step 6 consists of the
elements of GLo(F) that respect the Gal(K/Q)-orbit T of ¢, so it is equal to Gr.
The definition of the action of G; on K implies that under the representation (5.1),
each element ¢ in the image Gr corresponds to the element o(g) € Gal(Ky/Q) on
the left-hand side. This shows that the output is correct. Finally, the algorithm runs
in (deterministic) polynomial time in #F and the largest among the heights of the
coefficients of P. o
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5.6. Twisting representations by characters

Algorithm 5.3 (Twist a representation by a character). Given a finite field F, a
positive integer n, a homomorphism

x:(Z/nZ)* — F*
and a two-dimensional representation
p: Gal(Q/Q) — GLa(F)
in the format of §5.2, this algorithm outputs the twisted representation

§': Gal(Q/Q) — GLa(F)
o x(0)p(0)

in the format of §5.2; here x: Gal(Q({,)/Q) — F* is the character corresponding
to x.

1. Compute a compositum L of K, and Q({y).

2. Compute Gal(L/Q) as described in §5.1.

3. For each 7 € Gal(L/Q), compute the element a, € (Z/nZ)* such that 7(¢,) =
(o, the restriction o, of o to K, and

p'(7) = X(ar)p(o-) € GLa(F).

4. Compute the subgroup ker p’ of Gal(L/Q).
5. Compute K,/ as the fixed field of ker p'.

6. For each 0 € Gal(K, /Q) = Gal(L/Q)/ker p’, output the matrix of o on K, and
the element p'(o).

Analysis. 1t is clear that the algorithm is correct. It runs in (deterministic) poly-
nomial time in n, #F and the largest among the heights of the coefficients in the
multiplication table of p. o

5.7. Finding the Frobenius conjugacy class

Let K C L be a Galois extension of number fields, and let p be a prime of K such that
the extension is unramified at p. We will now describe how to identify the Frobenius
conjugacy class at p inside Gal(L/K).

For simplicity we restrict ourselves to the case where K = Q, so p is a rational
prime p. First we compute an order O in L that is maximal at p. There are well-
known ways to do this; see for example Buchmann and Lenstra [11, Algorithm 6.1].
We then compute the finite F,-algebra

A=0/(p),
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together with the Frobenius automorphism

Frob,: A — A

a— aPl

and the action of Gal(L/Q) on A.

One way to continue would be to find the primary decomposition of A. Instead of
describing this approach, we give a deterministic way to find the Frobenius conjugacy
class, due to H. W. Lenstra. For each o € Gal(L/Q), we compute the ideal I, of A
generated by the image of the F,-linear map Frob, — (¢ mod p). Now A/I, is the
largest quotient of A on which ¢ mod p acts as Frob,. This means that ¢ is in the
Frobenius conjugacy class if and only if the ideal I,; is strictly smaller than A.
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Chapter V

Computing modular Galois representations

1. Introduction

Let n and k be positive integers, and let [ be a prime number. Let f be a modular
form of weight k for T';(n) over a finite field F of characteristic [ that is an eigenform
for the Hecke operators T, with p prime and (d) with d € (Z/nZ)*, with eigenvalues
a, and €(d), respectively.

The goal of this chapter is to give an algorithm for computing the semi-simple
two-dimensional representation

ps: Gal(Q/Q) — Autp Wy

associated to f by Theorem I1.3.3. This p; is uniquely defined by the following prop-
erties: py is unramified outside nl/, and the characteristic polynomial of the Frobenius
conjugacy class at a prime p { nl equals t2 — a,t + e(p)p*~* € F[t].

Let K denote the finite Galois extension of Q such that p; factors as

Gal(Q/Q) — Gal(Kf/Q) — Autg Wy.

By “computing p;” we mean producing the following data:
(1) the multiplication table of Ky with respect to some Q-basis (b1, ...,b,) of K;

(2) for every o € Gal(K;/Q), the matrix of o with respect to the basis (b1,...,b,)
and the matrix of p(o) with respect to some fixed F-basis of Wy.

Moreover, we want to do this efficiently. Ideally, we would have an algorithm that
computes these data in polynomial time in n, k& and #F. Unfortunately, several
difficulties present themselves that prevent us from stating a completely general result.

First, our approach only leads to probabilistic algorithms, due to the fact that it
is based on the algorithms in Chapter IV.

Second, we will give a bound for the expected running time of our algorithm
that depends on certain real numbers that are defined as follows. For every smooth,
proper and geometrically connected curve X over Q, we define

YX)= Y Xw,)logp, (1.1)

p prime
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V. Computing modular Galois representations

where W, is the field of fractions of the ring of Witt vectors of F, and v(Xw,) is
the real number defined in §1I1.4.2. The bound for the running time contains a term
that is linear in y(X;(n')), where n’ equals n or nl, depending on k, and where X;(n')
is the coarse moduli space defined in §1.1.1. We therefore need a bound on v(X;(n'))
that is polynomial in n. The problem is that we do not have enough information
about the semi-stable reduction of X;(n) at primes p such that p? divides n to find
such a bound.

Third, we recall from §1.3.6 that if the desired Galois representation is irreducible,
then it is realised, up to a twist by a character, as a simple constituent of J[m|(Q),
where J is the Jacobian of the modular curve X;(n') for a certain »n/, and m is a
maximal ideal of the Hecke algebra T4 (n’) C J[m]. The expected running time of our
algorithm is polynomial in the degree of J[m] over Q, which is problematic if J[m](Q)
is composed of many copies of the representation. If we restrict ourselves to those
cases in which the “simplicity” phenomenon described in §1.3.7 holds (for example,
2 < k <1 —1), then the running time is polynomial in n, k and #F. We would
be able to state the same conclusion in general if an absolute bound were known on
the dimension of the F-vector space scheme J[m]. Extensive computations of Hecke
algebras on spaces of cusp forms of prime weight by Kilford and Wiese [58] with Hecke
algebras have not revealed any cases where the multiplicity is greater than two, but
it is unknown as of this writing whether the multiplicity can be greater than two.

Taking into account these restrictions, we do have the following result. For clarity,
we state a result that is slightly weaker than what we actually prove in this chapter.

Theorem 1.1. Let a be a positive integer. There is a probabilistic algorithm that,
given a squarefree positive integer b coprime to a, an integer k > 2, a finite field F of
characteristic greater than k and a Hecke eigenform f of weight k for T';(ab) over F,
computes the Galois representation py in expected time polynomial in b and #F.

2. Reduction to torsion subschemes in Jacobians of
modular curves

Let n and k be positive integers, let [ be a prime number, and let f be an eigenform
of weight k for I'1(n) over a finite field F of characteristic [.

We assume that [ does not divide n. As explained in §1.3.3, this is not a real
restriction, since we can always find a form for T'y(m), with m | n and [ { m, whose
attached Galois representation is isomorphic to p;.

2.1. Reduction to irreducible representations

In the algorithm that we describe in this chapter the case where py is absolutely
irreducible is treated in an essentially different way than the case where it is not,
with almost all the work going into the former case. We therefore begin by deciding
whether p; is absolutely irreducible.

In general, py is absolutely irreducible if and only if it is irreducible after extension
of scalars to a quadratic extension of F. If [ > 2, then the fact that any complex
conjugation has two distinct eigenvalues implies the stronger statement that if p; is
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irreducible over F, then it is absolutely irreducible. After replacing F by a quadratic
extension if [ = 2, the question is therefore equivalent to the question whether py is
reducible.

We recall from §1.3.4 that if py is reducible, it is of the form e;x} ® 62)({, where
€1 and eg are characters of conductors nq, and na, respectively, such that nyns | n and
€16a =€, and where i +j = k — 1 in Z/(l — 1)Z. Conversely, given such ¢; and €5, the
Eisenstein series E;;"*, where 3 <k’ <1+1 and k' = k (mod [ — 1), has ¢; & egxf_l
as its associated Galois representation. By Theorem 1.3.5, we can therefore decide
whether p; is reducible by comparing the eigenvalues of the Hecke operators on f (or
the coefficients of the g-expansion of f) to the coefficients of these Eisenstein series.
Moreover, if py is reducible, it is straightforward to write down py in the desired form.

2.2. Reduction to torsion in Jacobians

From now on we consider the case where the representation attached to f is absolutely
irreducible; in particular, f is a cusp form. We have seen in §1.3.3 that there exist
integers j and k such that

0<j<l—1, 1<k<Il+1 and k=k+2j (modl—1)

and an eigenform f of Weight~l~c for T'1(n) over F such that the eigenvalues of the
Hecke operators on f and on f are related by the formula

T,f = (pmod )2 a, f for p # | prime and (d)f = e(d)f for d € (Z/nZ)*.

The representation B
pj Gal(Q/Q) — Autp Wy

attached to f is irreducible, too, and the above equation shows that we can compute
pr as the twist of Py by the (—j)-th power of the I-cyclotomic character.

If k = 1, we can find an eigenform of weight [ for I';(n) over a quadratic exten-
sion F/ of F whose associated Galois representation is isomorphic to F/ ®g py; see
Edixhoven [31, proof of Proposition 2.7]. As a representation over F, this F/ @ py is
a direct sum of two copies of py, and we can use §1V.5.4 to extract py. This reduces
the problem to the case where k> 2.

We let F; denote the field generated by the eigenvalues of the Hecke operators

on f. As in §1.3.6, we write

We consider the Abelian variety Ji(n’)q and the Hecke algebra
Ti(n') C EndJ1(n')q
defined in §1.1.3. We have seen in §1.3.6 that there exists a surjective ring homomor-
phism
ef: Tl(nl) — F];
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that sends each T}, for p prime and each (d),, for d € (Z/nZ)* to the eigenvalue of
the corresponding operator on f and, in case k > 2, sends (d); for d € (Z/IZ)* to
d*=2. If m 7 denotes the kernel of e 7 the representation

Py () ;) Gal(Q/Q) — Autr  (J1(n')[m7](Q))

is non-zero and all its simple constituents are isomorphic to p - Usually, P31 (n")[m ]
itself is already simple, as explained in §1.3.7. This reduces the problem to computing
Galois representations of the form P31 (0 [m )

3. Galois representations in torsion of Jacobians:
notation and overview

In this section we will explain the strategy for computing Galois representations of
the form p jjm), where J is the Jacobian of a modular curve and m is a maximal ideal
of the corresponding Hecke algebra. Details will be given in the next sections.

3.1. The situation

Let n be a positive integer, let [ be a prime number not dividing n, and let n’ be
either n or nl. We abbreviate

X =Xi()zp/my, J=I1(0)zp/my, T =Ti(n').

We write g for the genus of the fibres of X, which equals the dimension of the fibres
of J.

Let O denote the rational cusp of X corresponding to the Néron polygon E,
with n’ sides, consecutively labelled by Z/n’'Z, with the embedding Z/n'Z — E,
sending a € Z/n'Z to the point 1 of the copy of P! labelled a.

Let F be a finite field of characteristic [, and let e: T — F be a surjective ring ho-
momorphism. Let m be the kernel of e, and let J[m] be the maximal closed subscheme
of J annihilated by m; this is a finite étale covering of Spec Z[1/nl] (see §1.3.6). We
write deg J[m]| for the degree of this covering.

3.2. Stratifications and the scheme D,

We consider the d-th symmetric power Sym? X of X over Spec Z[1/nl], which is by
definition the quotient of X x X x...x X (d factors) by the symmetric group Sg; this
exists because X is projective over Spec Z[1/nl]. This scheme represents the functor
of effective divisors of degree d on X. The choice of O in § 3.1 gives proper morphisms

Sym?X —J (0<d<yg)
sending an effective divisor D of degree d to the class of the divisor D — d - O. For
d = g, this morphism is birational. We let J; denote the image of Syde in J, so
that we have a chain of closed immersions

{0} =JoCHhC...CJ,
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We define the stratification of J[m] as the chain of finite Z[1/nl]-schemes
{0} = J[m]o C J[m]; C ... C J[m], = J[m],

where
J[m]d = J[m] NJg.
Note that the J[m]; are not necessarily flat over Z[1/nl], except for J[m]y and J[m]

itself. We define the generic stratification type of J[m] to be the non-decreasing
sequence of positive integers

strat(J[m]q) = (1 = deg(J[m]o)q, deg(J[m]1)q, ..., deg(J[m]y)q = deg J[m]).

Similarly, for every prime number p not dividing nl, we define the stratification type
of JIm] modulo p as

strat(J[m]g,) = (1 = deg(J[m]o)F,, ... deg(J[m|y)r, = deg Jm]).

For every z € J[m](Q), we let D, denote the O-normalised representative of
as defined in §1V.2.9. Let K be the splitting field of J[m|q inside Q, and let R be
the integral closure of Z[1/nl] in K. Since J[m] is finite étale over Z[1/nl], we can
interpret the D, as the set of R-points of a closed subscheme

Dy — Sym? X

that is finite étale over Z[1/nl]. The morphism Sym? X — .J restricts to an isomor-
phism

em: Dy — J[m].
Similarly, for every prime number p { nl and every z € J[m|(F,) we define ds? as

the least integer d for which z is in (J4)r,, and we write Dy? for the O-normalised
representative of z. We view the Dy” as the F,-points of a closed subscheme

Der — Sym? X, .

We have isomorphisms
(Dm)q — J[mlq
and
Dy? =5 Jimlp, (ptnl prime),

making (Dy)q and DEJ’ into F-vector space schemes over Spec Q and over SpecF,,
respectively. However, the subschemes Dﬂp and (Dy)p, of Sym? Xg, do not in
general coincide for every prime number p. The reason for this is that if K is a
number field an element = € J(K) that is not in some J4 may still specialise modulo
a prime of K to a point that ¢s in Jy. In other words, if £ is a line bundle on X
over some number field, there may exist an integer d such that the reduction of £(dO)
modulo p has non-zero global sections while the same does not hold for £(dO) over Q.
We will come back to this phenomenon in §4.3 below.
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3.3. Overview of the algorithm

The goal is to find an explicit representation for the finite F-vector space scheme
J[m]q over Q. The basic strategy is to choose a suitable closed immersion

wJmlg — Ag

of Q-schemes. The meaning of “suitable” will become clear in Section 5 below. The
image of ¢ is defined by some monic polynomial P, € Qlz] of degree equal to deg J[m].
As explained in § IV.5.3, the F-vector space scheme structure on the image of ¢ is given
by polynomials S and M, for a € F describing the addition and scalar multiplication.

The question is now how to find ¢(J[m]q), or equivalently the polynomials P,
S and M,. The approach that we will take here is due to Couveignes, and comes
down to approximating ¢(J[m]q), either over the complex numbers or modulo many
small prime numbers. For pressing reasons of space, time and technicalities, I limit
myself the second approach. In view of the results of Couveignes, Edixhoven et
al. [17], however, it may be expected that the approximations can also be done over
the complex numbers. This would lead to deterministic variants of the results of this
chapter.

Let S € Q[z1, x3] be the unique representative of S € Q[z1,za]/(P,(x1), P,(x2))
that has degree less than deg P, in both 21 and z5. Similarly, for a € F let M, € Qlx]
be the unique representative of M, € Q[z]/(P,) that has degree less than deg P,.

Definition. The height of 1(J[m]q) is the maximum of the logarithmic heights of the
coefficients of P,, S and the M, for a € F.

Let p be a prime number not dividing nl. As will be explained in Section 4
below, we can represent Jg, in a way that is well suited for computations, and we
can compute the action of the Hecke algebra on Jg,. Given Ti(n') and m, we can
find a finite extension k, of F,, over which J[m]g, splits. Using our algorithms for
computing in .J, we then find the F-vector space J[m|g, (k,). From this we compute

Dy | which for all p outside some finite set equals (Duw)F,- It can be checked whether
p is in this set; this is rather non-trivial and will be explained in §4.3 below.

The closed embedding ¢ is constructed as follows. Once we know Dy, for a suitable
prime number p, we use this to choose a non-constant rational function

) 1
P: X — Pg
and a rational map
. pY 1
PG - Ag
such that the composed map

Sym? Xq Y-, Sym? P%Q AN Py, 2, A(lQ

gives a well-defined closed immersion of (Dw)q into Aéz. We then define ¢ as the
composition of the maps
—1
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3. Galois representations in torsion of Jacobians: notation and overview

After choosing ¢, we compute the reductions of the F-vector space scheme «(J[m]q)
modulo sufficiently many small prime numbers. We then reconstruct ¢(.JJ[m]q) from
these reductions. If necessary, we extract one simple component from «(J[m]q) a

described in §IV.5.4. The corresponding two-dimensional irreducible Galois repre-
sentation can then be computed as described in §1V.5.2.

4. Computations modulo prime numbers

4.1. Representing modular curves over finite fields

As the basis for our algorithm, we use the methods for computing in Picard groups of
projective curves over finite fields explained in Chapter IV. For any prime number p
not dividing nl, we consider the curve X, over the field F,. We take the projective
embedding of X, given by the line bundle

£ =w®?

of modular forms of weight 2. This line bundle satisfies the essential inequality
deg L > 2g + 1 of §IV.2.1 because deg L equals 2g — 2 plus the number of cusps
(this follows from formulae for these quantities or from the existence of the Kodaira—
Spencer isomorphism between the sheaf of differentials and the sheaf of cusp forms of
weight 2), and X has at least three cusps (this also follows from well-known formulae).
This choice of £ implies

= @ Mai (T4 (n), F). (4.1)
=0

In other words, Sxr, is the algebra of modular forms of even weight for I'y (n”) over F,.
We represent such forms by g-expansions at the rational cusp 0 of Xg, (see §1.2.4)
up to sufficient order.

The first thing to do is finding the data needed to represent Xg, in the form
needed for the algorithms of Chapter IV. As explained in §IV.4.1, we can use modular
symbols to compute the Hecke algebra

T1(n') = T(S2(T'1(n"), 2))

on cusp forms of weight 2, together with the diamond operators in Ty (n’), in time
polynomial in n/. Furthermore, for any positive integer m we can compute the element

m of T1(n') in time polynomial in m. We can then compute a basis of g-expansions
for the space

S2(T'1(n'), Fp) = Homz moa(T1(n'), F})
of cusp forms. Furthermore, we can compute a basis of g-expansions for the space of
Eisenstein series of weight 2 for I'y (n’) using the formulae from §11.2.3. The fact that
deg £ > 2g + 1 implies that the Fp-algebra S Xe, 1S generated by the homogeneous
elements of degree 1, so by multiplying g-expansions of forms of weight 2 we can
compute S%ZF) for any positive integer h in time polynomial in n’, h and log p. Taking
h =17 will be sufficient for all the algorithms that we will need.
We also recall from §1V.4.2 that we can compute the zeta function of Xg , in

the form of its numerator L Xp,» i time polynomial in n' and p.
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V. Computing modular Galois representations

Remark. The fact that the running time of the algorithm to compute the zeta function
is exponential in log p is the reason why we need small primes p.
Once we have computed SQ and the zeta function of Xg,, we can use the
p
algorithms for computing in the Jacobian of a curve over a finite field that were
described in Chapter IV.

4.2. Computing the action of the Hecke algebra

We will now explain how to compute the action of the Hecke algebra Ty (n') on Jp,.
For all d € (Z/n'Z)*, the automorphism r4 of X = X;(n’) induces the diamond
operator (d) on My (I'1 (n’), F),) for all k. Since we know the action of the Hecke algebra

~

— SE?F) using (4.1).
This means that we can compute Picry and Albry by means of Algor?thms Iv.2.14
and IV.2.15 (where we use O as the rational point needed by the latter algorithm) in
time polynomial in n’ and log p.

Now let r be a prime number different from p. We consider the maps

on the My(T';1(n'),F,), we can compute the map rf:Sggz

q1,q2: X1 (n's7)p, — X¥,

defining the Hecke operator T,.. We denote by w the line bundle of modular forms of
weight 1 on Xg, . We make X, into a projective curve via the line bundle gjw. The
assumption that r # p implies that the canonical map

P giw — giw
from §1.2.2 is an isomorphism. From the formulae for the effect of ¢f and ¢5 on
g-expansions given in §1.2.4, we can compute the maps

h h
af af 5%, = S

Xi(nsm)F),
for any h. This allows us to compute the maps
Pic g1, Picge: Jp, — J1(n';7)p,

and
Albgy,Albge: J1(n/s7)p, — JF,.

In particular, we can compute T,.. The expected running time is polynomial in n’, r
and log p.
Let Frob, and Ver, denote the Frobenius and Verschiebung endomorphisms of .J.
Let k be a finite extension of degree d of F,,, and let = be an element of J(k). From
Frob,, Ver,, = p and Frob;l () = z it follows that we can compute Ver, on z using the
formula
Ver,(z) = pFrobg_l(;v).

Since we can compute Frob,, Ver, and (p), we can compute T}, using the Eichler—
Shimura relation
T, = Frob, +(p) Ver,

from §1.1.4. The running time is polynomial in n’ and log p.
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4.3. Good prime numbers

Definition. We say that a prime number p is m-good if the following two conditions
hold:

(1) p does not divide nl;

(2) the stratification type strat(.J[m]g,) modulo p is equal to the generic stratifica-
tion type strat(J[m]g). (Recall that in general we have a pointwise inequality
strat(J[m]g,) > strat(J[m|q).)

Otherwise we say that p is m-bad. We define a positive integer By, by

B = H P.

p m-bad

We note that deg J[m]p, ¢ > deg J[m]q for all prime numbers p { ni, with equality
for all d if and only if p is m-good. We also note that in this case we can identify
D,l;” with the fibre over F, of the closed subscheme Dy, of Sym? Xz /). This fact
enables us to compute the reduction of the closed subscheme Dy, of Sym? X modulo
m-good prime numbers.

The following algorithm computes the F-vector space of points of D,I:I” over a
suitable finite extension k of F,, over which D,I::p splits.

Algorithm 4.1 (Compute Dy? and the stratification type of JIm]g,). Let the no-
tation be as above. Given the ring homomorphism e: T — F and a prime number
p 1 nl, this algorithm outputs the following information:

(1) the stratification type strat(.J[m]g,);

)
(2) a finite extension k of F,, such that the points of J[m]g, are k-rational;
(3) the F,-algebra Sg(?_p and the k-algebra Sg(? =k QF, Sg(?-,,?
(4)

4) the F-vector space D,];:p(k:), given by the positive integer
d = dimg J[m](k)

and a list of pairs (v, I'(Xy, L&2(—Dy(y)))), where v runs over F% and z(v) is the
image of v under a fixed F-linear isomorphism

F¢ = Die (k).

1. Compute the F,-algebra Sgg using modular symbols; see Section IV.4 and § 3.3.

2. Compute the polynomial Lx/r, € Z[t] (the numerator of the zeta function
of Xg,) as described in §1V.4.2.

3. Compute the order a of ¢ in the group (F[t]/(t* — ayt + e(p)p))”

4. Generate a finite extension k of F,, with [k : F,] = a.

5. Compute the k-algebra Sggz =k®r, Sg(? .
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V. Computing modular Galois representations

6. Compute the polynomial Lx /;, € Z[u] (the numerator of the zeta function of Xy)
as the resultant of Lx g, € Z[t] and t* — u.

7. Compute an F;-basis for the [-torsion subgroup J[I](k) using Algorithm IV.3.12.
8. Compute generators ti, ..., t;, of the T-module m/IT.

9. Compute the matrices of the t; with respect to the basis of J[I](k) computed in
step 7, using the algorithms from §§1V.2.11 and IV.3.7.

10. Compute an F;-basis for J[m](k), which is the intersection of the kernels of the
t;.
11. Choose a primitive element v of F over Fy, choose a lift of v to T, and use this lift

to compute the matrix of v with respect to the F;-basis of J[m](k) computed in
the previous step. Use this matrix to extract an F-basis (b1,...,bq) of J[m](k).

12. For each v = (v1,...,v4) € F? compute z(v) = 2?21 v;b; € J[m](k), and
compute dg(,y and F(XFP,£®2(—D1(U))) as described in §1V.2.9. In particular,
this gives the F-linear isomorphism

F¢ = DEr (k)

in the form of the list of pairs (v, I'(Xg, £L92(—Dyy)))), where v runs over F?.
13. Compute strat(J[m]g,) from the dg ).
14. Output all the required information.

Analysis. By the Eichler—Shimura relation, the Frobenius automorphism of J[m|g
satisfies

Frobi — apFrob, + €(p)p = 0,

where a, and e(p) are the images of T}, and (p) under the quotient map T — F. This
implies that there is a (unique) F-algebra homomorphism

F[t]/(t* — apt + e(p)p) — Endp J[m](F,)

mapping ¢ to Frob,. The definition of a as the order of ¢ in (F[t]/(t*> — apt + €(p)p)) 8
therefore implies that Frob; acts trivially on Jg, [m], so that the points of Jg, [m] are k-
rational. The claim that we can compute L/, € Z[u] as the resultant of Lx g, € Z[t]
and t* —u follows from the fact that the roots of Ly, are the a-th powers of the roots
of Lx/r,. The rest of the algorithm clearly does what it is supposed to do. Using
the fact that a is at most #F? — 1, it is straightforward to check that the expected
running time is polynomial in n, deg J[m] and p. o

Remarks. (1) In the above algorithm, some steps can be omitted if we are only in-
terested in part of the output.

(2) The reason that the running time is polynomial in p and not log p is that we have
to compute the polynomial Lx /.

Using the preceding algorithm, we can compute strat(J[m]q) provided we know
a bound for the number of m-bad primes. The following algorithm makes this precise.
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4. Computations modulo prime numbers

Algorithm 4.2 (Compute the generic stratification type). Let the notation be as

above. Given the ring homomorphism e: T — F', this algorithm outputs the following

information:

(1) the generic stratification type strat(J[m]q) of J[m];

(2) a non-empty set P of m-good prime numbers;

(3) for each p € P a finite extension k, of F, such that D};” splits over k, and the
F-vector space Drl::p(kp) (given as in Algorithm 4.1).

1. Find a positive integer B > By,, where By, is the product of all m-bad primes,

as defined above; see §6.8 below.

2. Using (for example) the sieve of Eratosthenes, compute the smallest prime num-
ber (3 such that the set @ of prime numbers p with p < 8 and p 1 nl satisfies

Hp>B.

PER

3. For all p € Q, compute Xg, and its zeta function using modular symbols, and
then compute strat(J[m]g,), a splitting field &, for J[m]g, and the F-vector space

DE”(/ﬂp) using Algorithm 4.1.

4. Among the sequences strat(J[m]g,) for p € @, there is a pointwise minimum.
Output this minimum together with the set P consisting of the p € @ for which
it is attained, and output k, and fo(kp) for all p € P.

Analysis. The prime number theorem implies that the bound 8 computed in step 2
is at most clog B for some positive real number ¢. The choice of @) implies that @
contains at least one m-good prime. It is now clear that the algorithm is correct and
runs in expected time polynomial in n, deg J[m] and log B. o

Remarks. (1) The form of the prime number theorem that is used here is

g logp~x asx — 0.
p<zx prime

In fact, it would be enough to use the following bound, proved by Chebyshev: there
is a real number ¢ > 0 such that

Z logx > cx for all x > 2.
p<x prime

(2) It seems reasonable to expect that in many cases the generic stratification type
will be (1,1,...,1,deg J[m]). If this is in fact the case, then we find this out as soon
as we encounter one prime number p such that the stratification type modulo p equals
(1,1,...,1,deg J[m]).

Once we know the generic stratification type, Algorithm 4.1 allows us to check
whether a prime number p is m-good in expected time polynomial in p. This implies
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V. Computing modular Galois representations

that for any positive integer C, we can compute a set P of m-good prime numbers

such that
H p>C
peP

in expected time polynomial in log C. Furthermore, for an m-good prime number p,
the F-vector space scheme DEJ’ equals the reduction (Dm)pp of Dy, modulo p. We can
therefore compute the F-vector space of points of (D )r,, again using Algorithm 4.1.

5. Choosing a suitable embedding
In this section we explain how to choose a closed immersion
vJmlg — Ag.

We define the closed subscheme Dy, — Sym? X and the isomorphism cp: Dy, — J[m]
as in §3.2. We are going to choose a non-constant rational function

P: Xq — Pg

such that the map
¥, Sym? Xq — Sym? Péz.
is a closed immersion on (Dy,)q. We then use the isomorphism
Sym? Pg — P{,
given by the elementary symmetric functions. Next we choose a rational map
.PpY 1
PG - Ag

such that A is well-defined and injective on the image of (Dy,)q under the composed
map
(Dwm)q — Sym? P — P,

We define ¢ as the composed map

—1

v J[m]q % (Dm)q — Sym? Xq BLR Sym? P}Q = Pg 2, P(lg.

To choose ¥ and A, we make use of an auxiliary prime number p. This p is
required to satisfy the following conditions:

(1) ptni;
@ > 2 (degw(-eusps) + (%)) )

3) p>2 (deg J[m] + (deg; M));

(4) p is m-good.
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5. Choosing a suitable embedding

Algorithm 5.1 (Choosing an auxiliary prime number). Given the ring homomor-
phism e: T — F and the generic stratification type J[m], this algorithm outputs a
prime number p satisfying the above conditions (1)—(4), a splitting field k,, for D,I:I”
over F, and the set Dfl”(kp).

1. Let p be the least prime number satisfying the above conditions (1)—(3).

2. Compute Sg(? and L X, Using modular symbols.

P
3. Using Algorithm 4.1, check whether p is m-good; if so, compute a splitting field
k, for fo over F,, and the set Der (kp), output these data, and stop.

4. Replace p by the next prime number not dividing nl, and go to step 2.
Analysis. The prime number theorem implies that the prime number p output by
the algorithm is bounded by a linear function of log By, n? and (deg J[m])?; compare

the remark following Algorithm 4.2. The expected running time of the algorithm is
polynomial in n, deg J[m| and log By,. o

We will take the rational function ¢ on Xq of the form
Y =a/B witha,B € ST (1)),

where w is an integer with 1 < w < 12 chosen such that

(1) the line bundle w®" of modular forms of weight w on the moduli stack Mp, 1)
over Spec Z descends to the coarse moduli space X;(n');

(2) the line bundle w®"(—cusps) on X;(n’) has degree deg w®"(—cusps) > 2g+1 on
the fibres, and has non-negative degree on each irreducible component of each
fibre.

We can always take w = 12.

Algorithm 5.2 (Choosing the map ). Given an auxiliary prime number p as out-
put by Algorithm 5.1, a splitting field &, of J[m|g, over F), and the F-vector space
D,];:”(k:p), this algorithm outputs cusp forms

a, € Spt(Ty(n))

with the following properties:
(1) o and B have no common zeroes as sections of the line bundle w* (—cusps) on
the curve Xq = X1(n')q;
(2) the rational function ¢ = a/f3: Xq — Pg (which is well defined because of (1))
induces a closed immersion Dy — P;
(3) the logarithms of the Petersson norms of both « and § are bounded by a poly-
nomial in n, deg J[m] and log By,.
1. Using Algorithm IV.4.2, find a Q-basis (by,...,by) of Sy (T'1(n'), Q) consisting
of forms with integral g-expansion at the cusp 0 and with small Petersson norm.
2. Using modular symbols, compute S,,(I'1(n"),F,) and My42(I1(n'),Fp) using
g-expansions to precision greater than degw?**2(—cusps).
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V. Computing modular Galois representations

3. Choose uniformly random elements

N
a=> ajbmodp), B=) Bi(bimodp) inS,([Ti(n'),Fp).

i=1 i=1
4. Compute the image of the multiplication map
(Fpa +FpB) @, Myi2(T1(n'), F) — Sawi2(T1(n'), Fp).

Check whether this image is the full space Soy,42(I'1(n'), F,). If not, go to step 3.

5. We now have a morphism
¥y = (a&/B)+: Sym? Xp, — Sym? P%p.

Compute the images under 1, of the elements Diy” (kp) = (Dm)F, (kp) as homoge-
neous polynomials of degree g using Algorithm IV.2.8. If two of these polynomials
are the same (up to multiplication by elements of k%), go to step 3.

6. Output the cusp forms

N N
o = Zaibi and (= Zﬁibia
i=1

=1

where ay, ..., ay are integers with |a;| < p/2 and (o; mod p) = &; and similarly
for the §;.

Analysis. Because of our choice of p, the probability that uniformly random @& and 3
do not have any common zeroes and that ¢, = &/f3 is injective on the set Dy (kp),
which has cardinality deg J[m], is at least 1/2; see Khuri-Makdisi [57, Proposition 4.3].
This implies that the expected running time of the algorithm is bounded by a poly-
nomial in n, degJ[m] and log B,,. The correctness of the check that « and S do
not have any common zeroes follows from Lemma IV.2.3. Finally, the bound on the
Petersson norms of « and 3 follows from the triangle inequality and the choice of
basis for SI*(T'; (n')). o

After we have chosen a rational function 1, the next problem is to choose a
suitable rational map \: P --» Ag,.

Algorithm 5.3 (Choosing the map A). Given an auxiliary prime number p as output
by Algorithm 5.1, a splitting field &, of J[m|g, over F,, and the set of k,-valued points
of the image of the map

DEP s Sym? X, BLR Sym? P%;p

where 1 is a rational function ¢ as output by Algorithm 5.2 (with the same auxiliary
prime number), this algorithm outputs a 2 x (g 4+ 1)-matrix A over Z with coprime
entries, such that the rational map

. 1
A. P% -=> AQ
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5. Choosing a suitable embedding

given by A induces a well-defined closed immersion on the image of D, under the
map
Sym? Xq % Sym? P - P,
and such that the coefficients of A are bounded by a linear function of n, deg J[m]
and log By,.
1. Choose a random 2 x (g + 1)-matrix Ag, over F,.

2. Check whether the rational map P%p -— A%;p defined by Ar, is well-defined and
injective on the image of the map

DEP s Sym? Xr, BLR Sym? P%?p - P%p.

If not, go back to step 1.
3. Take a lift A of Ap, with integer coefficients of absolute value at most p/2.
4. Divide A by the greatest common divisor of its entries, and output the result.
Analysis. The choice of the auxiliary prime number p implies that a randomly chosen
A satisfies the imposed conditions with probability at least 1/2. It is now straight-

forward to check that the expected running time of the algorithm is polynomial in n,
deg J[m] and log By,. S

Remark. Another possibility, described in [17, §8.2], is to choose some small posi-
tive integer m and to take A\ to be the map defined by viewing elements of Pg as
polynomials of degree g and evaluating these in m.

6. Height bounds and bad prime numbers

The following definition says which prime numbers p can be used in our computation
after maps 1 and X have chosen as in Section 5.

Definition. We say that a prime number p is (m,)-good if p is m-good and the
map v is defined modulo p, i.e. @ and 8 have no common zeroes as sections of the
line bundle w®*(—cusps) on Xi(n')g,. We say that p is (m, 1), A)-good if in addition
the map A is well-defined on the image of the morphism

Dyt = (Dm)r, — Sym? Xp, SZN Sym? P%\p - P%p.

The antonyms of (m,)-good and (m, ), A)-good are (m,v)-bad and (m,), A)-bad,
respectively.

We define positive integers By,  and By 4, by

Buy= || p» and Baya= [[ »
p (m,?)-bad p (m,3,X)-bad

where p runs over the finite set of (m,¢)-bad prime numbers and that of (m, ¢, A)-bad
prime numbers, respectively.
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V. Computing modular Galois representations

If p is a (m,%)-good prime number, we can compute the reduction modulo p of
the image of D, under the map

Sym? X BN Sym? P! = P9

as a set of k-valued points, where k is a finite extension of F, as in Algorithm 4.1,
using Algorithm IV.2.8. If p is in addition (m,, \)-good, then the monic polynomial
defining the image of Dy, under the map

wJmlg — Ag

can be reduced modulo p, and we can compute this reduction.

In order to reconstruct the F-vector space scheme ¢(J[m]) from its reductions
modulo prime numbers, we need an upper bound on the height of ¢(J[m]), which was
defined in § 3.3. We will show that when the maps ¥ and A are chosen as in Algorithms
5.2 and 5.3, this height is bounded by a polynomial in n, deg J[m] and v(X). We also
need upper bounds on the integers By, By ¢ and By, 4, x. To prove that our algorithm
for computing modular Galois representations runs in expected time polynomial in
the input size, we need to show that log By, log By and log By, . x are bounded by
a polynomial in n, deg J[m] and v(X).

Remarks. (1) The upper bounds for By, and for the height need to be made explicit
to ensure the correctness of Algorithms 4.2 above and 7.2 below, respectively. In
contrast, the upper bounds for By 4 and By 4,2 are not needed as input for the
algorithm.

(2) Tt would certainly have been possible, but probably not very enlightening, to
write down bounds that are polynomials in n and deg J[m] with real coefficients. I
have aimed at a balance by giving formulae involving non-explicit constants that can,
however, easily be approximated using a computer. There is at this moment still an
exception, namely a bound on v(X;(n)) in the case where n is not squarefree.

6.1. Height bounds

We suppose that maps 1 and A as above have been chosen. Our next goal is to derive
a bound on the height of ((J[m]). We start with some general observations on the
behaviour of heights with respect to symmetric functions and linear maps.

If X\ is an m x n-matrix over Q, we define the height h()) of A as the height of
the point of P ™M+ (Q) whose projective coordinates are the coefficients of \.

Lemma 6.1. Let n be a positive integer, and let X™: (P}Q)” — Pgq be the symmetri-
sation map defined by

S"(x1 Y1)y (Tn iyn)) = (00015 ... op),

where

o) = Z szHy]

IC{1,....n} i€l jeI
#I=k
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6. Height bounds and bad prime numbers

Then the inequality

hpn (5" (p1,...,pn)) < log (LT:;?J) + ZhPl(pi>

<nlog2 -+ hpi(pi)
i=1

holds for all py,...,p, € PY(Q).

Proof. Let K be a number field, let py, ..., p, be in P}(K), and write p; = (z; : ¥;)
with z;,y; € K. For any valuation v of K, the triangle inequality implies that the
elements o), € Q satisfy

lokls < cy x| [Tzl - T 1wslos
S e

Jé¢1
where
1 if v is ultrametric;
o= { (LJ/LQ J)[K“:R] if v is Archimedean.

This implies
n
Hl]?X |0'k|1) < ¢y H max{\xih,, |yz|v}
=1

Taking logarithms, summing over all v and dividing by [K : Q] we get the first
inequality. The second follows by applying the elementary inequality (LWT}? J) <2 0O

Lemma 6.2. Let \: Pg --» P§ be a rational map given by a non-zero matrix (a; ;)i ;

over Q. Then for any p € P™(Q) such that A is defined at p, we have
hpm (A(p)) < logn + h(A) + ke~ (p).
Proof. Choose a number field K with p € P"(K), and write p = (zg : ... : Tp).

Put b, = > a;x; for i =0, ..., m, so that A(p) = (bo : ... : by). Then for any
valuation v of K,

n
lbilo = > aija;| < dymax a5y,
=0 v !
with o )
d = { 1 if v is ultrametric;
Y KRl if 4 is Archimedean.
Therefore,

max|bily < dy max ai o max 2.
i i, k

Taking logarithms, summing over all v and dividing by [K : Q], we obtain the desired
inequality. O
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V. Computing modular Galois representations

Lemma 6.3. Let A = (a;;)7,_, and y = (y;)7_; be elements of GL,(Q) and Q",
respectively. Then the unique solution x = (z;)1, € Q" of Az = y satisfies

) < 992
b h(z;) < 2n°b+ nlogn,

where b is the maximum of all the h(y;) and h(a; ;).

Proof. This follows from Cramer’s rule and bounds on the height of the determinant
of an invertible matrix in terms of the heights of its coefficients; for details we refer
to Couveignes, Edixhoven et al. [17, §4.2]. O

We now derive bounds for the heights of the points +(v) with v € J[m](Q). We
consider the divisor D € Dy (Q) corresponding to v under the isomorphism

Dn(Q) — Jm](Q),

and we write
D=Dy+---+D, with D; € Xq(Q).

From the definition of ¢ we see that
ov) = XS (WD), ... (Dy))).
By Lemmata 6.2 and 6.1 we get
h(u(v)) < logg + h(N) + hpo (S (6(D1). ... 0(Dy))

g
<logg+h(\) +glog2+ Y hpi(¢(Dy)).

i=1

(6.1)

This shows that bounding h(¢(v)) essentially comes down to bounding the hp1 (¢(D;));
we will study these in §6.2 below.

As in §3.3, we let P, € Q[z] denote the monic polynomial defining ¢(J[m|q)
in AQ We let h(P,) denote the maximum of the logarithmic heights of the coefficients
of P,. Since the coefficients of P, are the (dehomogenised) elementary symmetric
polynomials in the ¢(v) for v € J[m](Q), a second application of Lemma 6.1 yields

W(P,) < degJmllog2+ > h(ucn(D)))
DeD.(Q)

< degJ[m ]log2+dng[ 1 (glog2 +1logg + h()\))

4 Z thl (6.2)

DeDy,

= deg J[m]((g 4+ 1)log2 +log g + h()\)) + Z thl

DeDy, Q
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6. Height bounds and bad prime numbers

Finally, we give bounds on the heights of the polynomials defining the addition
and scalar multiplication in terms of the h(:(v)). Here we follow [17, § 14.5]. We put
r = deg P, = deg J[m], and we write

r—1
S=Y" siwixh € Qur, ) /(Pi(21), P(2)),
4,§=0
r—1 )
M, = Zm?w’ € Q[z]/(P,) foralla € F*.
i=0

Then we have by definition

r—1
Z sijt(v) (w)? = (v +w) for all v,w € J[m|(Q)
4,§=0

and

r—1
Zm;ﬁ(v)i = (av) for all v € Jm|(Q),a € F.
i=0

Lemma 6.3 now implies

max h(s; ;) < 2r?(r — 1)* max h(c(v)) + 7% log r?
i v

and
max h(m{) < 2r(r — 1)max h(t(v)) + rlogr for all a € F.
7 v

6.2. Relating heights to Arakelov intersection numbers

We now study the hpi(¢(D;)) in more detail. Let K be any number field with the
following properties:

(1) all the D; for D € Dy (Q) are K-rational;
(2) Xq x Spec K has a regular and semi-stable model

m X — SpecZg.

Then there exists a morphism
o Xy — X,

obtained by successively blowing up in closed points, such that ¢ extends to a mor-
phism

V: Xy — Py, K-
The arithmetic surface Xy, is regular, but not necessarily semi-stable (if we blow up
double points of the fibres, we get exceptional divisors of multiplicity greater than 1).

By taking the Zariski closure, we extend the points D; € X(K) and the divisors
D € D, (K) to Cartier divisors on X'.
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V. Computing modular Galois representations

We now temporarily assume that ¥(D;) # oco; however, the height bound that
we are going to deduce will also hold in the case 1(D;) = oo, for reasons that will be
indicated below. By definition, we have

e (4(D)) = s S logmax{LL[0(Do)]. ).

where v runs over all the places of K. Now we note that for each finite place v of K,
we have the equality

log max{1, [¢)(D;)|,} = (log #ky) (¥ 0 D; . 50),, (6.3)

where k, is the residue field of v and (12 o D; . ), denotes the local intersection
number of the sections ¥ o D; and oo of PIZK at v. Furthermore, from the elementary
inequality

max{1,t} <V1+1t> (t>0)

it follows that for each infinite place v of K we have the inequality
1
logmax{1, |¥(D;)|,} < [K, : R] (2 — 27 grpl(Kv)(w(Di)v, oo)) . (6.4)

Here grp: is the Green function for the Fubini-Study (1,1)-form on PY(K,) as
in §III.1.1:

1 1
grPl(Kv)(ZvOO) = ir  an
It follows from (6.3) and (6.4) that the height of the point ¢(D;) € P'(Q) can
be bounded in terms of the degree of the metrised line bundle (¢ o D;)*Op1(oc0)
on Spec Zg as follows:

log(1 + |2]?). (6.5)

1 - i 1

Here the line bundle Op1(c0) on P is endowed with the metric defined by
log |1o, (s0)(2) = 2m grp: (2, 00).

The inequality (6.6) is also valid in the case where ¢(D;) = oo, and is in fact an
equality in this case; this can be seen by computing the degree via the global section z
of Op1(00) (which vanishes only along 0) instead of the section 1. This means that
we can now dispense with our temporary assumption that ¥(D;) # co.

On each of the Riemann surfaces

X, = X(K,),
we define a smooth real-valued function ¢, by

Po(2) = log oy, (p-100) (%) —10g Lo, (c0) (¥(2))
= 2m g (2,9 00) — 27 grpa (¥(x), 00),
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6. Height bounds and bad prime numbers

where grif" denotes the canonical Green function of the Riemann surface X,. Then
¢, satisfies the differential equation

21000, = 27 (0y-100 — (deg V) ) — 27 (G100 — ¥ pp1)
= 21" ppr — 2m(deg ) g™

with the normalising condition

/% buig? = 2 / grp (), 00) S (2).

Xy

From the definition of gr{?™ it now follows that we can express ¢, as
oufa) = [ w0y (2m0 e )~ 2n(deg ) )
yeX,
o [ e (0l o)
yeX,
o [ mE i) om0, com )
yeX,

Using the formula (6.5) for grp:, we see that

log(1 + 4 (y) P ugr (y)

DO =
N =

bo() = 21 / 5™ (o, )0 i (y) — = +
yeX, YyEX,

(6.7)

<2mdeg® sup gry’ —

1 1 can
3 + 5/ log(1 + |9 () ) u$" (y)-
Xy XXy yeX,

By the definition of ¢,,, we may rewrite the degree appearing on the right-hand side
of (6.6) as

deg(t) o D;)*Opi (00) = deg D} (¢* Op1(c0))

=deg D;Ox, (¢ 'o0) + > [Ky: Rlpy(Din)
vEKint (6.8)
=(Di .y 'o0)x, + Y [Ky:Rl$y(Diy),

VEKint

where Oy, ()~100) is metrised in the standard way and (D; .4 ~'00), denotes the
Arakelov intersection product of divisors on the regular arithmetic surface Xy,. Com-
bining (6.6), (6.8), (6.7) and the fact that all the X, are isomorphic to the Riemann
surface

X =X(C),
we now deduce the following bound for the height of ¥(D;):
1 -
h D)) < D; .Y o + 2w deg ¢ sup gri@™
Pl(w( )) [K Q]( QZ) )Xw g¢XXI;g x
1
+3 log(1 + [4(y)[*) S ().
yeXx
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V. Computing modular Galois representations

Substituting this in the bound (6.2) for A(P,) and simplifying, we get

h(P,) < deg J[m)| <(g +1)log2 +log g + h(\) 4+ 2mg deg ) sup grE™
XxX

g can
+§/xlog(1+|¢|2)ﬂx ) (6.9)
g X 00
’ DEDm(Q)

6.3. Specialisation to our choice of v

We recall that we have chosen v of the form
Y =a/f with o, €S2y (n)).

We view o and f3 as rational sections of the line bundle w®"(—cusps) on X. We
write the divisor of o (in the classical sense, i.e. without “infinite” components) as
divT a — div™ @, where div* « are effective divisors on X having no prime divisors
in common. Since a € SI%(T'y(n’)), the support of div™ « is contained in the set of
irreducible components of fibres of X’ that do not meet the cusp O. We define div® 3
similarly, and we do the same for div® 1 on Xy. Noting that

divyy = ¢ diva — ¢~ 1div s
we see that - ~

Tloo =div™
v ) w N o (6.10)
<o (divT 4+ divT ).

We put any admissible metric | |, on the line bundle w on the Riemann surface X.
This also gives an admissible metric | |, ow on w®¥. Multiplication by 3 gives an
isomorphism

Ox (div+ B—div: 5+ Z ag%v) — w®"(—cusps) (6.11)
vEKinf

of admissible line bundles on X', where

ag = —/ log |8 pewus™.
x

Now let D be an element of Dy (Q). By the isomorphism (6.11), the inequal-
ity (6.10) and the projection formula for ¢, the intersection number (D . ¢~ 'oo)x,
occurring in (6.9) can be bounded as

(D. ¢ oo)x, < (D¢~ Hdivt B+div. @),
=(D.¢" (W (div- a+div. 8 —cusps)))x, — g[K : Qlag (6.12)
=(D.w

(D .w®(div. a+div" B —cusps))x — g[K : Qlag,

186



6. Height bounds and bad prime numbers

where the divisor D in the last expression is to be interpreted as the Zariski closure
in X of the divisor D on Xg. We write

dive=Ho+ Y > npvV, (6.13)

p VEW,

where H,, is an effective horizontal divisor, the n, v are integers, p runs over the closed
points of SpecZx and W, is the set of irreducible components of the fibre & ,). In
particular, we get

divta=H, —I—Z Z ngvV and div" a—z Z —ny v V.

Vew, Vew,
np,v>0 np,v <0

Let p be a closed point of Spec Zg. The n, v with V' € W, satisfy the equations
Z Tlp7V/(V. V/)X =by forall Ve Wp,

V/eW,

where
by = (w®¥(—cusps) — Hy . V)x

We recall from Section 5 that we have chosen w such that w®"(—cusps) has non-
negative degree on each irreducible component of each fibre. This implies

Z by < degw®"(—cusps).
VEW,
by >0

Let p be the residue characteristic of p, let e(p) be the ramification index of p over p,
and let W, be the field of fractions of the ring of Witt vectors of F,. Applying
Lemma III.4.1, we obtain

— <2 Xw, ) degw®¥(—
oA 1y Vnéuvg np,v < 2e(p)y(Xw,) degw™" (—cusps),

where 'y(pr) is the real number defined in §111.4.2. In particular, since there is at
least one V' for which n, y > 0 (the one intersecting O), we see that

- < (- . .
Jmin nyv < 26(p)7(Xw,) deg e (~cusps) (6.14)

Taking the sum over all p, we get t