
Modular curves, Arakelov theory,

algorithmic applications

Proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof. mr. P. F. van der Heijden,

volgens besluit van het College voor Promoties

te verdedigen op woensdag 1 september 2010

klokke 11:15 uur

door

Pieter Jan Bruin

geboren te Gouda

in 1983



Samenstelling van de promotiecommissie:

Promotor: prof. dr. S. J. Edixhoven

Copromotor: dr. R. S. de Jong

Overige leden: prof. dr. J.-M. Couveignes (Université de Toulouse II–Le Mirail)
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Introduction

This thesis is about arithmetic, analytic and algorithmic aspects of modular curves

and modular forms. The arithmetic and analytic aspects are linked by the viewpoint
that modular curves are examples of arithmetic surfaces. For this reason, Arakelov

theory (intersection theory on arithmetic surfaces) occupies a prominent place in this

thesis. Apart from this, a substantial part of it is devoted to studying modular curves
over finite fields, and their Jacobian varieties, from an algorithmic viewpoint.

The end product of this thesis is an algorithm for computing modular Galois

representations. These are certain two-dimensional representations of the absolute
Galois group of the rational numbers that are attached to Hecke eigenforms over finite

fields. The running time of our algorithm is (under minor restrictions) polynomial in

the length of the input. This main result is a generalisation of that of the book [17],

which was written by Jean-Marc Couveignes and Bas Edixhoven with contributions
from Johan Bosman, Robin de Jong and Franz Merkl.

Although describing such an algorithm has been my principal motivation, several

intermediate results are developed in sufficient generality to make them of interest to
the study of modular curves and modular forms in a wider sense.

In the remainder of this introduction, we explain the motivating question and

outline the strategy for computing modular Galois representations. After that, we
state the results of this thesis in more detail, and we compare them to those of

Couveignes, Edixhoven et al. We then discuss some applications of our algorithm.

The introduction is concluded with a summary of the chapters of this thesis.

Modular Galois representations

By work of Eichler, Shimura, Igusa, Deligne and Serre, one can associate to any Hecke

eigenform over a finite field F a two-dimensional F-linear representation of Gal(Q/Q).

This means the following. Let n and k be positive integers, and let f be a modular
form of weight k for the group

Γ1(n) =

{(
a

c

b

d

)
∈ SL2(Z)

∣∣∣∣
a ≡ d ≡ 1 (mod n),

c ≡ 0 (mod n)

}

over a finite field F of characteristic l. We suppose that f is an eigenform for the

Hecke algebra of weight k for Γ1(n). Let Knl be the largest extension of Q inside Q
that is ramified only at primes dividing nl. For every prime number p ∤ nl, let Frobp

1



Introduction

denote a Frobenius element at p in Gal(Knl/Q); this is well-defined up to conjugation.

Then there exists a two-dimensional semi-simple representation

ρf : Gal(Q/Q) → AutF Wf (∼= GL2(F)),

where Wf is a two-dimensional F-vector space, such that ρf is unramified at all

prime numbers p ∤ nl (in other words, ρf factors via Gal(Knl/Q)) and such that

for every prime number p ∤ nl, the characteristic polynomial of ρf (Frobp) equals
t2 − apt + ǫ(p)pk−1, where ap and ǫ(p) are the eigenvalues of the Hecke operators Tp

and 〈p〉 on f . The representation ρf is unique up to isomorphism; it is called the

modular Galois representation associated to f .

The main result of this thesis

The goal of the last chapter of this thesis is to give an efficient algorithm for computing
representations of the form ρf , where f is an eigenform over a finite field F. By

“computing ρf” we mean producing the following data:

(1) the finite Galois extension Kf of Q such that ρf factors as

Gal(Q/Q) ։ Gal(Kf/Q)  AutF Wf ,

given by the multiplication table of some Q-basis (b1, . . . , br) of Kf ;

(2) for every σ ∈ Gal(Kf/Q), the matrix of σ with respect to the basis (b1, . . . , br)

and the matrix of ρf (σ) with respect to some fixed F-basis of Wf .

We give a probabilistic algorithm that computes ρf . We consider the situation where
the weight k is less than the characteristic of F and where n is of the form ab,

where a is a fixed positive integer and b is a squarefree positive integer coprime to a.

In this situation we prove that the running time of the algorithm is bounded by a
polynomial in the level and weight of the form in question and the cardinality of F.

This is essentially optimal, given the fact that the length of the input and output of

such an algorithm is already polynomial in the same quantities.

The strategy

The main application of the results in this thesis is a generalisation of that of the
book [17] of Couveignes, Edixhoven et al. The basic strategy is the same as that

of [17], but there are various differences. We will now explain this strategy, as well as

the differences.

The first step, due to Edixhoven, is to reduce the problem to computing repre-
sentations of the form

ρJ1(n)[m]: Gal(Q/Q) → AutF
(
J1(n)[m](Q)

)
,

where n is a positive integer, J1(n) is the Jacobian of the modular curve X1(n), m is a
maximal ideal of the Hecke algebra T1(n) ⊆ End J1(n), J1(n)[m] is the largest closed

subscheme of J1(n) annihilated by m, F is the residue field T1(n)/m and ρJ1(n)[m] is the

natural homomorphism. Computing ρJ1(n)[m] essentially comes down to computing
the F-vector space scheme J1(n)[m] over Q.

2
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The problem of computing J1(n)[m] is approached by choosing a closed immersion

ι: J1(n)[m]  A1
Q

of Q-schemes. The image of ι is of the form V = SpecQ[x]/(P ) for some P ∈
Q[x]. This V gets the structure of a finite F-vector space scheme, which is given by

polynomials with rational coefficients. The essential idea that makes it possible to

efficiently compute V is due to Couveignes. It is to approximate V , either over the

complex numbers or modulo sufficiently many prime numbers, to sufficient precision
to reconstruct it exactly. To find out what precision is sufficient, we need to bound

the heights of the coefficients defining V .

In [17] both a deterministic and a probabilistic algorithm are given. The de-
terministic algorithm uses computations over the complex numbers; the probabilistic

variant uses computations over finite fields. It seems hard to remove the probabilistic

aspect from the algorithms for computing in Jacobians of curves over finite fields.
In this thesis, we only give an algorithm that works over finite fields. Let us

briefly explain the reason for this. The computations in J1(n) are done using divisors

on X1(n) as follows. Let g be the genus of X1(n). We fix a divisor D0 of degree g

on X1(n). This gives a birational morphism

Symg X1(n) → J1(n)

D 7→ [D − D0].

In [17], the divisor D0 is chosen such that this map is an isomorphism over J1(n)[m].

The method of choosing such a divisor that is used in [17] does not work in our more

general situation. This problem is solved as follows. We take D0 = gO, where O is a
rational cusp of X1(n). With this choice, there may be points of J1(n)[m] for which

the representation in the form [D −D0] is not unique. For every x ∈ J1(n)[m](Q) we

therefore consider the least integer dx such that x = [Dx − dxO] for some effective
divisor Dx of degree dx. These Dx are unique; the downside is that we need to

compute the dx. We show how to do this in the variant that uses finite fields, but it

is not yet clear how to do the analogous computations over the complex numbers.

The algorithms that we use for computing in Jacobians of modular curves over
finite field are different from those used in [17]. Instead of algorithms for computing

with singular plane curves, we use the algorithms for computing in Jacobians of

projective curves developed by Khuri-Makdisi in [56] and [57], and we transfer the
methods of Couveignes [16] to this setting.

A bound on the heights of the coefficients of the data to be computed, and

therefore a bound on the running time of the algorithm, is derived using Arakelov
intersection theory on models of modular curves over rings of integers of number

fields. We follow roughly the same strategy that was applied in [17], but there are

some notable differences. First, we have avoided introducing Faltings’s δ-invariant,

which means we do not need bounds on θ-functions of Jacobians of modular curves.
Second, our methods allow us to derive bounds on the amount of work that has to

be done to find the numbers dx defined above. Finally, we introduce new analytic

methods to find sharper bounds for various Arakelov-theoretic quantities associated
to modular curves.

3
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Applications

We now outline some applications of our main result. This thesis contains no proofs
of the theorems below; we refer to [17, Chapter 15] for arguments that can be used

to prove them. I hope to give more attention to these applications in a future article.

Computing coefficients of modular forms

The history of [17], and therefore also of this thesis, started with a question that René
Schoof asked to Bas Edixhoven in 1995. Ramanujan’s τ -function is defined by

q
∞∏

m=1

(1 − qm)24 =
∞∑

n=1

τ(n)qn.

This power series is the q-expansion of the unique cusp form ∆ of weight 12 for SL2(Z).

Schoof’s question was: given a prime number p, can one compute τ(p) in time poly-
nomial in log p? This question is answered affirmatively in [17].

For modular forms for Γ1(n) with n > 1, the results of this thesis imply the
following generalisation.

Theorem. Let a be a positive integer. There is a probabilistic algorithm that, given
a positive integer k, a squarefree positive integer b coprime to a, the q-expansion of

a Hecke eigenform f of weight k for Γ1(ab) up to sufficient precision to determine f

uniquely, and a positive integer m in factored form, computes the m-th coefficient of f ,

and that runs in expected time polynomial in b, k and log m under the generalised
Riemann hypothesis for number fields.

The Riemann hypothesis is needed to ensure the existence of sufficiently many primes
of small norm in the number field generated by the coefficients of f . It does not suffice

to apply the prime number theorem for each of these fields; we need an error term

for the prime number theorem that is sufficiently small relative to the discriminant.
More precisely, we use the result that if K is of a number field of discriminant ∆K

for which the generalised Riemann hypothesis holds and πK(x) denotes the number

of prime ideals of the ring of integers of K of norm at most x, then

∣∣∣∣πK(x) −
∫ x

2

dy

log y

∣∣∣∣ ≤ c
√

x log(|∆K |x[K:Q]) for all x ≥ 2,

where c is a positive real number not depending on K or x; see Weinberger [111].

Sums of squares

One particularly interesting family of modular forms consists of θ-series associated

to integral lattices. Let L be an integral lattice of rank k and level n. The θ-series

of L is defined by

θL =
∑

x∈L

q〈x,x〉 ∈ Z[[q]].

This power series is the q-expansion of a modular form of weight k/2 for Γ1(4n). Our
results imply that if k is even, then given θL up to sufficient order and a positive

4
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integer m in factored form, the m-th coefficient of θL can be computed quickly, at

least for fixed n.

A case that is worth mentioning specifically is the classical question in how many
ways a positive integer can be written as a sum of a given number of squares. For

this we introduce Jacobi’s θ-series

θ = 1 + 2

∞∑

n=1

qn2

.

If m and k are positive integers, we write

rk(m) = #{(x1, . . . , xk) ∈ Zk | x2
1 + · · · + x2

k = m}.

An elementary combinatorial argument shows that

θk =
∞∑

n=0

rk(m)qm.

It is known that θ is the q-expansion of a modular form of weight 1/2 for Γ1(4). We
therefore obtain the following new result on the complexity of evaluating rk(m).

Theorem. There is a probabilistic algorithm that, given an even positive integer k

and a positive integer m in factored form, computes rk(m) in time polynomial in k
and log m under the generalised Riemann hypothesis for number fields.

It was proved recently by Ila Varma [110] that for every even k ≥ 12, the decom-

position of θk as as a linear combination of Hecke eigenforms contains cusp forms

without complex multiplication. No method was previously known for computing the
coefficients of such forms efficiently.

Computing Hecke operators

A consequence of being able to compute coefficients of modular forms is that one can

also compute Hecke algebras, in the following sense. Let T(Sk(Γ1(n))) be the Hecke

algebra acting on cusp forms of weight k for Γ1(n). We represent T(Sk(Γ1(n))) by its
multiplication table with respect to a suitable Z-basis (b1, . . . , br), together with the

matrices with respect to (b1, . . . , br) of the Hecke operators Tp for all prime numbers

p ≤ k
12 [SL2(Z) : {±1}Γ1(n)] and of the diamond operators 〈d〉 for all d ∈ (Z/nZ)×.

Theorem. There exists a probabilistic algorithm that, given a positive integer k, a
squarefree positive integer n and a positive integer m in factored form, computes the

matrix of the Hecke operator Tm in T(Sk(Γ1(n))) with respect to (b1, . . . , br), and that

runs in time polynomial in n and log m under the generalised Riemann hypothesis for
number fields.

The case k = 2 of this theorem implies a new result on counting points on modular

curves over finite fields. This is because from the elements Tp and 〈p〉 in T(S2(Γ1(n)))

one can compute the characteristic polynomial of the Frobenius endomorphism Frobp

on the l-adic Tate module of J1(n)Fp
, where l is a prime number different from p.

5
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Theorem. There exists a probabilistic algorithm that, given a squarefree positive

integer n and a prime number p ∤ n, computes the zeta function of the modular

curve X1(n) over Fp, and that runs in time polynomial in n and log p under the
generalised Riemann hypothesis for number fields.

In particular, this theorem implies that given n and a prime power q coprime to n,
the number of rational points on X1(n) over the field of q elements can be computed

in time polynomial in n and log q under the generalised Riemann hypothesis.

Explicit realisations of certain Galois groups

The Abelian representations of Gal(Q/Q) are well understood: by the Kronecker–
Weber theorem, the largest Abelian extension of Q is obtained by adjoining all roots

of unity, and the largest Abelian quotient of Gal(Q/Q) is isomorphic to Ẑ×.

Serre’s conjecture, which is now a theorem thanks to Khare and Wintenberger,
with an important step due to Kisin (see [54], [55] and [61]), asserts that every two-

dimensional, odd, irreducible representation of Gal(Q/Q) over a finite field is asso-

ciated to a modular form. Our results therefore imply that an important class of
non-Abelian extensions of Q can be computed efficiently.

Computational work based on the work of Couveignes, Edixhoven et al. has been

carried out by Johan Bosman using the complex analytic method; see [17, Chapter 7].

In [9], Bosman also gave an explicit polynomial of degree 17 over Q with Galois
group SL2(F16); the corresponding Galois representation is attached to a modular

form of weight 2 for Γ0(137). It follows from the results of this thesis that analogous

calculations of Galois groups can be done efficiently in greater generality.

Overview of the chapters

In Chapter I, we introduce modular curves, modular forms and modular Galois

representations. This chapter consists mostly of known material.
In Chapter II, we prove several analytic results on modular curves that are

needed in the later chapters. The most important of these are explicit bounds on

Petersson norms and suprema for cusp forms, and on Green functions of quotients of

the upper half-plane by cofinite Fuchsian groups.
In Chapter III, we describe Arakelov’s intersection theory on aritmetic surfaces.

We give the results from Arakelov theory that we need for the bounds of the running

time of the algorithm that is described in Chapter V. We also find fairly explicit
bounds on many Arakelov-theoretic invariants of modular curves.

In Chapter IV, we collect the computational tools that are needed for the

algorithm. This chapter largely consists of algorithms for computing with projective
curves and their Jacobians. We describe a collection of algorithms developed by Khuri-

Makdisi, and we develop new algorithms that allow us to work with finite morphisms

between curves and with curves over finite fields.

In Chapter V, we describe the promised algorithm for computing Galois rep-
resentations associated to modular forms over finite fields. The algorithm is based

on the tools developed in Chapter IV. We use the Arakelov-theoretic methods intro-

duced in Chapter III to bound the heights of the data that need to be computed, and
thus to bound the expected running time of our algorithm.
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Chapter I

Modular curves, modular forms and Galois repre-

sentations

In this chapter we collect the necessary preliminaries on modular curves, modular
forms and modular Galois representations. We focus entirely on the algebraic side;

the analytic side will be explained in Chapter II. Essentially all the material in this

chapter is known; only Theorem 3.5 seems to be new.

The set-up of this chapter is geared towards quickly introducing the material
and notation we need, rather than towards giving an anywhere near complete in-

troduction. The reader is therefore encouraged to consult one of the many existing

texts in which this material, and much more, is explained. These include Deligne
and Rapoport [23], Katz and Mazur [53], Conrad [14], Diamond and Im [25], and

Diamond and Shurman [26].

1. Modular curves

1.1. Moduli spaces of generalised elliptic curves

To begin with, we describe some of the work of Deligne and Rapoport [23], Drinfeld

(unpublished), Katz and Mazur [53], Edixhoven (unpublished) and Conrad [14] on

the moduli spaces of (generalised) elliptic curves.

Let S be a scheme. For each positive integer n, the standard n-gon (or Néron

n-gon) over S is the S-scheme obtained by taking n copies of P1
S and identifying the

section ∞ on the i-th copy with the section 0 on the (i + 1)-th copy. For n = 1, one
needs to be a bit careful. The result in this case is the closed subscheme of P2

S defined

by the equation y2z + xyz = x3; see Conrad [14, § 2.1].)

A semi-stable curve of genus 1 over S is a proper, finitely presented and flat

morphism f :C → S such that every geometric fibre of f is either a smooth curve of
genus 1 or a Néron n-gon for some n. If f :C → S is a semi-stable curve of genus 1, we

write Csm for the open subscheme of C consisting of the points at which f is smooth.

If f :C → S is a semi-stable curve of genus 1, then the relative dualising sheaf ΩC/S

is a line bundle on C, and the direct image f∗ΩC/S is a line bundle on S.

7



I. Modular curves, modular forms and Galois representations

A generalised elliptic curve over S is a triple (E,+, 0) consisting of a semi-stable

curve E of genus 1 over S, a morphism +:Esm ×S E → E of S-schemes and a section

0 ∈ Esm(S) such that the following conditions hold (see Conrad [14, Definition 2.1.4]):

(1) + restricts to a commutative group scheme structure on Esm with identity sec-

tion 0;

(2) + is an action of Esm on E such that on singular geometric fibres the translation

action by each rational point in the smooth locus induces a rotation on the graph
of irreducible components.

Let E be a generalised elliptic curve over S. A point P ∈ Esm(S) is called a
point of exact order n if the relative Cartier divisor

〈P 〉(n) =

n∑

i=1

[iP ]

on Esm is a closed subgroup scheme of Esm; see Katz and Mazur [53, § 1.4]. A Γ1(n)-

structure on E is a group homomorphism φ:Z/nZ → Esm(S) such that φ(1) is a point

of exact order n. A cyclic subgroup of order n on E is a subgroup scheme that locally
for the fppf -topology on S is of the form 〈P 〉(n) for some point P of exact order n.

Let G be a cyclic subgroup of order n on E. For every divisor d of n, there is a

canonical subgroup scheme Gd of G that, again locally for the fppf -topology on S, is
given by choosing a generator P of G and defining

Gd = 〈(n/d)P 〉(d);

see Katz and Mazur [53, Theorem 6.7.2]. This Gd is called the standard cyclic subgroup

of order d of G.
Let E be a generalised elliptic curve over a scheme S, let n be a positive integer,

and let p be a prime number. For p ∤ n, we define a Γ1(n; p)-structure on E to be

a pair (P,G) consisting of a Γ1(n)-structure P on Esm and a cyclic subgroup G of
order p on Esm such that the Cartier divisor

∑
j∈Z/pZ(jP + G) on E is ample. For

p | n, we define a Γ1(n; p)-structure in the same way, but we add the condition

∑

j∈Z/pZ

(j(n/p)P + Gp) = Esm[p],

where Gp ⊆ G is the standard cyclic subgroup of order p as defined above.

Let Γ denote Γ1(n) or Γ1(n; p). There exists a moduli stack MΓ classifying

Γ-structures. (For background on stacks, we refer to the book [63] of Laumon and
Moret-Bailly.) It is known that MΓ is a proper flat Deligne–Mumford stack over Z;

see Conrad [14, Theorem 1.2.1]. Furthermore, MΓ is regular and has geometrically

connected fibres of pure dimension 1 over SpecZ. The coarse moduli spaces of MΓ

for Γ = Γ1(n) and Γ = Γ1(n; p) are denoted by X1(n) and X1(n; p), respectively.
The stack MΓ has an open substack consisting exactly of the points with trivial

automorphism group, and this open substack is representable by a scheme. This

implies, for example, that MΓ1(n) and MΓ1(n;p) are representable over SpecZ[1/n]
for n ≥ 5 and p prime.
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1. Modular curves

There is a canonical open substack M◦
Γ of MΓ classifying smooth elliptic curves

with Γ-structure, and a divisor of cusps M∞
Γ classifying Néron polygons with Γ-

structure. If Γ = Γ1(n; p), we identify M◦
Γ with the stack classifying pairs of the

form (E
φ−→ E′, P ), where φ is a cyclic isogeny of degree p whose kernel has trivial

intersection with 〈P 〉(n), in the following way. Given a cyclic subgroup G, we take

E′ = E/G and take φ to be the quotient map; conversely, given φ, we take G to be

the kernel of φ.

If E → S is a generalised elliptic curve and ΩE/S is the relative dualising sheaf,

then f∗ΩE/S is a line bundle on S whose formation is compatible with base change

on S. This gives us the line bundle of modular forms of weight 1 on MΓ, denoted
by ωΓ.

1.2. Maps between moduli spaces

There are various canonical morphisms between the moduli stacks defined above; see

Conrad [14, Lemma 4.2.3]. These preserve the open substack M◦
Γ and M∞

Γ .

First, let n be a positive integer, and let p be a prime number. The p-th Hecke

correspondence on MΓ1(n) is the diagram

MΓ1(n;p)
q1ւ ցq2

MΓ1(n) MΓ1(n)

(1.1)

where q1 and q2 are defined on the open substack M◦
Γ1(n;p) classifying smooth elliptic

curves by

q1(E
φ−→ E′, P ) = (E,P ) and q2(E

φ−→ E′, P ) = (E′, φ ◦ P ).

By Conrad’s result in [14, Theorem 1.2.2] the morphisms q1 and q2 extend uniquely

to finite flat morphisms MΓ1(n;p) → MΓ1(n).

Furthermore, for all d ∈ (Z/nZ)×, we define an automorphism

rd:MΓ1(n)
∼−→ MΓ1(n) (1.2)

by the modular interpretation

rd(E,P ) = (E, dP )

for all generalised elliptic curves E together with a Γ1(n)-structure P .

Finally, let m be a divisor of n. Then for each divisor d | (n/m) there exists a

natural morphism

bn,m
d :MΓ1(n) → MΓ1(m)

defined on (smooth) elliptic curves with Γ1(n)-structure by sending a pair (E,P ) to
(E/〈(n/d)P 〉d, (n/md)P mod 〈(n/d)P 〉d).
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I. Modular curves, modular forms and Galois representations

1.3. Jacobians of modular curves

Let n be an integer such that n ≥ 5. The modular stack MΓ1(n) over SpecZ[1/n]

is representable by a proper smooth curve X1(n) over SpecZ[1/n] with geometri-

cally connected fibres. Because of this, there exists an Abelian scheme J1(n)Z[1/n]

over SpecZ[1/n] representing the functor Pic0
X1(n)/Z[1/n], i.e. the connected compo-

nent of the identity element of the Picard functor. For details, we refer to Bosch,
Lütkebohmert and Raynaud [8, Chapter 9].

For any prime number p we can now view the Hecke correspondence (1.1) as a

correspondence on X1(n), and use it to define an endomorphism Tp of J1(n)Z[1/n],
called the p-th Hecke operator , as

Tp = Alb(q2) ◦ Pic(q1).

This is a priori defined on J1(n)Z[1/np], but it extends uniquely to an endomorphism

of J1(n)Z[1/n] since the latter is an Abelian scheme. For d ∈ (Z/nZ)× we define the

diamond operator 〈d〉 on J1(n)Z[1/n] to be the automorphism

〈d〉 = Alb(rd).

We define the Hecke algebra for Γ1(n) as the subring

T1(n) ⊆ End J1(n)Z[1/n]

generated by the endomorphisms Tp for p prime and 〈d〉 for d ∈ (Z/nZ)×. It is known

that the Hecke algebra T1(n) is commutative; see for example Miyake [80, § 4.5].

We introduce some more notation for the case that n = n1n2 with given coprime
integers n1 and n2. Then the Chinese remainder theorem implies that

(Z/n1n2Z)× ∼= (Z/n1Z)× × (Z/n2Z)×.

For d1 ∈ (Z/n1Z)×, we define

〈d1〉n1
= 〈d〉,

where d is the unique element of (Z/nZ)× with (d mod n1) = d1 and (d mod n2) = 1.
Then we can decompose 〈d〉 for any d ∈ (Z/nZ) as

〈d〉 = 〈d mod n1〉n1
〈d mod n2〉n2

.

It is also useful at times to consider the duals of the Hecke operators, which are

defined by
T∨

p = Alb(q1) ◦ Pic(q2) for p prime

and

〈d〉∨ = Pic(rd) = 〈d−1〉 for d ∈ (Z/nZ)×.

Remark . In the case where p divides n, the operator Tp is often denoted by Up

in the literature, but we will not do this. Also, some authors, such as Ribet [88,
page 444], define the operators Tp and 〈d〉 in the opposite way, i.e. as the duals
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1. Modular curves

of the endomorphisms defined above. The subring of End J1(n)Z[1/n] generated by

these endomorphisms is isomorphic to the Hecke algebra T1(n) defined above via

the Rosati involution on End J1(n)Z[1/n]. (The Rosati involution is actually an anti-
isomorphism, but this does not matter since T1(n) is commutative.) There does not

seem to be a strong reason to prefer either of the two definitions, but our choice is

motivated by the convention that in the representation ρf associated to an eigenform f
with Tpf = apf for p prime and 〈d〉f = ǫ(d)f for d ∈ (Z/nZ)×, the characteristic

polynomial of a Frobenius element at a prime number p is X2 − apX + ǫ(p)pk−1, as

opposed to X2 − (ap/ǫ(p))X + pk−1/ǫ(p); compare § 1.4.

For later use, we state here a result on the non-vanishing of certain finite subgroup
schemes of Jacobians of modular curves.

Lemma 1.1. Let A be a complex Abelian variety (viewed as a complex manifold) and

R a commutative subring of EndA. For every maximal ideal m of R, the subgroup

A[m] = {x ∈ A | rx = 0 for all r ∈ m}

is non-zero.

Proof . The homology group H1(A,Z) is a faithful, finitely generated R-module. For

any maximal ideal m ⊂ R, the localisation H1(A,Z)m is therefore a faithful, finitely

generated module over the local ring Rm. Because R is finitely generated as a Abelian
group, m contains a prime number l and A[m] is contained in the group A[l] of l-torsion

points of A. From the canonical isomorphism

A[l] ∼= H1(A,Z)/lH1(A,Z)

we get a canonical isomorphism

A[m] ∼= (H1(A,Z)/lH1(A,Z))[m]

∼= (H1(A,Z)m/lH1(A,Z)m)[m].

Since l is in the maximal ideal mRm of Rm, Nakayama’s lemma implies that the

Rm-module H1(A,Z)m/lH1(A,Z)m is non-zero. As this module has finite cardinality,

it admits a composition chain whose constituents are isomorphic to R/m (the only
simple Rm-module). The above isomorphism now shows that A[m] 6= 0.

Lemma 1.2. Let n be an integer with n ≥ 5, and let m be a maximal ideal of T1(n).

Let J = J1(n)Z[1/n], and let J [m] be the maximal closed subscheme of J annihi-

lated by m. Then J [m] is a non-zero closed subgroup scheme of J and is étale over
SpecZ[1/nl], where l is the residue characteristic of m.

Proof . The claim that J [m] is non-zero follows from Lemma 1.1. Since J [l] is étale,

the closed subscheme of J [l] that is sent to zero by any Hecke operator is a union of ir-

reducible components of J [l]. The scheme J [m] is the intersection of these subschemes
and is therefore étale as well.
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I. Modular curves, modular forms and Galois representations

1.4. The Eichler–Shimura relation

Let n be a positive integer, and let p be a prime number not dividing n. We write

Frobp for the the Frobenius endomorphism of the Abelian variety

J1(n)Fp
= J1(n)Z[1/n] × SpecFp

and Verp for the Verschiebung , i.e. the unique endomorphism of J1(n)Fp
such that

Frobp Verp = Verp Frobp = p ∈ End J1(n)Fp
.

Then the Eichler–Shimura relation

Tp = Frobp +〈p〉Verp (1.3)

holds in End J1(n)Fp
; see Diamond and Im [25, § 8.5 and § 10.2] or Gross [41, Propo-

sition 3.12]. Moreover, if l is a prime number different from the characteristic of p,

then the Tate module

Vl(J1(n)Fp
) = Ql ⊗Zl

lim←−
r

J1(n)Fp
[lr](Fp)

is a free module of rank 2 over Ql⊗T1(n), and the characteristic polynomial of Frobp

on this space is equal to

χQl⊗T1(n)(Frobp) = x2 − Tpx + p〈p〉 ∈ T1(n)[x];

see Diamond and Im [25], § 12.5 or Gross [41, Proposition 11.8].

2. Modular forms

Let Γ denote Γ1(n) or Γ1(n; p) for a positive integer n and a prime number p. We
define the moduli stack MΓ over SpecZ and the line bundle ωΓ on MΓ as in § 1.1.

For any non-negative integer k and any Abelian group A, we define the Abelian group

of modular forms of weight k for Γ with coefficients in A as

Mk(Γ, A) = H0(MΓ, A ⊗Z ω⊗k
Γ ). (2.1)

This gives a functor on the category of Abelian groups. Furthermore, if A and B are
Abelian groups, there are multiplication maps

Mk(Γ, A) ⊗ Ml(Γ, B) → Mk+l(Γ, A ⊗ B) (k, l ≥ 0)

and if R is any ring, then
⊕

k≥0 Mk(Γ, R) is in a natural way a graded R-algebra.

If n ≥ 5, k ≥ 2, and A is a Z[1/n]-module, then the canonical map

A ⊗Z Mk(Γ,Z) → Mk(Γ, A).

is an isomorphism. This is not the case in general. For example, if p is a prime

number, the canonical reduction map

M1(Γ,Z) → M1(Γ,Fp)

is not always surjective. For this reason, modular forms of weight 1 often require a
more careful treatment.
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2. Modular forms

2.1. Cusp forms

We recall from § 1.1 that the moduli stack MΓ is the union of the open substack M◦
Γ,

classifying (smooth) elliptic curves, and the divisor of cusps, classifying Néron poly-
gons. For any Abelian group A, we define the subgroup of cusp forms inside the

group Mk(Γ, A) of modular forms as

Sk(Γ, A) = H0
(
MΓ, A ⊗Z ω⊗k

Γ (−cusps)
)
.

As is the case for the full space of modular forms, for n ≥ 5, k ≥ 2 and A a Z[1/n]-

module, the map

A ⊗Z Sk(Γ,Z) → Sk(Γ, A).

is an isomorphism; this is not true in general.

The maps bn,d
e defined in § 1.2 respect the divisor of cusps. This implies that the

induced maps

(bn,d
e )∗:Mk(Γ1(d), A) → Mk(Γ1(n), A) (d | n and e | n/d)

preserve the subgroup of cusp forms.

2.2. Hecke algebras on spaces of modular forms

Let n and k be positive integers, and let A be any Abelian group. The Abelian group
Mk(Γ1(n), A) of modular forms of weight k for Γ1(n) with coefficients in A, as defined

in (2.1), admits a natural action of the Hecke operators Tp for p prime and 〈d〉 for

d ∈ (Z/nZ)×. We will briefly sketch how these operators are defined.

First, for every prime number p, the Hecke correspondence (1.1) induces an en-
domorphism of Mk(Γ1(n), A), denoted by Tp. Its definition is somewhat complicated,

especially if A has non-trivial p-torsion. We therefore assume that multiplication by p

is injective on A, and we refer to Conrad [14, § 4.5] for the construction in the general
case. On the open substack M◦

Γ1(n) of MΓ1(n), we have the universal p-isogeny φ as

in § 1.1. There is an induced pull-back map

φ∗: q∗2ωΓ1(n) → ωΓ1(n;p) = q∗1ωΓ1(n)

on M◦
Γ1(n;p). This map can be extended to all of MΓ1(n;p); see Conrad [14, Theo-

rem 1.2.2]. Furthermore, the fact that q1 is finite flat implies that there is a natural

trace map

trq1
: H0(MΓ1(n;p), ω

⊗k
Γ1(n;p)) = H0(MΓ1(n;p), q

∗
1ω⊗k

Γ1(n)) −→ H0(MΓ1(n), ω
⊗k
Γ1(n)).

The Hecke operator Tp on the Abelian group

Mk(Γ1(n), A) = H0(MΓ1(n), ω
⊗k
Γ1(n))

can now be defined by

pTp = trq1
◦ H0(MΓ1(n;p), φ

∗) ◦ q∗2 .
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I. Modular curves, modular forms and Galois representations

Indeed, we have assumed that multiplication by p is injective on p, and the right-hand

side is divisible by p; see Conrad [14, Theorem 4.5.1].

Next we introduce the diamond operator 〈d〉 on Mk(Γ1(n), A) for every d ∈
(Z/nZ)× as the automorphism of Mk(Γ1(n), A) induced by pull-back via the au-

tomorphism rd of MΓ1(n). Here we have used the fact that r∗dωΓ1(n) is naturally
isomorphic to ωΓ1(n).

The Hecke algebra on the space of modular forms with coefficients in A is the
subring

T(Mk(Γ1(n), A)) ⊆ End Mk(Γ1(n), A)

generated by the Hecke operators acting on Mk(Γ1(n), A).

If K is a field, a (Hecke) eigenform of weight k for Γ1(n) over K is a non-zero
element

f ∈ Mk(Γ1(n),K)

such that the one-dimensional K-linear subspace of Mk(Γ1(n),K) spanned by f is

stable under the action of T(Mk(Γ1(n),K).

Since the maps defining the Hecke correspondences respect the divisor of cusps,

the action of the Hecke algebra T(Mk(Γ1(n), A)) preserves the subgroup Sk(Γ1(n), A)

of cusp forms. In other words, we have a canonical ring homomorphism

T(Mk(Γ1(n), A)) → End Sk(Γ1(n), A).

The image of this homomorphism is a subring of End Sk(Γ1(n), A) called the Hecke
algebra on the space of cusp forms. We denote it by T(Sk(Γ1(n), A)).

Similarly to the case of Hecke operators on Jacobians, we can also consider the
duals of the Hecke operators defined above on spaces of modular forms. The dual

of Tp for p prime is defined by

pT∨
p = trq2

◦ H0(MΓ1(n;p), φ̂
∗) ◦ q∗1 ,

where φ̂∗ is given on M◦
Γ1(n) by pullback via the dual of the universal p-isogeny φ.

We have

T∨
p = 〈p〉−1Tp for p ∤ n prime.

For p | n prime, the operators Tp and T∨
p do not in general commute. The duals of

the diamond operators are defined by

〈d〉∨ = 〈d〉−1 for d ∈ (Z/nZ)×.

Finally, we note that the maps bn,d
e introduced in § 1.2 induce natural maps

(bn,d
e )∗:Mk(Γ1(d), A) → Mk(Γ1(n), A) for d | n and e | n/d.
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2. Modular forms

2.3. A connection between Hecke algebras on Jacobians and on spaces of

cusp forms

Let n be a positive integer, let l be a prime number not dividing n, and let k be an

integer such that
2 ≤ k ≤ l + 1. (2.2)

We now come to the rather subtle point that the Fl-vector space Sk(Γ1(n),Fl) of

cusp forms can be viewed as a module over the ring T1(n) ⊆ End J1(n)Z[1/n] if k = 2,

and over the ring T1(nl) ⊆ End J1(nl)Z[1/nl] if 3 ≤ k ≤ l + 1.

Remark . This fact is a basic ingredient for the algorithms of Chapter V. At first sight,

the condition (2.2) puts a restriction on the set of modular forms for which we can
compute Galois representations. However, this restriction is only superficial, because

up to twists all modular Galois representations arise from eigenforms of weight k

over finite fields of characteristic l for which the inequality (2.2) holds; see Serre [99,
page 116] or Edixhoven [31, Theorem 3.4]. We will explain this in more detail when

we need it.

We start with the case k = 2. The Hecke algebra T1(n) ⊆ End J1(n)Z[1/n] acts

in a natural way on the space S2(Γ1(n),Z). One way to see this is using the injective

homomorphism

End(J1(n)Z[1/n]) → End(J1(n)C),

the isomorphism

J1(n)C ∼= H0(X1(n)(C),Ω1
X1(C))

∨/H1(X1(n)(C),Z)

and the Kodaira–Spencer isomorphism

H0(X1(n)C,Ω1
X1(n))

∼−→ S2(Γ1(n),C).

One can check that these isomorphisms are compatible with the action of the Hecke

operators. From the fact that the subgroup S2(Γ1(n),Z) of S2(Γ1(n),C) is stabilised
by the Hecke algebra, one then deduces that there exists a ring isomorphism

T1(n) → T(S2(Γ1(n),Z))

sending each of the Hecke operators Tm with m ≥ 1 and 〈d〉 with d ∈ (Z/nZ)×

in T1(n) to the operator in T(S2(Γ1(n),Z)) denoted by the same symbol. For each

prime number l, the existence of the isomorphism

Fl ⊗Z S2(Γ1(n),Z)
∼−→ S2(Γ1(n),Fl)

implies that T1(n) also acts on S2(Γ1(n),Fl).

When 3 ≤ k ≤ l + 1, the situation is more complicated. In this case the Hecke

algebra T1(nl) ⊆ End J1(nl)Z[1/nl] acts in a natural way on the Fl-vector space
Sk(Γ1(n),Fl). In other words, there is a surjective ring homomorphism

T1(nl) → T(Sk(Γ1(n),Fl))
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I. Modular curves, modular forms and Galois representations

sending each of the operators Tp for p prime and 〈d〉n for d ∈ (Z/nZ)× (using the

notation of § 1.3) to the corresponding operator on Sk(Γ1(n),Fl). Note that Tl is

a somewhat subtle case, since l divides the level on the left-hand side but not on
the right-hand side. Furthermore, it sends the operator 〈d〉l to dk−2 ∈ F×

l for each

d ∈ (Z/lZ)×. Another way to phrase the effect on the diamond operators is to say

that 〈d〉 7→ 〈d mod n〉(d mod l)k−2. The construction of the action just described is
essentially given by Edixhoven in [31, § 6.7].

2.4. The Tate curve and q-expansions

We give here the basic facts about Tate curves. For details, we refer to Deligne and
Rapoport [23, VII, § 1] and Conrad [14, § 2.5].

For every positive integer d, the d-th Tate curve is a certain generalised elliptic

curve

f (d): Tate(qd) → SpecZ[[q]]

that becomes a Néron d-gon after base change to the zero locus of q and that is a

(smooth) elliptic curve over SpecZ[[q]][q−1], the complement of this zero locus. The

relative dualising sheaf ΩTate(qd)/ SpecZ[[q]] admits a canonical generating section α,
giving a trivialisation

OSpecZ[[q]]
∼−→ f

(d)
∗ ΩTate(qd)/ SpecZ[[q]].

Consider a positive integer n, and let d and e be positive integers such that n is the
least common multiple of d and e. Then the curve Tate(qd) over SpecZ[[q, ζe]] admits

at least one Γ1(n)-structure. Each choice of d, e and a Γ1(n)-structure gives rise to a

morphism

SpecZ[[q, ζe]] → MΓ1(n).

The pull-back of ωΓ1(n) via this map is canonically trivialised by α. For any Abelian

group A, this gives an injective map

Mk(Γ1(n), A) = H0(MΓ1(n), A ⊗ ω⊗k
Γ1(n))  A ⊗Z Z[[q, ζe]],

called the q-expansion map relative to Tate(qd) with the given Γ1(n)-structure. As an

important special case, we consider the Γ1(n)-structure φ on Tate(qn) over SpecZ[[q]]

given by φ(i) = qi for i ∈ Z/nZ. We call the corresponding q-expansion the q-
expansion at 0 (because of the connection with complex modular curves). For any

f ∈ Mk(Γ1(n), A) we define am(f) to be the m-th coefficient in this q-expansion.

Via a calculation on Tate(qn), we can express the action of the duals of the

Hecke operators, as defined in § 2.2, in terms of the q-expansion at 0 by the well-

known formula

am(T∨
p f) = apm(f) + pk−1am/p(〈p〉∨f) for m ≥ 1 and p prime,

where the rightmost term is omitted if p divides n or if p does not divide m; see for
example Diamond and Im [25, equation 12.4.1].
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Remark . The reason for using the duals of the Hecke operators is that the cusp ∞,

which is the more traditional choice for q-expansions, is not Z-rational, but only Z[ζn]-

rational. This follows from the moduli interpretation of this cusp: it corresponds to
a Néron 1-gon, whose smooth locus is isomorphic to the multiplicative group, with

an n-th root of unity as the distinguished n-torsion point. We therefore consider the

q-expansion at the “dual” cusp 0, which is Z-rational.

Another calculation using Tate(qn) shows that the effect of the maps bn,d
e on the

q-expansion at the cusp 0 is given by

ai((b
n,m
d )∗f) = ai/e(f) if n/m = de,

where the right-hand side is to be interpreted as 0 if e ∤ i. (Again this is different

from the effect on q-expansions at the cusp ∞, where the correct expression on the
right-hand side is ai/d(f).)

Let p be a prime number. We write 0 for the cusp of MΓ1(n;p) corresponding to

the Néron n-gon obtained by n copies of P1 indexed by Z/nZ, where the distinguished

point of order n is the point 1 on the copy indexed by 1, and the distinguished subgroup
of order p is the subgroup µp of the copy indexed by 0. For every non-negative integer k

and every Abelian group A, the maps

q1, q2:MΓ1(n;p) → MΓ1(n)

defining the Hecke correspondence (1.1) induce morphisms

q∗1 , q∗2 :Mk(Γ1(n), A) → Mk(Γ1(n; p), A).

A calculation on the Tate curve Tate(qn) shows that

ai(q
∗
1f) = ai(f) and ai(q

∗
2f) =

{
pkai/p(f) if i | p,
0 if i ∤ p

for all f ∈ Mk(Γ1(n), A) and all i ≥ 0.

The following basic but very useful fact shows how many coefficients of the q-

expansion are needed to determine a modular form uniquely. This is a simple case of
a more general result proved by Sturm [105].

Lemma 2.1. Let Γ be one of the groups Γ1(n) or Γ1(n; p) with n ≥ 1 and p prime.

Let f be a modular form of weight k for Γ over a field whose characteristic does not

divide n. If the q-expansion
∑∞

m=0 amqm of f at some cusp satisfies

ar = 0 for r ≤ k

12
[SL2(Z) : {±1}Γ],

then f = 0.

Proof . This follows from the fact that the line bundle of modular forms of weight k

on MΓ has degree k
24 [SL2(Z) : Γ], together with the fact that the automorphism group

of a Néron polygon with Γ-structure has order 1 if −1 6∈ Γ and order 2 if −1 ∈ Γ.
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I. Modular curves, modular forms and Galois representations

Let n and k be positive integers. The q-expansion principle gives us a canonical

Z-bilinear pairing

T(Sk(Γ1(n),Z)) × Sk(Γ1(n),Z) −→ Z

(t, f) 7−→ a1(t
∨f)

(2.3)

between the Hecke algebra and the space of cusp forms. Moreover, this pairing is bi-
linear over T(Sk(Γ1(n),Z)) in the sense that (tt′, f) = (t, t′f) for all f ∈ Sk(Γ1(n),Z)

and all t, t′ ∈ T(Sk(Γ1(n),Z)); this follows immediately from the definition. After

changing the base to Z[1/n], the above pairing becomes perfect.
In addition to Sk(Γ1(n),Z), we will also be interested in the T(Sk(Γ1(n),Z))-

module

Sint
k (Γ1(n)) = {f ∈ Sk(Γ1(n),Q) | the q-expansion of f at 0 has coefficients in Z}.

The advantage of this module is that the pairing

T(Sk(Γ1(n),Z)) × Sint
k (Γ1(n)) −→ Z

(t, f) 7−→ a1(t
∨f)

is perfect over Z; see Ribet [87, Theorem 2.2].

Now let K be a field of characteristic not dividing n. Then we have

K ⊗ Sk(Γ1(n),Z) = K ⊗ Sint
k (Γ1(n)),

and the pairing (2.3) induces a perfect K-bilinear pairing
(
K ⊗ T(Sk(Γ1(n),Z))

)
×

(
K ⊗ Sk(Γ1(n),Z)

)
−→ K (2.4)

This pairing gives rise to a canonical bijection between the set of ring homomorphisms
T(Sk(Γ1(n),Z)) → K and the set of lines in the K-vector space K⊗Sk(Γ1(n),Z) that

are stable under the action of T(Sk(Γ1(n),Z)). More precisely, this bijection is given

as follows. We identify K ⊗ Sk(Γ1(n),Z) with a K-linear subspace of Sk(Γ1(n),K);

this is in fact the whole space, except possibly when k = 1 and K is of non-zero
characteristic. For any eigenform

f ∈ K ⊗ Sk(Γ1(n),Z),

there is a corresponding ring homomorphism

evf :T(Sk(Γ1(n),Z)) → K

sending each Hecke operator to its eigenvalue on f . Conversely, given a ring homo-

morphism

φ:T(Sk(Γ1(n),Z)) → K,

the kernel of the induced homomorphism

1 ⊗ φ:K ⊗ T(Sk(Γ1(n),Z)) → K

is a K-linear subspace of codimension 1, so its annihilator in K ⊗ Sk(Γ1(n),Z) with

respect to the pairing (2.4) is a one-dimensional K-linear subspace spanned by some

eigenform.
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3. Modular Galois representations

3. Modular Galois representations

In this section we introduce certain representations of Gal(Q/Q) associated to Hecke

eigenforms, called modular Galois representations. Such representations can be de-

fined over finite extensions of either Fl or Ql, where l is a prime number. All repre-
sentations will be assumed to be continuous without further mention.

We will describe how to associate to a given Hecke eigenform f over a field of

characteristic 0 a family of λ-adic representations, where λ runs over all primes of the

number field Kf obtained by adjoining the Hecke eigenvalues of f to Q. This gives an

example of a compatible family of l-adic representations [97, chapitre I, no 2.3]. In the
case where f is of weight 1, all such l-adic representations can moreover be obtained

from a representation defined over Kf via extension of scalars to the completions

of Kf at its finite places. The claim that this representation is defined over Kf is
somewhat subtle and relies the fact that the representation is odd. The existence of

this representation over Kf will, however, not be used in this thesis.

References for this section include Deligne [20], Deligne and Serre [24], Serre [99],

Gross [41], Edixhoven [31], and Couveignes, Edixhoven et al. [17].

3.1. Modular Galois representations over fields of characteristic 0

In [98], Serre conjectured that for every cusp form f that is an eigenform of the Hecke

operators, there should be an associated family of l-adic representations with certain
properties that we will give below. For cusp forms of weight 2, the existence of such

representations follows from work of Eichler [33], Shimura [102] and Igusa [47]. Using

the étale cohomology of powers of the universal elliptic curve over a certain modular
curve, Deligne [20] generalised their construction to cusp forms of weight at least 2.

In [20], the construction is only described in the case of cusp forms for SL2(Z), but

Deligne certainly knew how to generalise this to cusp forms for congruence subgroups.

Conrad’s book [15] contains a complete construction of the representations attached
to cuspidal eigenforms of weight at least 2. Finally, a construction for cusp forms

of weight 1 was given by Deligne and Serre [24]. Their construction actually uses

the existence of l-adic representations associated to cuspidal eigenforms of weight
≥ 2 in order to associate to any cuspidal eigenform of weight 1 a family of repre-

sentations over various finite fields; these are then shown to be the reductions of a

two-dimensional representation over the field Kf having the desired properties.

With all of the above results put together, the precise statement on l-adic Galois

representations associated to modular forms is as follows.

Theorem 3.1. Let n and k be positive integers, and let f be a modular form of
weight k for Γ1(n) over a field of characteristic 0. Assume that f is a (non-zero)

eigenvector of the Hecke operators Tp (p prime) and 〈d〉 (d ∈ (Z/nZ)×) for Γ1(n),

with corresponding eigenvalues ap (p prime) and ǫ(d) (d ∈ (Z/nZ)×). Let Kf be the
number field generated by these eigenvalues. Let l be a prime number, let λ be a

prime of Kf over l, and let Kf,λ denote the completion of Kf at λ. There exists a

two-dimensional representation

ρf,λ: Gal(Q/Q) −→ AutKf,λ
Vf,λ
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I. Modular curves, modular forms and Galois representations

that is unramified outside nl and such that for every prime number p ∤ nl the

characteristic polynomial of a Frobenius element at p (defined up to conjugation

in AutKf,λ
Vf,λ) equals X2 − apX + ǫ(p mod n)pk−1.

It follows from the properties characterising such a representation ρf,λ that if it
exists, it must be odd , i.e. the determinant of a complex conjugation c equals −1;

equivalently, the characteristic polynomial of c equals X2 − 1. Also, ρf,λ is unique up

to Jordan–Hölder equivalence, i.e., after semi-simplification it is unique up to (non-

unique) isomorphism. Moreover, it is known that ρf,λ is irreducible if and only if f
is a cusp form; see Ribet [86, Theorem 2.3].

3.2. Modular Galois representations over finite fields

Let f be a Hecke eigenform of weight k for Γ1(n), and consider the associated family
of l-adic representations as in Theorem 3.1. The following basic result allows us to

reduce these representations to representations over the residue fields of the number

field Kf .

Lemma 3.2. Let A be a discrete valuation ring with maximal ideal m and field of

fractions K. Let G be a group, and let V be a finite-dimensional representation of G
over K. The following are equivalent:

(1) there exists a G-stable lattice in V ;

(2) there exists a basis of V with respect to which G acts via matrices with coeffi-
cients in A;

(3) the image of G in AutK V is bounded, i.e. for some (hence any) basis of V , the
matrices giving the action of G have coefficients in m−N for some sufficiently

large integer N .

Proof . The implications (1) ⇔ (2) ⇒ (3) are clear. Now assume (3), and choose any

lattice L in V . By assumption, there exists an integer N ≥ 0 such that gL ⊆ m−NL
for all g ∈ G. Therefore we have inclusions of A-modules

L ⊆
∑

g∈G

gL ⊆ m−NL,

so
∑

g∈G gL is a lattice, and it is clearly G-stable.

Let λ be a finite place of the number field Kf , let Kf,λ be the completion of Kf

with respect to λ, and let F be the residue field. Since Gal(Q/Q) is compact, applying
Lemma 3.2 to the representation

ρf,λ: Gal(Q/Q) −→ AutKf,λ
Vf,λ

given by Theorem 3.1 shows that ρf,λ can be obtained by base change from a repre-
sentation over the valuation ring of Kf,λ. Reducing modulo the maximal ideal of this

valuation ring, we obtain a two-dimensional representation of Gal(Q/Q) over F, un-

ramified outside nl and such that the characteristic polynomial of a Frobenius element
at a prime number p ∤ nl is the reduction modulo λ of X2 − apX + ǫ(p mod n)pk−1.
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By the Brauer–Nesbitt theorem, such a representation is unique up to Jordan–Hölder

equivalence. Replacing the reduced representation by its semi-simplification, we there-

fore get a unique semi-simple representation with these properties. We note that
although l-adic representations associated to cusp forms are irreducible, the corre-

sponding representations over finite fields may be reducible. We will take a more

precise look at this below.
In view of the above construction, one may ask whether a representation as above

can be constructed starting from any eigenform over a finite field, not necessarily one

obtained by reducing an eigenform in characteristic 0 modulo a prime. In fact, this
can be done by lifting eigenforms over finite fields to forms in characteristic 0 that

are eigenforms “modulo the given prime”. In this way one can prove the following

analogue of Theorem 3.1; see Deligne and Serre [24, théorème 6.7] or Gross [41,

Proposition 11.1].

Theorem 3.3. Let n and k be positive integers, let l be a prime number, and let f be

a modular form of weight k for Γ1(n) over a finite field F of characteristic l. Assume
f is an eigenvector of the Hecke operators Tp (p prime) and 〈d〉 (d ∈ (Z/nZ)×),

with corresponding eigenvalues ap (p prime) and ǫ(d) (d ∈ (Z/nZ)×). There exists a

unique semi-simple two-dimensional representation

ρf : Gal(Q/Q) → AutF V

that is unramified outside nl and with the property that for every prime number p

not dividing nl, the characteristic polynomial of a Frobenius element at p equals
X2 − apX + ǫ(p mod n)(p mod l)k−1. Moreover, this ρf is odd.

The above theorem associates to a Hecke eigenform f over a finite field F an
isomorphism class of two-dimensional, odd, semi-simple representations of Gal(Q/Q)

over F. Any representation in this isomorphism class is said to arise from f , and any

representation arising from an eigenform is said to be modular .

3.3. Distinguishing between modular Galois representations

Let n be a positive integer, let l be a prime number, and let F be a finite field of

characteristic l. It is a natural question to ask when two eigenforms for Γ1(n) over F

give rise to isomorphic Galois representations. We will use this later to decide whether
the Galois representation associated to a given modular form is reducible.

Let us first mention that if n = lam with a ≥ 0 and m not divisible by l, then the

representation attached to an eigenform for Γ1(n) over F also arises from an eigenform
(of possibly different weight) for Γ1(m); see Serre [99, page 195, remarque], Ribet [89,

§ 2], Buzzard [12], Wiese [114], and Khare and Wintenberger [54, Theorem 1.2(2)].

From now on we assume that l ∤ n. Below we will give a criterion that allows
us to decide whether two eigenforms for Γ1(n) over F give rise to isomorphic Galois

representations. In the case n = 1, this criterion is proved (in a slightly different

form) in [17, Proposition 2.5.16]. Before giving the criterion, we state some results

on modular forms in characteristic l.
There exists a unique modular form

Al ∈ Ml−1(Γ1(1),Fl)
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I. Modular curves, modular forms and Galois representations

that has q-expansion 1 at all cusps; it is called the Hasse invariant in characteristic l.

If f is an eigenform of some weight k ≥ 2 for some Γ1(n) over a field of characteristic l,

then the product Alf is an eigenform of weight k + l − 1 for Γ1(n).

There exists a derivation θl on modular forms over fields of characteristic l; see

Katz [52]. It increases weights by l+1 and acts on q-expansions at all cusps as q d/dq.

This implies that if f is an eigenform whose q-expansion at some cusp is non-constant,
θlf is an eigenform with Tlf = 0, and the Galois representations are related by

ρθlf
∼= χl ⊗Fl

ρf ,

where χl is the l-cyclotomic character.

Let f be a form whose q-expansion at some cusp is constant. Using the deriva-

tion θl, one can show that the weight of f is a multiple of l−1; see Katz [52, § 1]. This

implies that f is a scalar multiple of a power of Al, so the q-expansion of f at every
cusp is constant. Therefore we can simply say that f has constant q-expansion with-

out causing confusion. Furthermore, each Hecke operator Tp with p a prime number

not dividing nl acts on f as multiplication by (p + 1)/p. This implies that the Galois
representation ρf is isomorphic to 1 ⊕ χ−1

l .

Let f be an eigenform of weight k for Γ1(n) over F with non-constant q-expansion,

let p be a prime number, and let ap be the eigenvalue of Tp on f . We define an
eigenform

ηpf ∈
{

Mk(Γ1(np),F) if p | n

Mk(Γ1(np2),F) if p ∤ n

with the property that Tp(ηpf) = 0 by the formula

ηpf =

{
(bnp,n

1 )∗f − ap(b
np,n
p )∗f if p | n;

(bnp2,n
1 )∗f − ap(b

np2,n
p )∗f + pk−1(bnp2,n

p2 )∗f if p ∤ n.
(3.1)

We now first give a special case of the criterion for distinguishing modular Galois

representations. The general case is deduced from this in the theorem below.

Lemma 3.4. Let f, g ∈ Sk(Γ1(n),F) be eigenforms with non-constant q-expansions,
with eigenvalues given by

Tpf = ap(f)f and Tpg = ap(g)g for all prime numbers p.

If ap(f) = ap(g) for all prime numbers p ≤ k
12 [SL2(Z) : {±1}Γ1(n)], then ρf and ρg

are isomorphic.

Proof . By the recurrence relations for the eigenvalues of Hecke operators, the con-
dition implies that for some λ ∈ F×, the q-expansions of f and λg are equal up to

order k
12 [SL2(Z) : {±1}Γ1(n)]. By Lemma 2.1, this implies f = λg. In particular, ρf

and ρg are isomorphic.
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Theorem 3.5. Let n be a positive integer, let l be a prime number not dividing n,

and let F be a finite field of characteristic l. Let f be an eigenform of weight kf

for Γ1(n) over F, and let g be an eigenform of weight kg for Γ1(n) over F, with
eigenvalues given by

Tpf = ap(f)f and Tpg = ap(g)g for all prime numbers p.

We define

m = n
∏

p|n prime

p

and

N = [SL2(Z) : {±1}Γ1(m)] ·






max{kf , kg, 11} + 3 if l = 2,

max{kf , kg, 10} + 4 if l = 3,
max{kf , kg} + l2 − 1 if l ≥ 5.

For any integer i with 0 ≤ i ≤ l − 2, the following are equivalent:

(1) the representations ρf and χi
lρg are isomorphic;

(2) we have kf ≡ kg + 2i (mod l − 1), and ap(f) = piap(g) for all prime numbers p

with p ∤ nl and p ≤ N ;

(3) we have kf ≡ kg +2i (mod l−1), and one of the following three situations occurs:

(a) the q-expansions of f and g are constant (so kf ≡ kg ≡ 0 (mod l − 1)), and

i = 0;

(b) the q-expansion of f (but not that of g) is constant (so kf ≡ 0 (mod l− 1)),
and ap(g) = p−i(1 + p−1) for all prime numbers p with p ∤ nl and p ≤ N ;

(b′) the q-expansion of g (but not that of f) is constant (so kg ≡ 0 (mod l− 1)),

and ap(f) = pi(1 + p−1) for all prime numbers p with p ∤ nl and p ≤ N ;

(c) the q-expansions of f and g are non-constant, and ap(f) = piap(g) for all

prime numbers p with p ∤ nl and p ≤ N .

Proof . The implication (1) ⇒ (2) follows from the properties characterising ρf and ρg.

The implication (2) ⇒ (3) follows from the standard formula for the action of Hecke
operators on q-expansions, together with the fact that the only forms f with constant

q-expansion are multiples of powers of Al. To prove the implication (3) ⇒ (1), we

treat the three cases (a), (b), (c) separately. The proof in case (b′) is almost identical
to that in case (b) and is therefore omitted.

Case (a). This is trivial since both ρf and ρg are isomorphic to 1 ⊕ χ−1
l .

Case (b). We have ρf
∼= 1 ⊕ χ−1

l , and we have to show that ρg
∼= χ−i

l (1 ⊕ χ−1
l ). We

distinguish the cases l = 2, l = 3 and l ≥ 5.

If l = 2, the assumption means that ap(g) = 0 for all prime numbers p with p ∤ 2n

and p ≤ N , and we have to show that ρg is the trivial representation. We define an
integer k and an eigenform h1 ∈ Sk(Γ1(1),F2) by






k = 12 and h1 = ∆ mod 2 if kg ≡ 0 (mod 3),
k = 13 and h1 = A2(∆ mod 2) if kg ≡ 1 (mod 3),

k = 14 and h1 = A2
2(∆ mod 2) if kg ≡ 2 (mod 3),
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where ∆ is the discriminant modular form. In particular, we have k ≡ kg (mod 3),

and ρh1
is trivial. Applying the operators ηp defined in (3.1) to h1 for p | n, we

construct an eigenform
hm ∈ Sk(Γ1(m),F2)

such that ρhm
is trivial and Tphm = 0 for every p. Similarly, applying the ηp with

p | n to g, we construct an eigenform

gm ∈ Skg
(Γ1(m),F)

such that ρgm
∼= ρg and Tpgm = 0 for all prime numbers p with p 6= 2 and p ≤ N . If

kg < k, we define

g′m = θ
(k−kg)/3
2 gm and h′

m = hm in Sk(Γ1(m),F)

Similarly, if kg ≥ k, we define

g′m = θ2gm and h′
m = θ

(kg−k)/3+1
2 hm in Skg+3(Γ1(m),F).

In either case, g′m and h′
m are eigenforms, ρg′

m
∼= ρg and ρh′

m
is trivial. Furthermore,

the q-expansions of g′m and h′
m are non-constant, and we have

ap(g
′
m) = 0 = ap(h

′
m) for all primes p ≤ N.

Lemma 3.4 now implies that ρg is trivial, which is what we had to prove.
If l = 3, then kg is even, the assumption means that ap(g) = 1 + p for all prime

numbers p with p ∤ 3n and p ≤ N , and we have to show that ρg
∼= 1 ⊕ χ3. We define

an integer k and an eigenform h1 ∈ Sk(Γ1(1),F3) by

{
k = 12 and h1 = ∆ mod 3 if kg ≡ 0 (mod 4),

k = 14 and h1 = A3(∆ mod 3) if kg ≡ 2 (mod 4),

where ∆ is the discriminant modular form. In particular, we have k ≡ kg (mod 4),
and ρh1

∼= 1 ⊕ χ3. Applying the operators ηp defined in (3.1) to h1 for p | n, we

construct an eigenform

hm ∈ Sk(Γ1(m),F3)

with ρhm
∼= 1⊕χ3, T3hm = 0 and Tphm = (1+p)hm for all p 6= 3. Similarly, applying

the ηp with p | n to f2, we construct an eigenform

gm ∈ Skg
(Γ1(m),F)

such that ρgm
∼= ρf2

and Tpgm = 0 for all prime numbers p with p | m. If kg < k, we

define

g′m = θ
(k−kg)/4
3 gm and h′

m = hm in Sk(Γ1(m),F).

Similarly, if kg ≥ k, we define

g′m = θ3gm and h′
m = θ

(kg−k)/4+1
3 hm in Skg+4(Γ1(m),F).
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In either case, gm and h′
m are eigenforms, ρg′

m
is isomorphic to either ρg or χ3ρg, and

ρh′
m

∼= 1 ⊕ χ3. Furthermore, the q-expansions of g′m and h′
m are non-constant, and

for all prime numbers p ≤ N we have

ap(g
′
m) = ap(h

′
m) =

{
0 if p | 3n;

1 + p if p ∤ 3n.

Lemma 3.4 now implies that ρg′
m

is isomorphic to 1 ⊕ χ′
3. Therefore the same holds

for ρg, which is what we had to prove.

If l ≥ 5, then again kg is even. We define an eigenform h1 ∈ Ml+1(Γ1(1),Fl) by

h1 = El+1 mod l,

where El+1 is the Eisenstein series of weight l + 1. Since l − 1 does not divide l + 1,

the q-expansion of El+1 is non-constant. We have

ρh1
= 1 ⊕ χl.

Applying the operators ηp to h1 for p | n, we construct an eigenform

hm ∈ Ml+1(Γ1(m),F)

such that ρhm
∼= 1 ⊕ χl and Tphm = 0 for all prime numbers p | m. Similarly, we

construct an eigenform

gm ∈ Mkg
(Γ1(m),F)

such that ρgm
∼= ρg and Tpgm = 0 for all prime numbers p with p | m. We define

g′m = A
max{−j,0}
l θlgm ∈ Sk′(Γ1(m),F)

and

h′
m = A

max{j,0}
l θl−1−i

l hm ∈ Sk′(Γ1(m),Fl).

where

j =
(kg + l + 1) − (l − i)(l + 1)

l − 1
∈ Z and k′ = max{kg + l + 1, (l − i)(l + 1)}.

Then g′m and h′
m are eigenforms with

ρg′
m
∼= χlρg and ρh′

m
∼= χ−i

l (1 ⊕ χl).

Furthermore, the q-expansions of g′m and h′
m are non-constant and agree up to

order N . Lemma 3.4 now implies that ρg′
m

∼= ρh′
m

, and we conclude that ρg
∼=

χ−i
l (1 ⊕ χ−1

l ), which is what we had to prove.
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Case (c). Applying the operators ηp for p | n prime to f and g, we construct eigen-

forms

fm ∈ Skf
(Γ1(m),F) and gm ∈ Skg

(Γ1(m),F)

with ρfm
∼= ρf , ρgm

∼= ρg, and Tpfm = 0 and Tpgm = 0 for all prime numbers p | n.
We define

f ′
m = A

max{−j,0}
l θlfm and g′m = A

max{j,0}
l θi+1

l gm in Sk′(Γ1(m),F),

where

j =
(kf + l + 1) − (kg + (i + 1)(l + 1))

l − 1
∈ Z

and

k′ = max{kf + l + 1, kg + (i + 1)(l + 1)}.

Then f ′
m and g′m are eigenforms with

ρf ′
m
∼= χlρf and ρg′

m
∼= χi+1

l ρg.

Furthermore, the q-expansions of f and g are non-constant, and we have

ap(f
′
m) = ap(g

′
m) for all prime numbers p ≤ N.

Lemma 3.4 now implies that ρf ′
m

∼= ρg′
m

. From this it follows that ρf
∼= χi

lρg, which
is what we had to prove.

It is known that if f is an eigenform of weight k for Γ1(n) over F, then there

exist integers i and k̃ with

0 ≤ i ≤ l − 2, 1 ≤ k̃ ≤ l + 1 and k̃ ≡ k + 2i (mod l − 1)

and an eigenform f̃ of weight k̃ such that if the eigenvalues of the Hecke operators

on f are given by

Tpf = apf for p prime and 〈d〉f = ǫ(d)f for d ∈ (Z/nZ)×,

then the eigenvalues on f̃ are given by

Tpf̃ = (p mod l)iapf̃ for p 6= l prime and 〈d〉f̃ = ǫ(d)f̃ for d ∈ (Z/nZ)×.

For a proof of the existence of such an f̃ , we refer to Edixhoven [31, Theorem 3.4].

The Galois representation ρf̃ associated to such an f̃ is isomorphic to χi
l ⊗Fl

ρf .
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3.4. Reducible representations

Let n and k be positive integers, and let l be a prime number not dividing n.

Let f be an eigenform of weight k for Γ1(n) over Fl, and let ǫ: (Z/nZ)× → F
×
l

be the character such that 〈d〉f = ǫ(d)f for all d ∈ (Z/nZ)×. If ρf is reducible, we

can write

ρf = ǫ1χ
i
l ⊕ ǫ2χ

j
l

with characters ǫ1 and ǫ2 whose conductors are coprime to l, and with i, j ∈ Z/(l−1)Z;

here χl is the l-cyclotomic character. The defining properties of ρf imply that

ǫ1ǫ2 = ǫ and i + j = k − 1 ∈ Z/(l − 1)Z.

Furthermore, it follows from work of Carayol that the product of the conductors of
ǫ1 and ǫ2 divides n; see Livné [71, Proposition 0.1].

Conversely, it is well known that given characters

ǫ1: (Z/n1Z)× → F
×
l , ǫ2: (Z/n2Z)× → F

×
l

such that

n1n2 | n and ǫ1(−1)ǫ2(−1) = (−1)k,

there exists a Hecke eigenform f of some weight k′ for Γ1(n) over Fl such that the

Galois representation ρf is isomorphic to ǫ1⊕ ǫ2χ
k−1
l . In fact, we can take the unique

integer k′ satisfying

3 ≤ k′ ≤ l + 1 and k′ ≡ k (mod l − 1),

and take f to be the reduction of a suitable multiple of the Eisenstein series Eǫ1,ǫ2
k′ ,

which will be defined in § II.2.3.

3.5. Serre’s conjecture

In 1973, Serre made the conjecture that all two-dimensional, odd, irreducible repre-

sentations

ρ: Gal(Q/Q) → AutF V

are modular. He published his conjecture in 1987, stating it in a sharper form [99]
that predicted the minimal level and weight of the modular form that should give rise

to ρ. To this end Serre associated to such a ρ two invariants, called its level n(ρ) and

its weight k(ρ). The level is defined in terms of the local behaviour of ρ at the primes
different from the characteristic of F, whereas the weight is defined using the local

behaviour at the characteristic of F. For a general introduction to Serre’s conjecture,

we refer to Edixhoven [32] or Ribet and Stein [90].

It is known, by the work of many people, that the weak form of Serre’s conjecture
implies the strong form, i.e. that if a representation ρ as above is modular, it arises

from a modular form of level n(ρ) and weight k(ρ). In fact, a modular representation ρ

is even known to arise from a form of minimal weight (which equals k(ρ) in most cases,
but is sometimes smaller; see Edixhoven [31, Definition 4.3]), except possibly if F is of
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characteristic 2 and the restriction of ρ to a decomposition group at 2 is an extension

of an unramified character by itself. For the proof of this result, we refer to Kisin’s

overview article [60, Theorem 1.1.4].
Starting with the proof of the modularity theorem for elliptic curves (previously

the Shimura–Taniyama conjecture) by Wiles [115] and Taylor and Wiles [107], impor-

tant developments in the theory of deformations of Galois representations have been

made by many authors. These developments, including a crucial result of Kisin [61],
have finally allowed Khare and Wintenberger [54], [55] to prove Serre’s conjecture.

3.6. Galois representations on torsion subgroups of Jacobians of modular

curves

Let n ≥ 1 be an integer, let l be a prime number not dividing n, and let k be an
integer such that

2 ≤ k ≤ l + 1.

We write

n′ =
{

n if k = 2;

nl if k > 2.

We saw in § 2.3 that there exists a canonical surjective ring homomorphism

T1(n
′) −→ T(Sk(Γ1(n),Fl)),

where T1(n
′) is the subring of End J1(n

′)Z[1/n′] generated by the Hecke operators.

Let us now consider a cusp form

f ∈ Sk(Γ1(n),Fl)

that is an eigenvector for all the Hecke operators. Let Ff denote the finite exten-

sion of Fl generated by the corresponding eigenvalues. We define a surjective ring

homomorphism

ef :T1(n
′) → Ff

as the composed map

T1(n
′) −→ T(Sk(Γ1(n),Fl))

evf−→ Ff ,

where evf denotes the ring homomorphism from § 2.4 that sends each Hecke operator

to its eigenvalue of f . We define a maximal ideal mf of T1(n
′) by

mf = ker ef .

Note that giving a form f as above up to scalar multiplication is equivalent to speci-

fying the ring homomorphism ef , and that giving the homomorphism ef up to Galois

conjugacy comes down to specifying the maximal ideal mf .

Let J1(n
′)Z[1/nl][mf ] be the largest closed subscheme of J1(n

′)Z[1/nl] annihi-

lated by mf . Since ef induces an isomorphism T1(n
′)/mf

∼−→ Ff , the action
of T1(n

′) makes J1(n
′)Z[1/nl][mf ] into a finite-dimensional Ff -vector space scheme
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over SpecZ[1/nl]. By Lemma 1.2, this vector space scheme is non-zero and finite

étale.

It follows from the Eichler–Shimura congruence relation (see § 1.4), the Čebotarev
density theorem and the Brauer–Nesbitt theorem that if ρf is irreducible, then the

semi-simplification of the Ff [Gal(Q/Q)]-module J1(n
′)[mf ](Q) is a direct sum of

copies of the Galois representation ρf attached to f ; see Mazur [76, Chapter II,
Proposition 14.2]. In the case that ρf is absolutely irreducible, we can invoke the

theorem of Boston, Lenstra and Ribet [10]. This gives a stronger result than the

Brauer–Nesbitt theorem, namely that J1(n
′)[mf ](Q) is a direct sum of copies of ρf ,

i.e. it is already semi-simple. If l > 2, then ρf is absolutely irreducible as soon as it

is irreducible.

Remark . Another place where modular Galois representations over finite fields occur
is in étale cohomology of modular curves. We refer to Wiese [113] for details.

3.7. Simplicity

We complement the results of § 3.6 with a result on simplicity (or multiplicity one, as

it is usually called) of the Ff [Gal(Q/Q)]-module J1(n
′)[mf ](Q) in the case that the

Ff -linear representation

ρf : Gal(Q/Q) → AutFf
Wf

associated to f is absolutely irreducible. As we have just seen, in this situation the
Ff [Gal(Q/Q)]-module J1(n

′)[mf ](Q) is a direct sum of copies of Wf .

In many cases, J1(n
′)[mf ](Q) is in fact simple as a Ff [Gal(Q/Q)]-module, which

is to say that it is isomorphic to Wf . It is known precisely under which conditions
this occurs. Sufficient conditions for this simplicity phenomenon follow from work

of Mazur [76], Mazur and Ribet [77, Theorem 1], Gross [41, Theorem 12.10(1)],

Edixhoven [31, Theorem 9.2] and Buzzard [90, Appendix]. Wiese proved in [112] that

these conditions are also necessary, under an extra assumption in the case l = 2.
(This assumption is automatically fulfilled if the strong form of Serre’s conjecture, as

described in § 3.5, is true.)

Theorem 3.6. Suppose that 2 ≤ k ≤ l + 1 and that ρf is absolutely irreducible.

(1) If ρf is ramified at l, or if ρf is unramified at l and a Frobenius element at l does
not act as a scalar, then the Ff [Gal(Q/Q)]-module J1(n

′)[mf ](Q) is isomorphic

to Wf .

(2) If ρf is unramified at l, a Frobenius element at l does act as a scalar, and ρf

arises from a form of weight one (this last condition is implied by the preceding

ones if l > 2), then the semi-simplification of J1(n
′)[mf ](Q) is a direct sum of at

least two copies of Wf .
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Chapter II

Analytic results on modular curves

This chapter is devoted to certain analytic results that will be used in the next chap-
ters. Most importantly, we give explicit bounds on Petersson norms and supremum

norms of cusp forms, and on Green functions of Fuchsian groups.

1. Fuchsian groups

In this section we collect some results that will be useful later on when we bound
analytic quantities related to modular curves. We will begin by summarising some

basic facts about the hyperbolic plane and about Fuchsian groups. After that we

describe some material concerning harmonic analysis on the quotient of the hyperbolic
plane by a Fuchsian group.

The author has found Iwaniec’s book [49] to be a very valuable reference. Other
references are Beardon [5] and Terras [108]. Selberg’s foundational article [94], in

which he develops this material (and much more) in a general context, is also highly

recommended. Hejhal’s two volumes [45] and [46] contain in-depth proofs of Selberg’s

results, as well as a lot of useful background material.

1.1. Hyperbolic geometry

The hyperbolic plane H is the unique two-dimensional, complete, connected and

simply connected Riemannian manifold with constant Gaussian curvature −1. We
will always identify H with the complex upper half-plane; this gives H the structure

of a (non-compact) Riemann surface. The Riemannian metric is given in terms of the

standard coordinate z = x + iy by

dz dz̄

(ℑz)2
=

dx2 + dy2

y2
,

and the associated volume form is

µH =
i dz ∧ dz̄

2(ℑz)2
=

dx ∧ dy

y2
.
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II. Analytic results on modular curves

In the hyperbolic plane, the circumference of a circle of radius r equals 2π sinh(r),

and the area of a disc of radius r equals 2π(cosh(r) − 1).

The group SL2(R) acts on H by isometries. Under the identification of H with
the complex upper half-plane, this action on H is the restriction of the action on P1(C)

by Möbius transformations. The elements of SL2(R) can be classified according to

their fixed points in P1(C). For any element γ ∈ SL2(R) that is not the identity,
there are three possibilities, depending on the trace of γ:

(E) |tr γ| < 2: two conjugate fixed points in P1(C) \ P1(R);

(P) |tr γ| = 2: a unique fixed point in P1(R);

(H) |tr γ| > 2: two distinct fixed points in P1(R).

The element γ is called elliptic, parabolic or hyperbolic, acccording to its place in this
classification. This terminology also applies to conjugacy classes.

Instead of the usual geodesic distance r(z, w) between two points of H, the func-

tion

u(z, w) = cosh r(z, w)

turns out to be a more convenient measure of distance for computations. Clearly, any

function on H×H depending only on the hyperbolic distance between its arguments
can be expressed as a function of u. For z and w in the upper half-plane, u(z, w) can

be expressed as

u(z, w) = 1 +
|z − w|2

2(ℑz)(ℑw)
.

This is easily checked for z and w on the imaginary axis. For arbitrary z and w, the

identity follows from this case after translation by a suitable element γ ∈ SL2(R),

using the fact that both sides are invariant under replacing (z, w) by (γz, γw).

We denote by

∆ = −y2(∂2
x + ∂2

y)

the Laplace–Beltrami operator on H. It turns out to be useful to write the eigenvalues
of ∆ as 1

4 + t2 with t a complex number (defined up to sign).

An invariant integral operator on H is an integral operator of the form

Lk: f 7→
(

z 7→
∫

w∈H

k(u(z, w))f(w)µH(w)

)

for some function k: (1,∞) → R. The domain of definition depends on the function k;
for example, if k is smooth, then we can take f to range over the smooth functions

with compact support.

The Laplace operator ∆ commutes with all invariant integral operators; see Sel-

berg [94, pages 51–52] or Iwaniec [49, Theorem 1.9]. In fact, every eigenfunction
of ∆ is also an eigenfunction of all invariant integral operators, and conversely; see

Selberg [94, page 55] or Iwaniec [49, Theorems 1.14 and 1.15].

Let k: [1,∞) → R be a smooth function with compact support, and let Lk be
the invariant integral operator defined by k. The relation between the eigenvalues
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of ∆ and those of Lk is given by the Selberg–Harish-Chandra transform of k. This is

a function

h:R ∪ [−1/2, 1/2]i → C

defined by the following property. Let f :H → C be an eigenfunction of the Laplace
operator with eigenvalue λ = 1/4+ t2. Then f is also an eigenfunction of Lk, and the

eigenvalue depends only on λ; we can therefore define h(t) uniquely such that
∫

w∈H

k(u(z, w))f(w)µH(w) = h(t)f(z). (1.1)

In particular, taking f = 1 we see that

h(±i/2) = 2π

∫ ∞

1

k(u)du. (1.2)

The Selberg–Harish-Chandra transform can be defined for general symmetric

spaces; see Selberg [94, page 55]. In the case of H it can be identified with the classical

Mehler–Fock transform, which is defined as follows (see Iwaniec [49, equation 1.62′]):

h(t) = 2π

∫ ∞

1

k(u)P−1/2+it(u)du. (1.3)

Here Pν is the Legendre function of the first kind of degree ν (see Iwaniec [49, equa-

tion 1.43] or any book on special functions, such as Erdélyi et al. [34, § 3.6.1]). The
function k can be recovered from h by means of the Mehler–Fock inversion formula

(see Iwaniec [49, equation 1.42], Erdélyi et al. [34, § 3.15.1, equations 8 and 9], or

Mehler [78, page 192]):

k(u) =
1

2π

∫ ∞

0

P−1/2+it(u)h(t) tanh(πt)t dt. (1.4)

We call k the inverse Selberg–Harish-Chandra transform of h.
The identity (1.1) holds more generally than just for smooth functions k with

compact support; see Selberg [94, pages 60–61]. It will be enough for us to state a

slightly weaker, but more convenient sufficient condition (cf. Selberg [94, page 72] or
Iwaniec [49, equation 1.63]). Let h be a function with the following properties:

(H1) For some α > 1/2, the function h is even and holomorphic on
{
t ∈ C

∣∣ |ℑt| < α}.
(H2) For some β > 2, the function t 7→ |h(t)||t|β is bounded in this strip.

Then the inverse Selberg–Harish-Chandra transform k of h (as defined by (1.4)) exists,

and (1.1) is valid for the pair (h, k).

There is an alternative way to compute the Selberg–Harish-Chandra transform
and its inverse which is sometimes useful. In fact, this is the formula originally given

by Selberg [94, page 72]. Writing h as the Fourier transform of a function g, we can

compute h in two steps using the following formula (cf. Iwaniec [49, equation 1.62]):

g(r) =
√

2

∫ ∞

cosh r

k(u)du√
u − cosh r

,

h(t) = 2

∫ ∞

0

cos(rt)g(r)dr.
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The inverse can be computed as follows (cf. Iwaniec [49, equation 1.64]):

g(r) =
1

π

∫ ∞

0

cos(rt)h(t)dt,

k(u) = − 1

π
√

2

∫ ∞

acosh u

g′(r)dr√
cosh r − u

.

1.2. Fuchsian groups

A Fuchsian group is a discrete subgroup of SL2(R). For any Fuchsian group Γ, the

quotient space Γ\H is a connected Hausdorff space and can be made into a Riemann

surface in a natural way. However, the Γ\H “inherits” the structure of Riemannian
manifold from H only outside the set of fixed points of elliptic elements of Γ.

The hyperbolic metric on H induces a measure on Γ\H, given by a smooth

volume form outside the elliptic points. If the volume of Γ\H with respect to this
measure is finite, we call Γ a cofinite Fuchsian group. In this case we define

volΓ =

∫

Γ\H

µH.

Let Γ be a cofinite Fuchsian group. The Riemann surface Γ\H is in general not

compact, but can always be compactified by adding a finite number of points, called

cusps. These correspond to the conjugacy classes of non-trivial maximal parabolic
subgroups in Γ, i.e. non-trivial subgroups that are maximal among the subgroups

containing only parabolic elements. Every such subgroup has a unique fixed point

under the natural action of Γ on P1(R). For every conjugacy class c we choose one

representative, which we denote by Γc. We fix an element σc ∈ SL2(R) such that
σc∞ ∈ P1(R) is the unique fixed point of Γc and such that

σ−1
c Γcσc = (Γ ∩ {±1})

{(
1
0

a
1

) ∣∣ a ∈ Z
}
.

Such a σc exists and is unique up to multiplication from the right by a matrix of the
form ±

(
1
0

b
1

)
with b ∈ R; see Iwaniec [49, § 2.2].

Let c be a cusp of Γ. We define

qc:H → C

z 7→ exp(2πiσ−1
c z)

and
yc:H → (0,∞)

z 7→ ℑσ−1
c z = − log |qc(z)|

2π
.

For ǫ a positive real number, we let Bc(ǫ) denote the open subset of Γ\H that is the
image of the strip

{x + iy | 0 ≤ x < 1 and y > 1/ǫ} ⊂ H

under the quotient map
H → Γ\H
z 7→ Γσcz.
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For ǫ sufficiently small, Bc(ǫ) is an open disc of area ǫ around c, and the map qc

induces a chart on Γ\H with domain Bc(ǫ) and with image equal to the punctured

disc {z ∈ C | 0 < |z| < exp(−2π/ǫ)}. A compactification of Γ\H can be obtained by
adding a point for every cusp c, corresponding to the point 0 ∈ C in the chart qc, and

defining the topology such that qc extends to a chart with image equal to the disc

{z ∈ C | |z| < exp(−2π/ǫ)}.
Next we look at the non-trivial maximal elliptic subgroups of Γ. These correspond

bijectively to the points of H with non-trivial stabiliser in Γ, and the conjugacy classes

correspond to the images of these points in Γ\H. By an elliptic point of Γ we mean
a point of Γ\H as above. For each elliptic point e, we choose a representative of the

corresponding conjugacy class and denote it by Γe. We write

me =
#Γe

#(Γ ∩ {±1}) .

If w is the point of H stabilised by Γe, then for all ǫ > 0 the open disc

{z ∈ H | 2π(u(z, w) − 1) < meǫ}
of area meǫ maps to a disc of area ǫ in Γ\H if ǫ is sufficiently small. We denote this
disc by Be(ǫ). For r > 0 sufficiently small, the map

qe:

{
w ∈ H

∣∣∣∣

∣∣∣∣
w − z

w − z̄

∣∣∣∣ < r

}
−→ C

w 7−→
(z − w

z − w̄

)me

induces a chart around z on Γ\H with image equal to the disc {z ∈ C | |z| < rme}.
The map qe is related to the distance function u on H by

u(z, w) =
1 + |qe(w)|2/me

1 − |qe(w)|2/me
.

This means that the image of Be(ǫ) under qe equals the disc {q ∈ C | |q| < δ}, where
δ is chosen such that

4πδ2/me

1 − δ2/me
= meǫ.

For later use, we note that the function

H × H → [1,∞)

(z, w) 7→ min
γ∈Γ

u(z, γw)

is Γ-invariant in both variables and hence induces a function

d: Γ\H × Γ\H → [1,∞).

It can be viewed as the hyperbolic cosine of a distance function on Γ\H.

Finally, we introduce a point counting function which will be useful several times
in this chapter. For any two points z, w in H and U ≥ 1, we denote by NΓ(z, w, U)

the number of translates of w by elements of Γ lying in a disc around z of radius r

given by cosh(r) = U , i.e.

NΓ(z, w, U) = #{γ ∈ Γ | u(z, γw) ≤ U} (1.5)
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2. Modular curves and modular forms over the com-

plex numbers

Let us now describe how the notions of modular curves and modular forms as described

in Chapter I are related to the classical view of modular curves as quotients of the

hyperbolic plane H by congruence subgroups of SL2(Z) and of modular forms as

functions on H satisfying a certain transformation property with respect to these
groups. For proofs, we refer to Deligne and Rapoport [23, IV, § 5; VII, § 4].

Over the hyperbolic plane, which we identify as always with the upper half-plane

in C, there is a (complex analytic) elliptic curve

f :E → H.

This E can be defined as the cokernel of the closed embedding

Z2
H  CH((

n

m

)
, τ

)
7→ n + mτ

of topological groups over H. The fibre over a point τ ∈ H can also be described as

Eτ = C/(Z + Zτ)
∼−→ C×/qZ

z 7−→ exp(2πiz),

where

q = exp(2πiτ).

The curve E has a global relative differential

αE = 2πi dz,

with z the standard coordinate on C. Via the isomorphism C/(Z + Zτ)
∼−→ C×/qZ,

this corresponds to the differential dt/t, with t the standard coordinate on C×.

Let n be a positive integer. We write

Γ1(n) =

{(
a

c

b

d

)
∈ SL2(Z)

∣∣∣∣
a ≡ d ≡ 1 (mod n),

c ≡ 0 (mod n)

}
.

There is a canonical isomorphism

Γ1(n)\H ∼−→ X1(n)◦(C).

of (non-compact) Riemann surfaces. Similarly, for every prime number p we define

Γ1(n; p) =

{(
a

c

b

d

)
∈ SL2(Z)

∣∣∣∣
a ≡ d ≡ 1 (mod n),

c ≡ 0 (mod np)

}
.
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Then there is a canonical isomorphism

Γ1(n; p)\H ∼−→ X1(n; p)◦(C).

Let Γ be one of the above groups, and let k be a positive integer. Via the canonical
differential αE on E over H, the space Mk(Γ,C) can be identified with the space of

modular forms of weight k for Γ in the classical sense, i.e. as holomorphic functions

f :H → C

that satisfy

f(γτ) = (cτ + d)kf(τ) for all γ =

(
a

c

b

d

)
∈ Γ

and are holomorphic at the cusps.

Remark . One can also consider an arbitrary congruence subgroup Γ of SL2(Z), i.e.

a group containing the kernel of the group homomorphism SL2(Z) → SL2(Z/nZ) for
some positive integer n. To such a Γ one can associate a moduli stack classifying

(generalised) elliptic curves with level structure, with a corresponding coarse moduli

scheme X(Γ), such that Γ\H is isomorphic to X(Γ)(C). Since we only need the
special cases of Γ1(n) and Γ1(n; p), we refer to Deligne and Rapoport [23] for this

more general theory.

2.1. The Petersson inner product

Let f and g be complex analytic modular forms of weight k for a congruence sub-

group Γ ⊆ SL2(Z) such that at least one of them is a cusp form. Then the function
τ 7→ (ℑτ)kf(τ)ḡ(τ) on H is Γ-invariant and bounded on Γ\H, so the integral

〈f, g〉Γ =

∫

τ∈Γ\H

(ℑτ)kf(τ)ḡ(τ)µH(τ)

converges. In particular, this defines a Hermitean inner product

〈 , 〉Γ: Sk(Γ,C) × Sk(Γ,C) → C.

This is called the Petersson inner product on Sk(Γ,C).

For every positive integer k, we equip the line bundle of cusp forms of weight k

with the Petersson metric

|f |k,Pet(τ) = (ℑτ)k/2|f(τ)|.

This metric vanishes at the cusps.
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2.2. Newforms

We briefly describe the theory of newforms, developed by Atkin and Lehner [3] and
extended by Li [69]. Let n and k be positive integers. For every divisor d of n and

every divisor e of n/d, the map

bn,d
e :MΓ1(n) → MΓ1(d)

defined in § I.1.2 induces an injective C-linear map

(bn,d
e )∗: Sk(Γ1(d),C) → Sk(Γ1(n),C).

We define a subspace

Snew
k (Γ1(n),C) ⊆ Sk(Γ1(n),C)

as the orthogonal complement of the subspace of Sk(Γ1(n),C) spanned by the images

of all the (bn,d
e )∗ with d a strict divisor of n. The Hecke operators form a family of

normal commuting operators on Snew
k (Γ1(n),C). This implies that Snew

k (Γ1(n),C)
admits an orthogonal basis of eigenforms. It follows from the formulae for the action

of the Hecke operators on the q-expansion of an eigenform f given in § I.2.4 that

the first coefficient a1(f) of the q-expansion of f at the cusp 0 does not vanish. A
primitive cusp form of weight k for Γ1(n) is an eigenform in Snew

k (Γ1(n),C) that is

normalised such that a1(f) = 1. We write Pk(Γ1(d)) for the set of primitive cusp

forms for Γ1(d). The C-vector space Sk(Γ1(n),C) has a canonical basis

Bk(Γ1(n)) =
⊔

d|n

⊔

e|n/d

(bn,d
e )∗Pk(Γ1(d)).

The matrix of the Petersson inner product with respect to the basis Bk(Γ1(n)) is not
in general diagonal. For positive integers

d | n, d′ | n, e | n/d, e′ | n/d′

and primitive forms f and f ′ for Γ1(d) and Γ1(d
′), respectively, the inner product

〈(bn,d
e )∗f, (bn,d′

e′ )∗f ′〉Γ1(n).

vanishes in all cases except possibly when d = d′ and f = f ′.

2.3. Eisenstein series

Let k and n be positive integers. The orthogonal complement of the subspace of cusp

forms in Mk(Γ1(n),C) is called the space of Eisenstein series. In [44, § 10], Hecke gave

an explicit description of this orthogonal complement. We briefly state the result; for
details, we refer to Miyake [80, Chapter 7] or Stein [104, § 5.3].

For every primitive character

ǫ: (Z/nZ)× → C×,
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2. Modular curves and modular forms over the complex numbers

we extend ǫ to a function Z/nZ → C by putting ǫ(d) = 0 if d ∈ Z/nZ is not invertible.

Furthermore, we define the generalised Bernoulli numbers Bǫ
k for k ≥ 0 by the formula

n∑

a=1

ǫ(a) exp(ax)x

exp(nx) − 1
=

∞∑

k=0

Bǫ
k

xk

k!
.

Let us now consider primitive characters

ǫ1: (Z/n1Z)× → C×, ǫ2: (Z/n2Z)× → C×

such that ǫ1(−1)ǫ2(−1) = (−1)k and n1n2 | n. We define the formal power series

Eǫ1,ǫ2
k (q) = −δn1,1

Bǫ2
k

2k
+

∞∑

m=1

(
∑

d|m

ǫ1(m/d)ǫ2(d)dk−1

)
qm ∈ C[[q]].

Assume first that k 6= 2. Then for every positive integer t dividing n/(n1n2), there
is a modular form Eǫ1,ǫ2,t

k of weight k for Γ1(n) whose q-expansion at the cusp ∞ is

Eǫ1,ǫ2
k (qt). When k = 2, the same holds for all ǫ1 and ǫ2 that are not both the trivial

character. As for the case where k = 2 and both ǫ1 and ǫ2 are trivial, for every divisor

t | n with t > 1 there is a modular form of weight 2 for Γ1(n) whose q-expansion is
E2(q) − tE2(q

t), where E2(q) is the power series

E2(q) = − 1

24
+

∞∑

m=1

σ1(m)qm;

here σ1(m) denotes the sum of the positive divisors of m. Moreover, the modular
forms mentioned above are eigenforms for the Hecke operators, and they form a basis

for the space of Eisenstein series of weight k for Γ1(n).

2.4. Petersson norms of cusp forms

Let f be a primitive form of weight k for Γ1(n). Iwaniec proved in [48] that for all

ǫ > 0, the (squared) Petersson norm 〈f, f〉Γ1(n) of f satisfies

〈f, f〉Γ1(n)

volΓ1(n)
≤ Ak,ǫn

ǫ

for some positive real number Ak,ǫ independent of n and f . Below we will give such

an Ak,ǫ explicitly, using the Rankin–Selberg L-function attached to f , the functional
equation proved by Li [70], and the Ramanujan–Petersson bound proved by Deligne

in [20] and [21]. If the q-expansion of f is given by

f =

∞∑

m=1

am(f)qm,

then the Rankin–Selberg L-function attached to f is defined for s ∈ C with ℜs > 1

by the series

Lf,f̄ (s) =

∞∑

m=1

|am(f)|2
ms+k−1
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Rankin proved in [84] that Lf,f̄ can be continued to a meromorphic function on C,

having a simple pole at s = 1 with residue

res1 Lf,f̄ =
(4π)k〈f, f〉Γ1(n)

Γ(k) volΓ1(n)
,

where Γ is the usual gamma function; see also Li [70, Theorem 3.2].

We now assume for simplicity that f is p-primitive at every prime number p | n
for which ap(f) = 0 in the sense of [70, page 139]. For forms f that do not satisfy this

condition, we actually get a slightly sharper bound by “lowering the level”. To state

the functional equation, we introduce the following notation: if the prime factorisation
of n is

n =
∏

p prime

pr(p),

then we write

cf =
∏

p prime

p2⌊(r(p)+1)/2⌋,

and we define S as the set of prime numbers p dividing n except those for which
ap(f) = 0 and r(p) is even. We consider the “completed” L-function

L̃f,f̄ (s) = c
s/2
f (2π)−2sΓ(s)Γ(s + k − 1)ζ(2s)

∏

p∈S

(1 + p−s)Lf,f̄ (s),

where ζ is the Riemann zeta function. The function L̃f,f̄ has a simple pole at s = 1

with residue

res1 L̃f,f̄ = c
1/2
f (2π)−2ζ(2)

∏

p∈S

(1 + p−1)
(4π)k〈f, f〉Γ1(n)

volΓ1(n)
.

In [70, Theorem 2.2], Li proved the functional equation

L̃f,f̄ (s) = L̃f,f̄ (1 − s).

Lemma 2.1. Let n and k be positive integers, and let f be a primitive form of
weight k for Γ1(n). Then for all ǫ > 0 the Petersson norm of f satisfies

〈f, f〉Γ1(n)

volΓ1(n)
≤ Ak,ǫc

ǫ/2
f ≤ Ak,ǫn

ǫ,

where

Ak,ǫ = (4π)−k(2π)−ǫ ζ(2 + 2ǫ)

ζ(2)

∞∑

m=1

σ0(m)2

m1+ǫ
sup

ℜs=1+ǫ

∣∣s(1 − s)Γ(s)Γ(s + k − 1)
∣∣.

Here σ0(m) denotes the number of positive divisors of m.
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2. Modular curves and modular forms over the complex numbers

Proof . We apply the Phragmén–Lindelöf principle (see for example Markushevich [74,

Volume II, Theorem 7.7]) to the function s(1 − s)L̃f,f̄ (s) on the strip {s ∈ C | −ǫ ≤
ℜs ≤ 1 + ǫ}; this is permitted by Stirling’s estimate for the Γ-function. This shows
that

∣∣s(1 − s)L̃f,f̄ (s)
∣∣ is bounded by its values on the boundary of the strip. The

functional equation now implies

res1 L̃f,f̄ ≤ sup
ℜs=1+ǫ

∣∣s(1 − s)L̃f,f̄ (s)
∣∣.

Plugging in the definition of L̃f,f̄ and the expression for the residue at s = 1 given
above and using the inequalities

|ζ(2s)| ≤ ζ(2 + 2ǫ), |1 + p−s| < 1 + p−1, |Lf,f̄ (s)| ≤
∞∑

m=1

|am(f)|2
mk+ǫ

for ℜs = 1 + ǫ, we deduce that

〈f, f〉Γ1(n)

volΓ1(n)
≤

c
ǫ/2
f

(4π)k(2π)ǫ

ζ(2 + 2ǫ)

ζ(2)
sup

ℜs=1+ǫ

∣∣s(1 − s)Γ(s)Γ(s + k − 1)
∣∣

∞∑

m=1

|am(f)|2
mk+ǫ

.

The first inequality in the statement of the lemma now follows from Deligne’s bound

|am(f)| ≤ σ0(m)m
k−1
2 .

The second is a result of the easily verified inequality cf ≤ n2.

In addition to the above upper bound for primitive forms, we note the following

“trivial” lower bound for the Petersson norm of a cusp form with integral q-expansion.

Lemma 2.2. Let n ≥ 1 and k ≥ 2 be integers, and let f be a non-zero element
of Sint

k (Γ1(n)). Then we have

〈f, f〉Γ1(n) ≥
exp(−4π(d(k, n) + 1))

4π(d(k, n) + 1)
,

where d(k, n) is the degree of the line bundle ω⊗k(−cusps) on MΓ1(n).

Proof . The open subset

{z ∈ C | − 1
2 < ℜ(−1/z) < 1/2 and ℑ(−1/z) > 1}

maps injectively to Γ1(n)\H. This implies that if the q-expansion of f at the cusp 0

is given by

f(z) =

∞∑

m=1

amq0(z)m with q0(z) = exp(−2πi/z),

then

〈f, f〉Γ1(n) ≥
∫ ∞

1

yk−2
∞∑

m=1

am(f)2 exp(−4πmy)dy.
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By definition, all the am are in Z, and at least one of a1, . . . , ad(k,n)+1 is non-zero

since otherwise f would be the zero form. This implies that

〈f, f〉Γ1(n) ≥
∫ ∞

1

yk−2 exp(−4π(d(k, n) + 1)y)dy

≥
∫ ∞

1

exp(−4π(d(k, n) + 1)y)dy

=
exp(−4π(d(k, n) + 1))

4π(d(k, n) + 1)
,

which proves the lemma.

3. Spectral theory of Fuchsian groups

Let Γ be a cofinite Fuchsian group. We denote by L2(Γ\H) the Hilbert space of
square-integrable complex-valued functions on Γ\H (with respect to the measure

given by µH), and by 〈 , 〉 the standard inner product on this Hilbert space.

The Laplace operator ∆ on the space of smooth Γ-invariant functions with com-
pact support on H can be extended to an (unbounded) self-adjoint operator on the

Hilbert space L2(Γ\H), defined on a dense subspace; we denote this extension by ∆

as well. The spectrum of ∆ consists of a discrete part and a continuous part.

3.1. Automorphic forms of weight 0

The discrete spectrum consists of eigenvalues of ∆ and is of the form {λj}∞j=0 with

0 = λ0 < λ1 ≤ λ2 ≤ . . . , λj → ∞ as j → ∞.

Let {φj}∞j=0 be a corresponding set of eigenfunctions; these are called automorphic

forms of Maaß (of weight 0). We may (and do) assume that they are orthonormal

with respect to the inner product on L2(Γ\H). For each j ≥ 0, we define complex

numbers sj and tj by

λj = sj(1 − sj) and sj =
1

2
+ itj

with sj ∈ [1/2, 1] if λj ≤ 1/4. For λj > 1/4, the sj are only determined up to
sj ↔ 1 − sj and the tj are only determined up to sign.

3.2. Eisenstein–Maaß series of weight 0

The continuous part of the spectrum of the Laplace operator on L2(Γ\H) is the

interval [1/4,∞), with multiplicity equal to the number of cusps of Γ. In particular,

the continuous spectrum is absent if Γ has no cusps. The continuous spectrum does

not consist of eigenvalues, but corresponds to “wave packets” that can be constructed
from non-holomorphic Eisenstein series or Eisenstein–Maaß series (introduced by

Maaß in [72]). These series are defined as follows: for every cusp c of Γ the series

Ec(z, s) =
∑

γ∈Γc\Γ

(ℑσ−1
c γz)s (z ∈ H, s ∈ C with ℜs > 1)
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converges uniformly on sets of the form K × {s ∈ C | ℜs ≥ δ} with K a compact

subset of H and δ > 1. In particular, Ec(z, s) is a holomorphic function of s.

A crucial ingredient in the spectral theory of automorphic forms is the meromor-
phic continuation of Eisenstein series, due to Selberg [95]. The functions Ec(z, s) can

be continued to functions of the form Ec(z, s) = H(z, s)/G(s), where H is a smooth

function of (z, s) ∈ H×C and both G and H are entire functions of s. These meromor-
phic continuations have a finite number of simple poles on the segment (1/2, 1] and

no other poles in {s ∈ C | ℜs ≥ 1/2}. Furthermore, the meromorphically continued

Eisenstein series satisfy a functional equation of the form

Ec(z, s) =
∑

d

φc,d(s)Ed(z, 1 − s),

for certain meromorphic functions φc,d, which we will not write down. We refer to

Hejhal [46, Chapter VI, § 11] for a construction of the meromorphic continuation of
the Ec(z, s) and proofs of the functional equation and the other properties stated

here; see Faddeev [36, § 4], Hejhal [46, Appendix F] or Iwaniec [49, Chapter 6] for

different constructions.

For each s ∈ C such that Ec(z, s) is holomorphic in s for all z ∈ H, the function
z 7→ Ec(z, s) is Γ-invariant and satisfies the differential equation

∆Ec( , s) = s(1 − s)Ec( , s).

If s is a complex number with ℜs = 1/2, the Eisenstein–Maaß series Ec( , s) are

integrable, but not square-integrable, as functions on Γ\H. In contrast, the “wave

packets” mentioned above are square-integrable. They are constructed as follows: if

g: [0,∞) → C is a smooth function with compact support, then the function

Ecg:H −→ C

z 7−→ 1

2π

∫ ∞

0

g(t)Ec

(
z, 1

2 + it
)
dt

is in L2(Γ\H), and by extension we get an embedding of Hilbert spaces

Ec: L
2
(
[0,∞),

1

2π
dt

)
−→ L2(Γ\H).

The orthogonal projection on the image of Ec, which we denote by Πc, is given by the

following formula (valid for smooth and bounded Γ-invariant functions f :H → C):

Πcf : [0,∞) → C

t 7→
∫

z∈Γ\H

f(z)Ēc(z, 1
2 + it)µH(z).
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3.3. Spectral theory for automorphic forms of weight 0

The following result is fundamental in the theory of automorphic forms of weight 0.

Theorem 3.1 (see Iwaniec [49, Theorems 4.7 and 7.3]; cf. Faddeev [36, Theo-
rem 4.1]). Every smooth and bounded Γ-invariant function f :H → C has the spectral

representation

f(z) =

∞∑

j=0

〈f, φj〉φj(z) +
∑

c

1

2π

∫ ∞

0

(Πcf)(t)Ec

(
z, 1

2 + it
)
dt,

where c runs over the cusps of Γ, in the sense that the right-hand side converges

to f in the Hilbert space L2(Γ\H). If in addition the smooth Γ-invariant function
∆f :H → C is bounded, the convergence is uniform on compacta in H.

There is an analogous result (Theorem 3.2 below) for functions on H×H that are

of the form
∑

γ∈Γ k(u(z, γw)), where k: [1,∞) → R is a function satisfying certain con-

ditions. To state the conditions and the result, we need the Selberg–Harish-Chandra

transform of k, introduced in § 1.1. We also have to explain the type of convergence
provided by the theorem below. Let A be a filtered set, and let {Ka}a∈A be a family

of continuous functions on Γ\H × Γ\H, square-integrable in the second variable. If

K is a function such that for all compact subsets C of Γ\H we have

lim
a∈A

(
sup

z,w∈C
|Ka(z, w) − K(z, w)| + sup

z∈C

∫

w∈Γ\H

|Ka(z, w) − K(z, w)|2µH(w)

)
= 0,

we say that the family of functions {Ka}a∈A converges to K in the (L∞
loc,L

2 ∩ L∞
loc)-

topology . In other words, this condition means that the family converges uniformly on

compacta in H×H, and also with respect to the L2-norm in the variable w, uniformly

for z in compacta of Γ\H.

Theorem 3.2 (see Iwaniec [49, Theorem 7.4]). Let k: [1,∞) → R be a function
that is the inverse Selberg–Harish-Chandra transform of a function h satisfying the

conditions (H1) and (H2) of § 1.1. Then the function

K:H × H −→ R

(z, w) 7−→ 1

#(Γ ∩ {±1})
∑

γ∈Γ

k(u(z, γw))

is Γ-invariant with respect to both variables and admits the spectral representation

K(z, w) =

∞∑

j=0

h(tj)φj(z)φ̄j(w) +
∑

c

1

2π

∫ ∞

0

h(t)Ec

(
z, 1

2 + it
)
Ēc

(
w, 1

2 + it
)
dt. (3.1)

More precisely, the right-hand side converges to K(z, w) in the following sense. For

J a positive integer and T a positive real number, we define

KJ,T (z, w) =

J∑

j=0

h(tj)φj(z)φ̄j(w) +
∑

c

1

2π

∫ T

0

h(t)Ec

(
z, 1

2 + it
)
Ēc

(
w, 1

2 + it
)
dt.

Then as J and T tend to infinity, KJ,T converges to K in the (L∞
loc,L

2∩L∞
loc)-topology.
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3.4. Bounds on eigenfunctions

The convergence of the spectral representation (3.1) can be deduced from suitable

bounds on the values of the Γ-invariant function

H −→ [0,∞)

z 7−→
∑

j: λj≤T

|φj(z)|2 +
∑

c

1

2π

∫ √
T−1/4

0

∣∣Ec

(
z, 1

2 + it
)∣∣2dt

as T → ∞. In Lemma 3.4 below, we will provide such bounds in a way that applies

at the same time to all the subgroups of finite index in a given Fuchsian group Γ0.
This will turn out to be useful later for bounding suprema of Green functions in a

uniform way.

We define a function kU : [1,∞) → R by

kU (u) =
{

1 if u ≤ U ;

0 if u > U .
(3.2)

From (1.3) and the formula for
∫ z

1
Pν(w)dw found in Erdélyi et al. [34, § 3.6.1, equa-

tion 8], we see that the Selberg–Harish-Chandra transform of kU is

hU (t) = 2π
√

U2 − 1 P−1
−1/2+it(U).

Here Pµ
ν is the associated Legendre function of degree ν and order µ; see [34, § 3.2].

Lemma 3.3. Suppose U ∈ [1, 3] and t ∈ R ∪
[
− 1

2 , 1
2

]
i are such that

(
1
4 + t2

)
(U − 1) ≤ 1

2
.

Then the real number hU (t) satisfies the inequalities

(4π − 8)(U − 1) ≤ hU (t) ≤ 8(U − 1).

Proof . We start by expressing the Legendre function Pµ
ν in terms of Gauß’s hy-

pergeometric function F (a, b; c; z). (This function is described in Erdélyi et al. [34,

Chapter II].) Because of the many transformation identities satisfied by the hyperge-

ometric function, there are lots of ways to do this. We use [34, § 3.2, equation 3]; this
gives

hU (t) = 2π(U − 1)F

(
1

2
+ it,

1

2
− it; 2;

1 − U

2

)
.

Next we use the hypergeometric series for F (a, b; c; z) with convergence radius 1 (see

[34, § 2.1, equation 2]):

F (a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)nn!
zn, (3.3)

where ( )n is Pochhammer’s rising factorial symbol, defined by

(a)n = Γ(a + n)/Γ(a) = a(a + 1) · · · (a + n − 1).
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Putting x = U−1
2 for a moment, using the series expansion (3.3) and applying the

triangle inequality, we get the bound

∣∣F
(

1
2 + it, 1

2 − it; 2;−x
)
− 1

∣∣ ≤
∑

n≥1

∣∣∣∣∣

(
1
2 + it

)
n

(
1
2 − it

)
n

(2)nn!
(−x)n

∣∣∣∣∣

The assumption
(

1
4 + t2

)
(U − 1) ≤ 1

2 is equivalent to
(

1
4 + t2

)
x ≤ 1

4 . Therefore the

n-th term in the series on the right-hand side can be bounded as follows:

∣∣∣∣∣

(
1
2 + it

)
n

(
1
2 − it

)
n

(2)nn!
(−x)n

∣∣∣∣∣ =

∏n−1
k=0

((
1
4 + t2

)
x + k(k + 1)x

)

(2)nn!

≤
∏n−1

k=0

(
1
4 + k(k + 1)

)

(2)nn!

=

(
1
2

)
n

(
1
2

)
n

(2)nn!
.

This implies that

∣∣F
(

1
2 + it, 1

2 − it; 2;−x
)
− 1

∣∣ ≤ F
(

1
2 , 1

2 ; 2; 1
)
− 1

= 4/π − 1,

where the last equality follows from the formula

F (a, b; c; 1) =
Γ(c)Γ(c − b − a)

Γ(c − a)Γ(c − b)
for ℜc > 0 and ℜc > ℜ(a + b)

(see Erdélyi et al. [34, § 2.1.3, equation 14] or Iwaniec [49, equation B.20]) and the
fact that Γ(3/2) =

√
π/2. We conclude that

∣∣hU (t) − 2π(U − 1)
∣∣ = 2π(U − 1)

∣∣F
(

1
2 + it, 1

2 − it; 2;−x
)
− 1

∣∣

≤ 2π(U − 1)(4/π − 1)

= (8 − 2π)(U − 1),

which is equivalent to the inequalities in the statement of the lemma.

The following result can be used to show that the spectral representation in

Theorem 3.2 converges; however, we will also apply it in Section 5 below in order to
find upper bounds for Green functions of Fuchsian groups. To state the result, we

introduce the notation

N ′
Γ(z, U) = #{γ ∈ Γ | u(z, γz) ≤ 2U2 − 1} for z ∈ H and U ≥ 1;

this defines a Γ-invariant function of z.
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Lemma 3.4. Let Γ be a cofinite Fuchsian group. For all z ∈ H and all T ≥ 1/4, the

Maaß forms φj and the Eisenstein–Maaß series Ec for Γ corresponding to eigenvalues

less than or equal to T satisfy the inequality

∑

j: λj≤T

|φj(z)|2 +
∑

c

1

2π

∫ √
T−1/4

0

∣∣Ec

(
z, 1

2 + it
)∣∣2dt ≤ πT

(2π − 4)2
N ′

Γ

(
z, 1 +

1

2T

)
.

Proof . For a given T ≥ 1/4, we put

U = 1 +
1

2T
∈ (1, 3],

so that T (U − 1) = 1/2. We note that

∑

γ∈Γ

kU (u(z, w)) = NΓ(z, w, U),

where NΓ is the point counting function defined in (1.5). From Bessel’s inequality
one can deduce that

∑

j: λj≤T

|hU (tj)φj(z)|2 +
∑

c

1

2π

∫ √
T−1/4

0

∣∣hU (t)Ec

(
z, 1

2 + it
)∣∣2dt

≤
∫

w∈Γ\H

NΓ(z, w, U)2µH(w);

see Iwaniec [49, § 7.2]. The inequality hU (t) ≥ (2π−4)/T given by Lemma 3.3 implies

∑

j: λj≤T

|φj(z)|2 +
∑

c

1

2π

∫ √
T−1/4

0

∣∣Ec

(
z, 1

2 + it
)∣∣2dt

≤ T 2

(2π − 4)2

∫

w∈Γ\H

NΓ(z, w, U)2µH(w)

for z ∈ Γ\H and all T ≥ 1
4 .

It remains to bound the integral on the right-hand side of the above inequality.

For this we rewrite it as follows (cf. Iwaniec [49, page 109]):

∫

w∈Γ\H

NΓ(z, w, U)2µH(w) =
∑

γ,γ′∈Γ

∫

w∈Γ\H

kU (z, γ′w)kU (γz, γ′w)µH(w)

=
∑

γ∈Γ

∫

w∈H

kU (z, w)kU (γz, w)µH(w).

The last integral can be interpreted as the area of the intersection of the discs of

radius r around the points z and γz of H, where cosh r = U . By the triangle inequality

for the hyperbolic distance, this intersection is empty unless

u(z, γz) ≤ cosh(2r) = 2U2 − 1;
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furthermore, the area of this intersection is at most 2π(U − 1) = π/T . From this we

deduce that ∫

w∈Γ\H

NΓ(z, w, U)2µH(w) ≤ π

T
NΓ(z, z, 2U2 − 1)

By the definition of N ′
Γ(z, U), this proves the lemma.

Corollary 3.5. Let Γ0 be a cofinite Fuchsian group, fix a compact subset Y0 of Γ0\H,

and write

ν(Y0, T ) =
πT

(2π − 4)2
sup
z∈Y0

N ′
Γ0

(
z, 1 +

1

2T

)
,

with N ′
Γ0

(z, U) as in Lemma 3.4. Let Γ be a subgroup of finite index in Γ0, and let Y
be the inverse image of Y0 in Γ\H. Then the Maaß forms φj and the Eisenstein–Maaß

series Ec for Γ corresponding to eigenvalues ≤ T satisfy the inequality

∑

j: λj≤T

|φj(z)|2 +
∑

c

1

2π

∫ √
T−1/4

0

∣∣Ec

(
z, 1

2 + it
)∣∣2dt ≤ ν(Y0, T )

for all z ∈ Y and all T ≥ 1/4.

We note for later use that the function ν(Y0, T ) in the preceding result is bounded
by a linear function of T .

3.5. The hyperbolic lattice point problem

Let Γ be a cofinite Fuchsian group. By the hyperbolic lattice point problem for Γ we

mean the following question: what is the asymptotic behaviour of the point counting

function NΓ(z, w, U) (defined in (1.5)) as U → ∞? The Euclidean analogue of this
question (about the number of points in Z2 lying inside a given disc in R2) was

first treated by Gauß using an elementary packing method, and the error term was

later improved using spectral theory on R2/Z2. In the hyperbolic setting, no packing

method is known to even give the dominant term of NΓ(z, w, U) as U → ∞; the
difficulty here is that the circumference of a circle in the hyperbolic plane grows as

fast as its area as the radius goes to infinity. To produce estimates for NΓ(z, w, U),

we will use a more sophisticated tool, namely spectral theory on Γ\H.
The strategy is to take suitable functions

k+
U , k−

U : [1,∞) → R

with compact support, and to define functions K+
U and K−

U on H×H, invariant with
respect to the action of Γ on each of the two variables, by

K±
U (z, w) =

∑

γ∈Γ

k±
U (u(z, γw)).

Notice that the sum is finite because the functions k±
U have compact support. We

take the functions k±
U such that the inequality

K−
U (z, w) ≤ NΓ(z, w, U) ≤ K+

U (z, w) (3.4)
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3. Spectral theory of Fuchsian groups

holds for all z, w ∈ H and U > 1. Provided the Selberg–Harish-Chandra transforms

h±
U of k±

U , defined in § 1.1, satisfy the conditions of Theorem 3.2, the functions K±
U

have spectral representations

K±
U (z, w) =

∞∑

j=0

h±
U (tj)φj(z)φ̄j(w)

+
∑

c

1

2π

∫ ∞

0

h±
U (t)Ec

(
z, 1

2 + it
)
Ēc

(
w, 1

2 + it
)
dt

(3.5)

for all z, w ∈ H. These spectral representations can then be used to find the asymp-
totic behaviour of NΓ(z, w, U) as U → ∞.

A reasonable choice at first sight would be to take for both k+
U and k−

U the

function kU defined by (3.2), so that the inequalities in (3.4) become equalities. Un-
fortunately, the Selberg–Harish-Chandra transform hU of kU does not decay quickly

enough as t → ∞ to give a spectral representation of NΓ(z, w, U) as in Theorem 3.2.

Following Iwaniec [49, Chapter 12] (cf. Patterson [82]), we therefore take

k+
U (u) =

{ 1 if 1 ≤ u ≤ U ,
V −u
V −U if U ≤ u ≤ V ,
0 if V ≤ u

and

k−
U (u) =

{ 1 if 1 ≤ u ≤ T ,
U−u
U−T if T ≤ u ≤ U ,

0 if U ≤ u

for certain T , V , depending on U , with 1 ≤ T < U < V . It turns out that a suitable

choice is

V − U ∼ U − T ∼ βU2/3 as U → ∞, for some β > 0. (3.6)

0

1

1 T U V

k �
U k+

U

Figure 1: The functions k+
U and k−

U .

Using (1.3), integrating by parts and applying the integral relation between the

Legendre functions Pν and P−2
ν given in Erdélyi et al. [34, § 3.6.1, equation 8], we get

h+
U (t) = 2π

(V 2 − 1)P−2
−1/2+it(V ) − (U2 − 1)P−2

−1/2+it(U)

V − U
.

Replacing (U, V ) by (T,U) we get a similar formula for h−
U (t).
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Theorem 3.6. Let Γ be a cofinite Fuchsian group. For all z, w ∈ H, the point

counting function NΓ satisfies

NΓ(z, w, U) =
∑

j: 2/3<sj≤1

2sj
√

π
Γ
(
sj − 1

2

)

Γ(sj + 1)
φj(z)φ̄j(w)Usj + O(U2/3) as U → ∞,

with an implied constant depending on Γ and the points z and w.

Proof . See Iwaniec [49, Theorem 12.1].

In particular, since |φ0|2 is the constant function 1/volΓ, where volΓ is the volume

of Γ\H, this shows that

NΓ(z, w, U) ∼ 2π(U − 1)

volΓ
as U → ∞.

The main term in the estimate comes from the eigenvalue λ0 = 0, corresponding to
t0 = ±i/2. It follows from (1.2) that

h+
U (±i/2) = 2π(U − 1) + π(V − U). (3.7)

Since 2π(U − 1) is the area of a disc of radius r with cosh r = U , Theorem 3.6 is

the result that one would intuitively expect, in the sense that it shows that this area
is asymptotically equivalent to the number of lattice points inside the disc times the

area of a fundamental domain for the action of Γ.

For future reference, we also derive an estimate for the derivatives of the func-

tions K±
U (z, w) with respect to U . For this we assume that T and V are differentiable

and satisfy

T ′(U) = 1 + O(U−δ) and V ′(U) = 1 + O(U−δ) as U → ∞ (3.8)

for some δ > 0. By differentiating kU with respect to U , applying the definition of K+
U

and estimating the sum using Theorem 3.6, it is straightforward to prove that

d

dU
K+

U (z, w) =
2π

volΓ
+ O(U−ǫ) (3.9)

for some ǫ > 0.

3.6. The Green function of a Fuchsian group

We fix a cofinite Fuchsian group Γ, and we write volΓ for the volume of Γ\H. The
Laplace operator on Γ\H is invertible on the orthogonal complement of the constant

functions in the following sense: there exists a unique bounded self-adjoint opera-

tor R on L2(Γ\H, µH) such that for all smooth and bounded functions f on Γ\H the

function Rf satisfies

∆Rf = f − 1

volΓ

∫

Γ\H

fµH and

∫

Γ\H

RfµH = 0.
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3. Spectral theory of Fuchsian groups

With regard to the spectral representations provided by Theorem 3.1, the effect of R

is as follows: if f has the spectral representation

f(z) =

∞∑

j=0

bjφj(z) +
∑

c

1

2π

∫ ∞

0

bc(t)Ec

(
z, 1

2 + it
)
dt,

then Rf has the corresponding spectral representation

Rf(z) =

∞∑

j=1

bj

λj
φj(z) +

∑

c

1

2π

∫ ∞

0

bc(t)

1/4 + t2
Ec

(
z, 1

2 + it
)
dt.

(Note the absence of the eigenvalue λ0 = 0.)

There exists a unique function

grΓ: {(z, w) ∈ H × H | z 6∈ Γw} → R

with the following properties:

(1) grΓ is smooth and Γ-invariant in both variables;

(2) grΓ(z, w) = grΓ(w, z);

(3) for fixed w ∈ Γ\H and z near a cusp c of Γ, the behaviour of grΓ(z, w) is

grΓ(z, w) = log(ℑσ−1
c z) + O(1) as ℑσ−1

c z → ∞;

(4) if f is a smooth and bounded Γ-invariant function on H, then the function Rf
is given by

Rf(z) = −
∫

w∈Γ\H

grΓ(z, w)f(w)µH(w).

The function grΓ is called the Green function of the Fuchsian group Γ. In § 5.1 below,

we will give a construction of grΓ that will allow us to study it quantitatively.

Remark . Different normalisations of grΓ occur in the literature; for example, our grΓ
is 1/4π times the function defined by Gross in [40, § 9].

3.7. Automorphic forms of general weight

We recall the definition of automorphic forms of arbitrary real weight. We also de-

scribe q-expansions of holomorphic forms, and we define the Petersson inner product.

Definition. (Cf. Rankin [85], § 3.1.) Let Γ be a cofinite Fuchsian group and let k be

a real number. An automorphy factor of weight k for Γ is a function

ν: Γ × H → C×

satisfying the following conditions:
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(1) the map γ 7→ ν(γ, z) is a 1-cocycle with values in the right Γ-module of holo-

morphic functions H → C× (with pointwise multiplication), i.e. the function

z 7→ ν(γ, z) is holomorphic for all γ ∈ Γ and

ν(γδ, z) = ν(γ, δz)ν(δ, z)

for all γ, δ ∈ Γ and z ∈ H;

(2) for all γ ∈ Γ and z ∈ H, we have

|ν(γ, z)| =

( ℑz

ℑγz

)k/2 (
= |cz + d|k if γ =

(∗
c

∗
d

))
;

(3) if −1 ∈ Γ, then ν(−1, z) = 1.

Definition. (Cf. Roelcke [91], Definition 1.1.) Let Γ be a cofinite Fuchsian group, let
k be a real number, and let ν an automorphy factor of weight k for Γ. An automorphic

form (of Maaß) of type ν for Γ is a smooth function f :H → C with the following

properties:

(1) for all γ =
(
∗
c

∗
d

)
∈ Γ and z ∈ H, the transformation formula

f(γz) =
ν(γ, z)

|cz + d|k f(z)

holds;

(2) for every cusp c of Γ, there is a real number κ such that |σ∗
c f(x + iy)| = O(yκ)

as y → ∞.

A cusp form of type ν for Γ is a function f satisfying (1) and the following condition

(which is stronger than (2)):

(2′) for every cusp c of Γ there exists ǫ > 0 such that |σ∗
c f(x + iy)| = O(exp(−ǫy)) as

y → ∞.

Remark . If we write

f̃(z) =
f(z)

(ℑz)k/2
,

then condition (1) in the definition of automorphic forms is equivalent to

f̃(γz) = ν(γ, z)f̃(z) for all γ ∈ Γ, z ∈ H.

For every cusp c of Γ and every automorphic form f of type ν, we define

fc(z) =
|cz + d|k
(cz + d)k

f(σcz),

where
(

a
c

b
d

)
is some lift of σc to SL2(R), so that

f(z) =
|−cz + a|k
(−cz + a)k

fc(σ
−1
c z).
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The definition of fc implies that f comes from a holomorphic form (i.e. the function

(ℑz)−k/2f(z) is holomorphic) if and only if (ℑz)−k/2fc(z) is holomorphic.

We now assume that the automorphy factor ν is singular at the cusp c, by which

we mean the following. We fix a specific branch of the k-th power map by

zk = |z|k exp(ik arg z), −π < arg z ≤ π.

We recall from § 1.2 that Γc is generated by Γ ∩ {±1} and the element

γc = σc

(
1

0

1

1

)
σ−1

c ∈ Γc.

The automorphy factor ν is said to be singular at the cusp c if the restriction of ν to

Γc × H is given by the particular formula

ν(γc, z) = (cz + d)k if γc =

(∗
c

∗
d

)
.

Under the assumption that ν is singular at c, we have

fc(z + 1) = fc(z) for every cusp c.

Let us assume furthermore that f , and hence also fc, is holomorphic. Then fc has a
q-expansion of the form

fc(z) = yk/2
∞∑

n=0

ac,n(f)qn with q = exp(2πiz).

This can be rewritten as

f(z) =
|−cz + a|k
(−cz + a)k

yc(z)k/2
∞∑

n=0

ac,n(f)qc(z)n, (3.10)

where yc(z) = ℑσ−1
c z and qc = exp(2πiσ−1

c z) as in § 1.2.

If f and g are automorphic forms of type ν for Γ, the function fḡ is Γ-invariant,

and hence can be viewed as a function on Γ\H. We let L2
ν(Γ\H) denote the Hilbert

space obtained by completing the space of smooth and bounded automorphic forms

with respect to the Petersson inner product

〈f, g〉 =

∫

Γ\H

fḡ µH.
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3.8. Spectral theory for automorphic forms

Let Γ be a cofinite Fuchsian group, and let k be a real number. The Laplace operator
of weight k is the differential operator

∆k = −y2(∂2
x + ∂2

y) + iky∂x

= ∆ + iky∂x

on the space of twice continuously differentiable functions on H. For any automorphy

factor ν of weight k, the operator ∆k can be extended to an (unbounded) self-adjoint

operator on a dense subspace of L2
ν(Γ\H); see Roelcke [91, § 3].

The spectrum of ∆k is contained in the interval [(|k|/2)(1 − |k|/2),∞), and

the eigenspace corresponding to the eigenvalue (k/2)(1 − k/2) is equal to the space

of functions yk/2f with f a holomorphic form of type ν that is square-integrable

with respect to the Petersson inner product; see Roelcke [91, Sätze 5.2 und 5.5]. In
particular, this implies the well-known fact that there are no holomorphic forms of

negative weight, since (|k|/2)(1 − |k|/2) > (k/2)(1 − k/2) if k < 0. For k ≥ 1,

the only square-integrable holomorphic forms of weight k are the cusp forms; see
Roelcke [92, Satz 13.1]. This means that the map f 7→ yk/2f gives an identification

of the space Sν(Γ) of holomorphic cusp forms of type ν with the subspace of L2
ν(Γ\H)

on which ∆k acts with eigenvalue (k/2)(1 − k/2).
As in the case of automorphic forms of weight 0, the discrete spectrum of ∆k

on L2
ν(Γ\H) consists of eigenvalues. Let {λj}∞j=0 be this discrete spectrum, ordered

such that

λ0 ≤ λ1 ≤ λ2 ≤ · · · ,
and let {φν

j }∞j=0 be a corresponding orthonormal set of eigenfunctions. We write

λj = sj(1 − sj) and sj =
1

2
+ itj

with sj ∈ [1/2, 1] if λj ≤ 1/4.

Apart from the discrete spectrum, there is also a continuous spectrum, which

can again be described in terms of suitably defined Eisenstein–Maaß series. These
functions are defined for the cusps c at which ν is singular in the sense of § 3.7. For

such a cusp c, the Eisenstein series Eν
c is defined for ℜs > 1 by

Eν
c (z, s) = (ℑz)k/2

∑

γ∈Γc\Γ

(ℑσ−1
c γz)s−k/2

ν(γ, z)(cγz + d)k
;

cf. Roelcke [92, § 10] or Hejhal [46, Chapter 9, Definition 5.3]. Here (c d) denotes the
bottom row of the unique lift of σ−1

c to SL2(R) such that either c > 0, or c = 0 and

d > 0. The functions Eν
c (z, s) can be meromorphically continued in the variable s in

the same sense as the Eisenstein–Maaß series Ec(z, s) defined in § 3.2, and they satisfy

a similar functional equation. For any smooth and bounded function f on Γ\H, we
define

Πcf : [0,∞) → C

t 7→
∫

z∈Γ\H

f(z)Ēν
c (z, 1

2 + it)µH(z).
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The generalisation of Theorem 3.1 is now as follows. Every smooth and bounded

automorphic form f of type ν has the spectral decomposition

f(z) =

∞∑

j=0

〈f, φν
j 〉φν

j (z) +
∑

c

1

2π

∫ ∞

0

(Πcf)(t)Eν
c

(
z, 1

2 + it
)
dt,

where c runs over the cusps at which ν is singular. Similarly, we have the following

generalisation of 3.2. Let c > max{|k|/2, 1}, and let φ: [1,∞) → R be a continuous
function such that φ(u) = O(u−c) as u → ∞. Then the sum

Kν(z, w) =
exp(ikπ/2)

#(Γ ∩ {±1})
∑

γ∈Γ

ν(γ,w)

(ℑγw

ℑw

)k/2 ( |z − γw̄|
z − γw̄

)k

φ(u(z, γw)) (3.11)

converges uniformly on compact subsets of H×H; cf. Faddeev [36, Theorem 4.1]. It
can be shown that this function satisfies

Kν(w, z) = Kν(z, w)

and

Kν(γz, γ′w) =
ν(γ, z)(ℑγz)k/2

(ℑz)k/2
Kν(z, w)

(ℑw)k/2

ν(γ′, w)(ℑγ′w)k/2

The last equation implies that Kν(z, w) defines an invariant integral operator on the

space L2
ν(Γ\H).

To state the generalisation of Theorem 3.2, we need an analogue of the Selberg–

Harish-Chandra transform in higher weights. For this we introduce the following
variants of the Legendre functions (see Fay [38, § 1]; note that our k would be 2k in

Fay’s notation):

Ps,k(u) =

(
2

1 + u

)s

F

(
s − k, s + k; 1;

u − 1

u + 1

)
.

Let φ: [1,∞) → R be a continuous function satisfying φ(u) = O(u−δ) for some real

number δ > max{|k|/2, 1−|k|/2}. We have the following generalisation of the Selberg–
Harish-Chandra transform (see Fay [38, (34)]):

h(t) = 2π

∫ ∞

1

φ(u)P1/2+it,k(u)du.

This transform can also be computed as follows (cf. Hejhal [46, pages 385-386]):

q(w) =
√

2

∫ ∞

−∞

φ(w + v2)

[√
w + 1 + iv√
w + 1 − iv

]k/2

dv,

g(r) = q(cosh r)

h(t) = 2

∫ ∞

0

cos(rt)g(r)dr.
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Its inverse can be computed by means of the formulae

g(r) =
1

π

∫ ∞

0

cos(rt)h(t)dt,

q(w) = g(acosh w)

φ(u) = − 1

π
√

2

∫ ∞

−∞

q′(u + t2)

[√
u + 1 + t2 − t√
u + 1 + t2 + t

]k/2

dt.

By means of the change of variables u + t2 = cosh r, the last two equations can be
rewritten as

φ(u) = − 1

23/2π(u + 1)k/2

∫ ∞

acosh u

g′(r)
{(√

cosh r + 1 +
√

cosh r − u
)k

+
(√

cosh r + 1 −
√

cosh r − u
)k

} dr√
cosh r − u

.

We are now in a position to describe the spectral decomposition of a function of
the form (3.11). Let h be the Selberg–Harish-Chandra transform of weight k of the

function φ. Assume h is even and holomorphic on the strip
{
t ∈ C

∣∣ |ℑt| < α
}

for

some α > max{(|k|−1)/2, 1/2}, and |h(t)||t|β is bounded on this strip for some β > 2;
cf. the conditions (H1) and (H2) of § 1.1. Then Kν has the spectral representation

Kν(z, w) =

∞∑

j=0

h(tj)φ
ν
j (z)φ̄ν

j (w)

+
∑

c

1

2π

∫ ∞

0

h(t)Eν
c

(
z, 1

2 + it
)
Ēν

c

(
w, 1

2 + it
)
dt,

(3.12)

where the second sum is taken over the cusps at which ν is singular; see Hejhal [46,
Chapter 8, (4.1), and Chapter 9, § 6].

4. Bounds on cusp forms

Let Γ be a cofinite Fuchsian group, let k be a real number with k ≥ 1, and let ν be an
automorphy factor of weight k for Γ. We assume for simplicity that ν is singular at all

cusps of Γ (in the sense of § 3.8). We define a smooth and Γ-invariant function FΓ,ν

on H by

FΓ,ν(z) =
∑

f∈B

(ℑz)k|f(z)|2,

where B is an orthonormal basis for the space Sν(Γ) of holomorphic cusp forms of

type ν for Γ. The function FΓ,ν is independent of the choice of B. In this section we

give explicit bounds on the values of FΓ,ν . These results are due to Jorgenson and
Kramer [50]; we have written them down here in a slightly more explicit form.

56



4. Bounds on cusp forms

4.1. The heat kernel for automorphic forms

Following Jorgenson and Kramer [50], we are going to apply the spectral theory

described in § 3.8 to the function

hk,χ(t) = exp

(
−

(
(k − 1)2

4
+ t2

)
χ

)
,

where χ is a fixed positive real number. This is the spectral function for the heat kernel

associated to the operator ∆k. We compute the kernel function φχ corresponding
to hk,χ via the auxiliary function gχ introduced in § 3.8 (the Fourier transform of hk,χ):

gχ(r) =
1

2π

∫ ∞

−∞

exp(irt) exp

(
−

(
(k − 1)2

4
+ t2

)
χ

)
dt

=
1

2
√

π
exp

(
− (k − 1)2χ

4
− r2

4χ

)
.

It now follows from the formula for the inverse Selberg–Harish-Chandra transform

given at the end of § 3.8 that

φχ(u) =
exp

(
−(k − 1)2χ/4

)

4(2πχ)3/2(u + 1)k/2

∫ ∞

acosh u

r exp

(
− r2

4χ

)

{(√
cosh r + 1 +

√
cosh r − u

)k
+

(√
cosh r + 1 −

√
cosh r − u

)k
} dr√

cosh r − u
.

This does not look very enlightening, but the only property of φχ that we will need

is that it is non-negative. The properties of hk,χ imply that the function

KΓ,ν
χ (z, w) =

exp(ikπ/2)

#(Γ ∩ {±1})(ℑw)k/2

∑

γ∈Γ

ν(γ,w)(ℑγw)k/2

(
z − γw̄

|z − γw̄|

)k

φχ(u(z, γw))

has a spectral representation given by (3.12). In particular, we have the identity

KΓ,ν
χ (z, z) =

∞∑

j=0

hk,χ(tj)|φj(z)|2 +
∑

c

1

2π

∫ ∞

0

hk,χ(t)
∣∣Eν

c

(
z, 1

2 + it
)∣∣2. (4.1)

4.2. Bounds on cusp forms

As we saw in § 3.8, the assumption that k ≥ 1 implies that the space Sν(Γ) can be

identified with the eigenspace of the Laplace operator ∆k on L2
ν(Γ) associated to the

eigenvalue

λh = (k/2)(1 − k/2) = 1
4 + t2h,

where

th = ±k − 1

2
i.

It is clear from the definition of hk,χ that

hk,χ(th) = 1
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and that hk,χ(t) is non-negative for all values of t involved in the spectral represen-

tation (4.1). Therefore (4.1) implies the bound

FΓ,ν(z) ≤ KΓ,ν
χ (z, z) for all z ∈ H and χ > 0.

By the triangle inequality, the fact that

|ν(γ,w)| =

( ℑw

ℑγw

)k/2

and the non-negativity of φχ, we deduce from the above definition of KΓ,ν
χ the in-

equality

KΓ,ν
χ (z, z) ≤ 1

#(Γ ∩ {±1})
∑

γ∈Γ

φχ(u(z, γz)).

We now take Γ to be an arbitrary subgroup of finite index in a fixed cofinite Fuchsian

group Γ0. We fix a compact subset Y0 of Γ0\H, and we let YΓ denote the inverse

image of Y0 in Γ\H. Since there is an injective map Γ/(Γ∩{±1}) → Γ0/(Γ0 ∩{±1}),
we get the inequality

sup
YΓ

FΓ,ν ≤ C(Y0, k), (4.2)

where

C(Y0, k) =
1

#(Γ0 ∩ {±1}) sup
w∈Y0

∑

γ∈Γ0

φχ(u(z, γz)).

4.3. Extension to neighbourhoods of the cusps

We now take the compact subset Y0 to be of the following specific form. For every
cusp c0 of Γ0, we choose a real number ǫc0 > 0 such that the disc Bc0(ǫc0) of area ǫc0

around c0 as in § 1.2 is well-defined. We define a compact subset Y0 of Γ0\H as the

complement of the discs Bc0(ǫc0), with c0 running over the cusps of Γ0.

The inverse image in Γ\H of the disc Bc0(ǫc0) ⊂ Γ0\H equals the union of the
discs Bc(ǫc), where c runs over the cusps of Γ lying over c0, and where

ǫc = mcǫc0 ,

with mc the ramification index at c of the map from the compactification Γ\H to
that of Γ0\H. We write YΓ for the inverse image of Y0 in Γ\H; then YΓ equals the

complement of the discs Bc(ǫc), with c running over the cusps of Γ.

Because the forms in our basis B are holomorphic cusp forms, they have q-

expansions of the form (3.10) with ac,0 = 0. In particular, we see that every f ∈ B
satisfies

|f(z)|2 = yc(z)k

∣∣∣∣∣

∞∑

n=1

ac,n(f)qc(z)n

∣∣∣∣∣

2

.

Therefore the function

yc(z)−k exp(4πyc(z))FΓ,ν(z) =
∑

f∈B

∣∣∣∣
f(z)

qc(z)

∣∣∣∣
2
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extends to a subharmonic function on the compactification

B̄c(ǫc) = {z ∈ Γ\H | yc(z) ≥ 1/ǫc} ∪ {c}.

of Bc(ǫc). By the maximum principle for subharmonic functions, the function takes

its maximum on the boundary, so that

FΓ,ν(z) ≤ (ǫcyc(z))k exp(4π/ǫc − 4πyc(z)) sup
yc(z′)=1/ǫc

FΓ,ν(z′) (4.3)

for all z ∈ Bc(ǫc).

Lemma 4.1. Let Γ0 be a cofinite Fuchsian group, and let k be a real number. There

is a real number D(Γ0, k) such that for any subgroup Γ of finite index in Γ0 and any

automorphy factor ν of weight k for Γ that is singular at all cusps, we have

sup
z∈Γ\H

FΓ,ν(z) ≤ (max
c

mc)
kD(Γ0, k).

Proof . We fix a positive real number χ and define φχ: [1,∞) → R as in § 4.1. We

choose ǫ > 0 small enough such that the discs Bc0(ǫ) around the cusps of Γ0\H are
disjoint. We write

Y0 = Γ0\H
∖ ⊔

c0

Bc0(ǫ),

and we let YΓ denote the inverse image of Y0 in Γ\H. An elementary calculation
shows that

yk exp(−4πy) ≤
(

k

4π

)k

exp(−k),

with equality if and only if y = k/4π. Combining this with (4.2) and (4.3) gives

FΓ,ν(z) ≤
{

C(Y0, k) if z ∈ YΓ;(
kǫc

4π

)k
exp(4π/ǫc − k)C(Y0, k) if z ∈ Bc(ǫc),

which implies the lemma.
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5. Bounds on Green functions of Fuchsian groups

In this section we will apply the spectral theory described in § 3.3 and the solution to

the hyperbolic lattice point problem from § 3.5 in order to obtain bounds on Green

functions of Fuchsian groups. We start with an elementary “counting lemma” that
we will need later.

Lemma 5.1. Let {xλ}λ∈Λ and {wλ}λ∈Λ be two families of real numbers, indexed by

a set Λ, such that for every x ∈ R there are only finitely many λ ∈ Λ with xλ ≤ x.

(In particular, Λ is countable.) For all x ∈ R we define

W (x) =
∑

λ∈Λ: xλ≤x

wλ.

Suppose a is a real number such that xλ > a for all λ ∈ Λ, and A,B: (a,∞) → R are
continuous functions such that A(x) ≤ W (x) ≤ B(x) for all x ≥ a. Let f : (a,∞) →
[0,∞) be a decreasing, continuously differentiable function such that the sum

S =
∑

λ∈Λ

f(xλ)wλ

converges absolutely. Then the inequality

−
∫ ∞

a

f ′(x)A(x)dx + lim
x→∞

f(x)A(x) ≤ S ≤ −
∫ ∞

a

f ′(x)B(x)dx + lim
x→∞

f(x)B(x),

holds, provided the integrals and limits exist. If in addition A and B are piecewise

continuously differentiable, then S satisfies the inequality
∫ ∞

a

f(x)A′(x)dx + lim
xցa

f(x)A(x) ≤ S ≤
∫ ∞

a

f(x)B′(x)dx + lim
xցa

f(x)B(x),

again provided the integrals and limits exist.

Proof . By assumption, the subset {xλ | λ ∈ Λ} of (a,∞) is discrete. We write y1,
y2, . . . , for its elements in increasing order, and we put y0 = a. Using the absolute

convergence of the sum S, we can rewrite it as

S =

∞∑

i=1

f(yi)
∑

λ∈Λ: xλ=yi

wλ

= lim
I→∞

(
I∑

i=1

f(yi)(W (yi) − W (yi−1))

)

= lim
I→∞

(
I−1∑

i=1

(f(yi) − f(yi+1))W (yi) + f(yI)W (yI)

)
;

the last equality is gotten by partial summation and the fact that W (y0) = 0. Because
W is constant on each [yi, yi+1) and zero on (y0, y1), we may rewrite this as

S = lim
I→∞

(
−

I−1∑

i=0

∫ yi+1

yi

f ′(x)W (x)dx + f(yI)W (yI)

)
.

60



5. Bounds on Green functions of Fuchsian groups

Together with the inequality A(x) ≤ W (x) ≤ B(x) and the assumption that f is

decreasing and non-negative, we now get

lim
I→∞

(
−

∫ y
I

y0

f ′(x)A(x)dx + f(yI)A(yI)

)
≤ S

≤ lim
I→∞

(
−

∫ y
I

y0

f ′(x)B(x)dx + f(yI)B(yI)

)
,

from which the first inequality follows. If A and B are piecewise continuously differ-
entiable, the second is equivalent to the first via integration by parts.

5.1. A construction of the Green function

We will now give a construction of the Green function for Γ that will allow us to find

explicit bounds on its values. For this we use a family of auxiliary functions

ka: (1,∞) → [0,∞) (a ∈ A)

parametrised by a filtered set A, that converges in a suitable sense (made precise in

Lemma 5.3 below) to the function k1 defined by

k1(u) =
1

4π
log

u + 1

u − 1
. (5.1)

We will take the ka such that their Selberg–Harish-Chandra transforms are of the

kind described in the following definition.

Definition. An admissible spectral function is an even and holomorphic function

h:D → C

where D is an open subset of C containing the strip
{
t ∈ C

∣∣ |ℑt| ≤ α
}

for some
α > 1/2, such that for some β > 1 the function

∣∣ 1
4 + t2

∣∣β
∣∣∣∣h(t) − 1

1
4 + t2

∣∣∣∣ =
∣∣ 1
4 + t2

∣∣β−1 ∣∣( 1
4 + t2

)
h(t) − 1

∣∣

is bounded on this strip.

Lemma 5.2. Let D be an open subset of C containing the strip
{
t ∈ C

∣∣ |ℑt| ≤ α
}

for some α > 1/2, and let h:D → C be an admissible spectral function. Then h
satisfies the conditions (H1) and (H2) of § 1.1; in particular, the inverse Selberg–

Harish-Chandra transform k of h (see (1.4)) exists. Moreover, uα+1/2k(u) is bounded

as u → ∞.

Proof . The claim that h satisfies (H1) and (H2) is straightforward to check. To com-
pute k, we use the formulae from the end of § 1.1 relating k and h via the intermediate

function

g(r) =
1

2π

∫ ∞

−∞

exp(irt)h(t)dt.
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Since h is even, we may assume r > 0. Because h is holomorphic, we may shift the

line of integration to R + iα; this gives

g(r) =
exp(−αr)

2π

∫ ∞

−∞

exp(irt)h(t + iα)dt.

Next we note that ∫ ∞

−∞

exp(irt)
1
4 + (t + iα)2

dt = 0

(since the integrand is holomorphic for ℑt > 0, we may integrate over the semi-circle

{iα + R exp(iθ) | 0 ≤ θ ≤ π} and let R tend to ∞; it is not hard to show that this

integral tends to 0). This implies that

g(r) =
exp(−αr)

2π

∫ ∞

−∞

exp(irt)

(
h(t + iα) − 1

1
4 + (t + iα)2

)
dt.

Likewise, we have

g′(r) =
i exp(−αr)

2π

∫ ∞

−∞

exp(irt)(t + iα)

(
h(t + iα) − 1

1
4 + (t + iα)2

)
dt.

Applying the triangle inequality and the assumption on h, we deduce from this that

|g(r)| ≤ D exp(−αr) and |g′(r)| ≤ D′ exp(−αr),

where D and D′ are certain positive real numbers. The formula

k(u) = − 1

π
√

2

∫ ∞

acosh u

g′(r)dr√
cosh r − u

now implies that

|k(u)| ≤ D′

π
√

2

∫ ∞

acosh u

exp(−αr)dr√
cosh r − u

=
D′

π
Qα−1/2(u),

where Qν denotes the Legendre function of the second kind of degree ν; see Erdélyi
et al. [34, § 3.6.1 and § 3.7, equation 4]. Since Qα−1/2(u) = O(u−1/2−α) as u → ∞
(see [34, § 3.92, equation 21]), this proves the claim.

Let h:D → C be an admissible spectral function as defined above, and let k

be its inverse Selberg–Harish-Chandra transform. It follows from Lemma 5.2 that

the sum
∑

γ∈Γ k(u(z, γw)) converges uniformly on compact subsets of H × H not
containing any points of the form (z, γz); see Faddeev [36, pages 363–364 of the

English translation]. (See also Lang [62, Chapter XIV], which is an explanation

of [36], filling in many details.) We can therefore define a continuous, symmetric
function

KΓ: {(z, w) ∈ H × H | z 6∈ Γw} −→ R

(z, w) 7−→ 1

#(Γ ∩ {±1})
∑

γ∈Γ

k(u(z, γw)) − c,
(5.2)

62



5. Bounds on Green functions of Fuchsian groups

where the constant c is chosen such that the integral of KΓ over Γ\H with respect to

each of the variables vanishes:

c = vol−1
Γ

∫

w∈H

k(u(z, w))µH(w) for any z ∈ H

=
2π

volΓ

∫ ∞

1

k(u)du

= vol−1
Γ h(±i/2).

Note that the last equality is just (1.2).

Lemma 5.3. Consider a family {ha}a∈A of admissible spectral functions, with A a

filtered set, and let {ka}a∈A and {KΓ
a }a∈A be the corresponding functions defined by

(1.4) and (5.2). Suppose that the following two conditions are satisfied:

(1) Each of the functions ka is bounded pointwise from above by the function k1

defined by (5.1), and the family of functions {ka}a∈A converges pointwise to k1.

(2) There is a real number β > 1 such that the family of functions

∣∣ 1
4 + t2

∣∣β
∣∣∣∣ha(t) − 1

1
4 + t2

∣∣∣∣

converges to 0 (with respect to the filtration of the set A), uniformly on the strip{
t ∈ C

∣∣ |ℑt| ≤ 1/2
}
.

Then the family of functions {−KΓ
a }a∈A converges to the Green function grΓ in the

(L∞
loc,L

2 ∩ L∞
loc)-topology.

(The existence of families of admissible spectral functions {ha}a∈A satisfying the

above conditions will be proved in § 5.2 below.)

Proof of Lemma 5.3 . For all a, b ∈ A, it follows from condition (1) that the function

ka − kb satisfies the conditions of Theorem 3.2. This implies that the function

KΓ
a − KΓ

b =
1

#(Γ ∩ {±1})
∑

γ∈Γ

(
ka(u(z, γw)) − kb(u(z, γw))

)
− ca + cb

has the spectral representation

(KΓ
a − KΓ

b )(z, w) =

∞∑

j=1

(ha(tj) − hb(tj))φj(z)φ̄j(w)

+
∑

c

1

2π

∫ ∞

0

(ha(t) − hb(t))Ec

(
z, 1

2 + it
)
Ēc

(
w, 1

2 + it
)
dt,

(5.3)
where the right-hand side converges to KΓ

a − KΓ
b in the (L∞

loc,L
2 ∩ L∞

loc)-topology.

(Note that the eigenvalue λ0 = 0 has disappeared because of the definition of ca.) In

particular, KΓ
a − KΓ

b extends to a continuous function on H × H that is Γ-invariant
with respect to both variables.

63



II. Analytic results on modular curves

We claim that the right-hand side of (5.3) converges to 0, with respect to A, in

the (L∞
loc,L

2 ∩L∞
loc)-topology. In particular, this implies that {KΓ

a }a∈A converges to a

symmetric continuous function on Γ\H× Γ\H that is square-integrable with respect
to each variable separately.

First we show that {KΓ
a − KΓ

b }a,b∈A converges to zero uniformly on compact

subsets of H × H. For this we write

∣∣KΓ
a − KΓ

b

∣∣(z, w) ≤
∞∑

j=1

|ha(tj) − hb(tj)| · |φj(z)φ̄j(w)|

+
∑

c

1

2π

∫ ∞

0

|ha(t) − hb(t)| ·
∣∣Ec

(
z, 1

2 + it
)
Ēc

(
w, 1

2 + it
)∣∣dt

It follows from the triangle inequality and condition (2) on the family {ha} that

|ha(t) − hb(t)| ≤
∣∣∣∣ha(t) − 1

1
4 + t2

∣∣∣∣ +

∣∣∣∣hb(t) −
1

1
4 + t2

∣∣∣∣

≤ (Ca + Cb)
∣∣ 1
4 + t2

∣∣−β

for some family of positive real numbers {Ca}a∈A such that lima∈A Ca = 0. This

implies

∣∣KΓ
a − KΓ

b

∣∣(z, w) ≤ (Ca + Cb)

∞∑

j=1

∣∣ 1
4 + t2j

∣∣−β |φj(z)φ̄j(w)|

+ (Ca + Cb)
1

2π

∑

c

∫ ∞

0

∣∣ 1
4 + t2

∣∣−β∣∣Ec

(
z, 1

2 + it
)
Ēc

(
w, 1

2 + it
)∣∣dt.

Using the elementary inequality

|φj(z)φ̄j(w)| ≤ 1
2

(
|φj(z)|2 + |φj(w)|2

)
, (5.4)

and applying Lemma 5.1 and Corollary 3.5, we see that the right-hand side converges

to 0 uniformly on compacta of H × H, as claimed.

Next we show that the right-hand side of (5.3) converges with respect to the
L2-norm on Γ\H, uniformly for w in compacta of H. For this we use that the

orthogonality of eigenfunctions implies

∫

w∈Γ\H

∣∣KΓ
a − KΓ

b

∣∣2(z, w)µH(w) ≤
∞∑

j=1

∣∣ha(tj) − hb(tj)
∣∣2|φj(z)|2

+
∑

c

1

2π

∫ ∞

0

∣∣ha(t) − hb(t)
∣∣2∣∣Ec

(
z, 1

2 + it
)∣∣2dt

≤ (Ca + Cb)

∞∑

j=1

∣∣ 1
4 + t2j

∣∣−2β |φj(z)|2

+
Ca + Cb

2π

∑

c

∫ ∞

0

∣∣ 1
4 + t2

∣∣−2β∣∣Ec

(
z, 1

2 + it
)∣∣2dt.
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Again using Lemma 5.1 and Corollary 3.5, we see that the right-hand side converges

to 0 uniformly on compacta of H, which is what we had to prove.

The L2-convergence that we just proved implies that if f is a smooth, bounded,
Γ-invariant function on H, with spectral representation

f(z) =

∞∑

j=0

bjφj(z) +
∑

c

1

2π

∫ ∞

0

bc(t)Ec

(
z, 1

2 + it
)
dt

(see Theorem 3.1), then
∫

w∈Γ\H

lim
a∈A

KΓ
a (z, w)f(w)µH(w) = lim

a∈A

∫

w∈Γ\H

KΓ
a (z, w)f(w)µH(w).

Now the defining property (1.1) of the Selberg–Harish-Chandra transform implies
that

∫

Γ\H

KΓ
a (z, w)f(w)µH(w) =

∞∑

j=1

bjha(tj)φj(z)+
∑

c

1

2π

∫ ∞

0

bc(t)ha(t)Ec

(
z, 1

2 + it
)
dt.

Taking the limit, we get

∫

w∈Γ\H

lim
a∈A

KΓ
a (z, w)f(w)µH(w) =

∞∑

j=1

bj
1
4 + t2j

φj(z)

+
∑

c

1

2π

∫ ∞

0

bc(t)
1
4 + t2

Ec

(
z, 1

2 + it
)
dt

= Rf(z)

= −
∫

w∈Γ\H

grΓ(z, w)f(w)µH(w).

Since the set of smooth and bounded functions is dense in L2(Γ\H), this proves that

the limit of the convergent family of functions {KΓ
a }a∈A equals − grΓ.

5.2. Existence of families of admissible spectral functions

Of course, the construction given in § 5.1 would be futile if there were no family
of functions {ha} fulfilling the conditions of Lemma 5.3. Let us therefore give two

examples of such families.

The resolvent kernel for a parameter a ց 1. This is the function

kR
a (u) =

1

2π
Qa−1(u),

where Qν is the Legendre function of the second kind of degree ν; see Erdélyi et al. [34,
§ 3.6.1]. The function Qa−1 has the integral representation [34, § 3.7, equation 12]

Qa−1(u) =

∫ ∞

0

dt

(u +
√

u2 − 1 cosh t)a
,

65



II. Analytic results on modular curves

which shows that all the Qa−1 with a ≥ 1 are bounded pointwise by the function

Q0(u) =
1

2
log

u + 1

u − 1
.

(see [34, § 3.6.2, equation 20]). This shows that the family {ka} satisfies condition (1)
of Lemma 5.3. From [34, § 3.12, equation 4] we see that the Selberg–Harish-Chandra

transform of kR
a is

hR
a (t) =

∫ ∞

1

P−1/2+it(u)Qa−1(u)du

=
1

(a − 1/2 − it)(a − 1/2 + it)

=
1

a(a − 1) + 1
4 + t2

.

One can check easily that this is an admissible spectral function and that the family
{hR

a } satisfies condition (2) of Lemma 5.3.

The cumulative heat kernel for a parameter T → ∞. The function hC
T is defined for

T > 0 by

hC
T (t) =

∫ T

0

exp(−(1/4 + t2)χ)dχ

=
1 − exp(−(1/4 + t2)T )

1/4 + t2
.

It is straightforward to check that these are admissible spectral functions and that

the family {hC
T } satisfies condition (2) of Lemma 5.3. We compute the corresponding

function kC
T using an intermediate function gC

T as in § 1.1. This function is given by

gC
T (r) =

1

π

∫ ∞

0

cos rt

1/4 + t2
dt − exp(−T/4)

π

∫ ∞

0

cos(rt) exp(−t2T )

1/4 + t2
dt

= exp(−|r|/2) − 1

2

[
exp(r/2) erfc

(
T + r

2
√

T

)
+ exp(−r/2) erfc

(
T − r

2
√

T

)]
.

The last equality follows from Erdélyi et al. [35, § 1.2, equation 11, and § 1.4, equa-

tion 15]; the complementary error function appearing in this formula is defined by

erfc(x) =
2√
π

∫ ∞

x

exp(−t2)dt.

A straightforward computation gives

(gC
T )′(r) = − sgn(r) exp(−|r|/2)

2

− 1

4

[
exp(r/2) erfc

(
T + r

2
√

T

)
− exp(−r/2) erfc

(
T − r

2
√

T

)]
.
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By differentiating with respect to T , we see that the family of functions {g′T (r)}T>0

is pointwise decreasing as T → ∞, with limit function

lim
T→∞

(gC
T )′(r) = − sgn(r) exp(−|r|/2)

2
.

This implies that the family of functions {kC
T }T>0 given by

kC
T (u) = − 1

π
√

2

∫ ∞

acosh u

(gC
T )′(r)dr√

cosh r − u

is pointwise increasing with limit function

lim
T→∞

kC
T (u) =

1

23/2π

∫ ∞

acosh u

exp(−r/2)dr√
cosh r − u

This last integral can be evaluated using Erdélyi et al. [34, § 3.7, equation 4, and

§ 3.6.2, equation 20]:

lim
T→∞

kC
T (u) =

1

2π
Q0(u)

=
1

4π
log

u + 1

u − 1
.

We conclude that the family {kC
T } satisfies condition (1) of Lemma 5.3.

5.3. Bounds on Green functions

Let {ha}a∈A, {ka}a∈A and {KΓ
a }a∈A be families of functions satisfying the conditions

of Lemma 5.3. We will give bounds on the values taken by the functions KΓ
a and by

the Green function grΓ. For this we will exploit the estimates for the hyperbolic lattice
point problem given in § 3.5. Given two points z, w ∈ H, we choose a real number

δ > 1, and we split the sum over Γ into sums over the two subsets Π(z, w) and Λ(z, w)

consisting of those γ for which u(z, γw) ≤ δ and u(z, γw) > δ, respectively, i.e.

Π(z, w) = {γ ∈ Γ | u(z, γw) ≤ δ},
Λ(z, w) = {γ ∈ Γ | u(z, γw) > δ}.

For any U ≥ δ, the inequality (3.4) implies that the number of elements γ ∈ Λ(z, w)

with u(z, γw) ≤ U can be bounded as

A(U) ≤ #{γ ∈ Λ(z, w) | u(z, γw) ≤ U} ≤ B(U),

where the functions

A,B: [δ,∞) → R

are defined by

A(U) = K−
U (z, w) − #Π(z, w)

#(Γ ∩ {±1}) and B(U) = K+
U (z, w) − #Π(z, w)

#(Γ ∩ {±1}) .

67



II. Analytic results on modular curves

Here the functions K±
U are defined as in § 3.5 via functions T and V of U satisfying

(3.6) and (3.8). The functions A and B are increasing and piecewise continuously

differentiable, and the estimates from § 3.5 imply that

A(U) = O(U) and B(U) = O(U) as U → ∞,

with implied constants depending on the group Γ, the points z and w and the functions

T and V . Applying Lemma 5.1 gives
∫ ∞

δ

ka(U)A′(U)dU + ka(δ)A(δ) ≤
∑

γ∈Λ(z,w)

ka(u(z, γw))

≤
∫ ∞

δ

ka(U)B′(U)dU + ka(δ)B(δ).

for all a. By the definition (5.2) of KΓ
a , we get the lower bound

KΓ
a (z, w) ≥ − 1

#(Γ ∩ {±1})
∑

γ∈Π(z,w)

ka(u(z, γw)) −
∫ ∞

δ

ka(U)B′(U)dU − ka(δ)B(δ)

+
2π

volΓ

∫ ∞

1

ka(u)du.

Using the definition of B, we can rewrite this as

KΓ
a (z, w) ≥ 1

#(Γ ∩ {±1})
∑

γ∈Π(z,w)

(
ka(δ) − ka(u(z, γw))

)
− ka(δ)K+

δ (z, w)

−
∫ ∞

δ

ka(U)
d

dU

(
K+

U (z, w) − 2π

volΓ
(U − 1)

)
dU +

2π

volΓ

∫ δ

1

ka(U)dU.

We recall from (3.9) that d/dU(. . .) = O(U−ǫ) for some ǫ > 0. Furthermore, the

family of functions {ka}a∈A converges from below to k1 because of condition (1) in

Lemma 5.3. We may therefore apply the dominated convergence theorem and take
the limit inside the integral. This gives

grΓ(z, w) ≥ 1

#(Γ ∩ {±1})
∑

γ∈Π(z,w)

(
k1(δ) − k1(u(z, γw))

)
− k1(δ)K

+
δ (z, w)

−
∫ ∞

δ

k1(U)
d

dU

(
K+

U (z, w) − 2π

volΓ
(U − 1)

)
dU +

2π

volΓ

∫ δ

1

k1(U)dU.

Integrating by parts and using that

k′
1(u) = − 1

2π(u2 − 1)
,

we can simplify this to

grΓ(z, w) ≥ 1

#(Γ ∩ {±1})
∑

γ∈Π(z,w)

(
k1(δ) − k1(u(z, γw))

)
+

1

volΓ
log

δ + 1

2

− 1

2π

∫ ∞

δ

(
K+

U (z, w) − 2π

volΓ
(U − 1)

)
dU

U2 − 1
.
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Next we insert the spectral representation (3.5) of K+
U , the formula (3.7) for h+

U (±i/2)

and the fact that |φ0|2 = 1/ volΓ. We then interchange the resulting sums and integrals

with the integral over U ; this is permitted because the double sums and integrals
converge absolutely (this follows from Lemma 3.4 and Theorem 3.6). The result is

grΓ(z, w) ≥ 1

#(Γ ∩ {±1})
∑

γ∈Π(z,w)

(
k1(δ) − k1(u(z, γw))

)
+

1

volΓ
log

δ + 1

2

− 1

2 volΓ

∫ ∞

δ

V − U

U2 − 1
dU −

∞∑

j=1

I+
δ (tj)φj(z)φ̄j(w)

−
∑

c

1

2π

∫ ∞

0

I+
δ (t)Ec

(
z, 1

2 + it
)
Ēc

(
w, 1

2 + it
)
dt,

where I+
δ is the function defined by

I+
δ (t) =

1

2π

∫ ∞

δ

h+
U (t)

U2 − 1
dU.

A similar calculation gives the upper bound

grΓ(z, w) ≤ 1

#(Γ ∩ {±1})
∑

γ∈Π(z,w)

(
k1(δ) − k1(u(z, γw))

)
+

1

volΓ
log

δ + 1

2

+
1

2 volΓ

∫ ∞

δ

U − T

U2 − 1
dU −

∞∑

j=1

I−δ (tj)φj(z)φ̄j(w)

−
∑

c

1

2π

∫ ∞

0

I−δ (t)Ec

(
z, 1

2 + it
)
Ēc

(
w, 1

2 + it
)
dt,

where I−δ is defined by

I−δ (t) =
1

2π

∫ ∞

δ

h−
U (t)

U2 − 1
dU.

The most interesting aspect of the above bounds concerns the functions

R±(z, w) =

∞∑

j=1

I±δ (tj)φj(z)φ̄j(w) +
∑

c

1

2π

∫ ∞

0

I±δ (t)Ec

(
z, 1

2 + it
)
Ēc

(
w, 1

2 + it
)
dt.

Imprecisely speaking, these reflect the fact that the Green function formally has the

spectral representation

grΓ(z, w)
?
= −

∞∑

j=1

1
1
4 + t2j

φj(z)φ̄j(w)−
∑

c

1

2π

∫ ∞

0

1
1
4 + t2

Ec

(
z, 1

2 + it
)
Ēc

(
w, 1

2 + it
)
dt.

The problem is that this expansion does not converge. This is the reason why our

estimates are somewhat complicated; however, it is not very surprising that a similar

expression appears in the above bounds.
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5.4. Uniform bounds on compact subsets

The next step is to derive bounds that are valid at the same time for all subgroups Γ
of finite index in a given cofinite Fuchsian group Γ0 such that the non-zero eigenvalues

of the Laplace operator ∆ on L2(Γ\H) are bounded from below by a fixed positive

number. For example, take Γ0 = SL2(Z) and let Γ ⊆ Γ0 be a congruence subgroup.
Selberg conjectured in [96] that the least non-zero eigenvalue λ1 of ∆ is at least 1/4,

and he proved that λ1 ≥ 3/16. The sharpest result known so far, due to Kim and

Sarnak (see Appendix 2 of Kim [59]), is that λ1 ≥ 975/4096.

We seek upper bounds for the absolute values of the functions R±(z, w) occurring

in the bounds from § 5.3. Applying the triangle inequality and the inequality (5.4),

we see that ∣∣R±(z, w)
∣∣ ≤ 1

2
(S±(z) + S±(w)),

where S+ and S− are defined by

S±(z) =

∞∑

j=1

|I±δ (tj)||φj(z)|2 +
∑

c

1

2π

∫ ∞

0

|I±δ (t)|
∣∣Ec

(
z, 1

2 + it
)∣∣2dt.

In order to bound these functions, we use the assumption that the spectrum of the

Laplace operator on L2(Γ\H) is contained in {0} ∪ [λmin,∞). We choose decreasing,

continuously differentiable functions

H+
δ,λmin

,H−
δ,λmin

: [λmin,∞) → (0,∞)

such that

(1) H±
δ,λmin

(λ) = sup[λmin,∞)

∣∣I±δ
(√

λ − 1/4
)∣∣ for all λ ∈ [λmin, 1/4];

(2) H±
δ,λmin

(λ) ≥
∣∣I±δ

(√
λ − 1/4

)∣∣ for all λ ≥ 1/4.

Using the properties (1) and (2) of H±
δ,λmin

(1/4 + t2) and rewriting the result in a

similar way as in Lemma 5.1 gives

S±(z) ≤ −
∫ ∞

λ=1/4

Wz(λ)dH±
δ,λmin

(λ),

where

Wz(λ) =
∑

j: 0<λj≤λ

|φj(z)|2 +
∑

c

1

2π

∫ √
λ−1/4

0

∣∣Ec

(
z, 1

4 + t2
)∣∣2dt.

We now assume Γ is a subgroup of finite index in a fixed Fuchsian group Γ0. Let
Y0 ⊂ Γ0\H be any compact subset, and let Y be its inverse image in Γ\H. Then it

follows from the bound from Corollary 3.5 and the fact that the functions H±
δ,λmin

are

decreasing that

S±(z) ≤ −
∫ ∞

λ=1/4

ν(Y0, λ)dH±
δ,λmin

(λ) for all z ∈ Y.
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Substituting this in the bounds from § 5.3, we see that for all z, w ∈ H whose images

in Γ\H lie in Y , we have

grΓ(z, w) ≤ 1

#(Γ ∩ {±1})
∑

γ∈Π(z,w)

(
k1(δ) − k1(u(z, γw))

)
+

1

volΓ
log

δ + 1

2

+
1

2 volΓ

∫ ∞

δ

U − T

U2 − 1
dU +

∫ ∞

λ=1/4

ν(Y0, λ)(−dH−
δ,λmin

)(λ)

and

grΓ(z, w) ≥ 1

#(Γ ∩ {±1})
∑

γ∈Π(z,w)

(
k1(δ) − k1(u(z, γw))

)
+

1

volΓ
log

δ + 1

2

− 1

2 volΓ

∫ ∞

δ

V − U

U2 − 1
dU −

∫ ∞

λ=1/4

ν(Y0, λ)(−dH+
δ,λmin

)(λ).

Theorem 5.4. Let Γ0 be a cofinite Fuchsian group, let Y0 be a compact subset

of Γ0\H, and let δ > 1 and λmin > 0 be real numbers. There exist real numbers A

and B such that the following holds. Let Γ be a subgroup of finite index in Γ0, and
let Y be the inverse image of Y0 under the map Γ0\H → Γ\H. Suppose that the least

positive eigenvalue of the Laplacian on L2(Γ\H) is at least λmin and that the set

{γ ∈ Γ | u(z, γw) ≤ δ}

contains at most one element for all z, w ∈ H whose images in Γ\H lie in Y . Then

the inequalities

grΓ(z, w) ≤ B + min{0, k1(δ) − k1(d(z, w))}

and

grΓ(z, w) ≥ A + min{0, k1(δ) − k1(d(z, w))}

hold for all z, w in Y , where d(z, w) is the “distance function” defined in § 1.2.

Proof . This follows from the above inequalities.

Remark . For simplicity, we have limited ourselves in the above theorem to groups Γ
that do not contain any elliptic elements that Γ0 may have. One way to treat the

general case would be to take two compact subsets Y0 and Y ′
0 such that Y0 ∩ Y ′

0 does

not contain any elliptic points and δ is taken sufficiently small such that Π0(z, w)

contains at most one element for all z, w ∈ H whose images in Γ0\H lie in Y0 and Y ′
0 ,

respectively.

5.5. Extension to neighbourhoods of the cusps

The need to choose a compact subset Y0 of Γ0\H in § 5.4 means that we have to do

some more work to find suitable bounds on the Green function grΓ(z, w) in the case
where one or both of z and w is near a cusp of Γ.
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Let Γ be a cofinite Fuchsian group, and let c be a cusp of Γ. We choose a

sufficiently small ǫc > 0 such that disc Bc(ǫc) of area ǫc around c is well-defined. For

any w 6∈ Bc(ǫc), the function grΓ(z, w), viewed as a function of z ∈ Bc(ǫc), satisfies

2i∂∂̄ grΓ(z, w) = − 1

volΓ
µH(z).

We can therefore write

grΓ(z, w) =
1

volΓ
log(ǫcyc(z)) + hw(z) for all z ∈ Bc(ǫc),

where yc(z) is defined as in § 1.2 and hw is a real-valued harmonic function defined
on the compactification

B̄c(ǫc) = {z ∈ Γ\H | yc(z) ≥ 1/ǫc} ∪ {c}.

By construction, hw(z) coincides with grΓ(z, w) for yc(z) = 1/ǫc; in other words, for

z on the boundary of B̄c(ǫc). The maximum principle for harmonic functions now

implies that

grΓ(z, w) ≤ 1

volΓ
log(ǫcyc(z)) + sup

z′∈∂B̄c(ǫc)

grΓ(z′, w) for all z ∈ Bc(ǫc), w 6∈ Bc(ǫc).

Finally, considering the case where z and w both lie in Bc(ǫc) for some cusp c, we get

grΓ(z, w) ≤ grB̄c(ǫc)(z, w) +
1

volΓ
log(ǫcyc(z)) +

1

volΓ
log(ǫcyc(w))

+ sup
z′,w′∈∂B̄c(ǫc)

grΓ(z′, w′)

for all z, w ∈ Bc(ǫc), where grB̄c(ǫc) is the Green function for the Laplace operator on

the closed disc B̄c(ǫc). This Green function is defined by the differential equation

2i∂∂̄ grB̄c(ǫc)( , w) = δw,

grB̄c(ǫc)(z, w) = 0 if |qc(z)| = exp(−2π/ǫc)

}
for all w ∈ B̄c(ǫc).

It is given explicitly by

grB̄c(ǫc)(z, w) =
1

2π
log

∣∣∣∣∣
(qc(z) − qc(w)) exp(2π/ǫc)

1 − qc(z)qc(w) exp(4π/ǫc)

∣∣∣∣∣ ,

where qc is the coordinate function defined in § 1.2. The function grB̄c(ǫc)(z, w) is

non-positive for all z and w on B̄c(ǫc), and vanishes on the boundary.
Analogous lower bounds for grΓ hold with suprema replaced by infima.
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Chapter III

Arakelov theory for modular curves

In this chapter we describe intersection theory on arithmetic surfaces, as developed
by Arakelov [2] and Faltings [37]. We also give explicit bounds for canonical Green

functions of modular curves, using the results for Fuchsian groups proved in the

preceding chapter.

1. Analytic part

In this section we define the basic analytic concepts that are needed for Arakelov
theory, namely admissible metrics on line bundles on compact Riemann surfaces. In

the case of modular curves, we also compare the admissible metric on the line bundle

of holomorphic differentials to the Petersson metric on the line bundle of cusp forms
of weight 2.

1.1. Admissible metrics

Let X be a Riemann surface. For n = 0, 1 or 2, we write En
X for the sheaf of smooth

complex-valued n-forms. There is a natural decomposition

E1
X = E(1,0)

X ⊕ E(0,1)
X .

Here E(1,0)
X and E(0,1)

X consist of differential forms that are locally of the form f dz
and g dz̄, respectively, where z is a holomorphic coordinate and f and g are smooth

functions. This decomposition causes each of the two differentials

E0
X

d−→ E1
X

d−→ E2
X

to split as the sum of two partial derivatives. These four partial derivatives fit in an

anti-commutative diagram

E0
X

∂−→ E(1,0)
X

∂̄
y y∂̄

E(0,1)
X

∂−→ E2
X .
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III. Arakelov theory for modular curves

The Laplace operator on X is the C-linear map

2i∂∂̄: E0
X → E2

X .

Now let X be a compact connected Riemann surface of genus g ≥ 1. The space

H0(X,Ω1
X/C) of global holomorphic 1-forms on X has a Hermitean inner product

defined by

〈α, β〉 =
i

2

∫

X

α ∧ β̄. (1.1)

The canonical (1,1)-form on X is defined as

µcan
X =

i

2g

g∑

j=1

αj ∧ ᾱj , (1.2)

where (α1, . . . , αg) is any orthonormal basis of H0(X,Ω1
X/C).

If L is a line bundle on X, an admissible metric on L is a smooth Hermitean
metric | | on L that locally on X satisfies

1

πi
∂∂̄ log |s| = (degL)µcan

X

for some (hence any) local generating section s of L. An admissible line bundle on X
is a line bundle equipped with an admissible metric.

There exists a unique smooth (i.e. infinitely differentiable) function grcanX outside

the diagonal on X × X such that

2i∂∂̄ grcanX ( , y) = δy − µcan
X and

∫

X

grcanX ( , y)µcan
X = 0 for all y ∈ X.

This function is called the canonical Green function of X. For a proof of the existence
of grcanX , see for example Elkik [106, exposé III].

Remark . Various normalisation conventions for the Green function can be found in

the literature. Our grcanX is 1
2π times the Green function used by Arakelov [2] and

Faltings [37].

Let D be a divisor on X. The line bundle OX(D) admits a canonical admissible

metric | |OX(D), defined by putting

log |1|OX(D)(y) = 2π
∑

x∈X

nx grcanX (x, y) (D =
∑

x∈X

nxx) (1.3)

for y outside the support of D, and extending by continuity. Furthermore, there is

a canonical admissible metric on the line bundle Ω1
X/C of holomorphic differentials,

defined uniquely by

log |dz|Ω1
X/C

(x) = lim
y→x

(
log |z(y) − z(x)| − 2π grcanX (x, y)

)
for x ∈ X (1.4)
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if z is a local coordinate in a neighbourhood of x.

To every admissible line bundle L on X, we associate a one-dimensional complex

vector space

λ(L) = det H0(X,L) ⊗ detH1(X,L)∨,

called the determinant of cohomology of L. Faltings proved in [37, Theorem 1] that

there is a unique way to assign metrics to the λ(L) for all admissible line bundles L
such that the following axioms are satisfied,

(1) For every isometry f :L ∼−→ M between admissible line bundles on X, the in-

duced isomorphism

λ(f):λ(L)
∼−→ λ(M)

is an isometry.

(2) If the metric on L is scaled by a factor α > 0, the metric on λ(L) changes by a
factor αχ(L), where

χ(L) = dim H0(X,L) − dim H1(X,L)

is the Euler characteristic of L.

(3) For every admissible line bundle L on X and every point P ∈ X, the canonical

exact sequence

0 −→ L(−P ) −→ L −→ P∗P
∗L −→ 0

induces an isometry

λ(L)
∼−→ λ(L(−P )) ⊗ P ∗L.

(4) The metric on

λ(Ω1
X/C) ∼= det H0(X,Ω1

X/C)

comes from the inner product (1.1) on H0(X,Ω1
X/C).

For later use, we extend the definition of the canonical (1, 1)-form and the canon-

ical Green function to the case g = 0, i.e. to the complex projective line P1(C). We

endow P1(C) with the volume form for the Fubini-Study metric. This is the (1, 1)-
form defined as

µP1 =
i

2π

dz ∧ dz̄

(1 + |z|2)2 ;

this depends on the choice of the coordinate z. The corresponding Green function
(defined as above) is given by

grP1(z, w) =
1

4π
+

1

4π
log

|z − w|2
(1 + |z|2)(1 + |w|2) .
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1.2. Comparison between admissible and Petersson metrics

Let Γ be a cofinite Fuchsian group, and let X be the compactification of Γ\H obtained

by adding the cusps. We assume that Γ has no elliptic elements and that gX ≥ 1.

We equip the line bundle ω⊗2(−cusps) of cusp forms of weight 2 for Γ with the
Petersson metric

|f |2,Pet(z) = (ℑz)|f(z)| for z ∈ H

as in § II.2.1. Furthermore, we have the line bundle Ω1
X/C, equipped with the admis-

sible metric (1.4). There is a canonical isomorphism

Ω1
X/C

∼= ω⊗2(−cusps) (1.5)

constructed as follows: for a local section α of Ω1
X/C, the pull-back of α to H can be

written as

α = f dz,

where f is a local section of ω⊗2(−cusps). Taking global sections, we obtain an

isomorphism

H0(X,Ω1
X/C) ∼= S2(Γ). (1.6)

Under this isomorphism, the inner product (1.1) on H0(X,Ω1
X/C) corresponds to the

Petersson inner product 〈 , 〉Γ on S2(Γ). This implies that the two (1, 1)-forms µcan
X

and µH on X can be compared as follows. We consider the function

FΓ:X → [0,∞)

defined on the open subset Γ\H by

FΓ(z) =
∑

f∈B

|f |22,Pet, (1.7)

where B is an orthonormal basis of the C-vector space S2(Γ) of cusp forms of weight 2
with respect to the Petersson inner product; we extend FΓ by zero to the cusps. From

the isomorphism (1.6) and the definition (1.2) of µcan
X , we get

µcan
X =

1

gX

FΓµH. (1.8)

We can now compare the metrics |α|Ω1
X/C

and |f |2,Pet. As in § II.5.1, we define

k1(u) =
1

4π

u + 1

u − 1
.

From the formula for the function u(z, w) = cosh r(z, w) given in § II.1.1, it follows

that

k1(u(z, w)) =
1

4π
log

(
1 +

4ℑz ℑw

|z − w|2
)

.

We define
HΓ: Γ\H → R

z 7→ lim
w→z

(
k1(u(z, w)) + grcanX (z, w)

)
.

(1.9)

We view it as a function on X with singularities at the cusps.
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1. Analytic part

Lemma 1.1. The function HΓ satisfies

2πHΓ = − log |α|Ω1
X/C

+ log |f |2,Pet + log 2 (1.10)

for all local sections α of Ω1
X/C and f of ω⊗2(−cusps) corresponding to each other

via the isomorphism (1.5), and

2i∂∂̄HΓ = (2gX − 2)µcan
X − 1

2π
µH +

∑

c cusp

δc. (1.11)

Proof . We rewrite log |α|Ω1
X/C

as

log |α|Ω1
X/C

= log |f(z)| + log |dz|Ω1
X/C

= log |f |2,Pet + lim
w→z

(
1

2
log

|z − w|2
ℑz ℑw

− 2π grcanX (z, w)

)
.

One easily verifies that

1

2
log

|z − w|2
ℑz ℑw

+ 2πk1(u(z, w)) → log 2 as w → z.

This implies the equality

lim
w→z

(
1

2
log

|z − w|2
ℑz ℑw

− 2π grcanX (z, w)

)
= log 2 − 2πHΓ(z)

and hence (1.10). We are going to deduce (1.11) by applying the operator 2i∂∂̄

to (1.10) where α and f are local generating sections of Ω1
X/C and ω⊗2(−cusps)

corresponding to each other via (1.5). First we note that for any local generating

section α of Ω1
X/C, the admissibility of | |Ω1

X/C

implies that

2i∂∂̄ log |α|Ω1
X/C

= −2π(2gX − 2)µcan
X .

To prove the lemma, it remains to prove that

2i∂∂̄ log |f |2,Pet = −µH + 2πδc. (1.12)

Outside the cusps, this follows from the definition of log |f |2,Pet. Near a cusp c we

may write f in terms of the coordinate qc introduced in § II.1.2 as

f = a1qc + a2q
2
c + · · · with a1 6= 0,

This implies that (1.12) holds everywhere.
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III. Arakelov theory for modular curves

2. Intersection theory on arithmetic surfaces

In this section we give a very brief overview of the results that we need from Arakelov’s
intersection theory on arithmetic surfaces [2], as extended by Faltings [37]. Another

useful reference is Szpiro [106].

Let K be a number field. We write Kfin and Kinf for the sets of finite and infinite

places of K, respectively. For every place v of K we write Kv for the completion
of K at v. For every v ∈ Kinf , we choose an algebraic closure K̄v of Kv; this is (non-

canonically) isomorphic to C. We write B for the spectrum of the ring of integers

of K.
A metrised line bundle on B is a line bundle L on B together with a Hermitean

inner product 〈 , 〉v on the geometric fibre Lv of L at each infinite place v of K,

where we view Lv as a one-dimensional K̄v-vector space. We denote by | |v the
corresponding norm, defined by

|x|2v = 〈x, x〉v for x ∈ Lv.

The degree of a metrised line bundle (L, | |) is defined as

deg(L, | |) =
∑

v∈Kfin

ordv(s) log #kv +
∑

v∈Kinf

(− log |s|v)[Kv : R], (2.1)

where s is any non-zero rational section of L and ordv(s) is the order of vanishing

of s at v. This degree is well-defined by the product formula for the places of K.

An arithmetic surface over B is a proper flat morphism

π:X → B,

where X is a normal integral scheme of Krull dimension 2, such that the generic fibre

of π is geometrically connected. For each infinite place v of X, we let Xv denote the
compact connected Riemann surface X(K̄v). Any line bundle L on X gives rise to a

line bundle Lv on each of the Xv.

A metrised line bundle on X is a line bundle L on X together with a Hermitean
inner product on the line bundle Lv for each infinite place v of K. As above, we

denote by | |v the corresponding norm. If the genus of X is at least 1, an admissible

line bundle on X is a metrised line bundle (L, (| |v)v∈Kinf
) such that for each v ∈ Kinf

the metric | |v on Lv is admissible in the sense of § 1.1.
An Arakelov divisor on X is a formal linear combination

D = Dfin +
∑

v∈Kinf

avXv

where Dfin is a Cartier divisor on X and the av are real numbers; the Xv play the role

of “vertical prime divisors at infinity”. We say that an Arakelov divisor D is horizontal

if all the av are zero and every irreducible component of Dfin is flat over B. We say D
is vertical if Dfin is a linear combination of irreducible components of the fibres of X.

The principal Arakelov divisor associated to a non-zero rational function f on X is

div(f) = divfin(f) +
∑

v∈Kinf

av(f)Xv,
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2. Intersection theory on arithmetic surfaces

where divfin(f) denotes the usual (Cartier) divisor of f and where av(f) is defined for

f ∈ Kinf by

av(f) = −
∫

Xv

log |f |v µcan
Xv

.

Let D be an Arakelov divisor on X. We make OX(D) into a admissible line

bundle by equipping the pull-back of OX(D) to each Xv with the metric | |OXv (Dv)

defined by (1.3).

The Arakelov class group on X is the group Cl X of Arakelov divisors modulo
the subgroup of principal divisors. The Picard group of an arithmetic surface X is

the group PicX of isomorphism classes of admissible line bundles on X. There is

a canonical isomorphism between these groups via the map that sends an Arakelov
divisor D to the admissible line bundle OX(D).

The Arakelov intersection pairing is the unique symmetric bilinear map

( . ): Cl X × Cl X −→ R

with the following properties. If C and D are effective Cartier divisors without com-
mon components, then

(C . D) =
∑

x∈X

log #k(x)ix(C,D) −
∑

v∈Kinf

[Kv : R] · 2π grcanXv
(Cv,Dv),

where x ranges over the closed points of x, the residue field at x is denoted by k(x),

and ix is the local intersection number at x. If C is a horizontal Cartier divisor of

degree n over B, then (C . Xv) = n[Kv : R] for every infinite place v of K. Finally,

(Xv . Xw) = 0 for all infinite places v and w of K.
The definition of the intersection pairing implies that if S:B → X is a section

whose image is a Cartier divisor (also denoted by S), then

(S . D) = deg S∗OX(D) (2.2)

for any Arakelov divisor D on X.

To any line bundle L on X we associate a line bundle λπL on B, called the

determinant of cohomology of L. It is defined as

λπL = detπ∗L ⊗ (det R1π∗L)∨.

where the determinant of a coherent sheaf on B is defined using a resolution by locally

free sheaves of finite rank; see Moret-Bailly [106, exposé II, § 1.1]. The formation

of λπL is compatible with arbitrary base change on B. The line bundle λπ is made
into a metrised line bundle by equipping the fibre

(λπL)Kv
= det H0(Xv,LXv

) ⊗ det H1(Xv,LXv
)∨

for each infinite place of K with the metric given by Faltings’s axioms as in § 1.1.

From now on we assume that the morphism π:X → B is semi-stable. In this
case there exists a line bundle Ωπ called the relative dualising sheaf . On the open
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III. Arakelov theory for modular curves

subscheme of X where π is smooth, Ωπ coincides with the line bundle Ω1
π of relative

differential forms. In particular, we can equip it at the infinite places of K with the

canonical admissible metric defined in § 1.1.
Let S be a section of π such that the image of S lies in the regular part of X, so

that S is a Cartier divisor. Then we have the adjunction formula

(S . S) = −(S . Ωπ). (2.3)

The determinant of cohomology is compatible with the relative version of Serre

duality (see Hartshorne [42, III, § 11]). More precisely, if L is an admissible line bundle
on X, then the metrised line bundles λπL and λπ(L∨ ⊗ Ωπ) on B are canonically

isomorphic; see Moret-Bailly [106, exposé II, proposition 4.15.2]. Furthermore,

deg λπL = deg
[
det π∗L ⊗ det π∗Hom(L,Ωπ)

]
− log #(H1(X,L)tor),

where the line bundle detπ∗L⊗det π∗Hom(L,Ωπ) is metrised according to Faltings’s
axioms and H1(X,L)tor is the torsion submodule of H1(X,L).

If π:X → B is semi-stable, we have Faltings’s arithmetic Riemann–Roch formula

deg λπL =
1

2
(L . L ⊗ Ω∨

π ) + deg λπOX .

Definition. Let X be a curve over Q. Let K be a number field such that X has a

semi-stable model π:XZK
→ SpecZK over the ring of integers ZK of K. The Faltings

height of X is

hFaltings(X) =
1

[K : Q]
deg λπOXZK

;

this is independent of the choice of K and of the semi-stable model.

2.1. Heights

Let K be a number field. For every place v of K, let Kv denote the completion of K

at v, and let

| |v:Kv → [0,∞)

denote the absolute value corresponding to v, normalised so that multiplication by x
scales the Haar measure on Kv by a factor |x|v.

Let K be a number field, let x be an element of K̄, and let L ⊂ K̄ be any finite

extension of K containing x. The height of x (relative to K) is the real number
defined by

hK(x) =
1

[L : K]

∑

v

log max{1, |x|v},

where v runs over all (finite and infinite) places of L; this is independent of the choice

of L. More generally, for any point x = (x0 : x1 : . . . : xn) in some Pn(K̄), we define

hPn/K(x) =
1

[L : K]

∑

v

log max{|x0|v, . . . , |xn|v},

where L is any finite extension of K containing all the xi. This is well defined because

of the product formula for the places of K.
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2. Intersection theory on arithmetic surfaces

2.2. The Néron–Tate pairing and points of small height

Let A be an Abelian variety over a number field K, and let L be a symmetric ample
line bundle on A. The Néron–Tate height on A with respect to L is the real-valued

quadratic form hL
A/K on the Abelian group A(K̄) defined as follows. We choose an

integer m such that L⊗m is very ample and a K-basis (b0, . . . , br) of H0(A,L⊗m).

These choices define a projective embedding i:A(K̄) → Pr(K̄). Then the sequence

{n−2hPr/K(i(nx))}n≥1 converges as n → ∞, and the limit

hL
A/K(x) = m−1 lim

n→∞
n−2hPr/K(i(nx))

does not depend on the choice of m and (b0, . . . , br). The map

hL
A/K :A(K̄) → R

is a quadratic form. The associated symmetric bilinear form is called the Néron–Tate
pairing on A and is denoted by 〈 , 〉LA/K .

Let K be a number field, let B denote the spectrum of its ring of integers, and let

π:X → B be a regular and semi-stable arithmetic surface with fibres of genus g ≥ 2
whose generic fibre is smooth and geometrically connected. Let J be the Jacobian of

X over K. We write hNT
J and 〈 , 〉J for the Néron–Tate height and the Néron–Tate

pairing on J with respect to the ample line bundle OJ (Θ), where Θ is a symmetric
theta divisor. The basic relation between the Néron–Tate pairing and Arakelov theory

is the Faltings–Hriljac formula; see Faltings [37, Theorem 4(c)] or Moret-Bailly [106,

exposé II, théorème 6.15]. It says that if L and M are two admissible line bundles

of degree 0 and at least one of them has intersection number 0 with every irreducible
component of every fibre, then

(L . M) = −[K : Q]〈[LK ], [MK ]〉J ,

where the square brackets denote the point of the Jacobian corresponding to a line

bundle of degree 0.

We will later need the following fact due to Zhang [116, Theorem 5.6]: if D
is a divisor of degree 1 on XK such that [(2g − 2)D − ΩπK

] is a torsion point of

the Jacobian, then for every ǫ > 0 there are infinitely many points x ∈ X(K̄) such

that the Néron–Tate height (relative to the base field K) of the point [x − D] in the
Jacobian of X is less than Ω2

X/K,a/(2g − 2) + ǫ, where Ω2
X/K,a is the self-intersection

of the relative dualising sheaf of XK in the sense of Zhang [116]. A consequence of
this is the following generalisation.

Lemma 2.1. Let XK be a proper, smooth and geometrically connected curve of
genus g ≥ 2 over a number field K, let J be the Jacobian of XK , and let D be a

divisor of degree 1 on XK such that [(2g − 2)D − ΩXK/K ] is a torsion point of J .

Then for every positive integer d and every ǫ > 0 there exist infinitely many effective

divisors R of degree d on XK̄ such that

hNT
J/K([R − dD]) < d2

Ω2
X/K,a

2g − 2
+ ǫ.
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III. Arakelov theory for modular curves

Moreover, if L is a given line bundle of degree at most g − d − 1 without non-zero

global sections, there are infinitely many such R for which L(R) still does not have a

non-zero global section.

Proof . Consider an effective divisor R of degree d on XK̄ , and write

R = P1 + · · · + Pd (Pi ∈ X(K̄)).

The fact that hNT
J/K is a quadratic form taking non-negative values implies that

hNT
J/K([R − dD]) = hNT

J/K([P1 − D] + · · · + [Pd − D])

=

d∑

i=1

hNT
J/K([Pi − D]) +

∑

i6=j

〈[Pi − D], [Pj − D]〉

≤
d∑

i=1

hNT
J/K([Pi − D]) +

1

2

∑

i6=j

(
hNT

J/K([Pi − D]) + hNT
J/K([Pj − D])

)

= d

d∑

i=1

hNT
J/K([Pi − D]).

By Zhang’s theorem cited above, there are infinitely many ways to choose points Pi

on XK̄ such that

hNT
J/K([Pi − D]) <

Ω2
X/K,a

2g − 2
+ ǫ/d2.

This implies the first claim of the lemma. Now if L is a line bundle of degree at most
g − d − 1 without non-zero global sections, then

dim H1(Xk̄,L) = g − 1 − degL

by the Riemann–Roch formula. Via Serre duality, we see that there are infinitely

many ways to choose the Pi such that

dimk̄ H1(Xk̄,L(P1, . . . , Pi)) = g − 1 − degL − i for i = 0, 1, . . . , d.

For every such choice of the Pi, applying the Riemann–Roch formula again shows

that H0(Xk̄,L(P1, . . . , Pd)) = 0, which proves the second claim.

If XK is the generic fibre of a semi-stable arithmetic surface π:X → B, the

real number Ω2
X/K,a is related to the self-intersection (in the sense of Arakelov’s

intersection theory) of the dualising sheaf Ωπ of X over B via the formula

Ω2
X/K,a = (Ωπ . Ωπ) −

∑

v∈Kfin

rv log #k(v)

(see [116, Theorem 5.5]), where the rv (defined in [116, § 4]) are certain non-negative

real numbers that vanish for all finite places of K such that the corresponding fibre

of X is smooth.
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3. Bounds on analytic data for modular curves

3. Bounds on analytic data for modular curves

In this section we derive bounds on various analytic data associated to Riemann
surfaces that are compactifications of quotients of the hyperbolic plane by Fuchsian

groups Γ that are of finite index in a fixed cofinite Fuchsian group Γ0. Most impor-

tantly, in §§ 3.2–3.5 we derive bounds on canonical Green functions of such Riemann
surfaces. These bounds are stated in terms of those obtained in Sections II.4 and II.5.

Another result that is proved in this section and is used later is a bound on the

function HΓ defined by (1.9), which relates the difference between the admissible and
Petersson metrics on the line bundle of differentials by Lemma 1.1. Finally, in § 3.7 we

find an upper bound on a certain integral that is, roughly speaking, the average of the

logarithm of the norm of a given differential with respect to the canonical admissible

metric.

Remark . A different approach to the problem of bounding canonical Green functions

was taken by Jorgenson and Kramer in [51], who found an interesting expression for
the canonical Green function purely in terms of data associated with the hyperbolic

metric; see [51, Theorem 3.8] (we note that a minus sign is missing in the cited

theorem). All things considered, however, their methods appear to be more involved
than ours.

3.1. Notation

Let Γ0 be a cofinite Fuchsian group. For every cusp c of Γ0 we fix a real number ǫc > 0

such that the discs Bc(ǫc) of area ǫc around c, as defined in § II.1.2, are well-defined
and pairwise disjoint. We define a compact subset Y0 of Γ0\H by

Y0 = (Γ0\H) \
⊔

c

Bc(ǫc),

where c runs over the cusps of Γ0. Furthermore, we choose a real number δ > 1 such
that for all z, w ∈ H whose images in Γ0\H lie in Y0, the set

{γ ∈ Γ0 | γ is not elliptic and u(z, γw) ≤ δ}

contains at most one element. Finally, we fix a positive real number λ.

Let Γ be a subgroup of finite index in Γ0, and let X be the compactification
of Γ\H. We assume that X has genus gX ≥ 1, that Γ does not contain any elliptic

elements, and (as in § II.5.4) that the non-zero eigenvalues of the Laplace operator

on Γ\H are bounded from below by λ. For every cusp c of Γ, we denote by mc the
ramification index at c of the map from the compactification of Γ\H to that of Γ0\H.

We abbreviate

ǫc = mcǫc0 ,

where c0 is the cusp of Γ0 over which c lies. We write Y for the inverse image of Y0

in Γ\H; this is the complement of the discs Bc(ǫc), where c runs over the cusps of Γ.
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III. Arakelov theory for modular curves

3.2. Comparison between hyperbolic and canonical Green functions

There are two interesting Green functions associated to the Riemann surface X. First,
we have the Green function grΓ outside the diagonal on Γ\H × Γ\H given by the

structure of Γ\H as a quotient of the upper half-plane by a Fuchsian group. This

Green function has doubly logarithmic singularities near the cusps; this was made
precise in § II.3.6. Second, we have the canonical Green function grcanX outside the

diagonal on X × X, given by the structure of X as a compact Riemann surface of

genus at least 1. There is a standard way to relate these two Green functions, which
we will use to find explicit bounds on canonical Green functions.

Let µcan
X be the canonical (1, 1)-form on X as in § 1.1. We define a real-valued

function hΓ on Γ\H by

hΓ(z) =

∫

w∈Γ\H

grΓ(z, w)µcan
X (w)

=
1

gX

∫

w∈Γ\H

grΓ(z, w)FΓ(w)µH(w),

where FΓ is the function defined by (1.7). This integral converges since FΓ is smooth
and bounded on Γ\H.

By the definition of the Laplace operator ∆ and the Green function grΓ in §§ II.1.1

and II.3.6, respectively, the function hΓ satisfies

−∆hΓ =
1

gX

FΓ − 1

gX volΓ

∫

X

FΓµH

=
1

gX

FΓ − 1

volΓ
,

or equivalently

2i∂∂̄hΓ = µcan
X − 1

volΓ
µH,

on Γ\H. Furthermore, if c is a cusp of Γ and qc:H → (0,∞) is the function defined

in § II.1.2, then both hΓ(z) and grΓ(z, w) for fixed w have a singularity of the form
vol−1

Γ log yc(z) as yc(z) → ∞. This implies that the canonical Green function of X

can be expressed as

grcanX (z, w) = grΓ(z, w) − hΓ(z) − hΓ(w) +

∫

Γ\H

hΓµcan
X . (3.1)

We will use this expression to find bounds on grcanX .

3.3. Bounds on the function hΓ

We are going to bound the function hΓ on Y , uniformly in Γ, using the results of

§§ II.4.2, II.4.3, II.5.4 and II.5.5. For z ∈ Y , we decompose the integral defining hΓ(z)

as

hΓ(z) =
1

gX

∫

w∈Y

grΓ(z, w)FΓ(w)µH(w) +
1

gX

∑

c

∫

w∈Bc(ǫc)

grΓ(z, w)FΓ(w)µH(w),
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where c runs over the cusps of Γ. We have seen in Theorem II.5.4 that there is a real

number B not depending on Γ such that

grΓ(z, w) ≤ B for all z, w ∈ Y.

From this we get
∫

w∈Y

grΓ(z, w)FΓ(w)µH(w) ≤ B sup
Y

FΓ

∫

Y

µH.

We note that we obtained upper bounds on supY FΓ in § II.4.2.
For every cusp c, the results of §§ II.5.5 and II.4.3 show that furthermore

grΓ(z, w) ≤ 1

volΓ
log(ǫcyc(w)) + B for all z ∈ Y and w ∈ Bc(ǫc)

and

FΓ(w) ≤ (ǫcyc(w))2 exp(4π/ǫc − 4πyc(w)) sup
Y

FΓ for all w ∈ Bc(ǫc).

We recall that Bc(ǫc) is the image of the strip {x + iy | 0 ≤ x < 1 and y > 1/ǫ}
under the map H → Γ\H sending z to Γσcz. Using the above bounds and integrating
over Bc(w), we therefore get

∫

w∈Bc(ǫc)

grΓ(z, w)FΓ(w)µH(w) ≤ ǫ2c sup
Y

FΓ

·
∫ ∞

1/ǫc

( 1

volΓ
log(ǫcy) + B

)
exp(4π/ǫc − 4πy)dy

=
ǫ2c
4π

supY FΓ

volΓ

∫ ∞

0

log
(
1 +

ǫc

4π
u
)

exp(−u)du

+
ǫ2c
4π

B sup
Y

FΓ,

using the substitution

u = 4πy − 4π/ǫc.

The integral on the right-hand side can be bounded using Jensen’s inequality on

convex functions:
∫ ∞

0

log(1 + au) exp(−u)du ≤ log

∫ ∞

0

(1 + au) exp(−u)du

= log(Γ(1) + aΓ(2))

= log(1 + a).

(3.2)

This gives

∫

w∈Bc(ǫc)

grΓ(z, w)FΓ(w)µH(w) ≤ ǫ2c
4π

sup
Y

FΓ

( 1

volΓ
log

(
1 +

ǫc

4π

)
+ B

)
.
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Summing the contributions from Y and from the discs around the cusps, we get the

upper bound

sup
Y

hΓ ≤ supY FΓ

gX

(
B

∫

Y

µH +
∑

c

ǫ2c
4π

( 1

volΓ
log

(
1 +

ǫc

4π

)
+ B

))
. (3.3)

For the lower bound, we do a computation that is identical except that by Theo-
rem II.5.4 we get an extra (negative) term

S(z) =
1

gX

∫

w∈Γ\H
d(z,w)≤δ

(k1(δ) − k1(d(z, w)))FΓ(w)µH(w),

where

k1(u) =
1

4π
log

u + 1

u − 1
.

This term can be bounded as

S(z) ≥ supX FΓ

gX

∫

d(z,w)≤δ

(k1(δ) − k1(d(z, w)))µH(w);

we note that an upper bound for supX FΓ is given by Lemma II.4.1. The integral can

be evaluated as follows:

∫

w∈Γ\H
d(z,w)≤δ

(k1(δ) − k1(d(z, w)))µH(w) = 2π(δ − 1)k1(δ) − 2π

∫ δ

1

k1(u)du

= − log
δ + 1

2
.

This gives the lower bound

inf
Y

hΓ ≥ supY FΓ

gX

(
A

∫

Y

µH +
∑

c

ǫ2c
4π

( 1

volΓ
log

(
1 +

ǫc

4π

)
+ A

))

− supX FΓ

gX

log
δ + 1

2
.

(3.4)

We now extend our bounds on hΓ to the discs Bc(ǫc). By construction, hΓ satisfies

the differential equation

2i∂∂̄hΓ = µcan
X − 1

volΓ
µH.

This implies that hΓ can be written on Bc(ǫc) as

hΓ(z) =

∫

w∈Bc(ǫc)

grB̄c(ǫc)(z, w)µcan
X (w) +

1

volΓ
log(ǫcyc(z)) + H(z),
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where grB̄c(ǫc) is the Green function on the closed disc B̄c(ǫc) as defined at the end of

§ II.5.5, and where H is the unique harmonic function on the compactification B̄c(ǫc)

that is equal to hΓ on the boundary. It follows from the non-positivity of grB̄c(ǫc) and

the maximum principle for harmonic functions that

hΓ(z) ≤ 1

volΓ
log(ǫcyc(z)) + sup

∂B̄c(ǫc)

hΓ for all z ∈ Bc(ǫc). (3.5)

Similarly, it follows from the bound for FΓ given in § II.4.3 and the differential equation

satisfied by grB̄c(ǫc) in § II.5.5 that

∫

w∈Bc(ǫc)

grB̄c(ǫc)(z, w)µcan
X (w) ≥ supY FΓ

gX

ǫ2c exp(4π/ǫc)

·
∫

w∈Bc(ǫc)

grB̄c(ǫc)(z, w)yc(w)2 exp(−4πyc(w))µH(w)

=
supY FΓ

gX

ǫ2c exp(4π/ǫc)

· 1

(4π)2
(
exp(−4πyc(z)) − exp(−4π/ǫc)

)

= − supY FΓ

gX

( ǫc

4π

)2(
1 − exp(4π/ǫc − 4πyc(z))

)

≥ − supY FΓ

gX

( ǫc

4π

)2

.

(3.6)

Therefore a lower bound is given by

hΓ(z) ≥ inf
∂B̄c(ǫc)

hΓ − supY FΓ

gX

( ǫc

4π

)2

+
1

volΓ
log(ǫcyc(z)) for all z ∈ B̄c(ǫc). (3.7)

3.4. Bounds on the integral
∫
Γ\H hΓµcan

X

We are now going to bound the constant term in (3.1), which we split up as

∫

Γ\H

hΓµcan
X =

∫

Y

hΓµcan
X +

∑

c

∫

Bc(ǫc)

hΓµcan
X .

Plugging in the upper bound (3.5), we obtain

∫

Γ\H

hΓµcan
X ≤ sup

Y
hΓ

∫

Y

µcan
X +

∑

c

∫

Bc(ǫc)

(
sup

∂B̄c(mcǫ)

hΓ +
1

volΓ
log(ǫcyc)

)
µcan

X .

Next we use the fact that
∫

X
µcan

X = 1, the equation (1.8), which relates µcan to µH

via the function FΓ, and the bounds

FΓ(z) ≤
{

supY FΓ if z ∈ Y ;

(ǫcyc(z))2 exp(4π/ǫc − 4πyc(z)) supY FΓ if z ∈ Bc(ǫc)
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proved in §§ II.4.2 and II.4.3. This gives

∫

Γ\H

hΓµcan
X ≤ supY FΓ

gX volΓ

∑

c

∫

Bc(ǫc)

log(ǫcyc)(ǫcyc)
2 exp(4π/ǫc − 4πyc)µH + sup

Y
hΓ.

The integral over Bc(ǫc) can be bounded as follows:

∫

Bc(ǫc)

log(ǫcyc)(ǫcyc)
2 exp(4π/ǫc − 4πyc)µH = ǫ2c

∫ ∞

1/ǫc

log(ǫcy) exp(4π/ǫc − 4πy)dy

=
ǫ2c
4π

∫ ∞

0

log
(
1 +

ǫc

4π
u
)

exp(−u)du

≤ ǫ2c
4π

log
(
1 +

ǫc

4π

)
,

where the last inequality follows from (3.2). We therefore get

∫

Γ\H

hΓµcan
X ≤ sup

Y
hΓ +

supY FΓ

gX volΓ

∑

c

ǫ2c
4π

log
(
1 +

ǫc

4π

)
.

Finally, plugging in the upper bound (3.3) for hΓ, we conclude that

∫

Γ\H

hΓµcan
X ≤ supY FΓ

gX

(
B

∫

Y

µH +
∑

c

ǫ2c
4π

( 1

volΓ
log

(
1 +

ǫc

4π

)
+ B

))

+
supY FΓ

gX volΓ

∑

c

ǫ2c
4π

log
(
1 +

ǫc

4π

)
.

(3.8)

An entirely analogous computation using (3.7) and (3.4) leads to the lower bound

∫

Γ\H

hΓµcan
X ≥ supY FΓ

gX

(
A

∫

Y

µH +
∑

c

ǫ2c
4π

( 1

volΓ
log

(
1 +

ǫc

4π

)
+ A

))

−
( supY FΓ

gX

)2 ∑

c

ǫ4c
(4π)3

− supX FΓ

gX

log
δ + 1

2
.

(3.9)

3.5. Bounds on canonical Green functions

From (3.1), the upper bound for grΓ from Theorem II.5.4, the lower bound for hΓ

given by (3.4) and the bound (3.8), we can now conclude that

sup
Y ×Y

grcanX ≤ B + min{0, k1(δ) − k1(d(z, w))}

− 2 supY FΓ

gX

(
A

∫

Y

µH +
∑

c

ǫ2c
4π

( 1

volΓ
log

(
1 +

ǫc

4π

)
+ A

))

+
supY FΓ

gX

(
B

∫

Y

µH +
∑

c

ǫ2c
4π

( 1

volΓ
log

(
1 +

ǫc

4π

)
+ B

))

+
supY FΓ

gX volΓ

∑

c

ǫ2c
4π

log
(
1 +

ǫc

4π

)
+ 2

supX FΓ

gX

log
δ + 1

2
.

88



3. Bounds on analytic data for modular curves

Simplifying this, we obtain

sup
Y ×Y

grcanX ≤ B + min{0, k1(δ) − k1(d(z, w))}

+
(B − 2A) supY FΓ

gX

(∫

Y

µH +
∑

c

ǫ2c
4π

)
+ 2

supX FΓ

gX

log
δ + 1

2
.

(3.10)
Similarly, combining the lower bound for grΓ from Theorem II.5.4 with the inequalities

(3.3) and (3.9) leads to the following bound for all z, w ∈ Y :

grcanX (z, w) ≥ A + min{0, k1(δ) − k1(d(z, w))}

+
(A − 2B) supY FΓ

gX

(∫

Y

µH +
∑

c

ǫ2c
4π

)

− supY FΓ

gX volΓ

∑

c

ǫ2c
4π

log
(
1 +

ǫc

4π

)

−
( supY FΓ

gX

)2 ∑

c

ǫ4c
(4π)3

− supX FΓ

gX

log
δ + 1

2

(3.11)

We now imitate § II.5.5 to extend the above bounds on the canonical Green

function grcanX (x, y) to the case where one or both of x and y lies in a neighbourhood

of a cusp c of Γ. For any y not in the disc Bc(ǫc), we consider grcanX (x, y) as a function
of x ∈ Bc(ǫc). This function satisfies

2i∂∂̄ grcanX (x, y) = −µcan
X (x),

so we can write

grcanX (x, y) = −
∫

z∈Bc(ǫc)

grB̄c(ǫc)(x, z)µcan
X (x) + hy(x) for all x ∈ Bc(ǫc),

where grB̄c(ǫc) is the Green function on the disc B̄c(ǫc) as defined in § II.5.5. By

construction, the function hy(x) coincides with grcanX (x, y) for x on the boundary

of B̄c(ǫc). The inequality (3.6) now implies that

grcanX (x, y) ≤ supY FΓ

gX

( ǫc

4π

)2

+ sup
z∈Y

grcanX (z, y) for all x ∈ B̄c(ǫc), y 6∈ B̄c(ǫc).

Finally, considering the case where x and y are both in a disc Bc(ǫc), we get

grcanX (x, y) ≤ grB̄c(ǫc)(x, y) +
2 supY FΓ

gX

( ǫc

4π

)2

+ sup
Y ×Y

grcanX (3.12)

for all x, y ∈ B̄c(ǫc).
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3.6. A lower bound for the function HΓ

Now that we have a lower bound for grcanX , we can deduce a lower bound for the

function HΓ defined by (1.9). Namely, it follows immediately from (1.9) and (3.11)
that

inf
Y

HΓ ≥ A + k1(δ) +
(A − 2B) supY FΓ

gX

(∫

Y

µH +
∑

c

ǫ2c
4π

)

− supY FΓ

gX volΓ

∑

c

ǫ2c
4π

log
(
1 +

ǫc

4π

)
−

( supY FΓ

gX

)2 ∑

c

ǫ4c
(4π)3

− supX FΓ

gX

log
δ + 1

2
.

(3.13)

We extend this to the cusps using the differential equation

2i∂∂̄HΓ = (2gX − 2)µcan
X − 1

2π
µH +

∑

c cusp

δc.

proved in Lemma 1.1. This differential equation implies that

HΓ(z) = (2gX − 2)

∫

w∈Bc(ǫc)

grB̄c(ǫc)(z, w)µcan
X (w) +

1

2π
log(ǫcyc(z)) +

1

ǫc

− yc(z) + h(z)

for z ∈ Bc(ǫc), where h is the unique harmonic function on B̄c(ǫc) that coincides

with HΓ on the boundary of B̄c(ǫc). By (3.6) and the minimum principle for harmonic
functions, we get

HΓ(z) ≥ −(2gX − 2)
supY FΓ

gX

( ǫc

4π

)2

+
1

2π
log(ǫcyc(z)) +

1

ǫc

− yc(z) + inf
Y

HΓ (3.14)

for all z ∈ Bc(ǫc).

3.7. An upper bound for the integral
∫

X
log |α|Ω1

X/C

µcan
X

Let α be a non-zero element of H0(X,Ω1
X/C). We are interested in an upper bound

for the integral

I(α) =

∫

X

log |α|Ω1
X/C

µcan
X

in terms of the norm

〈α, α〉 =
i

2

∫

X

α ∧ ᾱ.

Let f be the element of S2(Γ) corresponding to α via the isomorphism (1.6). We

rewrite I(α) using Lemma 1.1 as

I(α) =

∫

X

log |f |2,Petµ
can
X + log 2 − 2π

∫

X

HΓµcan
X . (3.15)

90



3. Bounds on analytic data for modular curves

Jensen’s inequality implies that
∫

Γ\H

log
(
|f |22,Pet

)
µcan

X ≤ log

∫

Γ\H

|f |22,Petµ
can
X .

From (1.8) we now get
∫

Γ\H

|f |22,Petµ
can
X ≤ supX FΓ

gX

∫

Γ\H

|f |22,PetµH

=
supX FΓ

gX

〈f, f〉Γ

=
supX FΓ

gX

〈α, α〉.

(3.16)

Furthermore, the bound (3.14) implies
∫

X

HΓµcan
X ≥

∫

Y

(inf
Y

HΓ)µcan
X +

∑

c

∫

Bc(ǫc)

(
inf
Y

HΓ − (2gX − 2)
supY FΓ

gX

( ǫc

4π

)2

+
1

2π
log(ǫcyc(z)) +

1

ǫc

− yc(z)
)
µcan

X

≥ inf
Y

HΓ −
∑

c

∫

Bc(ǫc)

(
(2gX − 2)

supY FΓ

gX

ǫ2c
(4π)2

− 1

2π
log(ǫcyc) −

1

ǫc

+ yc

)
µcan

X

≥ inf
Y

HΓ −
∑

c

∫

Bc(ǫc)

(
(2gX − 2)

supY FΓ

gX

ǫ2c
(4π)2

− 1

ǫc

+ yc

)
µcan

X

= inf
Y

HΓ −
∑

c

(
(2gX − 2)

supY FΓ

gX

ǫ2c
(4π)2

∫

Bc(ǫc)

µcan
X

+

∫

Bc(ǫc)

(
yc −

1

ǫc

)
µcan

X

)
.

The integrals can be bounded as follows:
∫

Bc(ǫc)

µcan
X =

1

gX

∫

Bc(ǫc)

FΓµH

≤ supY FΓ

gX

ǫ2c

∫ ∞

1/ǫc

exp(4π/ǫc − 4πy)dy

=
supY FΓ

gX

ǫ2c
4π

and similarly
∫

Bc(ǫc)

(
yc −

1

ǫc

)
µcan

X =
1

gX

∫

Bc(ǫc)

(
yc −

1

ǫc

)
FΓµH

≤ supY FΓ

gX

ǫ2c

∫ ∞

1/ǫc

(
y − 1

ǫc

)
exp(4π/ǫc − 4πy)dy

=
supY FΓ

gX

ǫ2c
(4π)2

.
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This gives

∫

X

HΓµcan ≥ inf
Y

HΓ −
∑

c

(
(2gX − 2)

( supY FΓ

gX

)2 ǫ4c
(4π)3

+
supY FΓ

gX

ǫ2c
(4π)2

)

= inf
Y

HΓ − (2gX − 2)
( supY FΓ

gX

)2 ∑

c

ǫ4c
(4π)3

− supY FΓ

gX

∑

c

ǫ2c
(4π)2

.

(3.17)

From (3.15), (3.16), (3.17) and (3.13), we now get the desired upper bound for I(α).

Because the resulting formula is not very enlightening, we do not write it down.

4. Intersection theory at the finite places

Let R be a complete discrete valuation ring with field of fractions K and algebraically

closed residue field k. Let X be a proper, smooth and geometrically connected curve

over K. To X there is attached a graph GX describing the system of all regular and
semi-stable models of X over finite extensions of R. This GX will be a metrised graph,

as will be defined below. In the spirit of Zhang [116], we will describe the relevance

of such graphs for arithmetic intersection theory.

4.1. Metrised graphs

We first make precise what we mean by piecewise smooth functions. We then define

metrised graphs in essentially the same way as Zhang [116, Appendix], and we define

the Laplace operator and the corresponding Green function on a metrised graph.

By an interval we mean a subset of R of the form {x ∈ R | a ≤ x ≤ b}, where

a < b are real numbers. Let I ⊂ R be an interval, and let f : I → R be a continuous

function. Then f is called piecewise linear (resp. piecewise smooth) if I can be written

as a finite union of intervals I1, . . . , Ik such that the restriction of f to each Ik is
linear (resp. infinitely continuously differentiable). Here “differentiable” means “left

(resp. right) differentiable” at the endpoints.

Definition. A metrised graph is a topological space G with a measure µ such that

G is isomorphic to a quotient of a finite disjoint union of intervals I1, . . . , In by some
equivalence relation on the set of endpoints, and such that µ is induced from the

Lebesgue measure on the Ik.

If G is a metrised graph given as a quotient

q: I1 ⊔ . . . ⊔ In → G

by an equivalence relation on the endpoints, the continuous functions G → R are (by

definition of the quotient) the continuous functions on I1 ⊔ . . . ⊔ In that respect the

equivalence relation. The R-vector space of piecewise linear functions on G, denoted
by PL(G), is the space of continuous functions f :G → R such that the restriction
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of f to each Ik is piecewise linear. The R-vector space PS(G) of piecewise smooth

functions is defined analogously.

By construction, a metrised graph G has a natural measure µ. We write volG for
the volume of G with respect to µ. Furthermore, we have the Laplace operator

∆:PS(G) → PS(G)∨.

This is an R-linear map which is positive semi-definite in the sense that

(∆f)(f) ≥ 0 for all f ∈ PS(G);

the kernel of ∆ consists of the locally constant functions. For the definition we refer

to Zhang [116, Appendix].
From now on we assume for simplicity that G is connected. The Green function

for the Laplace operator on G is the unique continuous function

grG:G × G → R

that is symmetric, piecewise smooth in both variables, and satisfies the differential
equation

−∆grG(p, q) = δq −
1

volGX

µ and

∫

p∈G

grG(p, q)µ(p) = 0 for all q ∈ G.

(In keeping with our convention for the other Green functions employed in this thesis,
our Green function is minus that of Zhang.) We also define

gq,r:G → R

p 7→ grG(p, q) − grG(p, r).

Then gq,r is the unique function satisfying

−∆gq,r = δq − δr and

∫

p∈G

gq,r(p)µ(p) = 0 for all q, r ∈ G.

By viewing G as a one-dimensional object made of electrically conducting material

and gq,r as the potential function corresponding to point charges +1 and −1 at q
and r, we see that

sup
G

gq,r − inf
G

gq,r = gq,r(r) − gq,r(q)

≤ d(q, r),

where d is the distance between q and r. Since infG gq,r ≤ 0, we get

sup
p,q,r∈G

(
grG(p, q) − grG(p, r)

)
= sup

p,q,r∈G
gq,r(p)

≤ diam(G),

where diam(G) denotes the diameter of G.
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4.2. Reduction graphs

Let R be a complete discrete valuation ring with field of fractions K and algebraically

closed residue field k. Let X be a proper, smooth and geometrically connected curve

over K. We associate to X a metrised graph GX in the following way. By the
semi-stable reduction theorem [22], there exists a finite extension K ′ of K such that

X ×Spec K SpecK ′ has a regular and semi-stable model XR′ over the integral closure

R′ of R in K ′. We can identify the residue field of R′ with k, and we write e(K ′/K)

for the ramification index of K ′ over K. Furthermore, we write

X̃K′ = XR′ ×Spec R′ Spec k,

and we let V (X̃K′) denote the set of irreducible components of X̃K′ . We take a set of
intervals of length 1/e(K ′/K) in R indexed by the set of singular points of X̃K′(k),

and we label the endpoints of the interval corresponding to a singular point x by

the two irreducible components on which x lies; these are possibly equal. For each

C ∈ V (X̃K′) we identify the set of endpoints labelled C. The result is by definition a
metrised graph G(X̃K′). We may identify V (X̃K′) with a finite subset of G(X̃K′). If

K ⊆ K ′ ⊆ K ′′ are finite extensions such that X has semi-stable reduction over K ′,

and if X̃K′ and X̃K′′ are the corresponding regular and semi-stable models, then there
is a canonical isomorphism

G(X̃K′) ∼= G(X̃K′′)

of metrised graphs. We may therefore denote the graph by GX , the choice of an
extension K ′ of K being understood. We call GX the reduction graph of X.

We define a non-negative real number γ(X) as

γ(X) = sup
x,y,z∈GX

(
grGX

(x, y) − grGX
(x, z)

)
,

where grGX
is the Green function of the metrised graph GX . It follows from the

results of § 4.1 that

γ(X) ≤ diam(GX).

For any finite extension K ′ of K over which X has semi-stable reduction, we
define the finite dimensional R-vector space

D(X̃K′) = RV (X̃K′ )

of formal R-linear combinations of the irreducible components of the special fibre.

The intersection pairing between irreducible components gives rise to an R-linear

map
M :D(X̃K′) −→ D(X̃K′)

∑

C

aCC 7−→
∑

C

(∑

C′

(C . C ′)aC′

)
C.

Lemma 4.1. Consider an element w ∈ D(X̃K′) of the form

w =
∑

C∈V (X̃K′ )

bCC with
∑

C∈V (X̃K′ )

bC = 0.
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Then there is an element

v =
∑

C∈V (X̃K′ )

aCC ∈ D(X̃K′)

such that

Mv = w.

This v is unique up to addition of a multiple of
∑

C C. For any v as above the

inequality

max
C

aC − min
C

aC ≤ 2e(K ′/K)γ(X)
∑

C′: bC′>0

bC′

holds for all C ∈ V (X̃K′).

Proof . The existence of v and its uniqueness up to addition of multiples of
∑

C C

follow from the symmetry of the matrix M and the fact that the kernel of M is
spanned by

∑
C C. For the bound on the aC , we use the inclusion

i:D(X̃K′)  PS(GX)

sending an element
∑

C∈V (X̃K′ ) aCC ∈ D(X̃K′) to the unique continuous function

that takes the value aC at C for every C ∈ V (X̃K′) and is linear outside V (X̃K′).
There is a second inclusion

j:D(X̃K′)  PS(GX)∨

∑

C

aCC 7→
∑

C

aCδC ,

where δC is the Dirac δ-distribution at C, defined by

δC(f) = f(C).

The above maps fit in a commutative diagram

D(X̃K′)
i−→ PS(GX)

−e(K′/K)M
y y∆

D(X̃K′)
j−→ PS(GX)∨.

This can be seen by means of a straightforward calculation going along the same lines

as Zhang [116, (a.5)]. The assumption that
∑

C′ bC′ = 0 implies that one solution v
of Mv = w is given by

v =
∑

C∈V (XK′ )

aCC,

where
aC = e(K ′/K)

∑

C′∈V (XK′ )

bC′ grGX
(C,C ′).

95



III. Arakelov theory for modular curves

In particular, this implies

|aC | ≤ e(K ′/K)
∑

C′: bC′>0

bC′ sup
GX

grGX
(C, ) +

∑

C′: bC′<0

bC′ inf
GX

grGX
(C, )

= e(K ′/K)
∑

C′: bC′>0

bC′

(
sup
GX

grGX
(C, ) − inf

GX

grGX
(C, )

)

≤ e(K ′/K)γ(X)
∑

C′: bC′>0

bC′ .

The proposition follows since maxC aC−minC aC is independent of the choice of v.

5. Bounds on some Arakelov-theoretic invariants of

modular curves

For every positive integer n, let X1(n) denote the coarse moduli space for the modular

stack MΓ1(n) over SpecZ defined in § I.1.1. We only consider n such that that the

fibres of X1(n) are of genus at least 1. In this section we will find bounds on certain
Arakelov invariants of the arithmetic surface X1(n).

5.1. Self-intersection of the relative dualising sheaf

We consider the map

T : SpecZ[[q]] → X1(n)

corresponding to the Tate curve Tate(qn) over SpecZ[[q]] together with the n-torsion

point q modulo qn, as defined in § I.2.4. The zero locus of q gives a section

O: SpecZ → X1(n).

Although X1(n) is not semi-stable, the image of O lies in the open subset where the

morphism X1(n) → SpecZ is smooth and has reduced fibres, so in this open subset

the relative dualising sheaf exists and coincides with the line bundle of differentials.

This means that O∗ΩX1(n)/Z is a metrised line bundle on SpecZ. To find an upper
bound for its degree, we use the fact that T is unramified, so that

T ∗ΩX1(n)/Z
∼= Ω1

Z[[q]]/Z

= Z[[q]]dq.

This implies that O∗ΩX1(n)/Z is a free Z-module of rank 1 generated by dq. We

deduce from (2.2), (2.1) and (1.4) that

deg O∗ΩX1(n)/Z = − log |dqO|Ω1
X1(n)/C

(O)

= lim
z→O

(
2π grcanX1(n)(C)(z,O) − log |qO(z)|

)
,

where qO is the standard coordinate around the cusp O.
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5. Bounds on some Arakelov-theoretic invariants of modular curves

We choose a real number ǫ ∈ (0, 1), and we write B∞(ǫ) for the standard disc

of area ǫ around the unique cusp ∞ of SL2(Z)\H as in § II.1.2, and we define Y0 as

the complement of B∞(ǫ) in SL2(Z)\H. Furthermore, we define a compact subset Y
of X1(n)(C) as the inverse image of Y0 under the map Γ1(n)\H → SL2(Z)\H. Then

the complement of Y is the disjoint union of the discs Bc(ǫc), where c runs over the

cusps of Γ1(n) and ǫc is ǫ times the the ramification index at c. In particular, the fact
that the ramification index at O equals n implies that ǫO = nǫ. By (3.12) and the

explicit formula for grB̄O(ǫO) given in § II.5.5, we therefore have

deg O∗ΩX1(n)/Z ≤ lim
z→O

(
2π grB̄O(nǫ)(z,O) − log |qO(z)|

)
+

supY FΓ

gX1(n)

n2ǫ2

4π

+ 2π sup
Y ×Y

grcanX1(n)(C)

=
2π

nǫ
+

supY FΓ

gX1(n)

n2ǫ2

4π
+ 2π sup

Y ×Y
grcanX1(n)(C) .

We now consider a number field K such that X1(n) has a semi-stable model X
over SpecZK , where ZK is the ring of integers of K. We abbreviate

Ω2
X1(n)/Z =

1

[K : Q]
(ΩX/ZK

. ΩX/ZK
)X ;

this does not depend on the choice of K. It follows from the Hodge index theorem
for Arakelov’s intersection pairing that

Ω2
X1(n)/Z ≤ 4gX1(n)(gX1(n) − 1) deg O∗ΩX1(n)/Z;

see Faltings [37, Theorem 5]. This also gives us an upper bound for Ω2
X1(n)/Q,a, the

self-intersection of the relative dualising sheaf in the sense of Zhang, via the inequality

Ω2
X1(n)/Q,a ≤ Ω2

X1(n)/Z

from § 2.2.

5.2. Bounds on Green functions on reduction graphs of modular curves

We fix a positive integer a. We consider integers n of the form ab, where b is a

squarefree positive integer coprime to a.
Let p be a prime number, let W(Fp) be the ring of Witt vectors of Fp, and let

Wp = W(Fp)[1/p] be its field of fractions. We will study how γ(X1(n)Wp
) varies as a

function of n. We distinguish several cases, depending on how often p divides n.
First we assume p ∤ n. Then X1(n) has a smooth model over W(Fp), so we get

γ(X1(n)Wp
) = 0.

Next we assume p divides n exactly once and that n/p ≥ 5. Then X1(n) has a regular
and semi-stable model over the tame extension W(Fp)[ζp] of degree p − 1 of W(Fp),
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III. Arakelov theory for modular curves

and the special fibre is the union of two smooth curves intersecting transversally in m

points for some positive integer m; see Katz and Mazur [53, Theorem 13.11.4]. This

implies that the reduction graph of X1(n)Wp
consists of two vertices connected by

m edges of length 1/(p − 1), so the observation in § 4.2 that γ(X1(n)Wp
) is bounded

above by the diameter of the reduction graph implies that

γ(X1(n)Wp
) ≤ 1

p − 1
.

Remark . In fact, one can explicitly compute the Green function of the reduction

graph and thereby show that

γ(X1(n)Wp
) =

1

4(p − 1)
.

We continue with the case where p divides n exactly once and n/p ≤ 4. The

assumption that X1(n) has genus at least 1 implies that we have the following possi-
bilities:

(1) n = p ≥ 11;

(2) n = 2p and p ≥ 7;

(3) n = 3p and p ≥ 5;

(4) n = 4p and p ≥ 5.

As before, X1(n) has a semi-stable model over W(Fp)[ζp] consisting of two smooth

curves intersecting transversally in a finite number of points. This model is, however,

not necessarily regular, since certain supersingular points in the special fibre of X1(n)
over W(Fp) correspond to objects with extra automorphisms. These are supersingular

elliptic curves over Fp with j-invariant 0 (in which case p ≡ 2 mod 3) or 1728 (in

which case p ≡ 3 mod 4), together with a torsion point of order n/p. Let x be
such a non-regular supersingular point, and let G be the automorphism group of the

corresponding object. Then G is cyclic of order g, where the possibilities for g are

given by the table below.

n = p n = 2p n = 3p n = 4p

j ≡ 0 mod p and p ≡ 2 mod 3 6 2 1 or 3 1

j ≡ 1728 mod p and p ≡ 3 mod 4 4 2 or 4 1 1

We choose a moduli problem P on elliptic curves over W(Fp) that is representable,
finite étale and Galois with group G. Then we have a finite surjective morphism

X(P; Γ1(n)) → X1(n),

where X(P; Γ1(n)) is the fine moduli scheme classifying elliptic curves together with
a P-structure and Γ1(n)-structure. This is a regular two-dimensional W(Fp)-scheme.

For any point x as above, we choose a point x̃ mapping to x. Let Gx̃ denote the

stabiliser of x̃ in G, and let Ôx and Ôx̃ denote the complete local rings of X1(n)

and X(P; Γ1(n)) at x and x̃, respectively. Then Ôx can be identified with the ring of

Gx̃-invariants in Ôx̃. We apply the following algebraic result to this situation.
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5. Bounds on some Arakelov-theoretic invariants of modular curves

Lemma 5.1 (Edixhoven and A. J. de Jong; see de Jong [19, Lemma 4.3]). Let R be

a complete local Noetherian domain, and let A be an R-algebra. Let H be a finite

subgroup of AutR A, and let AH denote the R-algebra of A-invariants.

(1) If A ∼= R[[u]], then AH ∼= R[[x]].

(2) If A ∼= R[[u, v]]/(uv − f) for some f in the maximal ideal of R, then AH is

isomorphic to R[[x]] or to R[[x, y]]/(xy − f#H).

The regularity of the complete local W(Fp)[ζp]-algebra Ôx̃ implies that it is

isomorphic to W(Fp)[ζp][[u, v]]/(uv−π) for some uniformiser π of W(Fp)[ζp]. Taking
Gx̃-invariants, we see that

Ôx
∼= W(Fp)[ζp][[x, y]]/(xy − π#Gx).

This implies that in passing from the semi-stable model of X1(n) over W(Fp)[ζp] to

its minimal regular model, the point x is replaced by a chain of e− 1 projective lines,
where e ≤ 6. From this it follows that the diameter of the reduction graph is at most

6/(p − 1), so we conclude

γ(X1(n)Wp
) ≤ 6

p − 1
.

Next we treat the general situation where n = pam with a ≥ 2 and m ≥ 5

not divisible by p. In this case X1(n) still has a model over the discrete valuation

ring W(Fp)[ζp] whose special fibre consists of a+1 smooth and irreducible components;

see Katz and Mazur [53, Theorem 13.11.4]. We denote this model by X1(n)W(Fp)[ζp].

However, the special fibre X1(n)Fp
of X1(n)W(Fp)[ζp] is not semi-stable. We choose a

finite extension R of W(Fp)[ζp] over which X1(n) acquires semi-stable reduction. We
consider the minimal resolution

π: X̃1(n)R → X1(n)W(Fp)[ζp] ⊗Spec W(Fp)[ζp] SpecR.

Then X̃1(n)R is a regular model of X1(n) whose special fibre X̃1(n)Fp
is semi-stable,

and π induces a morphism

πFp
: X̃1(n)Fp

→ X1(n)Fp
.

We write Gn for the reduction graph of X1(n) over W(Fp) as defined in § 4.2. For

every singular point x of X1(n)Fp
, we write Hx for the union of the edges in Gn

corresponding to singular points x̃ ∈ X̃1(n)Fp
with πFp

x̃ = x. For every irreducible

component I of X, we write Ĩ for the unique irreducible component of X̃ that maps

isomorphically to I under πFp
. We let T denote the finite subset of Gn consisting of

the points that correspond to one of the Ĩ. Then Gn is the union of the Hx, with x

running over the singular points of X1(n)Fp
, and the intersection of any two distinct

Hx equals T . For every singular point x of X1(n)Fp
, we define

dx = max
I∈T

max
g∈Hx

(distance between I and g).
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III. Arakelov theory for modular curves

If g and h are two points of Gn lying on Hx and Hy, respectively, there is a path of

length at most dx from g to any I ∈ T , and there is a path of length at most dy from

I to h. This implies that
diam(Gn) ≤ 2max

x
dx.

Now let m and m′ be positive integers with m | m′, m ≥ 5 and p ∤ m′, and write

n = pam and n′ = pam′. Let x be a singular point of X1(n)Fp
, and let x′ be a point

of X1(n
′)Fp

mapping to x under the map

bn′,n
1 : X1(n

′) → X1(n).

The map bn′,n
1 is étale at x′, so the subgraphs Hx′ of G′

n and Hx of Gn are isometric.

This implies that
max

x
dx = max

x′
dx′ ,

where x and x′ run over the singular points of X1(n)Fp
and X1(n

′)Fp
, respectively.

We conclude that the diameter of GX1(pam) is bounded for all m such that m ≥ 5 and

p ∤ n by a real number c(pa) that does not depend on m.
Finally, for m ≤ 4, the same reasoning as that used above for the case a = 1

implies that the diameter of GX1(n) is bounded by 6c(pa).
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Chapter IV

Computational tools

In this chapter we describe the computational techniques that will be used in the next

chapter to compute modular Galois representations.

Most of the chapter is taken up by a “toolbox” for computing with divisors on

curves over (finite) fields. Roughly speaking, we describe and extend the methods of

Khuri-Makdisi for computing with projective curves, and we show that certain results
of Couveignes [16] and Diem [27] can be transferred to this setting. The remainder

of the chapter is devoted to some computational questions related to finite F-vector

space schemes over Q and to finite-dimensional F-linear representations of Gal(Q/Q),
where F is a finite field.

Many of the algorithms we describe are probabilistic. All of these are of the Las

Vegas type. This means that the running time depends on random data generated

during the execution of the algorithm, but that the outcome is guaranteed to be
correct. The epithet Las Vegas distinguishes such algorithms from those of the Monte

Carlo type, in which the randomness influences the correctness of the outcome instead

of the running time.

1. Algorithms for computing with finite algebras

In this section, we describe some techniques for solving two computational problems

about finite algebras over a field. The first is how to find the primary decomposition

of such an algebra; the second is how to reconstruct such an algebra from a certain

kind of bilinear map between modules over it.

The algebras to which we are going to apply these techniques in the next section

are of the form Γ(E,OE), where E is an effective divisor on a smooth curve over a

field k. In this section, however, we place ourselves in the more general setting of
arbitrary finite commutative k-algebras.

1.1. Primary decomposition and radicals

Let k be a perfect field. We assume that we have a way to represent elements of k,
to perform field operations in k and to test whether an element in our representation
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IV. Computational tools

is zero. We assume furthermore that have a (probabilistic) algorithm to factor poly-

nomials f ∈ k[x] in an (expected) number of operations in k that is bounded by a

polynomial in the degree of f .

In this situation, there are (probabilistic) algorithms to find the primary decom-

position of a finite commutative k-algebra A that finish in an (expected) number of
operations in k that is bounded by a polynomial in [A : k]. Such algorithms have

been known for some time, but do not seem to be easily available in published form;

see Khuri-Makdisi’s preprint [57, draft version 2, § 7]. For an algorithm to find the
primary decomposition of arbitrary (not necessarily commutative) finite algebras over

finite fields, see Eberly and Giesbrecht [30].

1.2. Reconstructing an algebra from a perfect bilinear map

Let A be a commutative ring. If M , N and O are free A-modules of rank one and

µ:M × N → O

is an A-bilinear map, we say that µ is perfect if it induces an isomorphism

M ⊗A N
∼−→ O

of free A-modules of rank 1.

Now let k be a field, and let a finite commutative k-algebra A be specified im-

plicitly in the following way. We are given k-vector spaces M , N and O of the same

finite dimension, together with a k-bilinear map

µ:M × N → O

We assume there exists a commutative k-algebra A such that M , N and O are free

A-modules of rank 1 and µ is a perfect A-bilinear map. The following observation
implies that A is the unique k-algebra with this property, and also shows how to

compute A as a subalgebra of Endk M , provided we are able to find a generator of N

as an A-module. We note that the roles of M and N can also be interchanged.

Lemma 1.1. In the above situation, let g be a generator of the A-module N . The

ring homomorphism A → Endk M sending a to multiplication by a is, as an A-linear
map, the composition of

A
∼−→ N

a 7−→ ag

and

N −→ Endk M

n 7−→ µ( , g)−1 ◦ µ( , n).

In particular, the image of A in Endk M equals the image of the second map.

Proof . This is a straightforward verification.
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1. Algorithms for computing with finite algebras

In the case where k is a finite field, a way to find a generator for N as an A-

module is simply to pick random elements g ∈ N until we find one that generates N .

Since µ is perfect, checking whether g generates N comes down to checking whether
µ( , g):M → O is an isomorphism. In particular, we can do this without knowing A.

To get a reasonable expected running time for this approach, we need to ensure

that N contains sufficiently many elements n such that N = An. Since N is free of

rank 1, the number of generators equals the number of units in A. Let us therefore
estimate under what conditions a random element of A is a unit with probability at

least 1/2. Write d for the degree of A over k. Decomposing A into a product of finite

local k-algebras, and noting that the proportion of units in a finite local k-algebra is
equal to the proportion of units in its residue field, we see that

#A×

#A
≥ (#k×)d

#kd
=

(
1 − 1

#k

)d

;

equality occurs if and only if A is a product of d copies of k. Now it is not hard to

show that

#k ≥ 2d =⇒
(

1 − 1

#k

)d

≥ 1

2
.

Taking a finite extension k′ of k of cardinality at least 2d, we therefore see that a

random element of Ak′ is a unit with probability at least 1/2. There are well-known

algorithms to generate such an extension, such as that of Rabin [83], which runs in

probabilistic polynomial time and simply tries random polynomials until it finds one
that is irreducible, and the deterministic algorithm of Adleman and Lenstra [1].

Algorithm 1.2 (Reconstruct an algebra from a bilinear map). Let k be a finite field,

let A be a finite k-algebra, and let

µ:M × N → O

be a perfect A-bilinear map between free A-modules of rank 1. Given the coefficients

of µ with respect to some k-bases of M , N and O, this algorithm outputs a k-basis
for the image of A in Endk M , consisting of matrices with respect to the given basis

of M .

1. Choose an extension k′ of k of degree
⌈

log max{2[A:k],q}
log q

⌉
. Let M ′, N ′, O′ and µ′

denote the base extensions of M , N , O and µ to k′.

2. Choose a uniformly random element g ∈ N ′.

3. Check whether µ′( , g):M ′ → O′ is an isomorphism; if not, go to step 2.

4. For n ranging over a k′-basis of N ′, compute the endomorphism

an = µ′( , g)−1 ◦ µ′( , n) ∈ Endk′ M ′.

Let A′ ⊆ Endk′ M ′ denote the k′-span of the an.

5. Output a basis for the k-vector space Endk M ∩ A′.
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Analysis. It follows from Lemma 1.1 that A′ equals the image of k′⊗k A in Endk′ M .

This implies that the basis returned by the algorithm is indeed a k-basis for the image

of A in Endk M . Because of the choice of k′, steps 2 and 3 are executed at most twice
on average. It is therefore clear that the expected running time of the algorithm is

polynomial in [A : k] and log #k. ⋄
If k is infinite (or finite and sufficiently large), we have the following variant. Let

Σ be a finite subset of k, and let V be a k-vector space of dimension d with a given

basis v1, . . . , vd. Consider the set

VΣ = {
d∑

i=1

σivi | σ1, . . . , σd ∈ Σ}

of Σ-linear combinations of v1, . . . , vn. Choosing the σi uniformly randomly in Σ, we

get the uniform distribution on VΣ. If H1, . . . , Hl are proper linear subspaces of V ,
then a uniformly random element of VΣ lies in at least one of the Hi with probability

at most l/#Σ. Now if A is a finite commutative k-algebra, it contains at most [A : k]

maximal ideals. This implies that if Σ is a finite subset of k with #Σ ≥ 2[A : k],
then a Σ-linear combination of any k-basis of A is a unit with probability at least

1/2. This leads to the following variant of Algorithm 1.2.

Algorithm 1.3 (Reconstruct an algebra from a bilinear map). Let k be a field, let
A be a finite k-algebra, and let

µ:M × N → O

be a perfect A-bilinear map between free A-modules of rank 1. Suppose that we can

pick uniformly random elements of some subset Σ of k with #Σ ≥ 2[A : k]. Given the

coefficients of µ with respect to some k-bases of M , N and O, this algorithm outputs
a k-basis for the image of A in Endk M , consisting of matrices with respect to the

given basis of M .

1. Choose a uniformly random Σ-linear combination g of the given basis of N .

2. Check whether µ( , g):M → O is an isomorphism; if not, go to step 2.

3. For n ranging over a k-basis of N , compute the endomorphism

an = µ( , g)−1 ◦ µ( , n) ∈ Endk M,

and output the an.

Analysis. This works for the same reason as Algorithm 1.2. ⋄
Let us sketch how to solve the problem if k is an arbitrary field. Let p be the

characteristic of k. If p = 0 or p ≥ 2[A : d], we can apply Algorithm 1.3 with
Σ = {0, 1, . . . , 2[A : d] − 1}. Otherwise, we consider the subfield k0 of k generated by

the coefficients of the multiplication table of A over k. Then A is obtained by base

extension to k of the finite k0-algebra A0 defined by the same multiplication table.
We can check whether k0 is a finite field with #k0 < 2d by checking whether each
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coefficient of the multiplication table satisfies a polynomial of small degree. If this

is the case, then we compute an Fp-basis and multiplication table for k0 and apply

Algorithm 1.2 to A0 over k0. Otherwise we obtain at some point a finite subset Σ
of k, with #Σ ≥ 2d, consisting of polynomials in the coefficients of the multiplication

table. We then apply Algorithm 1.3 to A over k with this Σ.

2. Computing with divisors on a curve

In this section and the next we describe a collection of algorithms, developed by

Khuri-Makdisi in [56] and [57], that allow us to compute efficiently with divisors on
a curve over a field. In particular, we will describe algorithms for computing in the

Picard group of a curve. Many of the results of this section can be found in [56]

and [57]. In contrast, §§ 2.6, 2.9 and 2.11 seem to be new.
The curves we consider are complete, smooth and geometrically connected curves

over a field k. In this section, the base field is arbitrary, although for some of the

algorithms we assume that given a finite k-algebra we can find its primary decompo-
sition. In Section 3, we will study a few computational problems particular to curves

over finite fields.

The basic idea is to describe such a curve using a projective embedding via a

very ample line bundle L, and to represent divisors as subspaces of the k-vector
space Γ(X,L) of global sections of L. Using this representation of the curve and of

divisors on it, Khuri-Makdisi [56] has given algorithms for computing with divisors and

elements of the Picard group. Taking advantage of some improvements to this basic
idea, described in [57], his algorithms are at the time of writing the asymptotically

fastest known algorithms (measured in operations in the field k) for general curves.

Remark . When the field k is finite (as it is in the applications that we will describe
in Chapter V), the fact that the complexity is measured in field operations is no

problem. However, if k is a number field, one cannot avoid numerical explosion of

the data describing the divisors during computations, even when lattice reduction
algorithms are used to reduce the size of the data between operations; see Khuri-

Makdisi [57, page 2214].

2.1. Representing the curve

Let X be a complete, smooth, geometrically connected curve over a field k. We fix a

line bundle L on X such that

degL ≥ 2g + 1.

Then L is very ample (see for example Hartshorne [43, IV, Corollary 3.2(b)]), so it

gives rise to a closed immersion

iL:X → PΓ(X,L)

into a projective space of dimension degL−g. (We write PV for the projective space

of hyperplanes in a k-vector space V .) The assumption that degL ≥ 2g + 1 implies

moreover that the multiplication maps

µi,j : Γ(X,L⊗i) ⊗k Γ(X,L⊗j) −→ Γ(X,L⊗(i+j)).
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are surjective for all i, j ≥ 0, or equivalently that the embedding iL is projectively

normal. This is a classical theorem of Castelnuovo [13], Mattuck [75, page 194] and

Mumford [81, page 55]. Below we will state a more general result due to Khuri-
Makdisi [56, Lemma 2.2].

Remark . In the context of projective embeddings, the line bundle L is usually denoted

by OX(1). However, we often need to deal with line bundles of the form L(D) for a

divisor D, and the author does not like the notation OX(1)(D).

We write SX for the homogeneous coordinate ring of X with respect to the

embedding iL. By the fact that iL is projectively normal, we have a canonical iso-

morphism

SX
∼−→

⊕

i≥0

Γ(X,L⊗i)

of graded k-algebras; see Hartshorne [43, Chapter II, Exercise 5.14]. It turns out
that to be able to compute with divisors on X we do not need to know the complete

structure of this graded algebra. For all h ≥ 0 we define the finite graded k-algebra

S
(h)
X as SX modulo the ideal generated by homogeneous elements of degree greater

than h. The above isomorphism shows that specifying S
(h)
X is equivalent to giving the

k-vector spaces Γ(X,L⊗i) for 1 ≤ i ≤ h together with the multiplication maps µi,j

for i + j ≤ h.

When we speak of a projective curve X in the remainder of this section, we

will assume without further mention that X is a complete, smooth and geometrically

connected curve of genus g ≥ 0, and that a line bundle L of degree at least 2g +1 has
been chosen. We will often write LX for this line bundle and gX for the genus of X

to emphasise that they are part of the data.

In the algorithms in this section, the curve X is part of the input in the guise of

the graded k-algebra S
(h)
X for some sufficiently large h. A lower bound for h is specified

in each case. One way to specify the multiplication in S
(h)
X is to fix a basis for each

of the spaces Γ(X,L⊗i), and to give the matrices for multiplication with each basis
element. However, as Khuri-Makdisi explains in [57], a more efficient representation

is to choose a trivialisation of L (and hence of its powers) over an effective divisor of

sufficiently large degree or, even better, at sufficiently many distinct rational points

of X, so that the multiplication maps can be computed pointwise.

Remarks. (1) The integers g and degL can of course be stored as part of the data
describing X. However, they can also be extracted from the dimensions of the k-vector

spaces Γ(X,L) and Γ(X,L⊗2); this follows easily from the Riemann–Roch formula.

(2) If the degree of L is at least 2g + 2, then the homogeneous ideal defining the

embedding iL is generated by homogeneous elements of degree 2, according to a
theorem of Fujita and Saint-Donat; see Lazarsfeld [64, § 1.1]. This makes it possible

to deduce equations for X from the k-algebra S
(2)
X . However, we will not need to do

this.

(3) The way of representing curves and divisors described by Khuri-Makdisi in [56]
and [57] is especially suited for modular curves. Namely, we can represent a modular
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curve X using the projective embedding given by a line bundle of modular forms, and

computing the k-algebra S
(h)
X for a given h comes down to computing q-expansions

of modular forms of a suitable weight to a sufficiently large order. This can be done

using modular symbols; see Stein [104] and Section 4 below. If the modular curve has
at least 3 cusps (which is the case, for example, for X1(n) for all n ≥ 5), then we can

restrict ourselves to modular forms of weight 2, for which the formalism of modular

symbols is particularly simple [104, Chapter 3].

2.2. Representing divisors

Let X be a projective curve of genus g in the sense of § 2.1, and let L be the line
bundle of degree at least 2g + 1 giving the projective embedding of X. To represent

divisors on X, it is enough to consider effective divisors, since an arbitrary divisor

can be represented by a formal difference of two effective divisors.

Consider an effective divisor D on X such that L(−D) is generated by global

sections. (In terms of the projective embedding, this means that D is the intersection

of X and a linear subvariety of PΓ(X,L), or equivalently that D is defined by a system
of linear equations.) Such a divisor can be represented as the subspace Γ(X,L(−D))

of Γ(X,L) consisting of sections vanishing on D. The codimension of Γ(X,L(−D))

in Γ(X,L) is equal to the degree of D.

A sufficient condition for the line bundle L(−D) to be generated by global sections

is

deg D ≤ degL − 2g; (2.1)

see for example Hartshorne [43, IV, Corollary 3.2(a)]. However, we note that in general

not every subspace of codimension at most degL−2g is of the form Γ(X,L(−D)) for
an effective divisor D of the same degree.

Remark . This way of representing divisors comes down (at least for divisors of degree

d ≤ degL− 2g) to embedding the d-th symmetric power of X into the Grassmannian
variety parametrising subspaces of codimension d in Γ(X,L) and viewing divisors of

degree d as points on this Grassmannian variety.

It will often be necessary to consider divisors D of degree larger than the bound
degL − 2g of (2.1). In such cases we can represent D as a subspace of Γ(X,L⊗i) for

i sufficiently large such that

deg D ≤ idegL − 2g, (2.2)

provided of course that we know S
(h)
X for some h ≥ i.

Khuri-Makdisi’s algorithms rest on the following two results. The first is a gen-

eralisation of the theorem of Castelnuovo, Mattuck and Mumford mentioned above.

It says in effect that to compute the space of global sections of the tensor product of
two line bundles of sufficiently large degree, it is enough to multiply global sections

of those line bundles.

Lemma 2.1 (Khuri-Makdisi [56, Lemma 2.2]). Let X be a complete, smooth, geo-
metrically connected curve of genus g over a field k, and let M and N be line bundles
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on X whose degrees are at least 2g + 1. Then the canonical k-linear map

Γ(X,M) ⊗k Γ(X,N ) −→ Γ(X,M⊗OX
N )

is surjective.

The second result shows how to find the space of global sections of a line bundle

that vanish on a given effective divisor, where this divisor is represented as a subspace

of global sections of a second line bundle.

Lemma 2.2 (Khuri-Makdisi [56, Lemma 2.3]). Let X be a complete, smooth, geo-
metrically connected curve of genus g over a field k, let M and N be line bundles

on X such that N is generated by global sections, and let D be any effective divisor

on X. Then the inclusion

Γ(X,M(−D)) ⊆
{
s ∈ Γ(X,M)

∣∣ sΓ(X,N ) ⊆ Γ(X,M⊗N (−D))
}

(2.3)

is an equality.

Thanks to these two lemmata, one can give algorithms to do basic operations

on divisors; see Khuri-Makdisi [56, § 3]. For example, we can add, subtract and
intersect divisors of sufficiently small degree, and we can test whether a given subspace

of Γ(X,L⊗i) is of the form Γ(X,L⊗i(−D)) for some effective divisor D. See also

Algorithm 2.11 below for an example where Lemmata 2.1 and 2.2 are used.

2.3. Deflation and inflation

An ingredient that Khuri-Makdisi uses in [57] to speed up the algorithms is deflation

of subspaces. Suppose we want to compute the space Γ(X,M(−D)) using (2.3) in
the case where M = L⊗i and N = L⊗j(−E) with i and j positive integers and

where D and E are effective divisors satisfying (2.2). On the right-hand side of (2.3),

we may replace Γ(X,N ) by any basepoint-free subspace; this is clear from the proof

of [56, Lemma 2.3]. It turns out that there always exists such a subspace of dimension
O(log(degN )), and a subspace of dimension 2 exists if the base field is either infinite

or finite of sufficiently large cardinality. Moreover, one can efficiently find such a

subspace by random trial; see Khuri-Makdisi [57, Proposition/Algorithm 3.7].

Remark . This random search for small basepoint-free subspaces is the reason why
Khuri-Makdisi’s algorithms in [57] are probabilistic, as opposed to those in [56].

Suppose we are given a basepoint-free subspace W of Γ(X,L⊗i(−D)) for some i

and D such that Γ(X,L⊗i(−D)) is basepoint-free. Then we can reconstruct the com-

plete space Γ(X,L⊗i(−D)) from W . This procedure is called inflation. To describe
how this can be done, we first state the following slight generalisation of a result of

Khuri-Makdisi [57, Theorem 3.5(2)].

Lemma 2.3. Let X be a complete, smooth, geometrically connected curve of genus g
over a field k, and let M and N be line bundles on X. Let V be a non-zero subspace

of Γ(X,M), and let D be the common divisor of the elements of V . If the inequality

−degM + degN + deg D ≥ 2g − 1
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is satisfied, the canonical k-linear map

V ⊗k Γ(X,N ) −→ Γ(X,M⊗OX
N (−D)) (2.4)

is surjective.

Proof . We note that M(−D) is generated by global sections, since we can view V
as a subspace of Γ(X,M(−D)) and the elements of V have common divisor 0 as

sections of M(−D). We also note that degM ≥ deg D. Therefore the assumption

on the degrees of M, N and D implies the inequalities

degN ≥ 2g − 1

and

deg(M⊗N (−D)) ≥ 2g − 1.

After extending the field k, we may assume it is infinite. Then there exist elements

s, t ∈ V with common divisor D; see Khuri-Makdisi [57, Lemma 4.1]. The space

sΓ(X,N ) + tΓ(X,N )

lies in the image of (2.4), so it suffices to show that

dimk(sΓ(X,N ) + tΓ(X,N )) = dimk Γ(X,M⊗N (−D)).

Write

div s = D + E and div s = D + F

where E and F are disjoint effective divisors. Then we have

dimk(sΓ(X,N ) + tΓ(X,N )) = 2 dimk Γ(X,N ) − dimk(sΓ(X,N ) ∩ tΓ(X,N ))

= 2 dimk Γ(X,N )

− dimk Γ(X,M⊗N (−D − E − F ))

= 2 dimk Γ(X,N ) − dimk Γ(X,M∨ ⊗N (D)).

The last equality follows from the fact that multiplication by st induces an isomor-

phism

M∨(D)
∼−→ M(−D − E − F ).

Using the fact that the various line bundles have degrees at least 2g − 1, we see that

dimk(sΓ(X,N ) + tΓ(X,N )) = 2(1 − g + degN ) − (1 − g + degM∨ ⊗N (D))

= 1 − g + degM + degN − deg D

= dimk Γ(X,M⊗N (−D)).

This finishes the proof.

109



IV. Computational tools

To find the inflation of a basepoint-free subspace W of Γ(X,L⊗i(−D)), we choose

a positive integer j such that

(j − i) degL + deg D ≥ 2g − 1.

By Lemma 2.3 we can then compute Γ(X,L⊗(i+j)(−D)) as the image of the bilinear
map

W ⊗k Γ(X,L⊗j) −→ Γ(X,L⊗(i+j)).

Then we compute

Γ(X,L⊗i(−D)) =
{
s ∈ Γ(X,L⊗i)

∣∣ sΓ(X,L⊗j) ⊆ Γ(X,L⊗(i+j)(−D))
}

using Lemma 2.2. We note that for this last step we can use a small basepoint-free
subspace of Γ(X,L⊗j) computed in advance.

2.4. Decomposing divisors into prime divisors

Let X be a complete, smooth, geometrically connected curve of genus g over a field k,

with a projective embedding via a line bundle L as in § 2.1. The problem we are

now going to study is how to find the decomposition of a given divisor on X as a
linear combination of prime divisors. We will see below that this can be done if we

are given the algebra S
(h)
X for sufficiently large h and if we are able to compute the

primary decomposition of a finite commutative k-algebra. We have seen in § 1.1 that

this is possible in the case where k is perfect and we have an algorithm for factoring
polynomials in one variable over k.

Let i be a positive integer, and let D be an effective divisor such that

deg D ≤ idegL − 2g + 1.

We view D as a closed subscheme of X via the canonical closed immersion

jD:D → X.

For every line bundle M on X, the k-vector space Γ(D, j∗DM) is in a natural way a
free module of rank one over Γ(D,OD). The multiplication map

µi,i: Γ(X,L⊗i) × Γ(X,L⊗i) −→ Γ(X,L⊗2i)

descends to a bilinear map

µD
i,i: Γ(D, j∗DL⊗i) × Γ(D, j∗DL⊗i) −→ Γ(D, j∗DL⊗2i)

of free modules of rank 1 over Γ(D,OD). This map is perfect in the sense of § 1.2.

We now assume that the graded k-algebra S
(h)
X as in § 2.1 is given for some h ≥ 2.

From the subspace Γ(X,L⊗i(−D)) of Γ(X,L⊗i) we can then determine Γ(D, j∗DL⊗i)

as a k-vector space by means of the short exact sequence

0 −→ Γ(X,L⊗i(−D)) −→ Γ(X,L⊗i) −→ Γ(D, j∗DL⊗i) −→ 0. (2.5)
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(Note that exactness on the right follows from the assumption that degL⊗i(−D) ≥
2g − 1.) Similarly, we can compute Γ(D, j∗DL⊗2i) from Γ(X,L⊗2i(−D)) using the

same sequence with i replaced by 2i. We can then determine the bilinear map µD
i,i

induced by µi,i by standard methods from linear algebra.

We then use the method described in § 1.2 to compute the k-algebra Γ(D,OD)
together with its action on Γ(D, j∗DL⊗i). Next we find the primary decomposition

of Γ(D,OD), say

Γ(D,OD) ∼= A1 × A2 × · · · × Ar,

where each factor Ai is a finite local k-algebra with maximal ideal Pi; we assume the

field k is such that we can do this (see § 1.1). Such a prime ideal Pi corresponds to a

prime divisor in the support of D, and the corresponding multiplicity equals

mi =
[Ai : k]

[Ai/Pi : k]
.

Algorithm 2.4 (Decomposition of a divisor). Let X be a projective curve over a

field k. Let i be a positive integer, and let D be an effective divisor such that

deg D ≤ idegLX − 2gX + 1.

Suppose that we have a (probabilistic) algorithm to compute the primary decompo-

sition of a finite commutative k-algebra A with (expected) running time polynomial

in [A : k], measured in operations in k. Given the k-algebra S
(2i)
X and the sub-

spaces Γ(X,L⊗i
X (−D)) of Γ(X,L⊗i

X ) and Γ(X,L⊗2i
X (−D)) of Γ(X,L⊗2i

X ), this algo-

rithm outputs the decomposition of D as a linear combination of prime divisors as a
list of pairs (P,mP ), where P is a prime divisor and mP is the multiplicity of P in D.

1. Compute the spaces Γ(D, j∗DL⊗i
X ) and Γ(D, j∗DL⊗2i

X ) using (2.5) and the analogous
short exact sequence with 2i in place of i.

2. Compute the k-bilinear map µD
i,i from µi,i.

3. Using the method of § 1.2, compute a k-basis for Γ(D,OD) as a linear subspace
of Endk Γ(D, j∗DL⊗i

X ), where elements of the latter k-algebra are expressed as

matrices with respect to some fixed basis of Γ(D, j∗DL⊗i
X ).

4. Compute the multiplication table of Γ(D,OD) on the k-basis of Γ(D,OD) found

in the previous step.

5. Find the primary decomposition of Γ(D,OD).

6. For each local factor A computed in the previous step, let PA denote the maximal

ideal of A, output the inverse image of PA · Γ(D, j∗DL⊗i
X ) in Γ(X,L⊗i

X ) and the

integer [A : k]
/
[A/PA : k].

Analysis. It follows from the above discussion that the algorithm returns the cor-

rect result. It is straightforward to check that the running time is polynomial in i
and degLX , measured in operations in k. ⋄
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A special case of this algorithm is when D is the intersection of X with a hypersur-

face of degree i− 1. Let s be a non-zero section of L⊗(i−1)
X defining this hypersurface.

The subspaces that are used in this algorithm can then be computed as

Γ(X,L⊗i
X (−D)) = sΓ(X,LX)

and

Γ(X,L⊗2i
X (−D)) = sΓ(X,L⊗(i+1)

X ).

2.5. Finite morphisms between curves

Let us now look at finite morphisms between curves. A finite morphism

f :X → Y

of complete, smooth, geometrically connected curves induces two functors

f∗: {line bundles on Y } → {line bundles on X}
and

Nf : {line bundles on X} → {line bundles on Y }.

Here f∗N denotes the usual inverse image of the line bundle N on Y , and NfM is

the norm of the line bundle M on X under the morphism f .
Let us briefly explain the notion of the norm of a line bundle. The norm functor

is a special case (that of Gm-torsors) of the trace of a torsor for a commutative group

scheme under a finite locally free morphism; see Deligne [100, exposé XVII, nos 6.3.20–
6.3.26]. We formulate the basic results for arbitrary finite locally free morphisms of

schemes

f :X → Y.

In this situation there exists a functor

Nf : {line bundles on X} → {line bundles on Y }

together with a collection of homomorphisms

NL
f : f∗L → NfL

of sheaves of sets, for all line bundles L on X, functorial under isomorphisms of line

bundles on X, sending local generating sections on X to local generating sections
on Y and such that the equality

NL
f (xl) = Nf (x) · NL

f (l)

holds for all local sections x of f∗OX and l of f∗L. Here Nf : f∗OX → OY denotes the

usual norm map for a finite locally free morphism. Moreover, the functor Nf together

with the collection of the NL
f is unique up to unique isomorphism. Instead of Nf we

also write NX/Y if the morphism f is clear from the context.
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The basic properties of the norm functor are the following (see [100, exposé XVII,

no 6.3.26]):

(1) the functor Nf is compatible with any base change Y ′ → Y ;

(2) if L1 and L2 are two line bundles on X, there is a natural isomorphism

Nf (L1 ⊗OX
L2) ∼= NfL1 ⊗OY

NfL2;

(3) if X
f−→ Y

g−→ Z are finite locally free morphisms, there is a natural isomorphism

Ng◦f
∼−→ Ng ◦ Nf .

Furthermore, there is a functorial isomorphism

NfL ∼−→ HomOY
(detOY

f∗OX ,detOY
f∗L); (2.6)

see Deligne [100, exposé XVIII, no 1.3.17], and compare Hartshorne [43, IV, Exer-

cise 2.6].

We now consider projective curves X and Y as defined in § 2.1. Suppose we have
a finite morphism

f :X → Y

with the property that f is induced by a graded homomorphism

f#:SY → SX

between the homogeneous coordinate rings of Y and X, or equivalently by a morphism

of the corresponding affine cones over X and Y . Then f# induces an isomorphism

f∗LY
∼−→ LX

of line bundles on X; see Hartshorne [43, Chapter II, Proposition 5.12(c)]. In partic-

ular, this implies

degLX = deg f · degLY .

We represent a finite morphism f :X → Y by the k-algebras S
(h)
X and S

(h)
Y for

some h ≥ 2, together with the k-algebra homomorphism

f#:S
(h)
Y → S

(h)
X

induced by f#:SY → SX , given as a collection of linear maps Γ(Y,L⊗i
Y ) → Γ(X,L⊗i

X )

compatible with the multiplication maps on both sides.

In the following, when we mention a finite morphism f :X → Y between pro-

jective curves, we assume that the k-algebras S
(h)
X and S

(h)
Y and the homomorphism

f#:S
(h)
Y → S

(h)
X are given for some h ≥ 2. In the algorithms described below, we will

indicate where necessary how large h needs to be.

Remark . The homomorphism f# gives rise to an injective k-linear map

Γ(Y,LY ) → Γ(X,LX).

Given this map we can reconstruct S(Y ) as a subalgebra of S(X) by noting that S(Y )
is generated as a k-algebra by Γ(Y,LY ).
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2.6. Images, pull-backs and push-forwards of divisors

Let us consider a finite morphism f :X → Y between complete, smooth, geometrically

connected curves over a field k. Such a morphism f induces various maps between

the groups of divisors on X and on Y .

First, for an effective divisor D on X, we write f(D) for the schematic image
of D under f . The definition implies that the ideal sheaf OY (−f(D)) is the inverse

image of f∗OX(−D) under the natural map OY → f∗OX .

Second, for any divisor D on X, we have the “push-forward” f∗D of D by f ; see
Hartshorne [43, IV, Exercise 2.6]. If P is a prime divisor on X, then its image f(P )

under f is a prime divisor on Y , the residue field k(P ) is a finite extension of k(f(P )),

and f∗P is given by the formula

f∗P = [k(P ) : k(f(P ))] · f(P ). (2.7)

The residue field extension degree at P can simply be computed as

[k(P ) : k(f(P ))] =
[k(P ) : k]

[k(f(P )) : k]

=
deg P

deg f(P )
.

Third, for any divisor E on Y , we have the “pull-back” f∗E of E by f ; see for

example Hartshorne [43, page 137]. If Q is a prime divisor on Y , then f∗Q is given

by the formula

f∗Q =
∑

P : f(P )=Q

e(P ) · P (2.8)

where P runs over the prime divisors of X mapping to Q and e(P ) denotes the
ramification index of f at P .

We extend both f∗ and f∗ to arbitrary divisors on X and Y by linearity. Note

that (2.7) and (2.8) imply the well-known formula

f∗f
∗E = (deg f)E

for any divisor E on Y . Furthermore, if E is an effective divisor on Y , we have an

equality

f∗E = E ×Y X

of closed subschemes of X, and if IE denotes the ideal sheaf of E, then its inverse

image f−1IE is the ideal sheaf of f∗E.

Remark . The map D 7→ f(D) is not in general linear in D. We do not extend it to
the divisor group on X, and in fact will only need schematic images of prime divisors

on X in what follows. In contrast, the maps f∗ and f∗ are linear by definition.

Now assume f is a finite morphism between projective curves, in the sense of § 2.5.

In particular, we have a homomorphism f#:SY → SX of graded k-algebras. We will
give algorithms to compute the image and the push-forward of a divisor on X as well

as the pull-back of a divisor on Y .

The schematic image f(D) of an effective divisor D on X can be computed using
the following obvious algorithm.
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Algorithm 2.5 (Image of a divisor under a finite morphism). Let f :X → Y be

a finite morphism between projective curves, let i be a positive integer, and let D

be an effective divisor on X. Given the k-algebras S
(i)
X and S

(i)
Y , the homomorphism

f#:S
(i)
Y → S

(i)
X and the subspace Γ(X,L⊗i

X (−D)) of Γ(X,L⊗i
X ), this algorithm outputs

the subspace Γ(Y,L⊗i
Y (−f(D))) of Γ(Y,L⊗i

Y ).

1. Output the inverse image of the subspace Γ(X,L⊗i
X (−D)) of Γ(X,L⊗i

X ) under the

linear map Γ(Y,L⊗i
Y ) → Γ(X,L⊗i

X ).

Analysis. The definition of f(D) implies that the line bundle L⊗i
Y (−f(D)) equals the

inverse image of f∗L⊗i
X (−D) under the natural map L⊗i

Y → f∗L⊗i
X . Taking global

sections, we see that Γ(Y,L⊗i
Y (−f(D))) is the inverse image of Γ(X,L⊗i

X (−D)) under

the natural map Γ(Y,L⊗i
Y ) → Γ(X,L⊗i

X ). It is clear that the algorithm needs a number

of operations in k that is polynomial in degLX and i. ⋄

Remark . In the above algorithm, we have not placed any restrictions on the degrees

of D and f(D). However, f(D) is not uniquely determined by Γ(Y,L⊗i
Y (−f(D))) if

its degree is too large.

The algorithm to compute pull-backs that we will now give is based on the fact

that the pull-back of an effective divisor E is simply the fibred product E ×Y X,

viewed as a closed subscheme of X. In particular, the algorithm does not have to
compute the ramification indices, so instead we can use it to compute ramification

indices. Namely, if P is a prime divisor on X, we see from (2.8) that the ramification

index at P equals the multiplicity with which P occurs in the divisor f∗(f(P )).

Algorithm 2.6 (Pull-back of a divisor under a finite morphism). Let f :X → Y be

a finite morphism between projective curves. Let i and j be positive integers, and let

E be an effective divisor on Y such that

deg f · deg E ≤ idegLX − 2gX , deg E ≤ idegLY − 2gY

and

(j − i) degLX + deg f · deg E ≥ 2gX − 1.

(If we take j ≥ i+1, the last equality does not pose an extra restriction on E.) Given

the k-algebras S
(i+j)
X and S

(i+j)
Y , the k-algebra homomorphism f#:S

(i+j)
Y → S

(i+j)
X

and the subspace Γ(Y,L⊗i
Y (−E)) of Γ(Y,L⊗i

Y ), this algorithm outputs the subspace

Γ(X,L⊗i
X (−f∗E)) of Γ(X,L⊗i

X ).

1. Compute the image W of Γ(Y,L⊗i
Y (−E)) under the linear map

f#: Γ(Y,L⊗i
Y ) → Γ(X,L⊗i

X ).

2. Compute the space Γ(X,L⊗i+j
X (−f∗E)) as the product of W and Γ(X,L⊗j

X ) (see

Lemma 2.3).

3. Compute Γ(X,L⊗i
X (−f∗E)) using Lemma 2.2, and output the result.
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Analysis. The ideal in SY defining E is generated by the linear forms vanishing on E,

and the ideal of SX defining f∗E is generated by the pull-backs of these forms. This

shows that f∗E is defined by the forms in W . In the second and third step, we compute
the space of all forms vanishing on f∗E, i.e. the inflation of W . That the method

described is correct was proved in § 2.3. The running time is clearly polynomial in

degLX , i and j. ⋄

Algorithm 2.7 (Push-forward of a divisor under a finite morphism). Let f :X → Y

be a finite morphism between projective curves over a field k, let i be a positive

integer, and let D be an effective divisor on X such that

deg D ≤ idegLX − 2gX − 1 and deg D ≤ idegLY − 2gY .

Suppose that we have a (probabilistic) algorithm to compute the primary decompo-
sition of a finite commutative k-algebra A with (expected) running time polynomial

in [A : k], measured in operations in k. Given the k-algebras S
(2i)
X and S

(2i)
Y , the

homomorphism f#:S
(2i)
Y → S

(2i)
X and the subspace Γ(X,L⊗i

X (−D)) of Γ(X,L⊗i
X ), this

algorithm outputs the subspace Γ(Y,L⊗i
Y (−f∗D)) of Γ(Y,L⊗i

Y ).

1. Compute Γ(X,L⊗2i
X (−D)) as the product of Γ(X,L⊗i

X ) and Γ(X,L⊗i
X (−D)) (see

Lemma 2.1).

2. Find the decomposition of D as a linear combination
∑

P nP P of prime divisors

using Algorithm 2.4.

3. For each prime divisor P in the support of D, compute Γ(Y,L⊗i(−f(P ))) using
Algorithm 2.5, and compute [k(P ) : k(f(P ))].

4. Compute the space Γ(Y,L⊗i
Y (−f∗D)), where

f∗D =
∑

P

nP [k(P ) : k(f(P ))]f(P ),

and output the result.

Analysis. The correctness of the algorithm follows from the definition of f∗. It runs in

(probabilistic) polynomial time in degLX and i, measured in field operations in k. ⋄

We include here another algorithm that computes the push-forward of an effective

divisor under a non-constant rational function X → P1 in a slightly different setting

than before. We only assume X to be given as a projective curve in the sense of § 2.1,

and we represent effective divisors on P1 as zero loci of homogeneous polynomials.
For simplicity, we only consider divisors of degree at most degLX .

Algorithm 2.8 (Push-forward of an effective divisor by a rational function). Let X

be a projective curve over a field k, let i be a positive integer, let ψ be a non-constant
rational function on X given as the quotient of two sections s, t ∈ Γ(X,L⊗i

X ) with-

out common zeroes, and let D be an effective divisor on X of degree d ≤ degLX .

Suppose that we have a (probabilistic) algorithm to compute the primary decompo-
sition of a finite commutative k-algebra A with (expected) running time polynomial
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in [A : k], measured in operations in k. Given the k-algebra S
(max{4,i})
X and the

subspace Γ(X,L⊗2
X (−D)), this algorithm outputs the homogeneous polynomial of de-

gree d defining the closed subscheme ψ∗D of P1
k. (This polynomial is unique up to

multiplication by elements of k×)

1. Compute the space Γ(X,L⊗4
X (−D)), and use Algorithm 2.4 to compute the de-

composition of D as a linear combination D =
∑

Q nQQ of prime divisors.

2. For each prime divisor Q occurring in the decomposition of D:

3. Compute the base change Xk(Q), where k(Q) is the residue field of Q. Com-

pute the primary decomposition of Qk(Q) and pick a rational point Q′ in
it.

4. Compute Γ(Xk(Q),L⊗2
X (−Q′)), then compute the (one-dimensional) inter-

section of this space with k · s + k · t, and express some generator of this

intersection as bQs−aQt with aQ, bQ ∈ k(Q). The element ψ(Q′) ∈ P1(k(Q))
now has homogeneous coordinates (aQ : bQ).

5. Compute the homogeneous polynomial

fψ∗Q = Nk(Q)/k(bQu − aQv) ∈ k[u, v]

defining ψ∗Q.

6. Output the homogeneous polynomial

fψ∗D =
∏

Q

f
nQ

ψ∗Q ∈ k[u, v]

of degree d defining ψ∗D.

Analysis. It is straightforward to check that the algorithm is correct and has expected

running time polynomial in i and degLX , counted in operations in k. ⋄

2.7. The norm functor for effective divisors

Let X be a proper, smooth, geometrically connected curve over a field k, and let E

be an effective divisor on X. We view E as a closed subscheme of X, finite over k,

and we write

jE :E → X

for the closed immersion of E into X. For the purposes of § 3.6 below, we will

need an explicit description of the norm functor NE/k (for the canonical morphism
E → Spec k) that we saw in § 2.5. We view NE/k as a functor from free OE-modules

of rank 1 to k-vector spaces of dimension 1.

Let M be a line bundle on X. We abbreviate

Γ(E,M) = Γ(E, j∗EM)

and

NE/kM = NE/k(j∗EM).
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Suppose we have two line bundles M+ and M−, both of degree at least deg E+2g−1,

together with an isomorphism

M ∼= HomOX
(M−,M+).

Then we can compute Γ(E,M−) and Γ(E,M+) using the short exact sequences

0 −→ Γ(X,M±(−E)) −→ Γ(X,M±) −→ Γ(E,M±) −→ 0,

and we can express NE/k via the isomorphism

NE/kM ∼= Homk

(
detk Γ(E,M−),detk Γ(E,M+)

)
(2.9)

deduced from (2.6). We fix k-bases of Γ(E,M−) and Γ(E,M+). From the induced
trivialisations of detk Γ(E,M±) we then obtain a trivialisation of NE/kM.

We now consider three line bundles M, N and P together with an isomorphism

µ:M⊗OX
N ∼−→ P.

By the linearity of the norm functor, µ induces an isomorphism

NE/kM⊗k NE/kN ∼−→ NE/kP. (2.10)

As above, we choose isomorphisms

M ∼= HomOX
(M−,M+), N ∼= HomOX

(N−,N+), P ∼= HomOX
(P−,P+)

on X, where M±, N± and P± are line bundles of degree at least deg E + 2g + 1. We
fix bases of the six k-vector spaces

Γ(E,M±), Γ(E,N±), Γ(E,P±).

Then (2.9) gives trivialisations of NE/kM, NE/kN and NE/kP. Under these triviali-
sations, the isomorphism (2.10) equals multiplication by some element λ ∈ k×.

To find an expression for λ, we choose generators α±
M and α±

N of Γ(E,M±) and
Γ(E,N±). To these we associate the isomorphisms

αM: Γ(E,M−)
∼−→ Γ(E,M+)

and

αN : Γ(E,N−)
∼−→ Γ(E,N+)

sending α−
M to α+

M and α−
N to α+

N , respectively. Viewing αM and αN as generators

of Γ(E,M) and Γ(E,N ) and applying the isomorphism

µ: Γ(E,M) ⊗Γ(E,OE) Γ(E,N )
∼−→ Γ(E,P)
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to αM⊗αN we obtain a generator of Γ(E,P), which we can identify with an isomor-

phism

αP : Γ(E,P−)
∼−→ Γ(E,P+).

We define δM as the determinant of the matrix of αM with respect to the chosen

bases. Under the given trivialisations of NE/kM, the element NM
E/kαM corresponds

to δM. The same goes for N and P. On the other hand, the isomorphism (2.10)

maps NM
E/kαM ⊗ NN

E/kαN to NP
E/kαP . We conclude that we can express λ as

λ =
δP

δMδN
. (2.11)

Let us turn the above discussion into an algorithm. Let X be a projective curve
over k, embedded via a line bundle L as in § 2.1, and let E be an effective divisor

on X. For simplicity, we restrict to the case where

deg E = degL.

We consider line bundles

M = L⊗i(−D1) and N = L⊗j(−D2),

where i and j are non-negative integers and D1 and D2 are effective divisors such

that

deg D1 = idegL and deg D2 = j degL.

We take

M− = N− = P− = L⊗2

and

M+ = L⊗(i+2)(−D1), N+ = L⊗(j+2)(−D2),

P+ = L⊗(i+j+2)(−D1 − D2).

Algorithm 2.9 (Linearity of the norm functor). Let X be a projective curve over a

field k, and let E, D1 and D2 be effective divisors on X such that

deg E = degL, deg D1 = idegL, deg D2 = j degL.

Fix bases of the four k-vector spaces

Γ(E,L⊗2), Γ(E,L⊗(i+2)(−D1)),

Γ(E,L⊗(j+2)(−D2)), Γ(E,L⊗(i+j+2)(−D1 − D2)).

and consider the corresponding trivialisations

t1: k
∼−→ NE/kL⊗i(−D1), t2: k

∼−→ NE/kL⊗j(−D2),

t3: k
∼−→ NE/kL⊗i+j(−D1 − D2)
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defined by (2.9). Given the k-algebra S
(i+j+4)
X , bases for the k-vector spaces

Γ(X,L⊗2), Γ(X,L⊗(i+2)),

Γ(X,L⊗(j+2)(−D2)), Γ(X,L⊗(i+j+2)(−D1 − D2))

and the quotient maps

Γ(X,L⊗2) −→ Γ(E,L⊗2),

Γ(X,L⊗(i+2)(−D1)) −→ Γ(E,L⊗i+2(−D1)),

Γ(X,L⊗(j+2)(−D2)) −→ Γ(E,L⊗j+2(−D2)),

Γ(X,L⊗(i+j+2)(−D1 − D2)) −→ Γ(E,L⊗i+2(−D1))

as matrices with respect to the given bases, this algorithm outputs the element λ ∈ k×

such that the diagram

k
t1⊗t2−→
∼

NE/kL⊗i(−D1) ⊗k NE/kL⊗j(−D2)

λ
y∼

y∼

k
t3−→
∼

NE/kL⊗(i+j)(−D1 − D2)

is commutative.

1. Compute the spaces

Γ(E,L⊗(i+4)(−D1)) and Γ(E,L⊗(i+j+4)(−D1 − D2))

and the multiplication maps

Γ(E,L⊗2) × Γ(E,L⊗(i+2)(−D1)) → Γ(E,L⊗(i+4)(−D1)),

Γ(E,L⊗(i+2)(−D1)) × Γ(E,L⊗(j+2)(−D2)) → Γ(E,L⊗(i+j+4)(−D1 − D2)),

Γ(E,L⊗2) × Γ(E,L⊗(i+j+2)(−D1 − D2)) → Γ(E,L⊗(i+j+4)(−D1 − D2)).

2. Apply the probabilistic method described in § 1.2 to the bilinear maps just com-
puted to find generators β0, β1 and β2 of the free Γ(E,OE)-modules Γ(E,L⊗2),

Γ(E,L⊗(i+2)(−D1)) and Γ(E,L⊗(j+2)(−D2)) of rank 1.

(Note that we do not need the k-algebra structure on Γ(E,L⊗2). If k is small,
we may have to extend the base field, but it is easy to see that this is not a

problem.)

3. Compute the matrix (with respect to the given bases) of the isomorphism α1

defined by the commutative diagram

Γ(E,L⊗2)
α1−→
∼

Γ(E,L⊗(i+2)(−D1))

∥∥ ∼
y·β0

Γ(E,L⊗2)
·β1−→
∼

Γ(E,L⊗(i+4)(−D1)),
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of the isomorphism α2 defined by the similar diagram for L⊗j(−D2) instead of

L⊗i(−D1) and of the isomorphism α3 defined by the commutative diagram

Γ(E,L⊗2)
α3−→
∼

Γ(E,L⊗(i+j+2)(−D1 − D2))

α1

y∼ ∼
y·β0

Γ(E,L⊗(i+2)(−D1))
·β2−→
∼

Γ(E,L⊗(i+j+4)(−D1 − D2)).

4. Compute the elements δ1, δ2 and δ3 of k× as the determinants of the matrices of

α1, α2 and α3 computed in the previous step.

5. Output the element
δ3

δ1δ2
∈ k×.

Analysis. We note that β0 plays the role of α−
M, α−

N and α−
P in the notation of the

discussion preceding the algorithm, and that β1, β2 and β1β2/β0 play the roles of
α+
M, α+

N and α+
P . This means that α1, α2 and α3 are equal to αM, αN and αP .

It now follows from (2.11) that the output of the algorithm is indeed equal to λ. It

is clear that the algorithm runs in (probabilistic) polynomial time in degL, i and j

(measured in field operations in k). ⋄

2.8. Computing in the Picard group of a curve

We now turn to the question of computing with elements in the Picard group of a

curve X, using the operations on divisors described in the first part of this section.
We only consider the group Pic0 X of isomorphism classes of line bundles of degree 0.

This group can be identified in a canonical way with a subgroup of rational points of

the Jacobian variety of X. If X has a rational point, then this subgroup consists of

all the rational points of the Jacobian.

We will only describe Khuri-Makdisi’s medium model of Pic0 X relative to a fixed

line bundle L of degree

degL ≥ 2g + 1,

but at the same time

degL ≤ c(g + 1)

for some constant c ≥ 1, as described in Khuri-Makdisi [56, § 5].

Remark . Khuri-Makdisi starts with a divisor D0 whose degree satisfies the above

inequalities and takes L = OX(D0). This is of course only a matter of language.

Another difference in notation is that Khuri-Makdisi writes L0 for L and uses the

notation L for L⊗2
0 (in the medium model) or L⊗3

0 (in the large and small models,
which we do not describe here).

We represent elements of Pic0 X by effective divisors of degree degL as follows:
the isomorphism class of a line bundle M of degree 0 is represented by the divisor

of some global section of the line bundle Hom(M,L) of degree degL, i.e. by any

effective divisor D such that

M ∼= L(−D).

121



IV. Computational tools

It follows from the inequality degL ≥ 2g that we can represent any effective divisor D

of degree degL by the subspace Γ(X,L⊗2(−D)) of codimension degL in Γ(X,L⊗2).

There are a few basic operations:

• membership test : given a subspace W of codimension degL in Γ(X,L⊗2), de-

cide whether W represents an element of Pic0 X, i.e. whether W is of the form

Γ(X,L⊗2(−D)) for an effective divisor D of degree degL.

• zero test : given a subspace W of codimension degL in Γ(X,L⊗2), decide whether

W represents the zero element of Pic0 X.

• zero element : output a subspace of codimension degL in Γ(X,L⊗2) representing

the element 0 ∈ Pic0 X.

• addflip: given two subspaces of Γ(X,L⊗2) representing elements x, y ∈ Pic0 X,

compute a subspace of Γ(X,L⊗2) representing the element −x − y.

From the “addflip” operation, one immediately gets negation (−x = −x−0), addition
(x + y = −(−x − y)) and subtraction (x − y = −(−x) − y). Clearly, one can test

whether two elements x and y are equal by computing x− y and testing whether the

result equals zero.

Remark . With regard to actual implementations of the above algorithms, we note

that some of the operations can be implemented in a more efficient way than by

composing the basic operations just described. We refer to [57] for details.

By Khuri-Makdisi’s results in [57], the above operations can be implemented
using randomised algorithms with expected running time of O(g3+ǫ) for any ǫ > 0,

measured in operations in the field k. This can be improved to O(g2.376) by means

of fast linear algebra algorithms. (The exponent 2.376 is an upper bound for the
complexity of matrix multiplication.)

Multiplication by an integer n can be done efficiently by means of an addition

chain for n. This is a sequence of positive integers (a1, a2, . . . , am) with a1 = 1 and
am = n such that for each l > 1 there exist i(l) and j(l) in {1, 2, . . . , l − 1} such

that al = ai(l) + aj(l). (We consider the indices i(l) and j(l) as given together with

the addition chain.) The integer m is called the length of the addition chain. A

more general and often slightly more efficient method of multiplying by n is to use an
addition-subtraction chain, where al is allowed to be either ai(l) + aj(l) or ai(l) − aj(l).

However, since the “addflip” operation in our set-up takes less time than the addition

or subtraction algorithms, the most worthwhile option is to use an anti-addition chain,
which is a sequence of (not necessarily positive) integers (a0, a1, . . . , am) such that

al =






0 if l = 0;
1 if l = 1;

−ai(l) − aj(l) if 2 ≤ l ≤ m

and am = n; the i(l) and j(l) are given elements of {0, 1, . . . , l − 1} for 2 ≤ l ≤ m.
It is well known that for every positive integer n there exists an addition chain of

length O(log n), and there are algorithms (such as the binary method used in repeated

squaring) to find such an addition chain in time O((log n)2). We leave it to the reader
to write down a similar algorithm for finding an anti-addition chain.
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For later use, we give versions of the “zero test” and “addflip” algorithms that

are identical to those given by Khuri-Makdisi, except that some extra information

computed in the course of the algorithm is part of the output.

Algorithm 2.10 (Zero test). Let X be a projective curve over a field k, and let x be

an element of Pic0 X. Given the k-algebra S
(2)
X and a subspace Γ(L⊗2

X (−D)) of Γ(L⊗2
X )

representing x, this algorithm outputs false if x 6= 0 (i.e. if the line bundle LX(−D)

is non-trivial). If LX(−D) is trivial, the algorithm outputs a pair (true, s), where s

is a global section of LX with divisor D.

1. Compute the space

Γ(LX(−D)) =
{
s ∈ Γ(LX)

∣∣ sΓ(LX) ⊆ Γ(L⊗2
X (−D))

}
.

(The truth of this equality follows from Lemma 2.2.)

2. If Γ(LX(−D)) = 0, output false. Otherwise, output (true, s), where s is any
non-zero element of the one-dimensional k-vector space Γ(LX(−D)).

Algorithm 2.11 (Addflip). Let X be a projective curve over a field k, and let x

and y be elements of Pic0 X. Given the k-algebra S
(5)
X and subspaces Γ(L⊗2

X (−D))

and Γ(L⊗2
X (−E)) of Γ(L⊗2

X ) representing x and y, this algorithm outputs a subspace

Γ(L⊗2
X (−F )) representing −x − y, as well as a global section s of L⊗3

X such that

div s = D + E + F.

1. Compute Γ(L⊗4
X (−D − E)) as the product of Γ(L⊗2

X (−D)) and Γ(L⊗2
X (−E)) (see

Lemma 2.1).

2. Compute the space

Γ(L⊗3
X (−D − E)) =

{
s ∈ Γ(L⊗3

X )
∣∣ sΓ(LX) ⊆ Γ(L⊗4

X (−D − E))
}

(see Lemma 2.2).

3. Choose any non-zero s ∈ Γ(L⊗3
X (−D − E)). Let F denote the divisor of s as a

global section of L⊗3
X (−D − E).

4. Compute the space

Γ(L⊗5
X (−D − E − F )) = sΓ(L⊗2

X ).

5. Compute the space

Γ(L⊗2
X (−F )) =

{
t ∈ Γ(L⊗2

X )
∣∣ tΓ(L⊗3

X (−D − E)) ⊆ Γ(L⊗5
X (−D − E − F ))

}

(see again Lemma 2.2).

6. Output the space Γ(L⊗2
X (−F )) and the section s ∈ Γ(L⊗3

X ).
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2.9. Normalised representatives of elements of the Picard group

Let X be a projective curve over a field k in the sense of § 2.1, and let O be a k-rational

point of X. Let x be an element of Pic0 X, and let M be a line bundle representing

x. Let rLX ,O
x be the greatest integer r such that

Γ(Hom(M,LX(−rO))) 6= 0.

Then Γ(HomOX
(M,LX(−rLX ,O

x O))) is one-dimensional, so there exists a unique
effective divisor R such that

M ∼= LX(−R − rLX ,O
x O).

We define the (LX , O)-normalised representative of x as the effective divisor

RLX ,O
x = R + rLX ,O

x O

of degree degLX ; it is a canonically defined divisor (depending on O) with the prop-

erty that x is represented by LX(−RLX ,O
x ).

Remark . Since for any line bundle N we have

degN ≥ g =⇒ Γ(N ) 6= 0

and

degN < 0 =⇒ Γ(N ) = 0,

the integer rLX ,O
x satisfies

degLX − gX ≤ rLX ,O
x ≤ degLX .

Algorithm 2.12 (Normalised representative). Let X be a projective curve over a

field k, and let O be a k-rational point of X. Let x be an element of Pic0 X, and let

RLX ,O
x be the (LX , O)-normalised representative of x. Given the k-algebra S

(4)
X , the

space Γ(L⊗2
X (−O)) and a subspace of Γ(L⊗2

X ) representing x, this algorithm outputs
the integer rLX ,O

x and the subspace Γ(L⊗2
X (−RLX ,O

x )) of Γ(L⊗2
X ).

1. Using the negation algorithm, find a subspace Γ(L⊗2
X (−D)) of Γ(L⊗2

X ) represent-
ing −x. Put r = degLX .

2. Compute the space Γ(L⊗2
X (−rO)), then compute Γ(L⊗4

X (−D − rO)) as the prod-

uct of Γ(L⊗2
X (−D)) and Γ(L⊗2

X (−rO)), and then compute

Γ(L⊗2
X (−D − rO)) =

{
t ∈ Γ(L⊗2

X )
∣∣ tΓ(L⊗2

X ) ⊆ Γ(L⊗4
X (−D − rO))

}
.

3. If Γ(L⊗2
X (−D − rO)) = 0, decrease r by 1 and go to step 2.

4. Let s be a non-zero element of Γ(L⊗2
X (−D − rO)). Compute

Γ(L⊗4
X (−D − RLX ,O

x )) = sΓ(L⊗2
X ),

and then compute

Γ(L⊗2
X (−RLX ,O

x )) =
{
t ∈ Γ(L⊗2

X )
∣∣ tΓ(L⊗2

X (−D)) ⊆ Γ(L⊗4
X (−D − RLX ,O

x ))
}
,

5. Output rLX ,O
x = r and Γ(L⊗2

X (−RLX ,O
x )).
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Analysis. It follows from the definition of RLX ,O
x that this algorithm is correct. It

is straightforward to check that its running time, measured in operations in k, is

polynomial in degLX . ⋄

Let us give a variant involving a different kind of representative, in which the

line bundle LX does not play a role. Again we fix a k-rational point O of X. Let x
be an element of Pic0 X, and let Mx be a line bundle on X representing x, and let

dO
x denote the least non-negative integer d such that

dimk H0(X,Mx(dO)) = 1.

Let s be a non-zero global section of Mx(dO
x O), and define

DO
x = div(s) + (gX − dO

x )O.

This is an effective divisor of degree gX , and is independent of the choice of s since

H0(X,Mx(dO)) is one-dimensional. We call DO
x the O-normalised representative

of x. It is straightforward to check that

dO
x = degLX − rLX ,O

x̂

and that

DO
x = RLX ,O

x̂ − (degLX − gX)O, (2.12)

where x̂ ∈ Pic0 X is defined by

x̂ = [LX(−(degLX)O)] − x.

This means that we can compute DO
x by finding x̂, computing its (LX , O)-normalised

representative and then using (2.12).

2.10. Descent of elements of the Picard group

Now let k′ be a finite extension of k, and write

X ′ = X ×Spec k Spec k′.

Consider the natural group homomorphism

i: Pic0 X → Pic0 X ′.

It is injective since a line bundle L of degree 0 on X is trivial if and only if Γ(X,L) 6= 0,
and this is equivalent to the corresponding condition over k′.

Let x′ be an element of Pic0 X ′. We now explain how to use normalised repre-

sentatives to decide whether x′ lies in the image of i, and if so, to find the unique
element x ∈ Pic0 X such that x′ = i(x).
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Algorithm 2.13 (Descent). Let X be a projective curve over a field k, and let O be

a k-rational point of X. Let k′ be a finite extension of k, write

X ′ = X ×Spec k Spec k′,

and let LX′ denote the pull-back of the line bundle LX to X ′. Let x′ be an element

of Pic0 X ′. Given the k-algebra S
(4)
X , the spaces

Γ(X,L⊗2
X (−rO)) for degLX − gX ≤ r ≤ degLX

and a subspace of Γ(X ′,L⊗2
X′ ) representing x′, this algorithm outputs false if x′ is

not in the image of the canonical map

i: Pic0 X → Pic0 X ′.

Otherwise, the algorithm outputs (true,Γ(X,L⊗2
X (−D))), where Γ(X,L⊗2

X (−D)) rep-

resents the unique element x ∈ Pic0 X such that i(x) = x′.

1. Compute the (LX′ , O)-normalised representative R
LX′ ,O
x′ of x′.

2. Compute the k-vector space

V = Γ(X ′,L⊗2
X′ (−Rx)) ∩ Γ(X,L⊗2

X ).

3. If the codimension of V in Γ(X,L⊗2
X ) is less than degLX , output false; other-

wise, output (true, V ).

Analysis. In step 3, we check whether RLX ,O
x is defined over k or, equivalently,

whether x is defined over k. If this is the case, the space V equals Γ(X,L⊗2
X (−Rx)),

where x is the unique element of Pic0 X such that i(x) = x′. This shows that the

algorithm is correct; its running time, measured in operations in k and k′, is clearly
polynomial in degLX . ⋄

2.11. Computing Picard and Albanese maps

A finite morphism

f :X → Y

between complete, smooth, geometrically connected curves over a field k induces two
group homomorphisms

Pic f : Pic0 Y → Pic0 X

and

Alb f : Pic0 X → Pic0 Y,

called the Picard and Albanese maps, respectively. In terms of line bundles, they can

be described as follows. The Picard map sends the class of a line bundle N on Y to

the class of the line bundle f∗N on X, and the Albanese map sends the class of a line
bundle M on X to the class of the line bundle NfM on Y .
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Alternatively, these maps can be described in terms of divisor classes as follows.

The group homomorphisms

f∗: Div0 X → Div0 Y and f∗: Div0 Y → Div0 X

between the groups of divisors of degree 0 on X and Y respect the relation of linear
equivalence on both sides. The Picard map sends the class of a divisor E on Y to the

class of the divisor f∗E on X, and the Albanese map sends the class of a divisor D

on X to the class of the divisor f∗D on Y .
Let us now assume that f :X → Y is a finite morphism of projective curves in

the sense of § 2.5; in particular, we are given an isomorphism f∗LY
∼−→ LX . Using

the following algorithms, we can compute the maps Pic f and Alb f . The algorithm
for the Albanese map actually only reduces the problem to a different one, namely

that of computing traces in Picard groups with respect to finite extensions of the base

field. If A is an Abelian variety over a field k and k′ is a finite extension of k, then

the trace of an element y ∈ A(k′) is defined by

trk′/k y = [k′ : k]i
∑

σ

σ(y),

where σ runs over all k-embeddings of k′ into an algebraic closure of k and [k′ : k]i is

the inseparable degree of k′ over k. Computing traces is a problem that can be solved

at least for finite fields, as we will see in § 3.4.

Algorithm 2.14 (Picard map). Let f :X → Y be a finite morphism of projective

curves, and let y be an element of Pic0 Y . Given the k-algebras S
(4)
X and S

(4)
Y , the

homomorphism f#:S
(4)
Y → S

(4)
X and a subspace Γ(Y,L⊗2

Y (−E)) of Γ(Y,L⊗2
Y ) repre-

senting y, this algorithm outputs a subspace of Γ(X,L⊗2
X ) representing (Pic f)(y) ∈

Pic0 X.

1. Compute the subspace Γ(X,L⊗2
X (−D)) for the divisor D = f∗E using Algo-

rithm 2.6 (taking i = j = 2 in the notation of that algorithm), and output the
result.

Analysis. Since (Pic f)(y) is represented by the line bundle LX(−f∗D), the correct-

ness of this algorithm follows from that of Algorithm 2.6. Furthermore, the running
time of Algorithm 2.6, measured in operations in k, is polynomial in degLX for fixed

i and j; therefore, the running time of this algorithm is also polynomial in degLX . ⋄
Algorithm 2.15 (Albanese map). Let f :X → Y be a finite morphism of projec-

tive curves over a field k. Let x be an element of Pic0 X, and let O be a k-rational

point of Y . Suppose that we have a (probabilistic) algorithm to compute the pri-
mary decomposition of a finite commutative k-algebra A with (expected) running

time polynomial in [A : k], measured in operations in k. Suppose furthermore that

for any finite separable extension k′ of k and any element y ∈ Pic0(Yk′), we can

compute trk′/k y in time polynomial in degLY and [k′ : k], measured in operations

in k. Given the k-algebras S
(6)
X and S

(6)
Y , the homomorphism f#:S

(6)
Y → S

(6)
X , the

space Γ(Y,L⊗2
Y (−O)) and a subspace Γ(X,L⊗2

X (−D)) of Γ(X,L⊗2
X ) representing x,

this algorithm outputs a subspace of Γ(Y,L⊗2
Y ) representing (Alb f)(x) ∈ Pic0 Y .
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1. Compute Γ(X,L⊗4
X (−D)) as the product of Γ(X,L⊗2

X ) and Γ(X,L⊗2
X (−D)).

2. Find the decomposition of D as a linear combination
∑

P nP P of prime divisors

using Algorithm 2.4.

3. For each P occurring in the support of D:

4. Compute the base changes Xk(P ) and Yk(P ).

5. Find the primary decomposition of the divisor Pk(P ) on Xk(P ), and pick a

rational point P ′ in it.

6. Compute the space Γ(Yk(P ),L⊗2
Y (−f(P ′)− (degLY − 1)O)); this represents

an element yP ′ ∈ Pic0(Yk(P )).

7. Compute the element yP = trk(P )/k yP ′ of Pic0 Yk(P ). Apply Algorithm 2.13

to get a representation for yP as an element of Pic0 Y .

8. Compute the element y =
∑

P nP yP of Pic0(Y ).

9. Output the element y − (deg f)(degLY − 1)y0 of Pic0 Y , where y0 is the element

of Pic0 Y represented by Γ(Y,L⊗2
Y (−(degLY )O)).

Analysis. The definition of yP,i implies that

yP ′ = [LY (−f(P ′) − (degLY − 1)O)],

the definition of yP implies that

yP = [L⊗[k(P ):k]
Y (−f∗P − [k(P ) : k](degLY − 1)O)]

and the definition of y, together with the fact that degLX = (deg f)(degLY ) implies

that
y = [L⊗ degLX

Y (−f∗D − (degLX)(degLY − 1)O)]

= [L⊗ deg f
Y (−f∗D)] + (deg f)(degLY − 1)[LY (−(degLY )O)].

Together with the definition of y0, this shows that

y − (deg f)(degLY − 1)y0 = [L⊗ deg D
Y (−f∗D)]

= NfLX(−D),

and therefore that the output of the algorithm is indeed (Alb f)(x). Our computa-

tional assumptions imply that the running time is polynomial in degLX , measured

in field operations in k. ⋄
Finally we consider correspondences, i.e. diagrams of the form

X
fւ ցg

Y Z,

where X, Y and Z are proper, smooth, geometrically connected curves over a field k.

Such a correspondence induces group homomorphisms

Alb g ◦ Pic f : Pic0 Y → Pic0 Z

and
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2. Computing with divisors on a curve

Alb f ◦ Pic g: Pic0 Z → Pic0 Y.

We suppose that X, Y and Z are given by projective embeddings using line bundles
LX , LY and LZ as in § 2.1, and that we are given isomorphisms

f∗LY
∼= LX

∼= g∗LZ .

Then Alb g◦Pic f and Alb f ◦Pic g can be computed by composing the two algorithms

described above.

3. Curves over finite fields

In this section we give algorithms for computing with divisors on a curve over a

finite field. After some preliminaries, we show how to compute the Frobenius map
on divisors and how to choose uniformly random divisors of a given degree. Then we

show how to do various operations in the Picard group of a curve over a finite field,

such as choosing random elements, computing the Frey–Rück pairing and finding
a basis of the l-torsion for a prime number l. Many of the results in this section,

especially those in § 3.7, § 3.8 and § 3.9, are variants of work of Couveignes [16].

We switch from measuring the running time of algorithms in field operations to

measuring it in bit operations. The usual field operations in a finite field k can be
done in time polynomial in log #k.

Let k be a finite field of cardinality q, and let X be a complete, smooth, geomet-

rically connected curve of genus g over k. The zeta function of X is the power series
in Z[[t]] defined by

ZX =
∑

D∈Eff X

tdeg D ==

∞∑

n=0

(#Effn X)tn

∥∥ ∥∥

∏

P∈PDiv X

1

1 − tdeg P
==

∞∏

d=1

(1 − td)−# PDivd X .

Here Eff X and PDiv X are the sets of effective divisors and prime divisors on X,

respectively; a superscript denotes the subset of divisors of the indicated degree. The

following properties of the zeta function are well known.

Theorem 3.1. Let X be a complete, smooth, geometrically connected curve of
genus g over a finite field of cardinality q.

(1) The power series ZX can be written as a rational function

ZX =
LX

(1 − t)(1 − qt)
, (3.1)

where LX ∈ Z[t] is a polynomial of the form

LX = 1 + a1t + · · · + a2g−1t
2g−1 + qgt2g.
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(2) The factorisation of LX over the complex numbers has the form

LX =

2g∏

i=1

(1 − αit), (3.2)

where each αi has absolute value
√

q.

(3) The polynomial LX satisfies the functional equation

qgt2gLX(1/qt) = LX(t). (3.3)

From the definition of ZX and from (3.1) it is clear how one can compute the
number of effective divisors of a given degree on X starting from the polynomial LX .

We now show how to extract the number of prime divisors of a given degree from LX .

Taking logarithmic derivatives in the definition of ZX and the expression (3.1), we
obtain

Z′
X

ZX
=

1

t

∞∑

n=1

(
∑

d|n

d · #PDivd X

)
tn =

L′
X

LX
+

1

1 − t
+

q

1 − qt
. (3.4)

From LX we can compute the coefficients of this power series. We can then compute

#PDivd X using the Möbius inversion formula. More explicitly, taking logarithmic
derivatives in the factorisation (3.2), we obtain Newton’s identity

L′
X/LX = −

∞∑

n=0

sn+1t
n,

where the sn are the power sums

sn =

2g∑

i=1

αn
i ∈ Z (n ≥ 0).

Expanding the right-hand side of (3.4) in a power series and comparing coefficients,

we get ∑

d|n

d #PDivd X = 1 + qn − sn,

or equivalently, by the Möbius inversion formula,

n#PDivn X =
∑

d|n

µ(n/d)(1 + qd − sd),

where µ is the usual Möbius function. We note that this simplifies to

#PDivn X =

{
1 + q − s1 if n = 1;
1
n

∑
d|n µ(n/d)(qd − sd) if n ≥ 2. (3.5)

Let J = Pic0
X/k denote the Jacobian variety of X. From the fact that the Brauer

group of k vanishes it follows that the canonical inclusion

Pic0 X → J(k)
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3. Curves over finite fields

is an equality. In other words, every rational point of J can be identified with a linear

equivalence class of k-rational divisors of degree 0.

We note that from the functional equation (3.3) one can deduce that

#Effn X =
q1−g+n − 1

q − 1
LX(1) for n ≥ 2g,

which in turn is equivalent to the “class number formula”

#J(k) = #Pic0 X = LX(1). (3.6)

3.1. The Frobenius map

Let k be a finite field of cardinality q, and let X be a projective curve over k in the

sense of § 2.1. We write d = degLX . Let Symd X denote the d-th symmetric power
of X over k, and let Grd Γ(X,L⊗2

X ) denote the Grassmann variety of linear subspaces

of codimension d in the k-vector space Γ(X,L⊗2
X ). Then we have a commutative

diagram
Grd Γ(X,L⊗2

X ) ←− Symd X

Frobq

y yFrobq

Grd Γ(X,L⊗2
X ) ←− Symd X

of varieties over k, where the vertical arrows are the q-power Frobenius morphisms.

Now let k′ be a finite extension of k, write

X ′ = X ×Spec k Spec k′,

and let D be an effective divisor on X ′. The commutativity of the above diagram
shows that the divisor (Frobq)∗D on X ′ can be computed using the following algo-

rithm.

Algorithm 3.2 (Frobenius map on divisors). Let X be a projective curve over a

finite field k of q elements, and let Frobq be the Frobenius map on the set of divisors
on X. Let k′ be a finite extension of k. Let X ′ = X ×Spec k Spec k′, and let LX′ be

the pull-back of the line bundle LX to X ′. Let i be a positive integer, and let D be

an effective divisor on X ′. Given the matrix M of the inclusion map

Γ(X ′,L⊗i
X′(−D)) −→ Γ(X ′,L⊗i

X′)

with respect to any k′-basis of the left-hand side and the k′-basis induced from any

k-basis of Γ(X,L⊗i
X ) on the right-hand side, this algorithm outputs the analogous

matrix for the inclusion map

Γ(X ′,L⊗i
X′(−(Frobq)∗D)) −→ Γ(X ′,L⊗2

X′ ).

1. Apply the Frobenius automorphism of k′ over k to the coefficients of the ma-

trix M , and output the result.

Analysis. It follows from the discussion preceding the algorithm that the output is
indeed equal to Γ(X ′,L⊗i

X′(−(Frobq)∗D)). The algorithm involves O((degLX)2) com-

putations of a q-th power of an element in k′, which can be done in time polynomial

in degLX , i and log #k′. ⋄
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3.2. Choosing random prime divisors

Let X be a projective curve (in the sense of § 2.1) over a finite field. Our next goal is to

generate random effective divisors of given degree on X. We start with an algorithm
to generate random prime divisors. For this we do not yet need to know the zeta

function of X, although we use its properties in the analysis of the running time of

the algorithm.

Algorithm 3.3 (Random prime divisor). Let X be a projective curve over a finite

field k. Let d and i be positive integers such that

d ≤ idegLX − 2gX .

Given d, i and the k-algebra S
(2i+2)
X , this algorithm outputs a uniformly distributed

prime divisor P of degree d on X, represented as the subspace Γ(L⊗i
X (−P )) of Γ(L⊗i

X ),

provided PDivd X is non-empty. (If PDivd X = ∅, the algorithm does not terminate.)

1. Choose a non-zero element s ∈ Γ(L⊗i
X ) uniformly randomly, and let D denote the

divisor of s. (In other words, choose a random hypersurface section of degree i

of X.)

2. Compute the set Irrd D of (reduced) irreducible components of D of degree d

over k using Algorithm 2.4.

3. With probability # Irrd D
⌊(i degLX)/d⌋ , output a uniformly random element P ∈ Irrd D

and stop.

4. Go to step 1.

Analysis. Let q denote the cardinality of k, and let H denote the set of divisors D

that are divisors of non-zero global sections of L⊗i
X . By the Riemann–Roch formula,

the cardinality of H is

#H =
q1−g+i degL − 1

q − 1
.

When the algorithm finishes, the probability p(D,P ) that a specific pair (D,P ) has

been chosen is

p(D,P ) =
1

#H

#Irrd D

⌊(idegL)/d⌋
1

# Irrd D

=
q − 1

q1−g+i degL − 1

1

⌊(idegL)/d⌋ .

For all prime divisors P of degree d, the number of D ∈ H for which P is in the

support of D is equal to

#{D | P ∈ suppD} =
q1−g+i degL−d − 1

q − 1
,

so the probability p(P ) that a given P is chosen equals

p(P ) = #{D | P ∈ suppD} · p(D,P )

=
q1−g+i degL−d − 1

q1−g+i degL − 1

1

⌊(idegL)/d⌋ .
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This is independent of P and therefore shows that when the algorithm finishes, the

chosen element P ∈ PDivd X is uniformly distributed. Furthermore, the probability p

that the algorithm finishes in a given iteration is

p = #PDivd X · q1−g+i degL−d − 1

q1−g+i degL − 1

1

⌊(idegL)/d⌋

=
#PDivd X

qd

q1−g+i degL − qd

q1−g+i degL − 1

1

⌊(idegL)/d⌋

≥ #PDivd X

qd
(1 − q−1−gX )

d

idegL .

We claim that the expected running time is polynomial in degL, i and log q, under

the assumption that #PDivd X 6= ∅. We distinguish two cases:

qd/2 < 2σ0(d)(2gX + 1) and qd/2 ≥ 2σ0(d)(2gX + 1).

Here σ0(d) denotes the number of positive divisors of d. In the first case, we see that

p > (2σ0(d)(2gX + 1))2(1 − q−1−gX )
d

idegL ,

which shows that 1/p is bounded by a polynomial in degL and i. In the second case,

we deduce from (3.5) the following estimate for #PDivd X:

|d#PDivd X − qd| ≤
∑

e|d
e 6=d

qe +
∑

e|d

|se|

≤ (σ0(d) − 1)qd/2 + σ0(d) · 2gXqd/2

< σ0(d)(2gX + 1)qd/2

≤ 1

2
qd

.

This implies that #PDivd X > qd/(2d), and hence

p >
1 − q−1−gX

2idegL .

In both cases we conclude that the expected running time is bounded by a polynomial

in degL, i and log q. ⋄

3.3. Choosing random divisors

As before, let X be a projective curve over a finite field k. From now on we assume
that we know the zeta function of X, or equivalently the polynomial LX .

Below we will give an algorithm for generating uniformly random effective divisors

of a given degree on the curve X. These divisors will be built up from prime divisors,
so it will be useful to speak of the decomposition type of an effective divisor D. This
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is the sequence of integers (l1, l2, . . .), where ld is the number of prime divisors of

degree d (counted with multiplicities) occurring in D.

One of the ingredients is the concept of m-smooth divisors and decomposition
types. An m-smooth divisor is a linear combination of prime divisors whose de-

grees are at most m, and an m-smooth decomposition type of degree n is an m-

tuple (l1, . . . , lm) such that
∑m

d=1 ldd = n. For every m-smooth effective divisor D of
degree n, we may view the decomposition type of D as an m-smooth decomposition

type, since only its first m coefficients are non-zero.

The algorithm that we will describe takes as input integers n ≥ 0 and m ≥ 1,
and outputs a uniformly random m-smooth effective divisor of degree n. Clearly, all

effective divisors of degree n are n-smooth, so that the algorithm can be used with

m = n to produce uniformly random effective divisors of degree n.

The first step is to generate the decomposition type of a uniformly random m-
smooth effective divisor of degree n. The method we use for doing this is described

by Diem in [27, page 150] and in [28]. The algorithm works by recursion on m.

For every m ≥ 1, we write Effn
≤m X for the set of m-smooth effective divisors D of

degree n. Furthermore, for l ≥ 0 and m ≥ 1 we write Eff lm
=m X for the set of divisors

of degree lm that are linear combinations of prime divisors of degree m. We note that
the set Effn

≤m X can be decomposed as

Effn
≤m X =






Effn
=1 X if m = 1;

⌊n/m⌋⊔

l=0

Eff lm
=m X × Effn−lm

≤m−1 X if m ≥ 2.
(3.7)

The cardinality of Efflm
=m X equals the number of ways to choose l elements from the

set PDivm X with repeats. For this we have the well-known formula

#Eff lm
=m X =

(
#PDivm X − 1 + l

l

)
. (3.8)

Furthermore, from the description (3.7) of Effn
≤m X we see that

#Effn
≤m X =






#Effn
=1 X if m = 1;

⌊n/m⌋∑

l=0

#Eff lm
=m X · #Effn−lm

≤m−1 X if m ≥ 2.
(3.9)

From these relations we can compute #Effn
≤m X recursively, starting from the num-

bers #PDivd X for 1 ≤ d ≤ m. An alternative way to describe these recurrence

relations is to use generating functions; see Diem [27, page 149] or [28, Lemma 3.14].

In order to generate decomposition types of uniformly random m-smooth divi-

sors of degree n, we define a probability distribution µn
m on the set of m-smooth

decomposition types of degree n by defining µn
m(l1, . . . , lm) as the probability that

a uniformly randomly chosen effective m-smooth divisor of degree n has decompo-

sition type (l1, . . . , lm). The algorithm now works as follows. We first select an
integer lm ∈ {0, 1, . . . , ⌊n/m⌋}—the number of prime divisors of degree m (counted
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with multiplicities) occurring in the decomposition—according to the marginal dis-

tribution νn
m of the m-th coordinate. We then apply the algorithm recursively with

(n − lmm,m − 1) in place of (n,m).

The marginal distribution νn
m of the coordinate lm in an m-tuple (l1, . . . , lm)

distributed according to µn
m is the following. If m = 1, then l1 = n with probability 1.

When m ≥ 2, the probability that lm equals a given l ∈ {0, 1, . . . , ⌊n/m⌋} is

νn
m(l) =

#Eff lm
=m X · #Effn−lm

≤m−1 X

#Effn
≤m X

(0 ≤ l ≤ ⌊n/m⌋). (3.10)

We compute #Effn
≤m X, as well as #Eff lm

=m and #Effn−lm
≤m−1 X for 0 ≤ l ≤ ⌊n/m⌋,

using (3.5), (3.8) and (3.9). We then generate a random lm ∈ {0, 1, . . . , ⌊n/m⌋},
distributed according to νn

m, in the following way. We subdivide the interval

I = {0, 1, . . . ,#Effn
≤m X − 1}

into ⌊n/m⌋+1 intervals Il, with 0 ≤ l ≤ ⌊n/m⌋ and each Il having length #Eff lm
=m X ·

#Effn−lm
≤m−1 X, we generate a uniformly random element x ∈ I, and we select the

unique l such that x ∈ Il.

Algorithm 3.4 (Decomposition type of a random divisor). Given the polynomial LX

for a curve X over a finite field and integers n ≥ 0 and m ≥ 1, this algorithm outputs a

random m-smooth decomposition type (l1, . . . , lm) of degree n, distributed according
to the distribution µn

m.

1. If m = 1, output the 1-tuple (n) and stop.

2. Choose a random element lm ∈ {0, 1, . . . , ⌊n/m⌋} according to the distribution νn
m

from (3.10).

3. Call the algorithm recursively with (n− lmm,m− 1) in place of (n,m) to obtain

an (m − 1)-smooth decomposition type (l1, . . . , lm−1) of degree n − lmm.

4. Output the m-tuple (l1, . . . , lm).

Analysis. The correctness of the algorithm follows from the above discussion. It is

straightforward to check that it runs in time polynomial in gX , log #k, n and m. ⋄

The preceding algorithm reduces our problem to generating random linear com-

binations of l prime divisors of a given degree d. In other words, we have to pick a

random multiset of cardinality l from PDivd X. This can be done using the following
algoritm.

Algorithm 3.5 (Random multiset). Let S be a finite non-empty set of known car-

dinality. Suppose we have algorithms to pick uniformly random elements of S and
to decide whether two such elements are equal. Given a non-negative integer l, this

algorithm outputs a uniformly random multiset of l elements from S.

1. Generate a uniformly random subset {x1, . . . , xl} of {1, 2, . . . , l + #S − 1}, with
x1 < x2 < . . . < xl.
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2. Define a multiset (y1, . . . , yl) of l elements from {0, 1, . . . ,#S − 1} by yi = xi − i;

then y1 ≤ y2 ≤ . . . ≤ yl.

3. For each i with 1 ≤ i ≤ l, let ai be the number of elements of {0, 1, . . . ,#S − 1}
that occur with multiplicity i in (y1, . . . , yl).

4. Generate a uniformly random sequence

s1
1, s

1
2, . . . , s

1
a1

,

s2
1, s

2
2, . . . , s

2
a2

,

...

sl
1, s

l
2, . . . , s

l
al

of a1 + a2 + · · · + al distinct elements of S.

5. Output the multiset consisting of the elements sj
i of S, where sj

i occurs with

multiplicity j.

Analysis. By construction, (y1, . . . , yl) is a uniformly random multiset of l elements

from {0, 1, . . . ,#S − 1}, so the “multiplicity vector” (a1, . . . , al) is the same as that

of a uniformly random multiset of l elements from S. The multiset generated in the
last step is uniformly random among the multisets with this “multiplicity vector”.

This implies that the result is a uniformly random multiset of l elements from S, as

required. ⋄

Combining Algorithms 3.3, 3.4 and 3.5, we obtain the following algorithm to

generate a uniformly random effective divisor of a given degree.

Algorithm 3.6 (Random divisor). Let X be a projective curve over a finite field k.

Given positive integers m and i, an integer n satisfying

0 ≤ n ≤ idegLX − 2gX ,

the graded k-algebra S
(2i+2)
X and the polynomial LX , this algorithm outputs a uni-

formly random m-smooth effective divisor D of degree n on X, represented as the
subspace Γ(L⊗i

X (−D)) of Γ(L⊗i
X ).

1. Generate a random m-smooth decomposition type (l1, . . . , lm) of degree n using

Algorithm 3.4.

2. For d = 1, . . . ,m, generate a uniformly random linear combination Dd of ld prime

divisors of degree d on X using Algorithm 3.5 (with S = PDivd X, and l = ld),

where we use Algorithm 3.3 to generate random elements of PDivd X.

3. Compute the subspace Γ(LX(−D)) for the divisor D = D1 + · · ·+ Dm using the
addition algorithm described in § 2.2, and output Γ(LX(−D)).

Analysis. It follows from the above discussion that the algorithm outputs a uniformly

random m-smooth divisor of degree n on X. The running time is clearly polynomial
in m, n, i and degLX (measured in field operations in k). ⋄
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Remark . In practice, the following method for picking a random effective divisor of

degree n is faster, but does not give a uniformly distributed output. We first choose a

uniformly random non-zero section s of Γ(X,L⊗i), where i is a non-negative integer
such that

idegL − n ≥ 2g + 1.

Then if the set of effective divisors D of degree n with D ≤ div s is non-empty, we

pick a uniformly random element from it; otherwise we keep going with a different
section s.

3.4. The Frobenius endomorphism of the Jacobian

As before, let k be a finite field of cardinality q, and let X be a proper, smooth and

geometrically connected curve over k. Let J be the Jacobian variety of X, and let

Frobq denote the Frobenius endomorphism of J ; it is an isogeny of degree qg. The

Rosati dual of Frobq is called the Verschiebung and denoted by Verq. The Albanese
and Picard maps associated to the Frobenius morphism on X are the endomorphisms

Frobq and Verq of J , respectively.

Assume we have a point O ∈ X(k). Then we have a commutative diagram

Symd X −→ J

Frobq

y yFrobq

Symd X −→ J

of varieties over k, where the horizontal maps send a divisor D to the class of D−dO
and the vertical arrows are the q-power Frobenius morphisms. This shows that the

Frobenius endomorphism of J is equal to the endomorphism Alb(Frobq) induced by

the Frobenius map on X via Albanese functoriality.
We write X ′ = X ×Spec k Spec k′. The results of § 3.1 imply that for any finite

extension k′ of k, the endomorphism Frobq of J(k′) = Pic0(X ′) can be computed by

applying Algorithm 3.2 to any subspace Γ(X ′,L⊗2
X′ (−D)) of the k′-vector space

Γ(X ′,L⊗2
X′ ) ∼= k′ ⊗k Γ(X,L⊗2

X )

with D an effective divisor of degree degLX on X ′ such that LX′(−D) represents x.
If O is a k-rational point of X, then we can compute the trace map

trk′/k: Pic0 X ′ → Pic0 X

in the following way. For x ∈ Pic0 X ′, we compute a subspace of Γ(X ′,L⊗2
X′ ) repre-

senting the element

y =

[k′:k]−1∑

i=0

Frobi
q x ∈ Pic0 X ′.

Now y is in fact the image of the element trk′/k x ∈ Pic0 X under the inclusion

Pic0 X → Pic0 X ′, so we can apply Algorithm 2.13 to find a subspace of Γ(X,L⊗2
X )

representing trk′/k x.
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In § 2.11, the problem of computing the Albanese map for a finite morphism of

curves was reduced to the problem of computing trace maps. Since we can solve

the latter problem, we can therefore compute Albanese maps for finite morphisms of
curves over finite fields.

3.5. Picking random elements of the Picard group

The next problem we will study is that of picking uniformly random elements in the

finite Abelian group J(k) = Pic0 X. We recall from § 2.8 that in the medium model

of the Picard group, the class of a line bundle M of degree 0 is represented by an
effective divisor D of degree degL such that M ∼= L(−D). Consider the map

EffdegL X → Pic0 X

D 7→ [L(−D)].

It follows from the Riemann–Roch theorem and the fact that degL ≥ 2gX − 1 that

all fibres of this map have cardinality q1−g+deg L−1
q−1 . This means that to pick a uni-

formly random element of Pic0 X it suffices to pick a uniformly random divisor of
degree degL. A method for doing this is given by Algorithm 3.6, provided that we

know S
(6)
X .

3.6. Computing Frey–Rück pairings

Let n be a positive integer. We assume k contains a primitive n-th root of unity; this

is equivalent to

n | #k× = q − 1

and implies that n is not divisible by the characteristic of k.

Let X be a complete, smooth, geometrically connected curve over k, and let J
be its Jacobian variety. The Frey–Rück pairing of order n on J(k) = Pic0 X is the

bilinear map

[ , ]n:J [n](k) × J(k)/nJ(k) → µn(k)

defined as follows (see Frey and Rück [39] or Schaefer [93]). Let x and y be elements
of J(k) such that nx = 0. Choose divisors D and E such that x and y are represented

by the line bundles OX(D) and OX(E), respectively, and such that the supports of

D and E are disjoint. By assumption, there exists a rational function f on X such

that nD = div(f); now [x, y]n is defined as

[x, y]n = f(E)#k×/n.

Here f(E) is defined on k̄-valued points (where k̄ is an algebraic closure of k) by

function evaluation, and then extended to the group of divisors on Xk̄, by linearity
in the sense that

f(E + E′) = f(E) · f(E′).

It is known that the Frey–Rück pairing is perfect in the sense that it induces isomor-

phisms

J [n](k)
∼−→ Hom(J(k)/nJ(k), µn(k))

and
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J(k)/nJ(k)
∼−→ Hom(J [n](k), µn(k))

of Abelian groups.
Let us now give a slightly different interpretation of f(E) that brings us in the

right situation to compute [x, y]n. We consider an arbitrary non-zero rational func-

tion f and an arbitrary divisor E such that the divisors

D = div(f)

and E have disjoint supports. Since f(E) is by definition linear in E, it suffices to
consider the case where E is an effective divisor. As in § 2.7, we write

jE :E → X

for the closed immersion of E into X, and if M is a line bundle on X we abbreviate

NE/kM = NE/k(j∗EM).

Since D and E have disjoint supports, we have a canonical trivialisation

tD: k ∼= NE/kOX
∼−→ NE/kOX(D).

On the other hand, multiplication by f induces an isomorphism

NE/kf : NE/kOX(D)
∼−→ NE/kOX

∼= k.

of one-dimensional k-vector spaces. We claim that the composed isomorphism

k
tD−→
∼

NE/kOX(D)
NE/kf−→

∼
k (3.11)

is multiplication by f(E). This is true in the case where E is a single point, since

then NE/k is (canonically isomorphic to) the identity functor. We deduce the general

case from this by extending the base field to an algebraic closure of k and using the
fact that both f(E) and the norm functor are linear in E. For the latter claim, we

refer to Deligne [100, exposé XVII, no 6.3.27].

Remark . The isomorphism (3.11) could be taken as a definition of f(E) for effective

divisors E.

Lemma 3.7. Let x and y be elements of J(k) with nx = 0, let M be a line bundle
representing x, and let E+ and E− be effective divisors such that OX(E+ − E−)

represents y. (In particular, M has degree 0, and E+ and E− have the same degree.)

For any pair of trivialisations

t±: k
∼−→ NE±/kM

of k-vector spaces and any trivialisation

s:OX
∼−→ M⊗n
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of line bundles on X, the isomorphism

k
(t+)n

−→
∼

NE+/kM⊗n
NE+/ks−1

−→
∼

k
NE−/ks
−→
∼

NE−/kM⊗n (t−)−n

−→
∼

k

is multiplication by an element of k× whose (#k×/n)-th power equals [x, y]n.

(We have implicitly used the isomorphisms NE±/k(M⊗n) ∼= (NE±/kM)⊗n expressing
the linearity of NE/k, and denoted both sides of the isomorphism by NE±/kM⊗n.)

Proof . We fix a non-zero rational section h such that the divisor

D = div h

is disjoint from E±. Then we have canonical trivialisations

t±D: k
∼−→ NE±/kOX(D)

as above. Composing these with the isomorphism

NE±/kh: NE±/kOX(D)
∼−→ NE±/kM

induced by multiplication by h gives trivialisations

t±h = NE±/kh ◦ tD: k
∼−→ NE±/kM.

Now consider any isomorphism

s:OX
∼−→ M⊗n

of line bundles on X, and define

f = s−1 ◦ hn:OX(nD)
∼−→ OX ;

then f can be viewed as a rational function with divisor nD. We now have commu-

tative diagrams

k
(t±

D
)n

−→
∼

NE±/kOX(nD)
NE±/kf
−→
∼

k

∥∥ ∼
yNE±/khn

∥∥

k
(t±

h
)n

−→
∼

NE±/kM⊗n
NE±/ks−1

−→
∼

k.

As we saw above, the top row is multiplication by f(E±); by the commutativity of

the diagram, the same holds for the bottom row. Finally, we note that replacing t±h
by any pair of trivialisations

t±: k
∼−→ NE±/kM

changes the isomorphism in the bottom row of the above diagram by some n-th power
in k×. This implies that the isomorphism

k
(t±)n

−→
∼

NE±/kM⊗n
NE±/ks−1

−→
∼

k

equals multiplication by an element of k× whose (#k/n)-th power is f(E±)#k×/n.
The lemma follows from this by the definition of [x, y]n.
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Lemma 3.7 reduces the problem of computing the Frey–Rück pairing of order n

to the following: given a line bundle M such that M⊗n is trivial, find an isomorphism

s:OX
∼−→ Mn,

and, given moreover an effective divisor E and a trivialisation

t: k
∼−→ NE/kM,

compute the isomorphism

IE
s,t: k

tn

−→
∼

NE/kM⊗n NE/ks−1

−→
∼

k. (3.12)

We assume that the curve X is specified by a projective embedding via a line

bundle L as in § 2.1. We will describe an algorithm to compute isomorphisms of the

type IE
s,t, based on Khuri-Makdisi’s algorithms for computing with divisors on X.

Suppose we are given a line bundle M of degree 0 such that M⊗n is trivial and an

effective divisor E. For simplicity, we assume that deg E = degL. As in § 2.2, we

represent the class of M in J(k) by the subspace Γ(X,L⊗2(−D)) of Γ(X,L⊗2), where
D is any effective divisor of degree degL (not necessarily disjoint from E) such that

M ∼= L(−D).

Likewise, we represent E as the subspace Γ(X,L⊗2(−E)) of Γ(X,L⊗2).
First, we will describe a construction of a trivialisation

s:OX
∼−→ L(−D)⊗n.

For this we fix an anti-addition chain (a0, a1, . . . , am) for n, as described in § 2.8. In
particular, for each l with 2 ≤ l ≤ m we are given i(l) and j(l) in {0, 1, . . . , l−1} such

that

al = −ai(l) − aj(l).

We fix any non-zero global section u of L, and we put

D0 = div(u), D1 = D.

For l = 2, 3, . . . , m, we iteratively apply Algorithm 2.11 to Di(l) and Dj(l); this gives
an effective divisor Dl of degree degL and a global section sl of L⊗3 such that the

line bundle L⊗3(−Dl − Di(l) − Dj(l)) is trivial and

div(sl) = Dl + Di(l) + Dj(l).

We recursively define rational sections h1, h2, . . . , hm of L⊗(al−1) by

hl =






u−1 for l = 0;

1 for l = 1;

(hi(l)hj(l)sl)
−1 for l = 2, 3, . . . , m.
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Then it follows immediately that each hl has divisor alD − Dl. In particular, since

L(−D)⊗n is trivial, so is L(−Dm) and Algorithm 2.10 provides us with a global

section v of L such that
div(v) = Dm.

The rational section
s = hmv

of L⊗n has divisor nD and hence induces an isomorphism

s:OX
∼−→ L(−D)⊗n.

Next, we assume that an effective divisor E has been given. We assume for

simplicity that deg E = degL. We fix bases of the following k-vector spaces:

Γ(E,L⊗2);

Γ(E,L⊗3(−Dl)) for 1 ≤ l ≤ m;

Γ(E,L⊗4(−Di(l) − Dj(l))) for 2 ≤ l ≤ m.

In addition, we fix a k-basis of Γ(E,L⊗3(−D0)) by defining it as the image of the

chosen basis of Γ(E,L⊗2) under the multiplication map

u: Γ(E,L⊗2)
∼−→ Γ(E,L⊗3(−D0)).

For 0 ≤ l ≤ m we define a trivialisation

tl: k
∼−→ NE/kL(−Dl)
∼−→ Homk

(
detk Γ(E,L⊗2),detk Γ(E,L⊗3(−Dl))

)

using the given bases of Γ(E,L⊗2) and Γ(E,L⊗3(−Dl)), and we define an element γl

of k× by requiring that the diagram

k
tl−→
∼

NE/kL(−Dl)

γl

y∼ ∼
yhl

k
tal−→
∼

NE/kL(−D)⊗al

be commutative. For 2 ≤ l ≤ m, we define a trivialisation

t′l: k
∼−→ NE/kL⊗2(−Di(l) − Dj(l))

by (2.9) using the given bases of Γ(E,L⊗4(−Di(l) − Dj(l))) and Γ(E,L⊗2). Further-

more, we endow Γ(E,L⊗5(−Dl − Di(l) − Dj(l))) with the basis obtained by transfer-

ring the given basis of Γ(E,L⊗2) via multiplication by sl. This gives a trivialisation

t′′l : k
∼−→ NE/kL⊗3(−Dl − Di(l) − Dj(l))

by (2.9) using the basis of Γ(E,L⊗5(−Dl − Di(l) − Dj(l))) just defined and the given
basis of Γ(E,L⊗2).
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Algorithm 3.8 (Compute isomorphisms of the form IE
s,t). Let X be a projective

curve over a field k, let D and E be effective divisors of degree degL on X, and let

n be a positive integer such that L(−D)⊗n is trivial. Given the k-algebra S
(7)
X , an

anti-addition chain (a0, a1, . . . , am) for n, a global section u of L, effective divisors
D0, D1, . . . , Dm, global sections s2, . . . , sm of L3 such that

D0 = div(u),D1 = D and div(sl) = Dl + Di(l) + Dj(l) for 2 ≤ l ≤ m

and a global section v of the trivial line bundle L(−Dm), this algorithm outputs the

isomorphism IE
s,t defined by (3.12), where s is defined using the given data, and where

t is chosen by the algorithm. (Note that this means that the output of the algorithm

is an element of k× defined up to n-th powers in k×.)

1. Put γ0 = γ1 = 1.

2. For l = 2, 3, . . . , m:

3. Using Algorithm 2.9, compute the elements λ
(1)
l and λ

(2)
l of k× such that

the diagrams

k
ti(l)⊗tj(l)−→

∼
NE/kL(−Di(l)) ⊗ NE/kL(−Dj(l))

λ
(1)

l

y∼
y∼

k
t′l−→
∼

NE/kL⊗2(−Di(l) − Dj(l))

and

k
tl⊗t′l−→
∼

NE/kL(−Dl) ⊗ NE/kL⊗2(−Di(l) − Dj(l))

λ
(2)

l

y∼
y∼

k
t′′l−→
∼

NE/kL⊗3(−Dl − Di(l) − Dj(l))

are commutative. Define λl = λ
(1)
l λ

(2)
l .

4. Put γl =
λl

γi(l)γj(l)
.

5. Compute δ ∈ k× as the determinant of the matrix of the isomorphism

v: Γ(E,L2)
∼−→ Γ(E,L3(−Dm))

with respect to the given bases.

6. Output the element
1

γmδ
∈ k×.

Analysis. The definition of λl given in the algorithm implies that the diagram

k
tl⊗ti(l)⊗tj(l)−→

∼
NE/kL(−Dl) ⊗ NE/kL(−Di(l)) ⊗ NE/kL(−Dj(l))

λl

y∼
y∼

k
t′′l−→
∼

NE/kL⊗3(−Dl − Di(l) − Dj(l))
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is commutative; furthermore, t′′l is induced by multiplication by sl. The recursive

definition of the hl implies that the recurrence relation between the γl is as stated in

the algorithm. Namely, it follows from the definition of D0, from the special choice
of basis of Γ(E,L⊗3(−D0)) and from the fact that t1 = t that

γ0 = γ1 = 1.

Furthermore, the definitions of hl, γl, γi(l), γj(l) and the property of λl that we have

just proved imply that

γl =
λl

γi(l)γj(l)
for l = 2, 3, . . . ,m.

Finally, it follows from the definitions of s, γm and the isomorphism IE
s,t from (3.12)

that the relation between v, tm, γm and IE
s,t is given by the commutativity of the

diagram

k
IE

s,t−→
∼

k

γm

x∼ ∼
yNE/kv

k
tm−→
∼

NE/kL(−Dm).

This proves that the element of k× output by the last step is indeed IE
s,t.

It is straightforward to check that the running time of the algorithm, measured

in operations in k, is polynomial in degL and m. ⋄

Algorithm 3.9 (Frey–Rück pairing). Let X be a projective curve over a finite field k,

let n be an integer dividing #k×, and let x and y be elements of J(k) with nx = 0.

Given the k-algebra S
(7)
X and subspaces Γ(L⊗2

X (−D)) and Γ(L⊗2
X (−E−)) of Γ(L⊗2

X )
representing x and y, this algorithm outputs the element [x, y]n ∈ µn(k).

1. Find an anti-addition chain (a0, a1, . . . , am) for n.

2. Choose any non-zero global section u of LX , and let D0 denote its divisor. Com-

pute the space

Γ(L⊗2
X (−D0)) = uΓ(LX).

Write D1 = D.

3. Using Algorithm 2.11, find effective divisors D2, D3, . . . , Dm of degree degLX ,

where each Dl is represented as the space Γ(L⊗2
X (−Dl)), and non-zero global

sections s2, s3, . . . , sm of L⊗3
X such that the line bundle L⊗3

X (−Di(l)−Dj(l)−Dl)

is trivial and

div(sl) = Di(l) + Dj(l) + Dl.

4. Using Algorithm 2.10, verify that LX(−Dm) is trivial and find a non-zero global
section v of LX(−Dm).
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5. Choose a non-zero global section w of LX , let E+ denote its divisor, and compute

Γ(L⊗2
X (−E+)) = wΓ(LX).

6. Compute IE+

s,t+ and IE−

s,t− , viewed as elements of k×, using Algorithm 3.8, where

t+ and t− are certain trivialisations chosen by that algorithm.

7. Output (IE+

s,t+/IE−

s,t−)#k×/n.

Analysis. The correctness of this algorithm follows from Lemma 3.7. The running

time is polynomial in degLX , log #k and log n. ⋄
3.7. Finding relations between torsion points

Let X be a projective curve over a finite field k, represented as in § 2.1, let J be

its Jacobian, and let l be a prime number different from the characteristic of k. We

will show how to find all the Fl-linear relations between given elements of J [l](k). In
particular, given a basis (b1, . . . , bn) for a subspace V of J [l](k) and another point x ∈
J [l](k), this allows us to check whether x ∈ V , and if so, express x as a linear

combination of (b1, . . . , bn).
Let k′ be an extension of k containing a primitive l-th root of unity. It is well

known that the problem just described can be reduced, via the Frey–Rück pairing,

to the discrete logarithm problem in the group µl(k
′). Algorithm 3.11 below makes

this precise. We begin with a bound on the number of elements needed to generate a

finite-dimensional vector space over a finite field with high probability.

Lemma 3.10. Let F be a finite field, and let V be an F-vector space of finite

dimension d. Let α be a real number with 0 < α < 1, and write

m =






0 if d = 0;

d − 1 +

⌈
log 1

1−α1/d

log #F

⌉
if d > 0.

If v1, . . . , vm are uniformly random elements of V , the probability that V is generated

by v1, . . . , vm is at least α.

Proof . Fix a basis of V . The matrix of the linear map

Fm −→ V

(c1, . . . , cm) 7→
m∑

i=1

civi

is a uniformly random d×m-matrix over F. The probability that it has rank d is the

probability that its rows (which are uniformly random elements of Fm) are linearly

independent. This occurs with probability

p =
(#Fm − 1)(#Fm − #F) · · · (#Fm − #Fd−1)

#Fdm

≥ (#Fm − #Fd−1)d

#Fdm

=
(
1 − (#F)−(m−d+1)

)d

The choice of m implies that p ≥ α.
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Remark . The integer m defined in Lemma 3.10 is approximately d − 1 + log d
log #F , in

the sense that for any fixed α the difference is bounded for d ≥ 1.

Algorithm 3.11 (Relations between torsion points). Let X be a projective curve

over a finite field k, let J be its Jacobian, and let l be a prime number different from

the characteristic of k. Let x1, . . . , xn be elements of J [l](k). Given the k-algebra S
(7)
X

and subspaces Γ(L⊗2
X (−Di)) of Γ(L⊗2

X ) representing xi for 1 ≤ i ≤ n, this algorithm
outputs an Fl-basis for the kernel of the natural map

Σ:Fn
l −→ J [l](k)

(c1, . . . , cn) 7−→
n∑

i=1

cixi.

The algorithm depends on a parameter α ∈ (0, 1).

1. Generate a minimal extension k′ of k such that k′ contains a primitive l-th root

of unity ζ. Let

λ:µl(k
′)

∼−→ Fl

denote the corresponding discrete logarithm, i.e. the unique isomorphism of one-

dimensional Fl-vector spaces sending ζ to 1.

2. Define an integer m ≥ 0 by

m =






0 if n = 0;

n − 1 +

⌈
log 1

1−α1/n

log l

⌉
if n > 0.

3. Choose m uniformly random elements y1, . . . , ym in J(k′) as described in § 3.5;

their images in J(k′)/lJ(k′) are again uniformly distributed.

4. Compute the m × n-matrix

M = (λ([yi, xj ]l)) (1 ≤ i ≤ m, 1 ≤ j ≤ n)

with coefficients in µl(k
′), where the pairing [ , ]l is evaluated using Algo-

rithm 3.9 and the isomorphism λ is evaluated using some algorithm for computing

discrete logarithms in µl(k).

5. Compute an Fl-basis (b1, . . . , br) for the kernel of M .

6. If Σ(b1) = . . . = Σ(br) = 0, output (b1, . . . , br) and stop.

7. Go to step 3.

Analysis. We write V for the image of Σ and V ′ for the quotient of J(k′)/lJ(k′) by

the annihilator of V under the pairing [ , ]l. Then we have an induced isomorphism

V
∼−→ HomFl

(V ′, µl(k
′)).
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Consider the map

Σ′:Fm
l −→ V ′

(c1, . . . , cm) 7−→
m∑

i=1

ciyi.

Now we have a commutative diagram

Fn
l −→ HomFl

(Fm
l , µl(k

′))

Σ
y xf 7→f◦Σ′

V
∼−→ HomFl

(V ′, µl(k
′))

We identify µl(k
′) with Fl using the isomorphism λ and equip HomFl

(Fm
l , µl(k

′))
with the dual basis of the standard basis of Fm

l . Then the top arrow in the diagram

is given by the matrix M defined in step 4. This means that we have an inclusion

ker Σ ⊆ ker M.

In step 6 we check whether this inclusion is an equality. The surjectivity of Σ implies

that this is the case if and only if the rightmost map in the diagram is injective, i.e. if

and only if Σ′ is surjective. Since dimFl
V ≤ n, this happens with probability at least

α by Lemma 3.10. Therefore steps 3–7 are executed at most 1/α times on average.

This implies that (for fixed α) the algorithm runs in time polynomial in gX , log #k,

l and n. ⋄

Remarks. (1) If we know an upper bound for the dimension of the Fl-vector space

generated by the xi, then we can use this upper bound instead of n in the expression

for m in step 2.

(2) It does not matter much what algorithm we use for computing the discrete loga-

rithm in µl(k
′), since the running time of Algorithm 3.11 is already polynomial in l.

For example, we can simply tabulate the function λ.

3.8. The Kummer map on a divisible group

Let k be a finite field of cardinality q, and let l be a prime number. Let G be an étale

l-divisible group over k. (The étaleness is automatic if l is different from the charac-
teristic of k.) We denote by Frobq:G → G the (q-power) Frobenius endomorphism

of G; this is an automorphism because of the assumption that G is étale.

For any non-negative integer n such that all the points of G[ln] are k-rational,

the Kummer map of order ln on G over k is the isomorphism

K
G/k
ln :G(k)/lnG(k)

∼−→ G[ln](k)

x 7−→ Frobq(y) − y,

where y is any point of G over an algebraic closure of k such that the image of lny
in G(k)/lnG(k) equals x.
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Let χ ∈ Zl[t] be the characteristic polynomial of the Frobenius automorphism

of G on the Tate module of G. Then the element t mod χ of Zl[t]/(χ) is invertible.

Let n be any non-negative integer, and let a be a positive integer such that

ta = 1 in (Zl[t]/(ln, χ))×.

Then ta − 1 is divisible by ln in Zl[t]/(χ), and we let ha be the unique element

of Zl[t]/(χ) such that

ta − 1 = lnha ∈ Zl[t]/(χ).

By the Cayley–Hamilton theorem, Zl[t]/(χ) acts on G with t acting as Frobq. The

above identity therefore implies that

Froba
q −1 = lnha(Frobq) on G.

Let ka be an extension of k with

[ka : k] = a.

Then G[ln] is defined over ka, and we can express the Kummer map over ka in terms
of the Frobenius endomorphism over k as

K
G/ka

ln :G(ka)/lnG(ka)
∼−→ G[ln](ka)

x 7−→ ha(Frobq)(x).

In § 3.9 we are going to apply this to a certain l-divisible subgroup of the l-power
torsion of the Jacobian of a projective curve over k.

3.9. Computing the l-torsion in the Picard group

Let X be a projective curve over k, represented as in § 2.1, and let J be its Jacobian.
Let Frobq denote the Frobenius endomorphism of J over k, and let χ ∈ Z[t] be the

characteristic polynomial of Frobq.

Let l be a prime number different from the characteristic of k. We are going to
apply the results of § 3.8 to a certain l-divisible subgroup G of the group J [l∞] of

l-power torsion points of J . This G is defined as follows. Let f̄ = (t − 1)b be the

largest power of t − 1 dividing χ mod l, so that χ mod l has the factorisation

(χ mod l) = f̄ · f̄⊥

in coprime monic polynomials in Fl[t]. Hensel’s lemma implies that this factorisation
can be lifted uniquely to a factorisation

χ = f · f⊥,

where f and f⊥ are coprime monic polynomials in Zl[t]. The Chinese remainder

theorem gives a decomposition

Zl[t]/(χ)
∼−→ Zl[t]/(f) × Zl[t]/(f⊥), (3.13)

148



3. Curves over finite fields

which in turn induces a decomposition

J [l∞] ∼= G × G⊥

of l-divisible groups. We note that G is of rank b and that f is the characteristic

polynomial of Frobq on G. Let a be a positive integer such that

ta = 1 in (Fl[t]/f̄)×, (3.14)

let ha be the unique element of Zl[t]/(f) such that

ta − 1 = lha ∈ Zl[t]/(f), (3.15)

and let ka be an extension of degree a of k. All the points of G[l] are ka-rational, and
the b-dimensional Fl-vector space G[l](ka) is the generalised eigenspace corresponding

to the eigenvalue 1 of Frobq inside the Fl-vector space of points of J [l] over an algebraic

closure of ka. In particular, we have the identity

J [l](k) = {x ∈ G[l](ka) | Frobq(x) = x}.

As explained in § 3.8, the map

G(ka)/lG(ka)
∼−→ G[l](ka)

x 7−→ ha(Frobq)(x)

is well-defined and equal to the Kummer isomorphism

K
G/ka

l :G(ka)/lG(ka)
∼−→ G[l](ka)

of order l.

We use the above results to generate uniformly random elements of the Fl-vector
space G[l](ka). We factor #J(ka) as

#J(ka) = lcama

with ca ≥ 0, ma ≥ 1 and l ∤ ma. Let e be the idempotent in Zl[t]/(χ) corresponding

to the element (1, 0) on the right-hand side of (3.13). Composing the maps

J(ka)
ma−→ J [l∞](ka)

e(Frobq)−→ G(ka) −→ G(ka)/lG(ka)
ha(Frobq)−→ G[l](ka) (3.16)

we get a surjective group homomorphism from J(ka) to G[l](ka). We can use this

map to convert uniformly random elements of J(ka) into uniformly random elements
of G[l](ka), provided we know e and ha to sufficient l-adic precision. It is clear that

to compute the Kummer map we only need to know the image of ha in Zl[t]/(f, l) =

Fl[t]/((t − 1)b). Since G(ka) can be identified with a subgroup of #J(ka), it is
annihilated by lca , and we have

J [l∞](ka) = J [lca ](ka) and G(ka) = G[lca ](ka).
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This implies that it suffices to know e to precision O(lca).

Let us check that there is a reasonably small a for which (3.14) holds. For any

non-negative integer γ the identity

tl
γ − 1 = (t − 1)lγ

holds in Fl[t], and the right-hand side maps to zero in Fl[t]/(t − 1)b if and only if

lγ ≥ b. Since l is a prime number, we conclude that the order of t in Fl[t]/((t − 1)b)

equals lγ , where γ is the least non-negative integer such that lγ ≥ b.

Algorithm 3.12 (Computing the l-torsion of the Picard group). Let X be a pro-
jective curve over a finite field k with q elements, let J be its Jacobian, and let l

be a prime number different from the characteristic of k. Given the k-algebra S
(7)
X

and the characteristic polynomial χ of the Frobenius endomorphism of J over k, this

algorithm outputs an Fl-basis for J [l](k) = (Pic X)[l]. The algorithm depends on a
parameter α ∈ (0, 1).

1. Factor χ mod l in Fl[t] as

(χ mod l) = f̄ · f̄⊥,

where f̄ is the greatest power of t− 1 dividing χ mod l, say f̄ = (t− 1)b, and lift

this to a factorisation
χ = f · f⊥

in coprime monic polynomials in Zl[t].

2. Compute the non-negative integer r defined by

r =






0 if b = 0;

b − 1 +

⌈
log 1

1−α1/b

log l

⌉
if b ≥ 1.

3. Define a = lγ , where γ is the least non-negative integer such that lγ ≥ b. Generate
a finite extension ka of degree a of k. Factor #J(ka) as

#J(ka) = lcama with l ∤ ma.

Compute the image of the idempotent e in (Z/lcaZ)[t]/(χ) using the extended

Euclidean algorithm, and compute the image of ha in Fl[t]/((t − 1)b) using the
definition (3.15) of ha.

4. Generate r uniformly random elements of J(ka) as explained in § 3.5, and map

them to elements x1, . . . , xr ∈ G[l](ka) using the homomorphism (3.16).

5. Using Algorithm 3.7, compute a basis for the kernel of the Fl-linear map

Σ:Fr
l −→ G[l](ka)

(c1, . . . , cr) 7−→
r∑

i=1

cixi.

If the dimension of this kernel is greater than r − b, go to step 4.
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6. Use the Fl-linear relations between x1, . . . , xr computed in the previous step to

find a subsequence (y1, . . . , yb) of (x1, . . . , xr) that is an Fl-basis of G[l](ka).

7. Let M be the matrix with respect to the basis (y1, . . . , yb) of the Fl-linear auto-
morphism of G[l](ka) induced by the Frobenius endomorphism Frobq of J over k.

Compute M by computing Frobq(yi) for i = 1, . . . , b using Algorithm 3.2 and

then applying Algorithm 3.7 to express the Frobq(yi) as linear combinations of

the yi.

8. Compute a basis for the kernel of M − I, where I is the b × b identity matrix.

Map the basis elements to elements z1, . . . , zt of G[l](ka) using the injective

homomorphism

Fb
l −→ G[l](ka)

(a1, . . . , ab) 7−→
b∑

i=1

aiyi.

Output (z1, . . . , zt).

Analysis. As we remarked earlier, the definition of a implies that a equals the order

of t in (Fl[t]/(t−1)b)×; furthermore, J [l](k) equals the kernel of Frobq − id on G[l](ka).
The elements x1, . . . , xr of G[l](ka) are uniformly random by the fact that (3.16) is

a homomorphism. By Lemma 3.10, they generate the b-dimensional Fl-vector space

G[l](ka) with probability at least α. The definition of a also implies that

a ≤ max{1, 2gX l − 1},

while the “class number formula” (3.6) gives the upper bound

ca ≤ log #J(ka)

log l

≤ 2gX log
(
1 + qa/2

)

log l
.

This shows that ca is bounded by a polynomial in gX , log q and l. For fixed α we
therefore reach step 6 in expected polynomial time in degLX , log q and l. In steps

6–8 we compute a basis for the kernel of Frobq − id, which is J [l](k). We conclude

that the algorithm is correct and runs in probabilistic polynomial time in degLX ,
log q and l. ⋄

Remark . The elements zj ∈ J [l](ka) output by the preceding algorithm are in fact

defined over k. In general, I do not know how to generate k-vector spaces (instead of
ka-vector spaces) representing them. However, if we know a k-rational point on X,

then we can use Algorithm 2.13 to accomplish this.
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4. Modular symbols

In this section we collect some results on the problem of computing the Hecke algebra

T(Sk(Γ1(n),Z)), defined in § I.2.2 for given positive integers n ≥ 1 and k ≥ 2. We also

give applications to finding an Atkin–Lehner basis of Sk(Γ1(n),C), to computing zeta
functions of modular curves over finite fields and to finding cusp forms of weight k

for Γ1(n) consisting of forms with integral q-expansion and small Petersson norm.

4.1. Computing Hecke algebras

The Hecke algebra can be computed by means of the technique of modular sym-

bols, developed by Manin [73], Shokurov [103], Merel [79], Cremona [18] and others.
We refer to Stein [104, Chapter 8] for more details. The results can be phrased

as follows. Given integers n ≥ 1 and k ≥ 2, one can compute the Hecke algebra

T(Sk(Γ1(n),Z)) in the form of the multiplication table with respect to some Z-basis
(t1, . . . , tN ) of T(Sk(Γ1(n)),Z). This computation can be done in time polynomial

in n and k. Furthermore, given a positive integer m one can compute the matrix of

the Hecke operator Tm with respect to the basis (t1, . . . , tN ) in time polynomial in

n, k and m, and one can compute the diamond operators 〈d〉 for d ∈ (Z/nZ)× on
this basis in time polynomial in n and k. Similar results as above hold with Γ1(n)

replaced by Γ1(n; p), where p is a prime number possibly dividing n.

Since the exact result we need does not seem to have been published, let us sketch
how to compute T(Sk(Γ,Z)), where Γ is either Γ1(n) or Γ1(n; p). There is a certain

Q-vector space Sk(Γ,Q)+, the plus one quotient of the Q-vector space of modular

symbols of weight k for Γ, which is canonically isomorphic to Hom(Sk(Γ,Q),Q); see
Stein [104, § 9.3]. Let m be the least positive integer that is larger than the degree

of the line bundle of cusp forms of weight k on the modular curve in question. We

compute the matrices of the Hecke operators T1, . . . , Tm with respect to some Q-

basis of Sk(Γ,Q)+ in time polynomial in k and m. We then use the LLL lattice basis
reduction algorithm (see for example Lenstra, Lenstra and Lovász [66] or Lenstra [68])

to find a Z-basis for the Hecke algebra

T(Sk(Γ,Q)+) ∼= T(Sk(Γ,Z))

and the corresponding multiplication table. Since we can compute the matrix of any

Hecke operator t on Sk(Γ,Q)+, we can also express t on the Z-basis of T(Sk(Γ,Z))

found by the LLL algorithm.
Let Sint

k (Γ1(n)) be the Z-module of cusp forms whose q-expansions at the cusp 0

have coefficients in Z. We can compute Sint
k (Γ1(n)) itself by using that it is isomorphic

(as a T(Sk(Γ1(n),Z))-module) to the Z-linear dual of T(Sk(Γ1(n),Z)) via the perfect

pairing
T(Sk(Γ1(n),Z)) × Sint

k (Γ1(n)) −→ Z

(t, f) 7−→ a1(t
∨f)

(4.1)

from § I.2.4.

The new quotient of T(Sk(Γ1(n),Z)) is the quotient of T(Sk(Γ1(n),Z)) by the

annihilator of Snew
k (Γ1(n),C); we denote it by Tnew(Sk(Γ1(n),Z)). We can compute

this quotient as follows. Using standard methods from linear algebra, we compute
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a basis of primitive forms of weight k for each Γ1(d), with d | n. This gives us the

Atkin–Lehner basis of Sk(Γ1(n)). We then compute the annihilator of Snew
k (Γ1(n),C),

and from this we compute Tnew(Sk(Γ1(n),Z)). The whole computation takes time
polynomial in n and k.

We define Tnew(Sk(Γ1(n),Z))-modules

Sint,new
k (Γ1(n)) = Sint

k (Γ1(n)) ∩ Snew
k (Γ1(n),C)

and

Snew
k (Γ1(n),Q) = Sk(Γ1(n),Q) ∩ Snew

k (Γ1(n),C).

These can be computed from Tnew(Sk(Γ1(n),Z)) in the same way as described above.

4.2. Computing the zeta function of a modular curve

Let n ≥ 5 be an integer and p a prime number not dividing n. Applying the results
of § 4.1 with k = 2 and using the isomorphism

T1(n)
∼−→ T(S2(Γ1(n),Z))

from § I.2.3, we see that we can compute the Hecke algebra T1(n) in time polynomial

in n. It is well known that from the elements Tp and 〈p〉 of T1(n) one can compute

the characteristic polynomial χ of the Frobenius operator Frobp on the l-adic Tate

module

TlJ1(n)Fp
= lim←−

r
J1(n)Fp

[lr](Fp),

where l is any prime number different from p. From the polynomial χ we get the zeta

function of X1(n)Fp
using the formula

ZX1(n)Fp
=

tdeg χχ(1/t)

(1 − t)(1 − pt)
.

Let us describe in some more detail how to compute χ. We know from § I.1.3 that
Ql ⊗Zl

TlJ1(n)Fp
is a free Ql ⊗Z T1(n)-module of rank 2 and that the characteristic

polynomial of Frobp on it equals x2 − Tpx + p〈p〉 ∈ T1(n)[x]. This implies that the

characteristic polynomial of Frobp viewed as a Ql-linear map is

χ = NT1(n)[x]/Z[x](x
2 − Tpx + p〈p〉) ∈ Z[x].

To compute the right-hand side, we apply the following standard algorithm for com-
puting norms. We choose a Z-basis of T1(n); this can also be interpreted as a Z[x]-

basis of T1(n)[x]. We write MTp
and M〈p〉 for the matrices of Tp and 〈p〉 with

respect to the chosen basis. Then we compute χ as the determinant of the matrix

x2 · id − x · MTp
+ p · M〈p〉 with coefficients in Z[x].
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4.3. Finding a basis of cusp forms with small Petersson norm

Let n and k be integers with n ≥ 1 and k ≥ 2. Let 〈 , 〉Γ1(n) denote the Petersson
inner product on Sk(Γ1(n),C), as defined in § II.2.1. We will explain how to find a

Q-basis of Sk(Γ1(n),Q) consisting of forms with integral q-expansions at the cusp 0

and with “small” Petersson norms, using the results of § II.2.4 and § 4.1.
Let T′ be the subring of EndC(Sk(Γ1(n),C)) generated by Tnew(Sk(Γ1(n),Z))

and the T∨
p for p | n. Then T′ is a commutative free Z-algebra of finite rank, con-

taining Tnew(Sk(Γ1(n),Z)) as a subring of finite index. On T′ there is an involution

t 7→ t∨ sending each Hecke operator to its dual; see § I.2.2. We equip T′ with the
modified trace pairing

〈 , 〉T′ :T′ × T′ → Z

(t, u) 7→ trT′/Z(tu∨).

We put

S′ = {f ∈ Snew
k (Γ1(n),C) | a1(tf) ∈ Z for all t ∈ T′}.

The pairing (4.1) induces a perfect pairing

T′ × S′ → Z

(t, f) 7→ a1(t
∨f)

and hence an isomorphism

T′ ∼−→ Hom(S′,Z) (4.2)

of T′-modules, where the action of an element t ∈ T′ on Hom(S′,Z) is induced from
the action of t∨ on S′. We extend the base field to C in (4.2) and decompose the

right-hand side into simple (T′ ⊗C)-modules corresponding to primitive forms. This

gives an isomorphism

T′ ⊗ C
∼−→

⊕

f∈Pk(Γ1(n))

C

t 7−→
(
ef (t∨)

)
f
,

(4.3)

where Pk(Γ1(n)) is the set of primitive cusp forms of weight k for Γ1(n) and ef (t)

denotes the eigenvalue of t on f . For every t ∈ T′, the adjoint of t with respect to

the inner product 〈 , 〉Γ1(n) equals t∨. This implies that

ef (t∨) = ef (t) for all f ∈ Pk(Γ1(n)) and all t ∈ T′.

If R is a ring and M a free R-module of finite rank, we write trR(t | M) for the trace
of an endomorphism t of M . Then (4.2) implies

〈t, u〉T′ = trZ(tu∨ | T′)

= trZ(tu∨ | Hom(S′,Z))

= trZ(t∨u | S′)

= trC(t∨u | Snew
k (Γ1(n),C))

=
∑

f∈Pk(Γ1(n))

ef (t∨u).
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This implies that under the isomorphism (4.3), the unique sesquilinear form on T′⊗C

extending 〈 , 〉T′ corresponds to the standard Hermitean inner product on
⊕

f C.

We conclude that the bilinear form 〈 , 〉T′ on T′ is symmetric and positive definite,
and that the dual inner product

〈 , 〉S′ :S′ × S′ → R

induced by (4.2) has the property that the set of primitive forms is orthonormal for

the extension of 〈 , 〉S′ to a Hermitean inner product on Snew
k (Γ1(n),C).

Algorithm 4.1 (Find a small basis of Snew
k (Γ1(n),Q)). Given integers n ≥ 1 and

k ≥ 2 as well as a real number c > 4/3, this algorithm outputs a Q-basis (g1, . . . , gN )

of Snew
k (Γ1(n),Q) such that for each i we have gi ∈ Sint,new

k (Γ1(n)) and

〈gi, gi〉Γ1(n) ≤ cN(N−1)/2(Ak,ǫn
ǫ volΓ1(n))

N
(
4π(D + 1) exp(4π(D + 1))

)N−1

for any ǫ > 0, where Ak,ǫ > 0 is defined in Lemma II.2.1, N = dimC Snew
k (Γ1(n),C)

and D is the degree of the line bundle ω⊗k(−cusps) on the stack MΓ1(n).

1. Using modular symbols, compute a Z-basis (t1, . . . , tN ) of the ring T′ defined

above. We denote by (f1, . . . , fN ) the dual basis of S′.

2. Compute the matrix M of the inner product 〈 , 〉T′ with respect to (t1, . . . , tN ).

3. Compute M−1; this is the matrix of 〈 , 〉S′ with respect to (f1, . . . , fN ).

4. Using the LLL algorithm, compute a basis of S′ that is c-reduced with respect

to 〈 , 〉S′ .

Analysis. It is clear that for fixed c, the running time of the algorithm is polynomial

in n and k. It remains to prove the upper bound on 〈gi, gi〉Γ1(n). We note that

det
(
〈gi, gj〉S′

)N

i,j=1
= det(M−1) ∈ {1/m | m = 1, 2, 3, . . .}.

The c-reducedness of the basis (g1, . . . , gN ) implies

N∏

i=1

〈gi, gi〉S′ ≤ cN(N−1)/2 det
(
〈gi, gj〉S′

)N

i,j=1

≤ cN(N−1)/2.

For i = 1, . . . , N , we now write gi as a C-linear combination

gi =
∑

f∈Pk(Γ1(n))

αf
i f.

The upper bound on Petersson norms of primitive forms proved in Lemma II.2.1
implies that for every ǫ > 0 there is an explicitly computable real number Ak,ǫ such

that
〈gi, gi〉Γ1(n) =

∑

f∈Pk(Γ1(n))

|αi|2〈f, f〉Γ1(n)

≤ Ak,ǫn
ǫ volΓ1(n)

∑

f∈Pk(Γ1(n))

|αf
i |2

= Ak,ǫn
ǫ volΓ1(n)〈gi, gi〉S′ .

155



IV. Computational tools

This implies
N∏

i=1

〈gi, gi〉Γ1(n) ≤ cN(N−1)/2(Ak,ǫn
ǫ volΓ1(n))

N .

For each j 6= i, we bound 〈gj , gj〉Γ1(n) from below as in Lemma II.2.2. This implies
the claimed bound on 〈gi, gi〉Γ1(n). ⋄

Algorithm 4.2 (Find a small basis of Sk(Γ1(n),Q)). Given integers n ≥ 1 and k ≥ 2

as well as a real number c > 4/3, this algorithm outputs a Q-basis (h1, . . . , hN ) of

Sk(Γ1(n),Q) such that for all i we have hi ∈ Sint
k (Γ1(n)) and

〈hi, hi〉Γ1(n) ≤ cN(N−1)/2(Ak,ǫn
ǫ volΓ1(n))

N
(
4π(D + 1) exp(4π(D + 1))

)N−1

for any ǫ > 0, where Ak,ǫ > 0 is defined in Lemma II.2.1, N = dimC Sk(Γ1(n),C)

and D is the degree of the line bundle ω⊗k(−cusps) on MΓ1(n).

1. Using Algorithm 4.1, compute a Q-basis Bd of Snew
k (Γ1(d),Q) for each divisor d

of n.

2. Output the basis B =
⊔

d|n

⊔
e|n/d(b

n,d
e )∗Bd of Sk(Γ1(n),Q).

Analysis. It is clear that for fixed c, the running time of the algorithm is polynomial

in n and k. The claimed bounds on the Petersson norms of the bi follow from those
in Algorithm 4.1 together with the equality

〈(bn,d
e )∗g, (bn,d

e )∗g〉Γ1(n) =
〈g, g〉Γ1(n)

(ee′)k/2
for all g ∈ Sk(Γ1(n),C),

which follows from the definition of the Petersson inner product. ⋄

5. Computing with vector space schemes and Galois

representations

In this section we explain how to find the Galois representation attached to a finite-

dimensional F-vector space scheme over Q, where F is a finite field. We also describe

how to find the minimal non-trivial subrepresentations of such a Galois representation.
Finally, we give an algorithm to compute the Frobenius conjugacy classes at prime

numbers at which such a representation is unramified.

To solve the first two problems we need to be able to factor polynomials over

number fields efficiently. There exist deterministic algorithms that accomplish this.
For these we refer to Lenstra, Lenstra and Lovász [66], Lenstra [65], van Hoeij [109],

Belabas [6], and Belabas et al. [7].

5.1. Computing Galois groups

We start by describing a well-known algorithm for computing the Galois group of a
finite Galois extension of a number field; see for example Lenstra [67, Theorem 3.2].
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Suppose we are given a Galois extension K ⊆ L of number fields. By the primitive

element theorem, we can choose an isomorphism

K[x]/(f)
∼−→ L,

over K, where f ∈ K[x] is some monic irreducible polynomial. Because K ⊆ L is a
Galois extension, L is the splitting field of f over K. We compute all the roots of f

in L by factoring f , and we fix one root α (say x mod f). Then the map

Gal(L/K) → {roots of f in L}
σ 7→ σ(α)

is a bijection. Since all the roots can be expressed as polynomials in α, we can, for

each root β of f , compute the corresponding element of Gal(L/K) as a group of

permutations of the roots of f . In other words, if [L : K] = n, we can give Gal(L/K)
as a subgroup of order n in the symmetric group Sn.

Remark . Suppose the extension K ⊆ L is given by the multiplication table of L
with respect to some K-basis rather than by the minimal polynomial of a primitive

element. It is well known that in this situation one can find a primitive element as a

small linear combination of the given basis elements, because all elements of L that
do not generate L over K lie in the union of the finitely many strict subfields of L

containing K.

5.2. Representing Galois representations

Let F be a finite field, and let

ρ: Gal(Q/Q) → GL2(F)

be a two-dimensional representation. Let Kρ denote the finite Galois extension of Q

such that ρ factors as

Gal(Q/Q) ։ Gal(Kρ/Q)  GL2(F).

For algorithmic purposes, the representation ρ can be described using the following

data:

(1) the characteristic p of F;

(2) the multiplication table of F with respect to some Fp-basis of F;

(3) the multiplication table of Kρ with respect to some Q-basis of Kρ;

(4) the list of pairs (Mσ, ρ(σ)), where σ runs over Gal(Kρ/Q) and Mσ is the matrix
of σ with respect to the given Q-basis of Kρ.
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5.3. Representing vector space schemes

Let k be a field, let F be a finite field, and let V be a finite F-vector space scheme
over k. We suppose given a closed immersion

ι:V → A1
k

over k, giving an F-vector space scheme structure on the image of ι. This structure

is given by the following data:

(1) the monic polynomial P ∈ k[x] defining the image of ι;

(2) an element S ∈ k[x1, x2]/(P (x1), P (x2)) such that

P (S) = 0 in k[x1, x2]/(P (x1), P (x2))

and such that the addition morphism

+:V ×Spec k V → V

corresponds via ι to the k-algebra homomorphism

k[x]/(P ) → k[x1, x2]/(P (x1), P (x2))

x 7→ S;

(3) for all a ∈ F an element Ma ∈ k[x]/(P ) with P (Ma) = 0 in k[x]/(P ) and such
that the multiplication morphism

a·:V → V

corresponds via ι to the k-algebra homomorphism

k[x]/(P ) → k[x]/(P )

x 7→ Ma.

Let q be the “coordinate” of the zero section of V , i.e. the element q ∈ k such
that the ideal (x− q) of k[x]/(P ) corresponds to the trivial subgroup scheme {0}
of V . This q can be extracted from P and M0; namely, it is the unique root of P

in k such that the map x 7→ M0 factors as

k[x]/(P ) → k → k[x]/(P ),

where the first map sends x to q.

Remark . It is not the case that an embedding ι as above exists for all k and V . For
example, if V is the constant vector space scheme F and k is finite with #k < #F,

there is no such ι.
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5.4. Finding minimal components of a vector space scheme

Let V be a finite F-vector space scheme over Q, represented as in § 5.3. We will give
an algorithm to find the minimal non-trivial F-vector space schemes contained in V .

These correspond to the minimal elements (with respect to division) in the set of

monic polynomials R with

(x − q) | R | P, R 6= x − q

that have the property that the maps giving the F-vector space scheme structure on V

induce maps Q[x]/(R) → Q[x]/(R) and Q[x]/(R) → Q[x1, x2]/(R(x1), R(x2)). The

first step in the algorithm is to factor the polynomial P over Q. As remarked before,
there are (deterministic) algorithms for doing this that run in polynomial time in the

degree of P and the largest among the heights of its coefficients.

Algorithm 5.1 (Finding minimal components of a vector space scheme). Let F be a

finite field, and let V be a finite F-vector space scheme over Q. Given polynomials P ,

S, and Ma for a ∈ F describing V as in § 5.3, this algorithm outputs the polynomials
R defining the minimal non-trivial F-vector space schemes contained in V .

1. Factor P as a product
P = P0P1 . . . Pn,

where P0, . . . , Pn are distinct monic irreducible elements of Q[x] and such that
P0 = x − q with q as above.

2. Choose a generator a of the cyclic group F×.

3. Put T = ∅.
4. For i = 1, . . . , n:

5. Put R = P0Pi.

6. Replace R by the monic generator of the kernel of the ring homomorphism

Q[x] → Q[x1, x2]/(R(x1), R(x2))

x 7→ S.

Then replace R by the monic generator of the kernel of the ring homomor-

phism
Q[x] → Q[x]/(R)

x 7→ Ma.

Repeat this step until R does not change anymore.

7. Remove all R′ ∈ T such that R strictly divides R′, and add R to T .

8. Output the set T .

Analysis. It follows from the construction of T that its elements are, as required, the

minimal elements of the set of polynomials R as above. Furthermore, R remains a

divisor of P , so step 6 is executed at most deg P times. This shows that the algorithm
runs in time polynomial in deg P = #FdimF V and in the largest among the heights

of the coefficients of P . ⋄

159



IV. Computational tools

5.5. Computing Galois representations attached to vector space schemes

Let F be a finite field, and let V be a finite F-vector space scheme over Q. There is
an associated Galois representation

ρV : Gal(Q/Q) → AutF V (Q).

Let KV denote the finite Galois extension of Q such that ρV factors as

Gal(Q/Q) ։ Gal(KV /Q)  AutF V (Q).

We now assume V is two-dimensional over F and is given by polynomials P , S

and Ma for a ∈ F, as in § 5.4. The following algorithm, which is the same as the one
described by Couveignes and Edixhoven in [17, § 14.7], computes ρV in this situation.

It is based on the following observation. Under the usual correspondence between

finite Gal(Q/Q)-sets and finite étale Q-algebras, let A be the Q-algebra corresponding
to V (Q), and let B be the Q-algebra corresponding to IsomF(F2, V (Q)). Then there

is an isomorphism

A ∼= Q[x]/(P )

of Q-algebras, and the inclusion

IsomF(F2, V (Q)) → V (Q)2

α 7→ (α(1, 0), α(0, 1))

induces a surjection

Q[x1, x2]/(P (x1), P (x2)) → B.

The natural right action of GL2(F) on IsomF(F2, V (Q)) gives a left action of GL2(F)

on B.

The elements of IsomF(F2, V (KV )) = IsomF(F2, V (Q)) correspond bijectively
to the Q-algebra homomorphisms B → KV . We fix one isomorphism

φ ∈ IsomF(F2, V (KV )).

Since V is generated by the image of φ and KV is the splitting field of V , the Q-

algebra homomorphism B → KV corresponding to φ is surjective. This means that

the choice of φ gives an identification of KV with a quotient of B.

Let T ⊆ IsomF(F2, V (KV )) be the Gal(KV /Q)-orbit of φ, and let GT be the sub-
group of GL2(F) consisting of elements that preserve T . Since IsomF(F2, V (KV )) is a

right GL2(F)-torsor, T is a right GT -torsor, and the choice of φ gives an isomorphism

GT
∼−→ T

g 7−→ φ ◦ g.

By definition, T is also a left Gal(KV /Q)-torsor, and φ gives an isomorphism

Gal(KV /Q)
∼−→ T

σ 7−→ ρV (σ) ◦ φ.
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Composing the second isomorphism with the inverse of the first, we get an embedding

Gal(KV /Q) → GL2(F)

σ 7→ φ−1 ◦ ρV (σ) ◦ φ
(5.1)

whose image equals GT .

Algorithm 5.2 (Compute the Galois representation associated to a finite Q-vector

space scheme). Given a finite field F and an F-vector space scheme V over Q given

by polynomials P , S and Ma for a ∈ F as in § 5.3, this algorithm outputs a Galois
representation ρ: Gal(Q/Q) → GL2(F) isomorphic to ρV , in the format described

in § 5.2.

1. Compute the left action of GL2(F) on the Q-algebra Q[x1, x2]/(P (x1), P (x2)),

using S and the Ma with a ∈ F.

2. Write P = P0P 6=0, with P0 = x−q as in § 5.4, and put a = 1−P 6=0/P 6=0(q) ∈ Q[x].

3. Compute the element

b =
∏

g∈GL2(F)

g · (a ⊗ 1) ∈ Q[x1, x2]/(P (x1), P (x2)).

4. Compute the Q-algebra

B =
(
Q[x1, x2]/(P (x1), P (x2))

)
/(1 − b).

5. Find a maximal ideal I of B, and compute the field K = B/I.

6. Compute the left action of GL2(F) on B, and find the subgroup GI ⊂ GL2(F)
that stabilises I.

7. For all g ∈ GI , compute the matrix σ(g) of the automorphism of K induced by g.

8. Output K and the list of pairs (σ(g), g) with g ∈ GI .

Analysis. The definition of a implies that the canonical isomorphism

Q[x]/(P )
∼−→ Q[x]/(P0) × Q[x]/(P 6=0)

sends a to (0, 1); in other words, a is the idempotent in Q[x]/(P ) that, as a function

on V , is 1 on V \ {0} and 0 on {0}. By definition, b ∈ Q[x1, x2]/(P (x1), P (x2))

is the idempotent that, as a function of V (Q)2, is 1 on IsomF(F2, V (Q)) and 0
on its complement, so B is the same Q-algebra as in the discussion preceding the

algorithm. The choice of a quotient B → K identifies K with KV and fixes an

element φ ∈ IsomF(F2, V (K)). The group GI computed in step 6 consists of the
elements of GL2(F) that respect the Gal(K/Q)-orbit T of φ, so it is equal to GT .

The definition of the action of GI on K implies that under the representation (5.1),

each element g in the image GT corresponds to the element σ(g) ∈ Gal(KV /Q) on

the left-hand side. This shows that the output is correct. Finally, the algorithm runs
in (deterministic) polynomial time in #F and the largest among the heights of the

coefficients of P . ⋄
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5.6. Twisting representations by characters

Algorithm 5.3 (Twist a representation by a character). Given a finite field F, a

positive integer n, a homomorphism

χ̃: (Z/nZ)× → F×

and a two-dimensional representation

ρ: Gal(Q/Q) → GL2(F)

in the format of § 5.2, this algorithm outputs the twisted representation

ρ′: Gal(Q/Q) → GL2(F)

σ 7→ χ(σ)ρ(σ)

in the format of § 5.2; here χ: Gal(Q(ζn)/Q) → F× is the character corresponding

to χ̃.

1. Compute a compositum L of Kρ and Q(ζn).

2. Compute Gal(L/Q) as described in § 5.1.

3. For each τ ∈ Gal(L/Q), compute the element aτ ∈ (Z/nZ)× such that τ(ζn) =

ζaτ
n , the restriction στ of σ to Kρ, and

ρ′(τ) = χ̃(aτ )ρ(στ ) ∈ GL2(F).

4. Compute the subgroup ker ρ′ of Gal(L/Q).

5. Compute Kρ′ as the fixed field of ker ρ′.

6. For each σ ∈ Gal(Kρ′/Q) = Gal(L/Q)/ker ρ′, output the matrix of σ on Kρ′ and

the element ρ′(σ).

Analysis. It is clear that the algorithm is correct. It runs in (deterministic) poly-

nomial time in n, #F and the largest among the heights of the coefficients in the
multiplication table of ρ. ⋄

5.7. Finding the Frobenius conjugacy class

Let K ⊆ L be a Galois extension of number fields, and let p be a prime of K such that

the extension is unramified at p. We will now describe how to identify the Frobenius

conjugacy class at p inside Gal(L/K).

For simplicity we restrict ourselves to the case where K = Q, so p is a rational

prime p. First we compute an order O in L that is maximal at p. There are well-
known ways to do this; see for example Buchmann and Lenstra [11, Algorithm 6.1].

We then compute the finite Fp-algebra

A = O/(p),
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together with the Frobenius automorphism

Frobp:A → A

a 7→ ap

and the action of Gal(L/Q) on A.

One way to continue would be to find the primary decomposition of A. Instead of
describing this approach, we give a deterministic way to find the Frobenius conjugacy

class, due to H. W. Lenstra. For each σ ∈ Gal(L/Q), we compute the ideal Iσ of A

generated by the image of the Fp-linear map Frobp − (σ mod p). Now A/Iσ is the
largest quotient of A on which σ mod p acts as Frobp. This means that σ is in the

Frobenius conjugacy class if and only if the ideal Iσ is strictly smaller than A.
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Chapter V

Computing modular Galois representations

1. Introduction

Let n and k be positive integers, and let l be a prime number. Let f be a modular

form of weight k for Γ1(n) over a finite field F of characteristic l that is an eigenform
for the Hecke operators Tp with p prime and 〈d〉 with d ∈ (Z/nZ)×, with eigenvalues

ap and ǫ(d), respectively.

The goal of this chapter is to give an algorithm for computing the semi-simple
two-dimensional representation

ρf : Gal(Q/Q) → AutF Wf

associated to f by Theorem I.3.3. This ρf is uniquely defined by the following prop-

erties: ρf is unramified outside nl, and the characteristic polynomial of the Frobenius
conjugacy class at a prime p ∤ nl equals t2 − apt + ǫ(p)pk−1 ∈ F[t].

Let Kf denote the finite Galois extension of Q such that ρf factors as

Gal(Q/Q) ։ Gal(Kf/Q)  AutF Wf .

By “computing ρf” we mean producing the following data:

(1) the multiplication table of Kf with respect to some Q-basis (b1, . . . , br) of Kf ;

(2) for every σ ∈ Gal(Kf/Q), the matrix of σ with respect to the basis (b1, . . . , br)

and the matrix of ρf (σ) with respect to some fixed F-basis of Wf .

Moreover, we want to do this efficiently . Ideally, we would have an algorithm that
computes these data in polynomial time in n, k and #F. Unfortunately, several

difficulties present themselves that prevent us from stating a completely general result.

First, our approach only leads to probabilistic algorithms, due to the fact that it
is based on the algorithms in Chapter IV.

Second, we will give a bound for the expected running time of our algorithm

that depends on certain real numbers that are defined as follows. For every smooth,
proper and geometrically connected curve X over Q, we define

γ(X) =
∑

p prime

γ(XWp
) log p, (1.1)
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where Wp is the field of fractions of the ring of Witt vectors of Fp, and γ(XWp
) is

the real number defined in § III.4.2. The bound for the running time contains a term

that is linear in γ(X1(n
′)), where n′ equals n or nl, depending on k, and where X1(n

′)
is the coarse moduli space defined in § I.1.1. We therefore need a bound on γ(X1(n

′))

that is polynomial in n. The problem is that we do not have enough information

about the semi-stable reduction of X1(n) at primes p such that p2 divides n to find
such a bound.

Third, we recall from § I.3.6 that if the desired Galois representation is irreducible,

then it is realised, up to a twist by a character, as a simple constituent of J [m](Q),

where J is the Jacobian of the modular curve X1(n
′) for a certain n′, and m is a

maximal ideal of the Hecke algebra T1(n
′) ⊆ J [m]. The expected running time of our

algorithm is polynomial in the degree of J [m] over Q, which is problematic if J [m](Q)

is composed of many copies of the representation. If we restrict ourselves to those

cases in which the “simplicity” phenomenon described in § I.3.7 holds (for example,
2 ≤ k ≤ l − 1), then the running time is polynomial in n, k and #F. We would

be able to state the same conclusion in general if an absolute bound were known on

the dimension of the F-vector space scheme J [m]. Extensive computations of Hecke
algebras on spaces of cusp forms of prime weight by Kilford and Wiese [58] with Hecke

algebras have not revealed any cases where the multiplicity is greater than two, but

it is unknown as of this writing whether the multiplicity can be greater than two.

Taking into account these restrictions, we do have the following result. For clarity,
we state a result that is slightly weaker than what we actually prove in this chapter.

Theorem 1.1. Let a be a positive integer. There is a probabilistic algorithm that,

given a squarefree positive integer b coprime to a, an integer k ≥ 2, a finite field F of
characteristic greater than k and a Hecke eigenform f of weight k for Γ1(ab) over F,

computes the Galois representation ρf in expected time polynomial in b and #F.

2. Reduction to torsion subschemes in Jacobians of

modular curves

Let n and k be positive integers, let l be a prime number, and let f be an eigenform
of weight k for Γ1(n) over a finite field F of characteristic l.

We assume that l does not divide n. As explained in § I.3.3, this is not a real

restriction, since we can always find a form for Γ1(m), with m | n and l ∤ m, whose

attached Galois representation is isomorphic to ρf .

2.1. Reduction to irreducible representations

In the algorithm that we describe in this chapter the case where ρf is absolutely

irreducible is treated in an essentially different way than the case where it is not,
with almost all the work going into the former case. We therefore begin by deciding

whether ρf is absolutely irreducible.

In general, ρf is absolutely irreducible if and only if it is irreducible after extension

of scalars to a quadratic extension of F. If l > 2, then the fact that any complex
conjugation has two distinct eigenvalues implies the stronger statement that if ρf is
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irreducible over F, then it is absolutely irreducible. After replacing F by a quadratic

extension if l = 2, the question is therefore equivalent to the question whether ρf is

reducible.
We recall from § I.3.4 that if ρf is reducible, it is of the form ǫ1χ

i
l ⊕ ǫ2χ

j
l , where

ǫ1 and ǫ2 are characters of conductors n1 and n2, respectively, such that n1n2 | n and

ǫ1ǫ2 = ǫ, and where i + j = k− 1 in Z/(l− 1)Z. Conversely, given such ǫ1 and ǫ2, the
Eisenstein series Eǫ1,ǫ2

k′ , where 3 ≤ k′ ≤ l + 1 and k′ ≡ k (mod l − 1), has ǫ1 ⊕ ǫ2χ
k−1
l

as its associated Galois representation. By Theorem I.3.5, we can therefore decide

whether ρf is reducible by comparing the eigenvalues of the Hecke operators on f (or
the coefficients of the q-expansion of f) to the coefficients of these Eisenstein series.

Moreover, if ρf is reducible, it is straightforward to write down ρf in the desired form.

2.2. Reduction to torsion in Jacobians

From now on we consider the case where the representation attached to f is absolutely

irreducible; in particular, f is a cusp form. We have seen in § I.3.3 that there exist
integers j and k̃ such that

0 ≤ j ≤ l − 1, 1 ≤ k̃ ≤ l + 1 and k̃ ≡ k + 2j (mod l − 1)

and an eigenform f̃ of weight k̃ for Γ1(n) over F such that the eigenvalues of the

Hecke operators on f and on f̃ are related by the formula

Tpf̃ = (p mod l)japf̃ for p 6= l prime and 〈d〉f̃ = ǫ(d)f̃ for d ∈ (Z/nZ)×.

The representation

ρf̃ : Gal(Q/Q) → AutF Wf̃

attached to f̃ is irreducible, too, and the above equation shows that we can compute
ρf as the twist of ρf̃ by the (−j)-th power of the l-cyclotomic character.

If k̃ = 1, we can find an eigenform of weight l for Γ1(n) over a quadratic exten-
sion F′ of F whose associated Galois representation is isomorphic to F′ ⊗F ρf ; see

Edixhoven [31, proof of Proposition 2.7]. As a representation over F, this F′ ⊗F ρf is

a direct sum of two copies of ρf , and we can use § IV.5.4 to extract ρf . This reduces

the problem to the case where k̃ ≥ 2.

We let Ff̃ denote the field generated by the eigenvalues of the Hecke operators

on f̃ . As in § I.3.6, we write

n′ =

{
n if k̃ = 2;

nl if 3 ≤ k̃ ≤ l + 1.

We consider the Abelian variety J1(n
′)Q and the Hecke algebra

T1(n
′) ⊆ End J1(n

′)Q

defined in § I.1.3. We have seen in § I.3.6 that there exists a surjective ring homomor-
phism

ef̃ :T1(n
′) → Ff̃
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that sends each Tp for p prime and each 〈d〉n for d ∈ (Z/nZ)× to the eigenvalue of

the corresponding operator on f̃ and, in case k̃ > 2, sends 〈d〉l for d ∈ (Z/lZ)× to

dk̃−2. If mf̃ denotes the kernel of ef̃ , the representation

ρJ1(n′)[mf̃ ]: Gal(Q/Q) → AutFf̃
(J1(n

′)[mf̃ ](Q))

is non-zero and all its simple constituents are isomorphic to ρf̃ . Usually, ρJ1(n′)[mf̃ ]

itself is already simple, as explained in § I.3.7. This reduces the problem to computing

Galois representations of the form ρJ1(n′)[mf̃ ].

3. Galois representations in torsion of Jacobians:

notation and overview

In this section we will explain the strategy for computing Galois representations of

the form ρJ[m], where J is the Jacobian of a modular curve and m is a maximal ideal
of the corresponding Hecke algebra. Details will be given in the next sections.

3.1. The situation

Let n be a positive integer, let l be a prime number not dividing n, and let n′ be

either n or nl. We abbreviate

X = X1(n
′)Z[1/nl], J = J1(n

′)Z[1/nl], T = T1(n
′).

We write g for the genus of the fibres of X, which equals the dimension of the fibres

of J .
Let O denote the rational cusp of X corresponding to the Néron polygon En′

with n′ sides, consecutively labelled by Z/n′Z, with the embedding Z/n′Z → En′

sending a ∈ Z/n′Z to the point 1 of the copy of P1 labelled a.
Let F be a finite field of characteristic l, and let e:T → F be a surjective ring ho-

momorphism. Let m be the kernel of e, and let J [m] be the maximal closed subscheme

of J annihilated by m; this is a finite étale covering of SpecZ[1/nl] (see § I.3.6). We

write deg J [m] for the degree of this covering.

3.2. Stratifications and the scheme Dm

We consider the d-th symmetric power Symd X of X over SpecZ[1/nl], which is by

definition the quotient of X×X× . . .×X (d factors) by the symmetric group Sd; this

exists because X is projective over SpecZ[1/nl]. This scheme represents the functor
of effective divisors of degree d on X. The choice of O in § 3.1 gives proper morphisms

Symd X → J (0 ≤ d ≤ g)

sending an effective divisor D of degree d to the class of the divisor D − d · O. For

d = g, this morphism is birational. We let Jd denote the image of Symd X in J , so

that we have a chain of closed immersions

{0} = J0 ⊆ J1 ⊆ . . . ⊆ Jg.
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We define the stratification of J [m] as the chain of finite Z[1/nl]-schemes

{0} = J [m]0 ⊆ J [m]1 ⊆ . . . ⊆ J [m]g = J [m],

where

J [m]d = J [m] ∩ Jd.

Note that the J [m]i are not necessarily flat over Z[1/nl], except for J [m]0 and J [m]

itself. We define the generic stratification type of J [m] to be the non-decreasing

sequence of positive integers

strat(J [m]Q) =
(
1 = deg(J [m]0)Q,deg(J [m]1)Q, . . . ,deg(J [m]g)Q = deg J [m]

)
.

Similarly, for every prime number p not dividing nl, we define the stratification type

of J [m] modulo p as

strat(J [m]Fp
) =

(
1 = deg(J [m]0)Fp

, . . . ,deg(J [m]g)Fp
= deg J [m]

)
.

For every x ∈ J [m](Q), we let Dx denote the O-normalised representative of x

as defined in § IV.2.9. Let K be the splitting field of J [m]Q inside Q, and let R be

the integral closure of Z[1/nl] in K. Since J [m] is finite étale over Z[1/nl], we can
interpret the Dx as the set of R-points of a closed subscheme

Dm  Symg X

that is finite étale over Z[1/nl]. The morphism Symg X → J restricts to an isomor-

phism

cm:Dm
∼−→ J [m].

Similarly, for every prime number p ∤ nl and every x ∈ J [m](Fp) we define d
Fp
x as

the least integer d for which x is in (Jd)Fp
, and we write D

Fp
x for the O-normalised

representative of x. We view the D
Fp
x as the Fp-points of a closed subscheme

D
Fp
m  Symg XFp

.

We have isomorphisms

(Dm)Q
∼−→ J [m]Q

and

D
Fp
m

∼−→ J [m]Fp
(p ∤ nl prime),

making (Dm)Q and D
Fp
m into F-vector space schemes over SpecQ and over SpecFp,

respectively. However, the subschemes D
Fp
m and (Dm)Fp

of Symg XFp
do not in

general coincide for every prime number p. The reason for this is that if K is a
number field an element x ∈ J(K) that is not in some Jd may still specialise modulo

a prime of K to a point that is in Jd. In other words, if L is a line bundle on X

over some number field, there may exist an integer d such that the reduction of L(dO)
modulo p has non-zero global sections while the same does not hold for L(dO) over Q.

We will come back to this phenomenon in § 4.3 below.
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3.3. Overview of the algorithm

The goal is to find an explicit representation for the finite F-vector space scheme

J [m]Q over Q. The basic strategy is to choose a suitable closed immersion

ι:J [m]Q → A1
Q

of Q-schemes. The meaning of “suitable” will become clear in Section 5 below. The

image of ι is defined by some monic polynomial Pι ∈ Q[x] of degree equal to deg J [m].
As explained in § IV.5.3, the F-vector space scheme structure on the image of ι is given

by polynomials S and Ma for a ∈ F describing the addition and scalar multiplication.

The question is now how to find ι(J [m]Q), or equivalently the polynomials Pι,
S and Ma. The approach that we will take here is due to Couveignes, and comes

down to approximating ι(J [m]Q), either over the complex numbers or modulo many

small prime numbers. For pressing reasons of space, time and technicalities, I limit

myself the second approach. In view of the results of Couveignes, Edixhoven et
al. [17], however, it may be expected that the approximations can also be done over

the complex numbers. This would lead to deterministic variants of the results of this

chapter.
Let S̃ ∈ Q[x1, x2] be the unique representative of S ∈ Q[x1, x2]/(Pι(x1), Pι(x2))

that has degree less than deg Pι in both x1 and x2. Similarly, for a ∈ F let M̃a ∈ Q[x]

be the unique representative of Ma ∈ Q[x]/(Pι) that has degree less than deg Pι.

Definition. The height of ι(J [m]Q) is the maximum of the logarithmic heights of the

coefficients of Pι, S̃ and the M̃a for a ∈ F.

Let p be a prime number not dividing nl. As will be explained in Section 4
below, we can represent JFp

in a way that is well suited for computations, and we

can compute the action of the Hecke algebra on JFp
. Given T1(n

′) and m, we can

find a finite extension kp of Fp over which J [m]Fp
splits. Using our algorithms for

computing in J , we then find the F-vector space J [m]Fp
(kp). From this we compute

D
Fp
m , which for all p outside some finite set equals (Dm)Fp

. It can be checked whether
p is in this set; this is rather non-trivial and will be explained in § 4.3 below.

The closed embedding ι is constructed as follows. Once we know Dm for a suitable

prime number p, we use this to choose a non-constant rational function

ψ:X → P1
Q

and a rational map
λ:Pg

Q 99K A1
Q

such that the composed map

Symg XQ
ψ∗−→ Symg P1

Q

∼−→ Pg
Q

λ
99K A1

Q

gives a well-defined closed immersion of (Dm)Q into A1
Q. We then define ι as the

composition of the maps

J [m]Q
c−1

m−→
∼

(Dm)Q  Symg XQ
ψ∗−→ Symg P1

Q

∼−→ Pg
Q

λ
99K A1

Q.
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After choosing ι, we compute the reductions of the F-vector space scheme ι(J [m]Q)

modulo sufficiently many small prime numbers. We then reconstruct ι(J [m]Q) from

these reductions. If necessary, we extract one simple component from ι(J [m]Q) as
described in § IV.5.4. The corresponding two-dimensional irreducible Galois repre-

sentation can then be computed as described in § IV.5.2.

4. Computations modulo prime numbers

4.1. Representing modular curves over finite fields

As the basis for our algorithm, we use the methods for computing in Picard groups of

projective curves over finite fields explained in Chapter IV. For any prime number p

not dividing nl, we consider the curve XFp
over the field Fp. We take the projective

embedding of XFp
given by the line bundle

L = ω⊗2

of modular forms of weight 2. This line bundle satisfies the essential inequality

degL ≥ 2g + 1 of § IV.2.1 because degL equals 2g − 2 plus the number of cusps
(this follows from formulae for these quantities or from the existence of the Kodaira–

Spencer isomorphism between the sheaf of differentials and the sheaf of cusp forms of

weight 2), and X has at least three cusps (this also follows from well-known formulae).
This choice of L implies

SXFp
=

∞⊕

i=0

M2i(Γ1(n
′),Fp). (4.1)

In other words, SXFp
is the algebra of modular forms of even weight for Γ1(n

′) over Fp.

We represent such forms by q-expansions at the rational cusp 0 of XFp
(see § I.2.4)

up to sufficient order.
The first thing to do is finding the data needed to represent XFp

in the form

needed for the algorithms of Chapter IV. As explained in § IV.4.1, we can use modular

symbols to compute the Hecke algebra

T1(n
′) ∼= T(S2(Γ1(n

′),Z))

on cusp forms of weight 2, together with the diamond operators in T1(n
′), in time

polynomial in n′. Furthermore, for any positive integer m we can compute the element

Tm of T1(n
′) in time polynomial in m. We can then compute a basis of q-expansions

for the space

S2(Γ1(n
′),Fp) = HomZ-mod(T1(n

′),Fp)

of cusp forms. Furthermore, we can compute a basis of q-expansions for the space of

Eisenstein series of weight 2 for Γ1(n
′) using the formulae from § II.2.3. The fact that

degL ≥ 2g + 1 implies that the Fp-algebra SXFp
is generated by the homogeneous

elements of degree 1, so by multiplying q-expansions of forms of weight 2 we can

compute S
(h)
XFp

for any positive integer h in time polynomial in n′, h and log p. Taking

h = 7 will be sufficient for all the algorithms that we will need.
We also recall from § IV.4.2 that we can compute the zeta function of XFp

, in

the form of its numerator LXFp
, in time polynomial in n′ and p.
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V. Computing modular Galois representations

Remark . The fact that the running time of the algorithm to compute the zeta function

is exponential in log p is the reason why we need small primes p.

Once we have computed S
(7)
XFp

and the zeta function of XFp
, we can use the

algorithms for computing in the Jacobian of a curve over a finite field that were

described in Chapter IV.

4.2. Computing the action of the Hecke algebra

We will now explain how to compute the action of the Hecke algebra T1(n
′) on JFp

.

For all d ∈ (Z/n′Z)×, the automorphism rd of X = X1(n
′) induces the diamond

operator 〈d〉 on Mk(Γ1(n
′),Fp) for all k. Since we know the action of the Hecke algebra

on the Mk(Γ1(n
′),Fp), we can compute the map r#

d :S
(h)
XFp

∼−→ S
(h)
XFp

using (4.1).

This means that we can compute Pic rd and Alb rd by means of Algorithms IV.2.14
and IV.2.15 (where we use O as the rational point needed by the latter algorithm) in

time polynomial in n′ and log p.

Now let r be a prime number different from p. We consider the maps

q1, q2: X1(n
′; r)Fp

→ XFp

defining the Hecke operator Tr. We denote by ω the line bundle of modular forms of

weight 1 on XFp
. We make XFp

into a projective curve via the line bundle q∗1ω. The

assumption that r 6= p implies that the canonical map

φ∗: q∗2ω
∼−→ q∗1ω

from § I.2.2 is an isomorphism. From the formulae for the effect of q∗1 and q∗2 on
q-expansions given in § I.2.4, we can compute the maps

q#
1 , q#

2 :S
(h)
XFp

→ S
(h)
X1(n′;r)Fp

for any h. This allows us to compute the maps

Pic q1,Pic q2:JFp
→ J1(n

′; r)Fp

and

Alb q1,Alb q2: J1(n
′; r)Fp

→ JFp
.

In particular, we can compute Tr. The expected running time is polynomial in n′, r

and log p.
Let Frobp and Verp denote the Frobenius and Verschiebung endomorphisms of J .

Let k be a finite extension of degree d of Fp, and let x be an element of J(k). From

Frobp Verp = p and Frobd
p(x) = x it follows that we can compute Verp on x using the

formula

Verp(x) = pFrobd−1
p (x).

Since we can compute Frobp, Verp and 〈p〉, we can compute Tp using the Eichler–

Shimura relation

Tp = Frobp +〈p〉Verp

from § I.1.4. The running time is polynomial in n′ and log p.
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4.3. Good prime numbers

Definition. We say that a prime number p is m-good if the following two conditions

hold:

(1) p does not divide nl;

(2) the stratification type strat(J [m]Fp
) modulo p is equal to the generic stratifica-

tion type strat(J [m]Q). (Recall that in general we have a pointwise inequality
strat(J [m]Fp

) ≥ strat(J [m]Q).)

Otherwise we say that p is m-bad . We define a positive integer Bm by

Bm =
∏

p m-bad

p.

We note that deg J [m]Fp,d ≥ deg J [m]d for all prime numbers p ∤ nl, with equality

for all d if and only if p is m-good. We also note that in this case we can identify

D
Fp
m with the fibre over Fp of the closed subscheme Dm of Symg XZ[1/nl]. This fact

enables us to compute the reduction of the closed subscheme Dm of Symg X modulo
m-good prime numbers.

The following algorithm computes the F-vector space of points of D
Fp
m over a

suitable finite extension k of Fp over which D
Fp
m splits.

Algorithm 4.1 (Compute D
Fp
m and the stratification type of J [m]Fp

). Let the no-

tation be as above. Given the ring homomorphism e:T → F and a prime number

p ∤ nl, this algorithm outputs the following information:

(1) the stratification type strat(J [m]Fp
);

(2) a finite extension k of Fp such that the points of J [m]Fp
are k-rational;

(3) the Fp-algebra S
(7)
XFp

and the k-algebra S
(7)
Xk

= k ⊗Fp
S

(7)
XFp

;

(4) the F-vector space D
Fp
m (k), given by the positive integer

d = dimF J [m](k)

and a list of pairs (v,Γ(Xk,L⊗2(−Dx(v)))), where v runs over Fd and x(v) is the
image of v under a fixed F-linear isomorphism

Fd ∼−→ D
Fp
m (k).

1. Compute the Fp-algebra S
(7)
XFp

using modular symbols; see Section IV.4 and § 3.3.

2. Compute the polynomial LX/Fp
∈ Z[t] (the numerator of the zeta function

of XFp
) as described in § IV.4.2.

3. Compute the order a of t in the group
(
F[t]/(t2 − apt + ǫ(p)p)

)×
.

4. Generate a finite extension k of Fp with [k : Fp] = a.

5. Compute the k-algebra S
(7)
Xk

= k ⊗Fp
S

(7)
XFp

.
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V. Computing modular Galois representations

6. Compute the polynomial LX/k ∈ Z[u] (the numerator of the zeta function of Xk)

as the resultant of LX/Fp
∈ Z[t] and ta − u.

7. Compute an Fl-basis for the l-torsion subgroup J [l](k) using Algorithm IV.3.12.

8. Compute generators t1, . . . , tm of the T-module m/lT.

9. Compute the matrices of the ti with respect to the basis of J [l](k) computed in

step 7, using the algorithms from §§ IV.2.11 and IV.3.7.

10. Compute an Fl-basis for J [m](k), which is the intersection of the kernels of the

ti.

11. Choose a primitive element γ of F over Fl, choose a lift of γ to T, and use this lift
to compute the matrix of γ with respect to the Fl-basis of J [m](k) computed in

the previous step. Use this matrix to extract an F-basis (b1, . . . , bd) of J [m](k).

12. For each v = (v1, . . . , vd) ∈ Fd, compute x(v) =
∑d

i=1 vibi ∈ J [m](k), and
compute dx(v) and Γ(XFp

,L⊗2(−Dx(v))) as described in § IV.2.9. In particular,

this gives the F-linear isomorphism

Fd ∼−→ D
Fp
m (k)

in the form of the list of pairs (v,Γ(Xk,L⊗2(−Dx(v)))), where v runs over Fd.

13. Compute strat(J [m]Fp
) from the dx(v).

14. Output all the required information.

Analysis. By the Eichler–Shimura relation, the Frobenius automorphism of J [m]Fp

satisfies

Frob2
p − apFrobp + ǫ(p)p = 0,

where ap and ǫ(p) are the images of Tp and 〈p〉 under the quotient map T → F. This

implies that there is a (unique) F-algebra homomorphism

F[t]/(t2 − apt + ǫ(p)p) −→ EndF J [m](Fp)

mapping t to Frobp. The definition of a as the order of t in
(
F[t]/(t2 − apt+ ǫ(p)p)

)×

therefore implies that Froba
p acts trivially on JFp

[m], so that the points of JFp
[m] are k-

rational. The claim that we can compute LX/k ∈ Z[u] as the resultant of LX/Fp
∈ Z[t]

and ta−u follows from the fact that the roots of LX/k are the a-th powers of the roots

of LX/Fp
. The rest of the algorithm clearly does what it is supposed to do. Using

the fact that a is at most #F2 − 1, it is straightforward to check that the expected
running time is polynomial in n, deg J [m] and p. ⋄

Remarks. (1) In the above algorithm, some steps can be omitted if we are only in-
terested in part of the output.

(2) The reason that the running time is polynomial in p and not log p is that we have

to compute the polynomial LX/Fp
.

Using the preceding algorithm, we can compute strat(J [m]Q) provided we know
a bound for the number of m-bad primes. The following algorithm makes this precise.
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4. Computations modulo prime numbers

Algorithm 4.2 (Compute the generic stratification type). Let the notation be as

above. Given the ring homomorphism e:T → F, this algorithm outputs the following

information:

(1) the generic stratification type strat(J [m]Q) of J [m];

(2) a non-empty set P of m-good prime numbers;

(3) for each p ∈ P a finite extension kp of Fp such that D
Fp
m splits over kp and the

F-vector space D
Fp
m (kp) (given as in Algorithm 4.1).

1. Find a positive integer B ≥ Bm, where Bm is the product of all m-bad primes,

as defined above; see § 6.8 below.

2. Using (for example) the sieve of Eratosthenes, compute the smallest prime num-

ber β such that the set Q of prime numbers p with p ≤ β and p ∤ nl satisfies

∏

p∈Q

p > B.

3. For all p ∈ Q, compute XFp
and its zeta function using modular symbols, and

then compute strat(J [m]Fp
), a splitting field kp for J [m]Fp

and the F-vector space

D
Fp
m (kp) using Algorithm 4.1.

4. Among the sequences strat(J [m]Fp
) for p ∈ Q, there is a pointwise minimum.

Output this minimum together with the set P consisting of the p ∈ Q for which

it is attained, and output kp and D
Fp
m (kp) for all p ∈ P .

Analysis. The prime number theorem implies that the bound β computed in step 2

is at most c log B for some positive real number c. The choice of Q implies that Q

contains at least one m-good prime. It is now clear that the algorithm is correct and
runs in expected time polynomial in n, deg J [m] and log B. ⋄

Remarks. (1) The form of the prime number theorem that is used here is

∑

p≤x prime

log p ∼ x as x → ∞.

In fact, it would be enough to use the following bound, proved by Chebyshev: there

is a real number c > 0 such that

∑

p≤x prime

log x ≥ cx for all x ≥ 2.

(2) It seems reasonable to expect that in many cases the generic stratification type
will be (1, 1, . . . , 1,deg J [m]). If this is in fact the case, then we find this out as soon

as we encounter one prime number p such that the stratification type modulo p equals

(1, 1, . . . , 1,deg J [m]).

Once we know the generic stratification type, Algorithm 4.1 allows us to check
whether a prime number p is m-good in expected time polynomial in p. This implies

175



V. Computing modular Galois representations

that for any positive integer C, we can compute a set P of m-good prime numbers

such that ∏

p∈P

p > C

in expected time polynomial in log C. Furthermore, for an m-good prime number p,

the F-vector space scheme D
Fp
m equals the reduction (Dm)Fp

of Dm modulo p. We can
therefore compute the F-vector space of points of (Dm)Fp

, again using Algorithm 4.1.

5. Choosing a suitable embedding

In this section we explain how to choose a closed immersion

ι:J [m]Q → A1
Q.

We define the closed subscheme Dm  Symg X and the isomorphism cm:Dm
∼−→ J [m]

as in § 3.2. We are going to choose a non-constant rational function

ψ:XQ → P1
Q

such that the map

ψ∗: Symg XQ −→ Symg P1
Q.

is a closed immersion on (Dm)Q. We then use the isomorphism

Symg P1
Q

∼−→ Pg
Q

given by the elementary symmetric functions. Next we choose a rational map

λ:Pg
Q 99K A1

Q

such that λ is well-defined and injective on the image of (Dm)Q under the composed
map

(Dm)Q  Symg P1
Q

∼−→ Pg
Q.

We define ι as the composed map

ι:J [m]Q
c−1

m−→
∼

(Dm)Q  Symg XQ
ψ∗−→ Symg P1

Q

∼−→ Pg
Q

λ
99K P1

Q.

To choose ψ and λ, we make use of an auxiliary prime number p. This p is
required to satisfy the following conditions:

(1) p ∤ nl;

(2) p > 2

(
deg ω⊗w(−cusps) +

(
deg J [m]

2

))
;

(3) p > 2

(
deg J [m] +

(
deg J [m]

2

))
;

(4) p is m-good.
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5. Choosing a suitable embedding

Algorithm 5.1 (Choosing an auxiliary prime number). Given the ring homomor-

phism e:T → F and the generic stratification type J [m], this algorithm outputs a

prime number p satisfying the above conditions (1)–(4), a splitting field kp for D
Fp
m

over Fp and the set D
Fp
m (kp).

1. Let p be the least prime number satisfying the above conditions (1)–(3).

2. Compute S
(7)
XFp

and LXFp
using modular symbols.

3. Using Algorithm 4.1, check whether p is m-good; if so, compute a splitting field

kp for D
Fp
m over Fp and the set D

Fp
m (kp), output these data, and stop.

4. Replace p by the next prime number not dividing nl, and go to step 2.

Analysis. The prime number theorem implies that the prime number p output by

the algorithm is bounded by a linear function of log Bm, n2 and (deg J [m])2; compare

the remark following Algorithm 4.2. The expected running time of the algorithm is
polynomial in n, deg J [m] and log Bm. ⋄

We will take the rational function ψ on XQ of the form

ψ = α/β with α, β ∈ Sint
w (Γ1(n

′)),

where w is an integer with 1 ≤ w ≤ 12 chosen such that

(1) the line bundle ω⊗w of modular forms of weight w on the moduli stack MΓ1(n′)

over SpecZ descends to the coarse moduli space X1(n
′);

(2) the line bundle ω⊗w(−cusps) on X1(n
′) has degree deg ω⊗w(−cusps) ≥ 2g +1 on

the fibres, and has non-negative degree on each irreducible component of each

fibre.

We can always take w = 12.

Algorithm 5.2 (Choosing the map ψ). Given an auxiliary prime number p as out-

put by Algorithm 5.1, a splitting field kp of J [m]Fp
over Fp and the F-vector space

D
Fp
m (kp), this algorithm outputs cusp forms

α, β ∈ Sint
w (Γ1(n

′))

with the following properties:

(1) α and β have no common zeroes as sections of the line bundle ωw(−cusps) on
the curve XQ = X1(n

′)Q;

(2) the rational function ψ = α/β:XQ → P1
Q (which is well defined because of (1))

induces a closed immersion Dm  Pg
Q;

(3) the logarithms of the Petersson norms of both α and β are bounded by a poly-

nomial in n, deg J [m] and log Bm.

1. Using Algorithm IV.4.2, find a Q-basis (b1, . . . , bN ) of Sw(Γ1(n
′),Q) consisting

of forms with integral q-expansion at the cusp 0 and with small Petersson norm.

2. Using modular symbols, compute Sw(Γ1(n
′),Fp) and Mw+2(Γ1(n

′),Fp) using
q-expansions to precision greater than deg ω2w+2(−cusps).
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3. Choose uniformly random elements

ᾱ =

N∑

i=1

ᾱi(bi mod p), β̄ =

N∑

i=1

β̄i(bi mod p) in Sw(Γ1(n
′),Fp).

4. Compute the image of the multiplication map

(Fpᾱ + Fpβ̄) ⊗Fp
Mw+2(Γ1(n

′),Fp) −→ S2w+2(Γ1(n
′),Fp).

Check whether this image is the full space S2w+2(Γ1(n
′),Fp). If not, go to step 3.

5. We now have a morphism

ψ∗ = (ᾱ/β̄)∗: Symg XFp
→ Symg P1

Fp
.

Compute the images under ψ∗ of the elements D
Fp
m (kp) = (Dm)Fp

(kp) as homoge-

neous polynomials of degree g using Algorithm IV.2.8. If two of these polynomials
are the same (up to multiplication by elements of k×), go to step 3.

6. Output the cusp forms

α =
N∑

i=1

αibi and β =
N∑

i=1

βibi,

where α1, . . . , αN are integers with |αi| ≤ p/2 and (αi mod p) = ᾱi and similarly

for the βi.

Analysis. Because of our choice of p, the probability that uniformly random ᾱ and β̄

do not have any common zeroes and that ψ∗ = ᾱ/β̄ is injective on the set D
Fp
m (kp),

which has cardinality deg J [m], is at least 1/2; see Khuri-Makdisi [57, Proposition 4.3].

This implies that the expected running time of the algorithm is bounded by a poly-
nomial in n, deg J [m] and log Bm. The correctness of the check that α and β do

not have any common zeroes follows from Lemma IV.2.3. Finally, the bound on the

Petersson norms of α and β follows from the triangle inequality and the choice of
basis for Sint

w (Γ1(n
′)). ⋄

After we have chosen a rational function ψ, the next problem is to choose a

suitable rational map λ:Pg
Q 99K A1

Q.

Algorithm 5.3 (Choosing the map λ). Given an auxiliary prime number p as output

by Algorithm 5.1, a splitting field kp of J [m]Fp
over Fp, and the set of kp-valued points

of the image of the map

D
Fp
m  Symg XFp

ψ∗−→ Symg P1
Fp

where ψ is a rational function ψ as output by Algorithm 5.2 (with the same auxiliary

prime number), this algorithm outputs a 2 × (g + 1)-matrix Λ over Z with coprime

entries, such that the rational map

λ:Pg
Q 99K A1

Q
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given by Λ induces a well-defined closed immersion on the image of Dm under the

map

Symg XQ
ψ∗−→ Symg P1

Q

∼−→ Pg
Q,

and such that the coefficients of Λ are bounded by a linear function of n, deg J [m]
and log Bm.

1. Choose a random 2 × (g + 1)-matrix ΛFp
over Fp.

2. Check whether the rational map Pg
Fp

99K A1
Fp

defined by ΛFp
is well-defined and

injective on the image of the map

D
Fp
m  Symg XFp

ψ∗−→ Symg P1
Fp

∼−→ Pg
Fp

.

If not, go back to step 1.

3. Take a lift Λ of ΛFp
with integer coefficients of absolute value at most p/2.

4. Divide Λ by the greatest common divisor of its entries, and output the result.

Analysis. The choice of the auxiliary prime number p implies that a randomly chosen

λ satisfies the imposed conditions with probability at least 1/2. It is now straight-

forward to check that the expected running time of the algorithm is polynomial in n,

deg J [m] and log Bm. ⋄
Remark . Another possibility, described in [17, § 8.2], is to choose some small posi-

tive integer m and to take λ to be the map defined by viewing elements of Pg
Q as

polynomials of degree g and evaluating these in m.

6. Height bounds and bad prime numbers

The following definition says which prime numbers p can be used in our computation

after maps ψ and λ have chosen as in Section 5.

Definition. We say that a prime number p is (m, ψ)-good if p is m-good and the
map ψ is defined modulo p, i.e. α and β have no common zeroes as sections of the

line bundle ω⊗w(−cusps) on X1(n
′)Fp

. We say that p is (m, ψ, λ)-good if in addition

the map λ is well-defined on the image of the morphism

D
Fp
m = (Dm)Fp

 Symg XFp

ψ∗−→ Symg P1
Fp

∼−→ Pg
Fp

.

The antonyms of (m, ψ)-good and (m, ψ, λ)-good are (m, ψ)-bad and (m, ψ, λ)-bad ,

respectively.

We define positive integers Bm,ψ and Bm,ψ,λ by

Bm,ψ =
∏

p (m,ψ)-bad

p and Bm,ψ,λ =
∏

p (m,ψ,λ)-bad

p,

where p runs over the finite set of (m, ψ)-bad prime numbers and that of (m, ψ, λ)-bad
prime numbers, respectively.
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If p is a (m, ψ)-good prime number, we can compute the reduction modulo p of

the image of Dm under the map

Symg X
ψ∗−→ Symg P1 ∼−→ Pg

as a set of k-valued points, where k is a finite extension of Fp as in Algorithm 4.1,

using Algorithm IV.2.8. If p is in addition (m, ψ, λ)-good, then the monic polynomial
defining the image of Dm under the map

ι:J [m]Q → A1
Q

can be reduced modulo p, and we can compute this reduction.

In order to reconstruct the F-vector space scheme ι(J [m]) from its reductions
modulo prime numbers, we need an upper bound on the height of ι(J [m]), which was

defined in § 3.3. We will show that when the maps ψ and λ are chosen as in Algorithms

5.2 and 5.3, this height is bounded by a polynomial in n, deg J [m] and γ(X). We also

need upper bounds on the integers Bm, Bm,ψ and Bm,ψ,λ. To prove that our algorithm
for computing modular Galois representations runs in expected time polynomial in

the input size, we need to show that log Bm, log Bm,ψ and log Bm,ψ,λ are bounded by

a polynomial in n, deg J [m] and γ(X).

Remarks. (1) The upper bounds for Bm and for the height need to be made explicit

to ensure the correctness of Algorithms 4.2 above and 7.2 below, respectively. In

contrast, the upper bounds for Bm,ψ and Bm,ψ,λ are not needed as input for the
algorithm.

(2) It would certainly have been possible, but probably not very enlightening, to

write down bounds that are polynomials in n and deg J [m] with real coefficients. I

have aimed at a balance by giving formulae involving non-explicit constants that can,
however, easily be approximated using a computer. There is at this moment still an

exception, namely a bound on γ(X1(n)) in the case where n is not squarefree.

6.1. Height bounds

We suppose that maps ψ and λ as above have been chosen. Our next goal is to derive
a bound on the height of ι(J [m]). We start with some general observations on the

behaviour of heights with respect to symmetric functions and linear maps.

If λ is an m × n-matrix over Q, we define the height h(λ) of λ as the height of

the point of Pmn+m+n(Q) whose projective coordinates are the coefficients of λ.

Lemma 6.1. Let n be a positive integer, and let Σn: (P1
Q)n → Pn

Q be the symmetri-
sation map defined by

Σn((x1 : y1), . . . , (xn : yn)) = (σ0 : σ1 : . . . : σn),

where

σk =
∑

I⊆{1,...,n}
#I=k

∏

i∈I

xi ·
∏

j 6∈I

yj .
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Then the inequality

hPn(Σn(p1, . . . , pn)) ≤ log

(
n

⌊n/2⌋

)
+

n∑

i=1

hP1(pi)

≤ n log 2 +

n∑

i=1

hP1(pi)

holds for all p1, . . . , pn ∈ P1(Q).

Proof . Let K be a number field, let p1, . . . , pn be in P1(K), and write pi = (xi : yi)
with xi, yi ∈ K. For any valuation v of K, the triangle inequality implies that the

elements σk ∈ Q satisfy

|σk|v ≤ cv max
I⊆{1,...,n}

#I=k

∏

i∈I

|xi|v ·
∏

j 6∈I

|yj |v,

where

cv =

{
1 if v is ultrametric;(

n
⌊n/2⌋

)[Kv:R]
if v is Archimedean.

This implies

max
k

|σk|v ≤ cv

n∏

i=1

max{|xi|v, |yi|v}.

Taking logarithms, summing over all v and dividing by [K : Q] we get the first

inequality. The second follows by applying the elementary inequality
(

n
⌊n/2⌋

)
≤ 2n.

Lemma 6.2. Let λ:Pn
Q 99K Pm

Q be a rational map given by a non-zero matrix (ai,j)i,j

over Q. Then for any p ∈ Pn(Q) such that λ is defined at p, we have

hPm(λ(p)) ≤ log n + h(λ) + hPn(p).

Proof . Choose a number field K with p ∈ Pn(K), and write p = (x0 : . . . : xn).

Put bi =
∑

ai,jxj for i = 0, . . . , m, so that λ(p) = (b0 : . . . : bm). Then for any

valuation v of K,

|bi|v =

∣∣∣∣
n∑

j=0

ai,jxj

∣∣∣∣
v

≤ dv max
j

|ai,jxj |v,

with

dv =
{

1 if v is ultrametric;
n[Kv :R] if v is Archimedean.

Therefore,

max
i

|bi|v ≤ dv max
i,j

|ai,j |v max
k

|xk|v.

Taking logarithms, summing over all v and dividing by [K : Q], we obtain the desired
inequality.
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Lemma 6.3. Let A = (ai,j)
n
i,j=1 and y = (yi)

n
i=1 be elements of GLn(Q) and Q

n
,

respectively. Then the unique solution x = (xi)
n
i=1 ∈ Q

n
of Ax = y satisfies

max
1≤i≤n

h(xi) ≤ 2n2b + n log n,

where b is the maximum of all the h(yi) and h(ai,j).

Proof . This follows from Cramer’s rule and bounds on the height of the determinant
of an invertible matrix in terms of the heights of its coefficients; for details we refer

to Couveignes, Edixhoven et al. [17, § 4.2].

We now derive bounds for the heights of the points ι(v) with v ∈ J [m](Q). We
consider the divisor D ∈ Dm(Q) corresponding to v under the isomorphism

cm:Dm(Q)
∼−→ J [m](Q),

and we write

D = D1 + · · · + Dg with Di ∈ XQ(Q).

From the definition of ι we see that

ι(v) = λ(Σg(ψ(D1), . . . , ψ(Dg))).

By Lemmata 6.2 and 6.1 we get

h(ι(v)) ≤ log g + h(λ) + hPg

(
Σg(ψ(D1), . . . , ψ(Dg))

)

≤ log g + h(λ) + g log 2 +

g∑

i=1

hP1(ψ(Di)).
(6.1)

This shows that bounding h(ι(v)) essentially comes down to bounding the hP1(ψ(Di));

we will study these in § 6.2 below.

As in § 3.3, we let Pι ∈ Q[x] denote the monic polynomial defining ι(J [m]Q)
in A1

Q. We let h(Pι) denote the maximum of the logarithmic heights of the coefficients

of Pι. Since the coefficients of Pι are the (dehomogenised) elementary symmetric

polynomials in the ι(v) for v ∈ J [m](Q), a second application of Lemma 6.1 yields

h(Pι) ≤ deg J [m] log 2 +
∑

D∈Dm(Q)

h(ι(cm(D)))

≤ deg J [m] log 2 + deg J [m] (g log 2 + log g + h(λ))

+
∑

D∈Dm(Q)

g∑

i=1

hP1(ψ(Di))

= deg J [m]
(
(g + 1) log 2 + log g + h(λ)

)
+

∑

D∈Dm(Q)

g∑

i=1

hP1(ψ(Di)).

(6.2)
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Finally, we give bounds on the heights of the polynomials defining the addition

and scalar multiplication in terms of the h(ι(v)). Here we follow [17, § 14.5]. We put

r = deg Pι = deg J [m], and we write

S =

r−1∑

i,j=0

si,jx
i
1x

j
2 ∈ Q[x1, x2]/(Pι(x1), Pι(x2)),

Ma =
r−1∑

i=0

ma
i xi ∈ Q[x]/(Pι) for all a ∈ F×.

Then we have by definition

r−1∑

i,j=0

si,jι(v)iι(w)j = ι(v + w) for all v, w ∈ J [m](Q)

and
r−1∑

i=0

ma
i ι(v)i = ι(av) for all v ∈ J [m](Q), a ∈ F.

Lemma 6.3 now implies

max
i,j

h(si,j) ≤ 2r2(r − 1)2 max
v

h(ι(v)) + r2 log r2

and

max
i

h(ma
i ) ≤ 2r(r − 1)max

v
h(ι(v)) + r log r for all a ∈ F.

6.2. Relating heights to Arakelov intersection numbers

We now study the hP1(ψ(Di)) in more detail. Let K be any number field with the

following properties:

(1) all the Di for D ∈ Dm(Q) are K-rational;

(2) XQ × SpecK has a regular and semi-stable model

π:X → SpecZK .

Then there exists a morphism

φ:Xψ → X ,

obtained by successively blowing up in closed points, such that ψ extends to a mor-

phism
ψ̃:Xψ → P1

ZK
.

The arithmetic surface Xψ is regular, but not necessarily semi-stable (if we blow up

double points of the fibres, we get exceptional divisors of multiplicity greater than 1).

By taking the Zariski closure, we extend the points Di ∈ X(K) and the divisors
D ∈ Dm(K) to Cartier divisors on X .
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We now temporarily assume that ψ(Di) 6= ∞; however, the height bound that

we are going to deduce will also hold in the case ψ(Di) = ∞, for reasons that will be

indicated below. By definition, we have

hP1(ψ(Di)) =
1

[K : Q]

∑

v

log max{1, |ψ(Di)|v},

where v runs over all the places of K. Now we note that for each finite place v of K,

we have the equality

log max{1, |ψ(Di)|v} = (log #kv)(ψ̃ ◦ Di . ∞)v, (6.3)

where kv is the residue field of v and (ψ̃ ◦ Di . ∞)v denotes the local intersection

number of the sections ψ̃ ◦Di and ∞ of P1
ZK

at v. Furthermore, from the elementary
inequality

max{1, t} ≤
√

1 + t2 (t ≥ 0)

it follows that for each infinite place v of K we have the inequality

log max{1, |ψ(Di)|v} ≤ [Kv : R]

(
1

2
− 2π grP1(Kv)(ψ(Di)v,∞)

)
. (6.4)

Here grP1 is the Green function for the Fubini–Study (1, 1)-form on P1(Kv) as

in § III.1.1:

grP1(Kv)(z,∞) =
1

4π
− 1

4π
log(1 + |z|2). (6.5)

It follows from (6.3) and (6.4) that the height of the point ψ(Di) ∈ P1(Q) can

be bounded in terms of the degree of the metrised line bundle (ψ̃ ◦ Di)
∗OP1(∞)

on SpecZK as follows:

hP1(ψ(Di)) ≤
1

[K : Q]
deg(ψ̃ ◦ Di)

∗OP1(∞) +
1

2
. (6.6)

Here the line bundle OP1(∞) on P1
Kv

is endowed with the metric defined by

log |1|O
P1 (∞)(z) = 2π grP1(z,∞).

The inequality (6.6) is also valid in the case where ψ(Di) = ∞, and is in fact an
equality in this case; this can be seen by computing the degree via the global section z

of OP1(∞) (which vanishes only along 0) instead of the section 1. This means that

we can now dispense with our temporary assumption that ψ(Di) 6= ∞.

On each of the Riemann surfaces

Xv = X(Kv),

we define a smooth real-valued function φv by

φv(x) = log |1|OXv (ψ−1∞)(x) − log |1|O
P1 (∞)(ψ(x))

= 2π grcanXv
(x, ψ−1∞) − 2π grP1(ψ(x),∞),
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where grcanXv
denotes the canonical Green function of the Riemann surface Xv. Then

φv satisfies the differential equation

2i∂∂̄φv = 2π(δψ−1∞ − (deg ψ)µcan
Xv

) − 2π(δψ−1∞ − ψ∗µP1)

= 2πψ∗µP1 − 2π(deg ψ)µcan
Xv

with the normalising condition
∫

Xv

φvµcan
Xv

= −2π

∫

x∈Xv

grP1(ψ(x),∞)µcan
Xv

(x).

From the definition of grcanXv
it now follows that we can express φv as

φv(x) =

∫

y∈Xv

grcanXv
(x, y)

(
2πψ∗µP1(y) − 2π(deg ψ)µcan

Xv
(y)

)

− 2π

∫

y∈Xv

grP1(ψ(y),∞)µcan
Xv

(y)

= 2π

∫

y∈Xv

grcanXv
(x, y)ψ∗µP1(y) − 2π

∫

y∈Xv

grP1(ψ(y),∞)µcan
Xv

(y).

Using the formula (6.5) for grP1 , we see that

φv(x) = 2π

∫

y∈Xv

grcanXv
(x, y)ψ∗µP1(y) − 1

2
+

1

2

∫

y∈Xv

log(1 + |ψ(y)|2)µcan
Xv

(y)

≤ 2π deg ψ sup
Xv×Xv

grcanXv
− 1

2
+

1

2

∫

y∈Xv

log(1 + |ψ(y)|2)µcan
Xv

(y).

(6.7)

By the definition of φv, we may rewrite the degree appearing on the right-hand side
of (6.6) as

deg(ψ̃ ◦ Di)
∗OP1(∞) = deg D∗

i (ψ̃∗OP1(∞))

= deg D∗
i OXψ

(ψ̃−1∞) +
∑

v∈Kinf

[Kv : R]φv(Di,v)

= (Di . ψ̃−1∞)Xψ
+

∑

v∈Kinf

[Kv : R]φv(Di,v),

(6.8)

where OXψ
(ψ̃−1∞) is metrised in the standard way and (Di . ψ̃−1∞)Xψ

denotes the
Arakelov intersection product of divisors on the regular arithmetic surface Xψ. Com-

bining (6.6), (6.8), (6.7) and the fact that all the Xv are isomorphic to the Riemann

surface
X = X(C),

we now deduce the following bound for the height of ψ(Di):

hP1(ψ(Di)) ≤
1

[K : Q]
(Di . ψ̃−1∞)Xψ

+ 2π deg ψ sup
X×X

grcanX

+
1

2

∫

y∈X

log(1 + |ψ(y)|2)µcan
X (y).
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Substituting this in the bound (6.2) for h(Pι) and simplifying, we get

h(Pι) ≤ deg J [m]

(
(g + 1) log 2 + log g + h(λ) + 2πg deg ψ sup

X×X

grcanX

+
g

2

∫

X

log(1 + |ψ|2)µcan
X

)

+
1

[K : Q]

∑

D∈Dm(Q)

(D . ψ̃−1∞)Xψ
.

(6.9)

6.3. Specialisation to our choice of ψ

We recall that we have chosen ψ of the form

ψ = α/β with α, β ∈ Sint
w (Γ1(n

′)).

We view α and β as rational sections of the line bundle ω⊗w(−cusps) on X . We
write the divisor of α (in the classical sense, i.e. without “infinite” components) as

div+ α − div− α, where div± α are effective divisors on X having no prime divisors

in common. Since α ∈ Sint
w (Γ1(n

′)), the support of div− α is contained in the set of
irreducible components of fibres of X that do not meet the cusp O. We define div± β

similarly, and we do the same for div± ψ̃ on Xψ. Noting that

div ψ̃ = φ−1 div α − φ−1 div β

we see that
ψ̃−1∞ = div− ψ̃

≤ φ−1(div+ β + div− α).
(6.10)

We put any admissible metric | |ω on the line bundle ω on the Riemann surface X.

This also gives an admissible metric | |ω⊗w on ω⊗w. Multiplication by β gives an

isomorphism

OX

(
div+ β − div− β +

∑

v∈Kinf

aβXv

)
∼−→ ω⊗w(−cusps) (6.11)

of admissible line bundles on X , where

aβ = −
∫

X

log |β|ω⊗wµcan
X .

Now let D be an element of Dm(Q). By the isomorphism (6.11), the inequal-
ity (6.10) and the projection formula for φ, the intersection number (D . ψ̃−1∞)Xψ

occurring in (6.9) can be bounded as

(D . ψ̃−1∞)Xψ
≤ (D . φ−1(div+ β + div− α))Xψ

= (D . φ∗(ω⊗w(div− α + div− β − cusps)))Xψ
− g[K : Q]aβ

= (D . ω⊗w(div− α + div− β − cusps))X − g[K : Q]aβ ,

(6.12)
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where the divisor D in the last expression is to be interpreted as the Zariski closure

in X of the divisor D on XK . We write

div α = Hα +
∑

p

∑

V ∈Wp

np,V V, (6.13)

where Hα is an effective horizontal divisor, the np,V are integers, p runs over the closed

points of SpecZK and Wp is the set of irreducible components of the fibre Xk(p). In

particular, we get

div+ α = Hα +
∑

p

∑

V ∈Wp

np,V >0

np,V V and div− α =
∑

p

∑

V ∈Wp

np,V <0

−np,V V.

Let p be a closed point of SpecZK . The np,V with V ∈ Wp satisfy the equations

∑

V ′∈Wp

np,V ′(V . V ′)X = bV for all V ∈ Wp,

where

bV = (ω⊗w(−cusps) − Hα . V )X .

We recall from Section 5 that we have chosen w such that ω⊗w(−cusps) has non-

negative degree on each irreducible component of each fibre. This implies

∑

V ∈Wp

bV >0

bV ≤ deg ω⊗w(−cusps).

Let p be the residue characteristic of p, let e(p) be the ramification index of p over p,

and let Wp be the field of fractions of the ring of Witt vectors of Fp. Applying
Lemma III.4.1, we obtain

max
V ∈Wp

np,V − min
V ∈Wp

np,V ≤ 2e(p)γ(XWp
) deg ω⊗w(−cusps),

where γ(XWp
) is the real number defined in § III.4.2. In particular, since there is at

least one V for which np,V ≥ 0 (the one intersecting O), we see that

− min
V ∈Wp

np,V ≤ 2e(p)γ(XWp
) deg ω⊗w(−cusps). (6.14)

Taking the sum over all p, we get the inequality

(D . div− α)X ≤ g
∑

p

(− min
V ∈Wp

np,V ) log #k(p)

≤ 2g deg ω⊗w(−cusps)
∑

p

e(p)γ(XWp
) log #k(p).

187



V. Computing modular Galois representations

Grouping the p by their residue characteristics, using the relation

∑

p|p

e(p) log #k(p) = [K : Q] log p

and using the definition (1.1) of γ(X), we obtain

(D . div− α)X ≤ 2gγ(X) deg ω⊗w(−cusps).

The same inequality holds with α replaced by β. Substituting this in (6.12), we

conclude that

(D . ψ̃−1∞)Xψ
≤ (D . ω⊗w(−cusps))X + 4g[K : Q]γ(X) deg ω⊗w(−cusps)

+ g[K : Q]

∫

X

log |β|ω⊗wµcan
X .

We substitute this into (6.9); we also rewrite the integral occurring in that inequality

as

∫

X

log(1 + |ψ|2)µcan
X =

∫

X

log(|α|2ω⊗w + |β|2ω⊗w)µcan
X −

∫

X

log |β|2ω⊗wµcan
X .

This gives

h(Pι) ≤
1

[K : Q]

∑

D∈Dm(Q)

(D . ω⊗w(−cusps))X

+ deg J [m]

(
(g + 1) log 2 + log g + h(λ) + 2πg deg ψ sup

X×X

grcanX

+
g

2

∫

X

log(|α|2ω⊗w + |β|2ω⊗w)µcan
X + 4gγ(X) deg ω⊗w(−cusps)

)
.

Now let jX denote the canonical morphism X → P1
ZK

. Multiplication by the
discriminant modular form ∆ gives an isomorphism

∆:OX

(
j∗X∞ +

∑

v∈Kinf

a∆Xv

)
∼−→ ω⊗12

of admissible line bundles on X , where

a∆ = −
∫

X

log |∆|ω⊗12µcan
X . (6.15)

This implies that

(D . ω)X =
1

12
(D . j∗X∞)X +

g[K : Q]

12
a∆.
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We can now rewrite the above inequality as

h(Pι) ≤
1

[K : Q]

∑

D∈Dm(Q)

(
D .

w

12
j∗X∞− cusps

)

X

+ deg J [m]

(
(g + 1) log 2 + log g + h(λ) + 2πg deg ψ sup

X×X

grcanX

+
g

2

∫

X

log(|α|2ω⊗w + |β|2ω⊗w)µcan
X

− gw

12

∫

X

log |∆|ω⊗12µcan
X

+ 4gγ(X) deg ω⊗w(−cusps)

)
.

(6.16)

6.4. Bounds on the integrals

We choose a real number ǫ ∈ (0, 1), we write B∞(ǫ) for the standard disc of area ǫ

around the unique cusp ∞ of SL2(Z)\H as in § II.1.2, and we define Y0 as the com-

plement of B∞(ǫ) in SL2(Z)\H. Furthermore, we define a compact subset Y of X as
the inverse image of Y0 under the map

Γ1(n
′)\H → SL2(Z)\H

Γ1(n
′)z 7→ SL2(Z)z.

Then the complement of Y is the disjoint union of the discs Bc(ǫc), with c running

over the cusps of Γ1(n
′), and with

ǫc = mcǫ,

where mc is the ramification index at c.

Let µH be the (1, 1)-form on X (with singularities at the cusps) induced from
the standard volume form on the hyperbolic plane H, and let FΓ1(n′) be the function

defined on Γ1(n
′)\H by

FΓ1(n′)(z) =
∑

f∈B

(ℑz)2|f(z)|2,

where B is any orthonormal basis for the space of holomorphic cusp forms of weight 2

for Γ1(n
′) with respect to the Petersson inner product. In §§ II.4.2 and II.4.3, we saw

that there is an effectively computable real number C(ǫ) such that

0 ≤ FΓ1(n′)(z) ≤
{

C(ǫ) if z ∈ Y ;

C(ǫ)(ǫcyc(z))2 exp(4π/ǫc − 4πyc(z)) if z ∈ Bc(ǫc),

where yc is the function defined in § II.1.2. In particular, this gives an upper bound
for supX FΓ1(n′); see also Lemma II.4.1.
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In the inequality (6.16), we replace the chosen admissible metric on each of the

ω⊗i with the Petersson metric | |i,Pet defined in § II.2.1. Outside the zeroes and poles

of α, β and ∆, we have the equality

(|α|2ω⊗w + |β|2ω⊗w)1/w

|∆|1/12
ω⊗12

=
(|α|2w,Pet + |β|2w,Pet)

1/w

|∆|1/12
12,Pet

.

From this we see that the value of the expression on the third line in (6.16) is unaffected

by the change of metrics. Applying Jensen’s inequality on convex functions gives
∫

X

log(|α|2w,Pet + |β|2w,Pet)µ
can
X ≤ log

∫

X

(|α|2w,Pet + |β|2w,Pet)µ
can
X

= log
(
g−1

∫

X

(|α|2w,Pet + |β|2w,Pet)FΓ1(n′)µH

)

≤ log(〈α, α〉Γ1(n) + 〈β, β〉Γ1(n′))

+ log sup
X

(g−1FΓ1(n′)).

The choice of α and β in Algorithm 5.2 implies that the logarithms of the Petersson

norms of α and β are bounded by a polynomial in n, deg J [m] and log Bm.
It remains to find a lower bound for the integral

∫

X

log |∆|12,Petµ
can
X = g−1

∫

Γ1(n′)\H

log |∆|12,PetFΓ1(n′)µH.

One can check numerically that

log |∆|12,Pet(z) < 0 for all z ∈ H.

We therefore obtain
∫

Γ1(n′)\H

log |∆|12,PetFΓ1(n′)µH ≥
∫

Y

log |∆|12,PetC(ǫ)µH

+
∑

c

∫

Bc(ǫc)

log |∆|12,PetC(ǫ)(ǫcyc(z))2 exp(4π/ǫc − 4πyc(z))µH.

Rewriting this as an integral on SL2(Z)\H, using the identity

yc(z) =
y∞(z)

mc

for z ∈ Bc(ǫc)

and putting

N(n′) = [SL2(Z) : Γ1(n
′)],

we get
∫

Γ1(n′)\H

log |∆|12,PetFΓ1(n′)µH ≥ C(ǫ)N(n′)

2

∫

Y0

log |∆|12,PetµH

+ C(ǫ)ǫ2
∫

B∞(ǫ)

log |∆|12,Pety
2
∞

∑

c

exp

(
4π

mc

(1/ǫ − y∞)

)
µH.

190



6. Height bounds and bad prime numbers

Because the modular form ∆ has a simple zero at ∞, the real-valued function

z 7→ log
|∆(z)|12,Pet

|q∞(z)| = 2πy∞(z) + log |∆(z)|12,Pet

on the disc B∞(ǫ) extends to a superharmonic function on the compactification B∞(ǫ).

The minimum principle for superharmonic functions implies

log |∆(z)|12,Pet ≥ 2π/ǫ − 2πy∞(z) + inf
y∞(w)=1/ǫ

log |∆(w)|12,Pet.

From this we get
∫

B∞(ǫ)

log |∆|12,Pety
2
∞

∑

c

exp

(
4π

mc

(1/ǫ − y∞)

)
µH

≥
∑

c

∫ ∞

1/ǫ

(
inf

y∞(w)=1/ǫ
log |∆(w)|12,Pet + 2π/ǫ − 2πy

)
exp

(
4π

mc

(1/ǫ − y)

)
dy.

Evaluating the integral using standard methods and noting that
∑

c mc = N(n′)/2,

we get
∫

B∞(ǫ)

log |∆|12,Pety
2
∞

∑

c

exp

(
4π

mc

(1/ǫ − y∞)

)
µH

≥ − 1

8π

∑

c

m2
c +

N(n′)

8π
inf

y∞(z)=1/ǫ
log |∆|12,Pet(z).

From the above bounds we conclude that

∫

X

log |∆|12,Petµ
can
X ≥ C(ǫ)

(
N(n′)

2

(
ǫ2

4π
+

∫

Y0

µH

)
inf
Y0

log |∆|12,Pet −
ǫ2

8π

∑

c

m2
c

)
.

6.5. Bounds on m-bad prime numbers in terms of cohomology

We will derive a bound for the product Bm of the m-bad prime numbers in terms

of the first cohomology group of a certain line bundle that can be constructed on X

after a suitable base change.
Let x be an element of J [m](Q), and let Kx ⊂ Q be the field of definition of x.

Then Kx is isomorphic to the residue field of the closed point of J [m]Q corresponding

to x. Let Tx be the spectrum of the integral closure of Z[1/nl] in Kx; this is a finite

étale Z[1/nl]-scheme by the fact that J [m] is étale over Z[1/nl]. The point x ∈ J(Kx)
defines a line bundle Lx of degree 0 on XKx

. As in § 3.2, we define dx as the least

d ≥ 0 such that x ∈ J [m]d(Q). We choose a non-zero global section s of Lx(dxO) and

define
D0

x = div s.

Then s is unique up to multiplication by elements of K×
x , and D0

x is independent of

the choice of s. By taking the Zariski closure, we extend D0
x to a horizontal divisor

on the proper smooth curve

XTx
= X ×SpecZ[1/nl] Tx
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over Tx.

For any prime number p ∤ nl, we write

XTx,p = XTx
×SpecZ[1/nl] SpecFp

= X ×SpecZ[1/nl] (Tx ×SpecZ[1/nl] SpecFp).

The fact that Tx is étale over Z[1/nl] implies that Tx ×SpecZ[1/nl] SpecFp is the

disjoint union of the spectra of the residue fields of Tx that have characteristic p. By
the definition of m-bad prime numbers, a prime number p ∤ nl is m-bad if and only if

H0(XTx,p,O(D0
x − O)) 6= 0 for some x ∈ J [m](Q).

This gives the implication

p ∤ nl is m-bad =⇒ #H0(XTx,p,O(D0
x − O)) ≥ p for some x ∈ J [m](Q).

Whether #H0(XTx,p,O(D0
x − O)) ≥ p depends only on the Gal(Q/Q)-orbit of x ∈

J [m](Q) (equivalently, on the closed point of J [m]Q corresponding to x). This means

that

p ∤ nl is m-bad =⇒
∏

x∈J[m](Q)

#H0(XTx,p,O(D0
x − O))1/[Kx:Q] ≥ p.

We therefore get

log Bm ≤ log nl +
∑

x∈J[m](Q)

1

[Kx : Q]

∑

p∤nl prime

log #H0(XTx,p,O(D0
x − O)).

In order to bound the terms #H0(XTx,p,O(D0
x − O)), we will apply a suitable base

extension and then choose an effective divisor Rx of degree g − dx in such a way that

H0(XTx
,O(D0

x + Rx − O)) is still zero.
For a given ǫ > 0, we extend the base Tx as follows. We first suppose g ≥ 2.

Because O is a cusp of X, and because Ω⊗12
X/Q has a non-zero section whose divisor is

supported in the cusps (namely the cusp form ∆), the class [(2g−2)O−ΩX/Q] in J(Q)
is a torsion element by the Manin–Drinfeld theorem; see Drinfeld [29, Theorem 1]. By

Lemma III.2.1, we can therefore choose a finite extension K ′
x of Kx and an effective

divisor Rx of degree g − dx on XK′
x

with the property that the Néron–Tate height of

the point [Rx − (g − dx)O] ∈ J(K ′
x) ⊂ J(Q) satisfies

hNT
J ([Rx − (g − dx)O]) < (g − dx)2

Ω2
X/Q,a

2g − 2
+ ǫ (6.17)

and such that the line bundle O(D0
x+Rx−O) on XK′

x
has no non-zero global sections.

In the case g = 1, we take Rx to be the zero divisor for all x 6= 0, and we take R0

to be any non-zero torsion point; this implies that hNT
J/Q([Rx − (g − dx)O]) = 0. We

then define T ′
x as the spectrum of the integral closure of Z[1/nl] in K ′

x. Then T ′
x is a

finite locally free Tx-scheme of rank [K ′
x : Kx]. We write

XT ′
x

= X ×SpecZ[1/nl] T ′
x,
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and for every prime number p ∤ nl we write

XT ′
x,p = XT ′

x
×SpecZ[1/nl] SpecFp.

In contrast to Tx ×SpecZ[1/nl] SpecFp, the finite Fp-scheme T ′
x ×SpecZ[1/nl] SpecFp

is not necessarily reduced. We therefore use the following results on proper smooth
curves over Artin rings.

Lemma 6.4. Let X be a proper smooth curve over a local Artinian ring A such that
the special fibre of X is geometrically connected of genus g. For every relative Cartier

divisor D on X, we have

lengthA H0(X,OX(D)) − lengthA H1(X,OX(D)) = (1 − g + deg D) lengthA A,

where deg D is the degree of D on the special fibre of X.

Proof . This can be proved starting from the case D = 0 by adding and subtracting

effective divisors and using the long exact cohomology sequences associated to short

exact sequences of the form

0 −→ L(−E) −→ L −→ i∗i
∗L −→ 0,

where L is a line bundle, E is an effective divisor and i:E  X is the inclusion

map. Alternatively, the lemma can be deduced as a special case of the very gen-

eral version of the Riemann–Roch theorem given by Berthelot in [101, exposé VIII,
théorème 3.6].

Lemma 6.5. Let k be a field, let A be a finite Artinian k-algebra, and let X be a
proper smooth curve over A such that the fibres of X are geometrically connected of

the same genus g. For every line bundle L on X that is of degree g − 1 on the fibres,

we have the equality

dimk H0(X,L) = dimk H1(X,L).

Proof . This follows from Lemma 6.4 and the equality

dimk M =
∑

B

[k(B) : k] lengthB(M ⊗A B)

for any finitely generated A-module M , where B runs over the local factors of A and

k(B) is the residue field of B.

We now bound #H0(XTx,p,O(D0
x −O)) as follows. Let p be a prime number not

dividing nl. The fact that T ′
x is locally free of rank [K ′

x : Kx] over Tx implies that

#H0(XTx,p,O(D0
x − O)) = #H0(XT ′

x,p,O(D0
x − O))1/[K′

x:Kx].

Since Rx is effective, we have

#H0(XT ′
x,p,O(D0

x − O)) ≤ #H0(XT ′
x,p,O(D0

x + Rx − O)).
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It follows from Lemma 6.5 that

#H0(XT ′
x,p,O(D0

x + Rx − O)) = #H1(XT ′
x,p,O(D0

x + Rx − O)).

The compatibility of the formation of H1 with base change implies that

∏

p∤nl prime

#H1(XT ′
x,p,O(D0

x + Rx − O)) = #H1(XT ′
x
,O(D0

x + Rx − O)).

Combining the above (in)equalities, we get

log Bm ≤ log nl +
∑

x∈J[m](Q)

1

[K ′
x : Q]

log #H1(XT ′
x
,O(D0

x + Rx − O)). (6.18)

6.6. Bounds from arithmetic intersection theory

We are now going to use arithmetic intersection theory to bound the right-hand side

of the inequality (6.18), as well as certain intersection numbers that we will use to
bound the right-hand side of (6.16). For any ǫ > 0, we consider finite extensions K ′

x

and divisors Rx as in § 6.5. After extending these, we may assume all the K ′
x are

equal to a number field K over which J [m]Q splits and such that XQ × SpecK has a
regular and semi-stable model

π:X → SpecZK .

In our notation below, we will identify the admissible line bundle Ωπ with an Arakelov

divisor denoted by the same symbol.
Now let x be a non-zero element of J [m](Q) = J [m](K). We extend the divisor D0

x

to a section of π by taking the Zariski closure, and we abbreviate

D′
x = D0

x + Rx.

We note that

log #H1(XT ′
x
,O(D0

x + Rx − O)) ≤ log #H1(X ,OX (D′
x − O)). (6.19)

We apply Faltings’s arithmetic Riemann–Roch formula from Section III.2 to the

admissible line bundle OX (D′
x − O) on X , where the metrics at the infinite places

are chosen using the correspondence between Arakelov divisors and admissible line
bundles as in Section III.2. This gives the equation

deg λπOX (D′
x − O) =

1

2
(D′

x − O . D′
x − O − Ωπ)X + deg λπOX . (6.20)

As in Section III.2, the left-hand side of (6.20) can be written as

deg λπOX (D′
x − O) = deg

[
det π∗OX (D′

x − O) ⊗ det π∗Ωπ(−D′
x + O)

]

− log #H1(X ,OX (D′
x − O)),
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where the metric on det π∗OX (D′
x − O) ⊗ det π∗Ωπ(−D′

x + O) is given by Faltings’s

axioms.

Next we want to apply the Faltings–Hriljac formula from § III.2.2 to the right-
hand side of (6.20). We therefore choose a divisor Ψ on X that is a rational linear

combination of irreducible components of fibres of π above closed points of SpecZK ,

with the property that

(D′
x − gO − Ψ . E)X = 0 for every vertical divisor E.

Such a Ψ is unique up to addition of rational multiples of fibres. We can now rewrite

the intersection number (D′
x − O . D′

x − O − Ωπ)X as

(D′
x − O . D′

x − O − Ωπ)X = (D′
x − gO − Ψ . D′

x + (g − 2)O − Ωπ)X

+ (g − 1)2(O . O)X − (g − 1)(O . Ωπ)X

+ (Ψ . D′
x + (g − 2)O − Ωπ)X .

(6.21)

Applying the Faltings–Hriljac formula to the first term on the right-hand side gives

(D′
x−gO−Ψ .D′

x +(g−2)O−Ωπ)X = −[K : Q]〈[D′
x−gO], [D′

x +(g−2)O−Ωπ]〉NT
J/Q,

where [E] denotes the class of E in J(K) ⊂ J(Q) for any Arakelov divisor E on X
that has degree 0 on the generic fibre. The fact that the class of D0

x − dxO in J(Q)
is a torsion element, together with the Manin–Drinfeld theorem, implies that

〈[D′
x − gO], [D′

x + (g − 2)O − Ωπ]〉NT
J/Q = 〈[Rx − (g − dx)O], [Rx − (g − dx)O]〉NT

J/Q

= hNT
J/Q([Rx − (g − dx)O]).

We now turn to the second and third terms on the right-hand side of (6.21). The

adjunction formula implies that these can be simplified to

(g − 1)2(O . O)X − (g − 1)(O . Ωπ)X = −g(g − 1)(O . Ωπ)X .

For log #H1(X ,OX (D′
x − O)) we now get the following expression:

log #H1(X ,OX (D′
x − O)) = deg

[
det π∗OX (D′

x − O) ⊗ det π∗Ωπ(−D′
x + O)

]

− deg λπOX +
g(g − 1)

2
(O . Ωπ)X

+
[K : Q]

2
hNT

J/Q([Rx − (g − dx)O])

− 1

2
(Ψ . D′

x + (g − 2)O − Ωπ)X .

(6.22)

A similar computation starting with the admissible line bundle OX (D′
x) gives

(D′
x . O)X + log #H1(X ,OX (D′

x)) = deg
[
det π∗OX (D′

x) ⊗ det π∗Ωπ(−D′
x)

]

− deg λπOX +
g(g − 1)

2
(O . Ωπ)X

+
[K : Q]

2
hNT

J/Q([Rx − (g − dx)O])

− 1

2
(Ψ . D′

x + (g − 2)O − Ωπ)X .

(6.23)
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We will now give term-by-term bounds of the right-hand sides of (6.22) and (6.23).

For the terms

deg
[
detπ∗OX (D′

x − O) ⊗ det π∗Ωπ(−D′
x + O)

]

and

deg
[
det π∗OX (D′

x) ⊗ det π∗Ωπ(−D′
x)

]

we are going to use the following four lemmata.

Lemma 6.6. Let π:X → B be a proper and flat morphism, with B a Dedekind

scheme. For any relative effective Cartier divisor E on X such that π∗OX(E) is
locally free of rank 1, the canonical morphism OB → π∗OX(E) is an isomorphism.

Proof . Our assumptions imply that the canonical morphism identifies OB with a

submodule of π∗OX(E), and that (π∗OX(E))/OB is a torsion module. This means

that for any section s of π∗OX(E) on an affine open subset U ⊂ B there exists a
non-zero a ∈ OB(U) such that as ∈ OB(U). But then we may view s = (as)/a as the

pull-back to π−1U of a rational function on U , and since E is horizontal, either s is

the zero function or its divisor is effective, i.e. s ∈ OB(U).

Lemma 6.7. Let K be a number field, let B be the spectrum of its ring of integers,
and let π:X → B be a semi-stable arithmetic surface with fibres of genus g ≥ 1. Let

S:B → X be a section of π whose image is a Cartier divisor on X. For any effective

horizontal Cartier divisor E on X having degree g on the generic fibre and such that
π∗OX(E − S) = 0, the equality

deg
[
det π∗OX(E − S) ⊗ det π∗Ωπ(S − E)

]
= deg

[
det π∗OX(E) ⊗ det π∗Ωπ(−E)

]

+ 2π
∑

v∈Kinf

[Kv : R] grcanXv
(Ev, Sv)

(6.24)

holds; here the line bundles between square brackets have been metrised using Serre
duality and Faltings’s axioms for the metrisation of the determinant of cohomology,

and grcanXv
denotes the canonical Green function of the Riemann surface Xv.

Proof . Since π∗OX(E−S) vanishes by assumption, π∗OX(E) is locally free of rank 1
and hence canonically isomorphic to OB by the previous lemma. Furthermore, by the

(classical) Riemann–Roch formula on the generic fibre and the fact that π∗Ωπ(S−E)

and π∗Ωπ(−E) are locally free, we see that these last two modules are both zero.

Therefore the modules π∗OX(E−S), π∗OX(E), π∗Ωπ(S−E) and π∗Ωπ(−E) all have
a canonically trivial determinant. In particular, there are canonical isomorphisms

between these determinants, giving us the top, bottom and right isomorphisms in the

diagram

det π∗OX(E − S) ⊗ det π∗Ωπ(S − E)
∼−→ det π∗Ωπ(S − E)

ι
y x∼

det π∗OX(E) ⊗ det π∗Ωπ(−E)
∼−→ det π∗Ωπ(−E).
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There is a unique isomorphism ι making this diagram commutative, which is, however,

not an isometry. In fact, the terms of the equality (6.24) involving Green functions

arise from the norms of the isomorphisms

ιv: det H0(Xv,OXv
(Ev − Sv)) ⊗ det H0(Xv,Ω1

Xv
(Sv − Ev))

∼−→ det H0(Xv,OXv
(Ev)) ⊗ detH0(Xv,Ω1

Xv
(Ev))

induced by ι at the infinite places of K. For every such infinite place v, Faltings’s

axioms for the metrisation of the determinant of cohomology provide a canonical
isometry

HomK̄v

(
det H0(Xv,OXv

(Ev − Sv)) ⊗ det H0(Xv,Ω1
Xv

(Sv − Ev)),

det H0(Xv,OXv
(Ev)) ⊗ det H0(Xv,Ω1

Xv
(Ev))

) ∼= OXv
(Ev)[Sv],

under which the isomorphism ιv corresponds to the basis element 1 of OXv
(Ev)[Sv],

the fibre of the line bundle OXv
(Ev) at the point Sv. The norm of this element can

be expressed in terms of the canonical Green function grcanXv
of Xv by

log |1|OXv (Ev)(Sv) = 2π grcanXv
(Ev, Sv),

so that the norm of the isomorphism ιv equals exp
(
2π grcanXv

(Ev, Sv)
)
. From this the

equality (6.24) follows.

Lemma 6.8. Let X be a compact connected Riemann surface of genus g ≥ 1, and let

P1, . . . , Pg be points on X such that H0(X,OX(P1 + . . . + Pg)) = C. Let (α1, . . . , αg)
be any basis for H0(X,Ω1

X) such that

αi ∈ H0(X,Ω1
X(−Pi+1 − · · · − Pg)) \ H0(X,Ω1

X(−Pi − · · · − Pg)).

For each i let Q1
i , . . . , Qg+i−2

i be the zeroes (counted with multiplicities) of αi, viewed

as a global section of Ω1
X(−Pi+1−· · ·−Pg). Then the norm of the canonical generator

1 ⊗ 1 of the one-dimensional complex vector space

λ(OX(P1 + · · ·+ Pg)) = det H0(X,OX(P1 + · · ·+ Pg))⊗ det H1(X,OX(P1 + · · ·+ Pg)),

metrised according to Faltings’s axioms for the metrisation of the determinant of

cohomology, satisfies

− log ‖1 ⊗ 1‖λ(OX(P1+···+Pg)) = −1

2
log det〈αi, αj〉gi,j=1 + 2π

g∑

i=1

g+i−2∑

j=1

grcanX (Pi, Q
j
i )

+

g∑

i=1

∫

X

(
log |αi|Ω1

X

)
µcan

X ,

where 〈 , 〉 is the inner product on H0(X,Ω1
X) defined in § III.1.1.

197



V. Computing modular Galois representations

Proof . For each i, the fact that (α1, . . . , αi) is a basis for H0(X,Ω1
X(−Pi+1−· · ·−Pg))

implies that

det H0(X,Ω1
X(−Pi+1 − · · · − Pg)) = C · α1 ∧ . . . ∧ αi.

Now each of the canonical isomorphisms

det H0(X,OX(Pi + · · · + Pg)) ⊗ det H0(X,Ω1
X(−Pi − · · · − Pg))

∼−→ det H0(X,OX(Pi+1 + · · · + Pg)) ⊗ detH0(X,Ω1
X(−Pi+1 − · · · − Pg))

⊗ Ω1
X(−Pi+1 − · · · − Pg)[Pi]

∨,

where [Pi] denotes the fibre at the point Pi, is an isometry by Faltings’s axioms. From

this we obtain

− log ‖1 ⊗ (α1 ∧ . . . ∧ αi−1)‖ = − log ‖1 ⊗ (α1 ∧ . . . ∧ αi)‖ + hi(Pi),

where hi is the function defined by

hi = log |αi|Ω1
X

(−Pi+1−···−Pg).

By induction this implies

− log ‖1 ⊗ 1‖ = − log ‖1 ⊗ (α1 ∧ . . . ∧ αg)‖ +

g∑

i=1

hi(Pi).

One of Faltings’s axioms relates the metric on λ(OX) to the inner product 〈 , 〉 as

follows:

‖1 ⊗ (α1 ∧ . . . ∧ αg)‖λ(OX) =
√

det
(
〈αi, αj〉

)g

i,j=1
.

As for the functions hi, the admissibility of the metric on Ω1
X(−Pi+1−· · ·−Pg) implies

that

1

πi
∂∂̄hi = (g + i − 2)µcan

X −
g+i−2∑

j=1

δQj
i

= −
g+i−2∑

j=1

2i∂∂̄ grcanX ( , Qj
i ),

from which it follows that

hi = 2π

g+i−2∑

j=1

grcanX ( , Qj
i ) +

∫

X

hiµ
can
X .

From the definition of the metric on Ω1
X(−Pi+1− . . .−Pg) we also have the expression

hi = log |αi|Ω1
X
−

g∑

j=i+1

log |1|OX(Pj)

= log |αi|Ω1
X
− 2π

g∑

j=i+1

grcanX ( , Pj).
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Substituting this into the integral on the right-hand side of the previous expression

for hi and using the normalisation of the Green function, we get

hi = 2π

g+i−2∑

j=1

grcanX ( , Qj
i ) +

∫

X

(
log |αi|Ω1

X

)
µcan

X ,

which finishes the proof of the lemma.

Lemma 6.9. Let K be a number field, let B be the spectrum of its ring of integers,

and let π:X → B be a semi-stable arithmetic surface with fibres of genus g ≥ 1. For

any effective horizontal Cartier divisor E on X having degree g on the generic fibre

and such that π∗OX(E) is locally free of rank 1, the inequality

deg
[
det π∗OX(E) ⊗ det π∗Ωπ(−E)

]

≤ g
∑

v∈Kinf

[Kv : R]

(
3π(g − 1) sup

Xv×Xv

grcanXv
+ sup

〈α,α〉=1

∫

Xv

(
log |α|Ω1

Xv

)
µcan

Xv

)

holds, where the second supremum is taken over all global holomorphic 1-forms α
on Xv having norm 1 with respect to the inner product 〈 , 〉.
Proof . By Lemma 6.6 the sheaf π∗OX(E) is canonically isomorphic to OB . Further-

more, π∗Ωπ(−E) vanishes by the (classical) Riemann–Roch formula applied to the
generic fibre of π. This implies that detπ∗OX(E) ⊗ det π∗Ωπ(−E) is trivialised by

the section 1 ⊗ 1. The degree of this line bundle can be expressed as

deg
[
det π∗OX(E) ⊗ det π∗Ωπ(−E)

]
= −

∑

v∈Kinf

[Kv : R] log ‖1 ⊗ 1‖λ(OXv (Ev)).

We now apply Lemma 6.8, in which we may take for (α1, . . . , αg) an orthonormal

basis by means of the Gram–Schmidt process. This gives

− log ‖1 ⊗ 1‖λ(OXv (Ev)) = 2π

g∑

i=1

g+i−2∑

j=1

grcanXv
(Pi, Q

j
i ) +

g∑

i=1

∫

Xv

(
log |αi|Ω1

Xv

)
µcan

Xv

≤ 2π · 3g(g − 1)

2
sup

Xv×Xv

grcanXv
+ g sup

〈α,α〉=1

∫

Xv

(
log |α|Ω1

Xv

)
µcan

Xv
,

from which the bound of the lemma follows.

For the second term on the right-hand sides of (6.22) and (6.23), we have the

following bound. By the definition of the Faltings height in Section III.2, this term

can be written as
−deg λπOX = −[K : Q]hFaltings(X1(n)).

It follows from a result of Bost for Abelian varieties that if Y is any curve of genus gY

over a number field, then

hFaltings(Y ) ≥ −gY log(π
√

2);
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see Autissier [4, théorème 3.1]. In particular, this gives

−deg λπOX ≤ [K : Q]g log(π
√

2). (6.25)

We next rewrite the intersection number in the third term of (6.22) and (6.23)
as

(O . Ωπ)X = [K : Q] deg O∗ΩX1(n′)/Z, (6.26)

where the degree on the right-hand side is taken on SpecZ. We recall that this makes

sense since the image of O lies in the smooth locus of X1(n
′).

By our choice of the divisor Rx, the Néron–Tate height occurring in (6.22)
and (6.23) can be bounded as

hNT
J/Q([Rx − (g − dx)O]) < (g − dx)2

Ω2
X/Q,a

2g − 2
+ ǫ, (6.27)

if g ≥ 2, where Ω2
X/Q,a denotes the self-intersection of the relative dualising sheaf

of X in the sense of Zhang. As mentioned before, the left-hand side vanishes if g = 1.

Finally, we consider the fifth term in (6.22) and (6.23). We write

Ψ =
∑

p

∑

V ∈Wp

ap,V V,

where p runs over the set of closed points of SpecZK and Wp is the set of irreducible

components of the fibre Xk(p); then

−1

2
(Ψ . D′

x + (g − 2)O − Ωπ)X = −1

2

∑

p

∑

V ∈Wp

ap,V (V . D′
x + (g − 2)O − Ωπ)X .

Let p be a closed point of SpecZK , let p be the residue characteristic of p, and let
e(p) be the ramification index of p over p. We write Wp for the field of fractions of

the ring of Witt vectors of Fp, and we define a real number γ(XWp
) as in § III.4.2.

We first assume that g = 1. Then we get the inequality

ap,V (V . D′
x − O − Ωπ)X = ap,V (V . D′

x)X − ap,V (V . O + Ωπ)X

≤ max
V ′

ap,V ′ · (V . D′
x)X − min

V ′
ap,V ′ · (V . O + Ωπ)X .

Taking the sum over all p and V and using that both D′
x and O + Ωπ have degree 1

on each fibre, we get

(Ψ . D′
x + (g − 2)O − Ωπ)X ≤

∑

p

(max
V

ap,V − min
V

ap,V ) log #k(p).

Similarly, if g ≥ 2, we get the inequality

ap,V (V . D′
x + (g − 2)O − Ωπ)X = ap,V (V . D′

x + (g − 2)O)X − ap,V (V . Ωπ)X

≤ max
V ′

ap,V ′(V . D′
x + (g − 2)O)X

− min
V ′

ap,V ′(V . Ωπ)X
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for all p and V , where we have used that (V . Ωπ)X ≥ 0. This implies

(Ψ . D′
x + (g − 2)O − Ωπ)X ≤ (2g − 2)

∑

p

(max
V

ap,V − min
V

ap,V ) log #k(p).

Next we bound the expressions maxV ap,V −minV ap,V . The definition of Ψ is equiv-

alent to ∑

V ′

ap,V ′(V . V ′)X = (V . D′
x − gO) for all p and V .

Applying Lemma III.4.1 gives

max
V

ap,V − min
V

ap,V ≤ 2e(p)gγ(XWp
).

This implies the upper bound

(Ψ . D′
x + (g − 2)O − Ωπ)X ≤ g max{1, 2g − 2}

∑

p

2e(p)γ(XWp
) log #k(p),

where p runs over the closed points of SpecZK . An entirely analogous argument gives

the lower bound

(Ψ . D′
x + (g − 2)O − Ωπ)X ≥ −g max{1, 2g − 2}

∑

p

2e(p)γ(XWp
) log #k(p).

We conclude that

∣∣(Ψ . D′
x + (g − 2)O − Ωπ)X

∣∣ ≤ g max{1, 2g − 2}
∑

p

2e(p)γ(XWp
) log #k(p).

Grouping the p by their residue characteristics and using (1.1), we get

∣∣(Ψ . D′
x + (g − 2)O − Ωπ)X

∣∣ ≤ 2[K : Q]g max{1, 2g − 2}γ(X). (6.28)

We now combine (6.22), Lemmata 6.7 and 6.9, (6.25), (6.26), (6.27) and (6.28) to get
the bound

log #H1(X ,OX (D′
x − O))

[K : Q]
≤ (2π + 3π(g − 1))g sup

X×X

grcanX

+ g sup
〈α,α〉=1

∫

X

log |α|Ω1
X
µcan

X

+
(g − dx)2

4g − 4
Ω2

X/Q,a + ǫ

+
g(g − 1)

2
deg O∗ΩX1(n′)/Z

+ g max{1, 2g − 2}γ(X) + g log(π
√

2).

(6.29)
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A similar computation using (6.23), Lemma 6.9, (6.25), (6.26), (6.27) and (6.28) gives

(D′
x . O)X + log #H1(X ,OX (D′

x))

[K : Q]
≤ 3πg(g − 1) sup

X×X

grcanX

+ g sup
〈α,α〉=1

∫

X

log |α|Ω1
X
µcan

X

+
(g − dx)2

4g − 4
Ω2

X/Q,a + ǫ

+
g(g − 1)

2
deg O∗ΩX1(n′)/Z

+ g max{1, 2g − 2}γ(X)

+ g log(π
√

2).

(6.30)

In both of the above inequalities, the term involving Ω2
X/Q,a is to be interpreted as

zero if g = 1.

6.7. Height bounds: conclusion

In the bound (6.16) for the height of the polynomial Pι, the term that remains to be

bounded from above is the real number M defined by

M =
1

[K : Q]

∑

D∈Dm(Q)

(
D .

w

12
j∗X∞− cusps

)

X
.

Here K ⊂ Q is any number field such that Dm (or, equivalently, J [m]) splits over K

and such that X × SpecK has a regular and semi-stable model

π:X → SpecZK ;

we view the D as horizontal divisors on X .

For each x ∈ J [m](Q), we define a positive integer dx as in § 3.2 and an effective

divisor D0
x of degree dx as in § 6.5, and we write

Dx = D0
x + (g − dx)O.

With this notation, we get

M =
1

[K : Q]

∑

x∈J[m](Q)

(
Dx .

w

12
j∗X∞− cusps

)

X
.

Let ǫ be a positive real number. After extending K if needed, we choose auxiliary

divisors Rx of degree g − dx satisfying the bound (6.17) on the Néron–Tate height

of [Rx − (g − dx)O] and such that the line bundle O(D0
x + Rx − O) on XK has no

non-zero global sections; see § 6.5. We abbreviate

D′
x = D0

x + Rx.
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We write

H =
w

12
j∗X∞− cusps;

this is a rational linear combination of the cusps (viewed as horizontal divisors on X )
of degree h on the fibres, where

h = deg ω⊗w(−cusps).

We fix a vertical divisor ΨH with rational coefficients such that

(ΨH . V )X = (H − hO . V )X for every vertical divisor V.

For each x ∈ J [m](Q), we rewrite (Dx . H)X as

(Dx . H)X = (Dx − gO . H − hO)X + g(H . O)X + h(Dx . O)X − gh(O . O)X . (6.31)

We consider each term separately. First, it follows from the Faltings–Hriljac formula

and the Manin–Drinfeld theorem that

(Dx − gO . H − hO)X = (D0
x − dxO . H − hO − ΨH)X + (D0

x − dxO . ΨH)X

= −[K : Q]〈[D0
x − dxO], [H − hO]〉NT

J/Q + (D0
x − dxO . ΨH)X

= (D0
x − dxO . ΨH)X .

Second,

(Dx . O)X = (D′
x . O)X − (Rx . O)X + (g − dx)(O . O)X .

Third,

(H . O)X =
(n′w

12
− 1

)
(O . O)X

since the irreducible components of H do not intersect; note that n′w/12 − 1 is the

multiplicity with which O occurs in H. After a small simplification, we get the equality

(Dx . H)X = h(D′
x . O)X − h(Rx . O)X + (D0

x − dxO . ΨH)X

+
(
−dxh +

(n′w

12
− 1

)
g
)
(O . O)X .

(6.32)

We proceed with bounding the right-hand side. An upper bound for (D′
x . O) is given

by (6.30). The definition of Rx implies that O is not in the support of Rx, so that

−(Rx . O) ≤ 2π(g − dx) sup
X×X

grcanX .

To bound the term (D0
x − dxO . ΨH)X , we write

ΨH =
∑

p

∑

V ∈Wp

ap,V V,
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where p runs over the closed points of SpecZK and Wp is the set of irreducible

components of the fibre Xk(p). For each p, the ap,V satisfy the equations
∑

V ′∈Wp

ap,V ′(V . V ′)X = bV for all V ∈ Wp,

where

bV = (H − hO . V )X .

The fact that ω⊗w(−cusps) has non-negative degree on each irreducible component

of each fibre of X implies that ∑

V :bV >0

bV ≤ h.

Lemma III.4.1 therefore gives

max
V ∈Wp

ap,V − min
V ∈Wp

ap,V ≤ 2e(p)γ(XWp
)h,

where p is the residue characteristic of p. This implies

(D0
x − dxO . ΨH)X ≤ dx

∑

p

(
max

V ∈Wp

ap,V − min
V ∈Wp

ap,V

)
log #k(p)

≤ dx

∑

p

2e(p)γ(XWp
)h log #k(p)

= 2dx[K : Q]γ(X)h,

where in the last step we have used the definition (1.1) of γ(X). As for the last term

in (6.32), it follows from

0 ≤ [K : Q] deg O∗ΩX1(n′)/Z = −(O . O)X

and the inequalities n′ ≥ 5, and w ≥ 3 that
(
−dxh +

(n′w

12
− 1

)
g
)
(O . O)X ≤ [K : Q]max

{
0, dxh −

(n′w

12
− 1

)
g
}

· deg O∗ΩX1(n′)/Z

≤ [K : Q]dxh deg O∗ΩX1(n′)/Z.

Inserting the above bounds into (6.32), using the inequality 0 ≤ dx ≤ g for all x and

the fact that ǫ > 0 can be chosen arbitrarily small, and rearranging, we get

M ≤ gh deg J [m]

(
(2π + 3π(g − 1)) sup

X×X

grcanX + sup
〈α,α〉=1

∫

X

log |α|Ω1
X
µcan

X

+
g

4g − 4
Ω2

X/Q,a +
g + 1

2
deg O∗ΩX1(n′)/Z

+ max{3, 2g}γ(X) + log(π
√

2)

)
.

It is possible to write down an upper bound in terms of n, deg J [m] and γ(X), using

the results of §§ III.3.5, III.3.7, III.5.1 and III.5.2, although for the sake of brevity

we will not give such a bound explicitly. Finally, combining this with (6.16) and the
results of § 6.4 gives the desired bound on h(Pι).
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6.8. Bounds on m-bad prime numbers: conclusion

From (6.18), (6.19), (6.29), the fact that dx ≥ 0 for all x, and the fact that ǫ > 0 can

be chosen arbitrarily small, we conclude that

log Bm ≤ log nl + g deg J [m]

(
(2π + 3π(g − 1)) sup

X×X

grcanX + sup
〈α,α〉=1

∫

X

log |α|Ω1
X
µcan

X

+
g

4g − 4
Ω2

X/Q,a +
g − 1

2
deg O∗ΩX1(n′)/Z

+ max{1, 2g − 2}γ(X) + log(π
√

2)

)
.

As in § 6.7, we can bound the right-hand side from above in terms of n, deg J [m]
and γ(X), using the results of §§ III.3.5, III.3.7, III.5.1 and III.5.2. We do not give

such a bound explicitly.

6.9. Bounds on (m, ψ)-bad prime numbers

As in § 6.3, we write Hα for the horizontal part of the divisor of the form α as

in (6.13), and similarly for β. By construction, Hα and Hβ do not have any irreducible
components in common.

Let p be a prime number not dividing nl. Then p is (m, ψ)-good if and only if p

is m-good and Hα and Hβ do not intersect on the fibre XFp
. Let K be any number

field such that X × SpecK has a regular and semi-stable model X over SpecZK .

Viewing Hα and Hβ as divisors on X , we see that to find a bound for log Bm,ψ that

is polynomial in n, deg J [m] and γ(X), it suffices to find such an upper bound for the
Arakelov intersection number 1

[K:Q] (Hα . Hβ)X . (There is a difference at the infinite

places, given by Green functions, but we do not worry about these since we already

have bounds for them.) The upper bound on log Bm,ψ is only needed to prove the

desired bound on the expected running time. We therefore do not need to know
an actual upper bound on this intersection number, and we permit ourselves to omit

some details. We justify our brevity by noting that all the ideas involved have already

been explained.

We start by writing

(Hα . Hβ)X = (Hα − hO . Hβ − hO)X + h(Hα . O)X + h(Hβ . O)X − h2(O . O)X .

To bound the first term, we take a vertical divisor Ψ with rational coefficients such

that (Hα − hO − Ψ . V )X = 0 for all vertical divisors V ; compare § 6.6. We then

apply the Faltings–Hriljac formula and the fact that ω⊗w(−cusps − hO) has Néron–
Tate height zero. For the second term, we put any admissible metric | |ω on the line

bundle ω on X as in § 6.3, and we use that multiplication by α gives an isomorphism

OX

(
Hα +

∑

p

∑

V ∈Wp

np,V V +
∑

v∈Kinf

aαXv

)
∼−→ ω⊗w(−cusps).

Here p runs over the closed points of SpecZK , Wp is the set of irreducible components

of the fibre Xp, the np,V are the integers defined in (6.13), and

aα = −
∫

X

log |α|ω⊗wµcan
X .
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This leads to

(Hα . O)X = (ω⊗w(−cusps) . O)X −
∑

p

∑

V ∈Wp

np,V (V . O)X − [K : Q]aα

≤ w(ω . O)X − (O . O)X −
∑

p

min
V ∈Wp

np,V log #k(p) − [K : Q]aα

+ 2π
∑

v∈Kinf

∑

Qv 6=Ov

grXv
(Qv, Ov),

where Qv runs over the cusps of Xv other than Ov. A lower bound for the np,V was

found in (6.14). We also know upper bounds for the Green functions grXv
. Next we

note as in § 6.3 that

(O . ω)X =
1

12
(O . j∗X∞)X +

[K : Q]

12
a∆,

where a∆ is defined by (6.15). In the same way as in § 6.4, the resulting expression

∫

X

log |α|ω⊗wµcan
X − w

12

∫

X

log |∆|ω⊗12µcan
X

can be bounded by a polynomial in n, deg J [m] and log Bm. Finally, the adjunction
formula gives

(O . O)X = −[K : Q] deg O∗ΩX1(n′)/Z,

and an upper bound for the right-hand side was found in § III.5.1.

6.10. Bounds on (m, ψ, λ)-bad prime numbers

To bound the (m, ψ, λ)-bad prime numbers, we write

Bm,ψ,λ = Bm,ψP,

where P is the product of all (m, ψ)-good prime numbers such that the rational map

λFp
:Pg

Fp
99K A1

Fp

is not defined on the image of the map

D
Fp
m  Symg XFp

ψ∗−→ Symg P1
Fp

∼−→ Pg
Fp

.

As in Algorithm 5.3, we let Λ denote a 2 × (g + 1)-matrix with coprime integral
coefficients defining λ. We write Λ1 for the bottom row of Λ; we view Λ1 as a

linear map from Q
g+1

to Q. For every D ∈ Dm(Q), let yD denote the image of D

in Pg(Q). By (6.1) and the estimates in this chapter, the height h(yD) is bounded by

a polynomial in n, deg J [m] and γ(X). We write KD for the field of definition of D,
and we choose a representative

zD = (zD,0, . . . , zD,g) ∈ Kg+1
D
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of yD such that one of the zD,i equals 1. Then the h(zD,i) are bounded by h(yD).

Furthermore, Λ1(zD) is a non-zero element of KD by the construction of λ, and

h(Λ1(zD)) is bounded linearly in h(λ) and the h(zD,i).

Let p be an (m, ψ)-good prime number. If for all D ∈ Dm(Q) and all finite places

v of KD with residue characteristic p we have

|zD,i|v ≤ 1 for all i and |Λ1(zD)|v = 1,

then p is (m, ψ, λ)-good. It is not hard to check that this implies

log P ≤
∑

D∈Dm(Q)

( g∑

i=0

h(zD,i) + h(Λ1(zD))

)
.

We conclude that log P , and hence log Bm,ψ,λ, is bounded by a polynomial in n,
deg J [m] and γ(X).

7. Computing modular Galois representations

In this final section we explain how to compute the Galois representation ρf associ-

ated to an eigenform f over a finite field F. Let us briefly recall the strategy, which

was described in more detail at the beginning of this chapter. We start by checking
whether ρf is absolutely irreducible. If this is not the case, then ρf is Abelian and

relatively easy to compute. If ρf is absolutely irreducible, we reduce to the problem

of computing a certain F-vector space scheme J [m]. Here we apply Couveignes’s idea
of approximating J [m]. We first compute the reductions of J [m] modulo sufficiently

many prime numbers. Then we reconstruct J [m] over Q from these reductions. Fi-

nally, we compute the representation ρf from J [m].

We start by describing how to compute J [m] modulo prime numbers. We place
ourselves in the setting of Section 3. We assume furthermore that a closed immersion ι

(given by maps ψ and λ) has been chosen as in Section 5. Using the following

algorithm, we can compute the reduction modulo p of the closed subscheme ι(J [m])
of P1

Q, as a finite F-vector space scheme over Fp, for prime numbers p that are

(m, ψ, λ)-good.

Algorithm 7.1 (Compute J [m] modulo p). Given positive integers n and k, a finite

field F of characteristic l, a surjective ring homomorphism e:T1(n) → F, maps ψ

and λ as computed by Algorithms 5.2 and 5.3, and a prime number p, this algorithm
checks whether p is (m, ψ, λ)-good. If this is the case, the algorithm computes the

image under ι of the reduction J [m]Fp
of J [m] as a finite F-vector space scheme

over Fp, represented as in § IV.5.3.

1. Using Algorithm 4.1, compute strat(J [m]Fp
), a splitting field kp for J [m]Fp

and

the F-vector space D
Fp
m (kp) given by the positive integer d = dimF J [m](kp) and

a list of pairs (v,Γ(Xkp
,L⊗2(−Dx(v)))).

2. If strat(J [m]Fp
) is not equal to strat(J [m]Q), output “p is m-bad” and stop.
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3. Compute the image of the map

Fd ∼−→ D
Fp
m (kp)

ψ∗−→ (Symg P1)(kp)
∼−→ Pg(kp)

as a list of elements of Pg(kp) indexed by Fd.

4. If the points of Pg(kp) computed in the previous step are not pairwise distinct,

output “p is (m, ψ)-bad” and stop. If λ is undefined at one of these points, output

“p is (m, ψ, λ)-bad” and stop.

For each v ∈ Fd, we now have the element ζ(v) ∈ A1(kp) = kp that is the image

of Dx(v) under the map

Fd ∼−→ D
Fp
m (kp)

ψ∗−→ (Symg P1)(kp)
∼−→ Pg(kp)

λ
99K A1(kp).

5. Compute the polynomial P =
∏

v∈Fd(x − ζ(v)); this lies in Fp[x].

6. Find the unique element S ∈ Fp[x1, x2]/(P (x1), P (x2)) satisfying S(ζ(v), ζ(w)) =

ζ(v + w) for all v, w ∈ V . (This can be done using Lagrange interpolation.)

7. For each a ∈ F, find the unique element Ma ∈ Fp[x]/(P ) satisfying Ma(ζ(v)) =

ζ(av) for all v ∈ V .

8. Output P , S and the Ma for a ∈ F.

Analysis. It is straightforward to check that the algorithm is correct and that its

expected running time is polynomial in n, deg J [m] and p. ⋄

We next give the algorithm for computing the vector space scheme J [m] over Q.

Algorithm 7.2 (Compute the vector space scheme J [m]). Given positive integers n
and k, a finite field F of characteristic l, a surjective ring homomorphism e:T1(n) → F

and maps ψ and λ as computed by Algorithms 5.2 and 5.3, this algorithm computes

the image under ι of J [m] as a finite F-vector space scheme over Q represented as

in § IV.5.3.

1. Determine the generic stratification type of J [m] using Algorithm 4.2.

2. Using Algorithm 5.2, choose a rational function ψ on XQ (defined over Q) such

that

Symg ψ: Symg XQ → Symg P1
Q

∼−→ Pg
Q

is a closed immersion on the closed subscheme Dm of Symg XQ.

3. Using Algorithm 5.3, choose a rational map λ:Pg
Q 99K A1

Q, given as a quotient of

two linear forms, such that λ is defined and injective on the image of Dm in Pg
Q.

4. Compute a bound h on the height of J [m], as defined in § 3.3; see § 6.1.

5. Put Q = ∅. For all prime numbers p not dividing nl, in increasing order:

6. Using Algorithm 7.1, check whether p is (m, ψ, λ)-good, and in this case

compute ι(J [m]Fp
) and replace Q by Q ⊔ {p}.

7. If
∏

p∈Q p > 2 exp(h), go to step 8.
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8. Compute ι(J [m]) from the ι(J [m]Fp
) with p ∈ Q by lifting the polynomials P , S

and Ma for a ∈ F, which are known modulo p for all the p ∈ Q, to polynomials

over Q with coefficients of minimal height.

Analysis. By the prime number theorem, the prime numbers occurring in Q are at

most O(log Bm,ψλ); recall that Bm,ψ,λ is the product of all (m, ψ, λ)-bad primes. This

implies that the expected running time of the algorithm is polynomial in n, deg J [m],
log Bm,ψ,λ and h. The condition in step 7 ensures that ι(J [m]) can indeed be recon-

structed from its reductions modulo the prime numbers in Q. ⋄
Finally, we present the end product of this thesis.

Algorithm 7.3 (Compute the Galois representation associated to an eigenform over

a finite field). Let n and k be positive integers, let l be a prime number, and let f
be an eigenform of weight k for Γ1(n) over a finite field F of characteristic l. Let Kf

denote the finite Galois extension of Q such that the semi-simple representation ρf

associated to f factors as

Gal(Q/Q) ։ Gal(Kf/Q)  AutF Wf .

Given n, k, F, the eigenvalues ǫ(d) ∈ F× of the operators 〈d〉 for d ∈ (Z/nZ)× and

the eigenvalues ap ∈ F of the Hecke operators Tp for p ≤ k
12 [SL2(Z) : {±1}Γ1(n)]

prime, this algorithm outputs the representation ρf in the form of the following data:

(1) the multiplication table of Kf with respect to some Q-basis (b1, . . . , br) of Kf ;

(2) for every σ ∈ Gal(Kf/Q), the matrix of σ with respect to the basis (b1, . . . , br)

and the matrix of ρf (σ) with respect to a fixed F-basis of Wf .

1. Using the method of § 2.1, check whether ρf is absolutely irreducible, and if it is
not, output ρf and stop.

We now know f is a cusp form; define j, k̃, n′, f̃ , ef̃ , Ff̃ , X, J and mf̃ as in § 2.2.

2. Compute the Hecke algebra T1(n
′) and the surjective ring homomorphism

ef̃ :T1(n
′) → Ff̃ .

3. Compute the Ff̃ -vector space scheme J [mf̃ ] using Algorithm 7.2.

4. Using Algorithm IV.5.1, compute a minimal non-trivial Ff̃ -vector space scheme V

contained in J [mf̃ ]. (This is trivial if deg J [mf̃ ] = #F2
f̃
.)

5. Compute the representation ρV from V using Algorithm IV.5.2.

6. Compute the representation ρf as

ρf = ρV ⊗Fl
χ⊗−j

l

using Algorithm IV.5.3.

Analysis. It is straightforward to check that the algorithm is correct, and that its

expected running time is bounded by a polynomial in n, k and #F in the case where

ρf is not absolutely irreducible, and by a polynomial in n, k, deg J [mf̃ ] and γ(X1(n
′))

in the case where ρf is absolutely irreducible. ⋄
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[7] K. Belabas, M. van Hoeij, J. Klüners, and A. Steel, Factoring polynomials
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Samenvatting

In deze samenvatting wil ik in het kort een beeld geven van de inhoud van dit proef-

schrift, te beginnen met enkele woorden over het deelgebied van de wiskunde waarin
het hierin beschreven onderzoek zich afspeelt. Dit deelgebied, dat bekend staat als

de aritmetische meetkunde, is ontstaan door de wisselwerking van twee veel oudere

gebieden, de getaltheorie en de algebräısche meetkunde.
In de getaltheorie gaat het over de eigenschappen van getallen. Laat ik eerst

preciezer maken naar wat voor soort getallen we kijken. Allereerst zijn er de gehele

getallen ( . . . , −2, −1, 0, 1, 2, . . . ) en de rationale getallen, dat wil zeggen breuken

waarvan de teller en noemer gehele getallen zijn (zoals 3/4). Deze fundamentele getal-
stelsels kunnen op verschillende manieren worden uitgebreid. De uitbreiding die voor

ons vooral interessant is, bestaat uit de algebräısche getallen. Dit zijn alle getallen die

voldoen aan een zogeheten polynoomvergelijking met rationale coëfficiënten. Zo is het
getal

√
2 = 1,41421 . . . algebräısch, aangezien het een oplossing is van de vergelijking

x2 = 2. Er zijn echter ook algebräısche getallen die niet op de bekende getallenlijn

liggen, zoals een getal i dat een oplossing is van de vergelijking x2 = −1.
In de algebräısche meetkunde wordt de meetkundige structuur van de oplos-

singsverzamelingen van stelsels polynoomvergelijkingen bestudeerd. Het taalgebruik

van dit onderzoeksgebied omvat begrippen als algebräısche kromme en algebräısch

oppervlak . De modulaire krommen uit de titel van dit proefschrift zijn belangrijke
voorbeelden van algebräısche krommen.

Een blik in de geschiedenis

Een probleem dat historisch gezien een belangrijke motivatie gevormd heeft voor

ontwikkelingen in de aritmetische meetkunde, is het oplossen van diophantische ver-

gelÿkingen. Deze vergelijkingen zijn genoemd naar Diophantus van Alexandrië, die

leefde in de derde eeuw. Het oplossen van een diophantische vergelijking betekent het
vinden van gehele of rationale getallen die in een gegeven betrekking tot elkaar staan.

Laten we een beroemd voorbeeld van een diophantische vergelijking bekijken.

De Fransman Pierre de Fermat (begin 17e eeuw–1665) was jurist van beroep. Hij
is echter in de eerste plaats beroemd geworden door zijn bijdragen aan de wiskunde.

Eén van zijn belangrijkste nalatenschappen was de laatste stelling van Fermat , lange

tijd het grootste onopgeloste wiskundige probleem. Deze stelling zegt dat als n een
geheel getal is met n ≥ 3, de diophantische vergelijking

an + bn = cn
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geen oplossingen heeft in positieve gehele getallen a, b, en c. In 1637 schreef Fermat in

zijn exemplaar van de Arithmetica van Diophantus dat hij een wondermooi bewijs van

deze stelling had gevonden, maar dat hij het uit ruimtegebrek niet in de marge kwijt
kon. Helaas heeft Fermat ook nergens anders een bewijs van zijn bewering neergepend,

zodat de laatste stelling van Fermat de naam ‘stelling’ in feite niet waardig was.

De zoektocht naar een bewijs dat de laatste stelling van Fermat tot een echte
stelling zou maken, is gedurende meer dan 350 jaar een aaneenschakeling geweest van

vergeefse pogingen van talloze amateur- en beroepswiskundigen. Uiteindelijk werd

de laatste stelling van Fermat in 1995 bewezen door de Britse wiskundige Andrew
Wiles. Voor een laatste, essentieel onderdeel van het bewijs werkte Wiles samen met

zijn vroegere promovendus Richard Taylor. Wiles en Taylor maakten gebruik van de

modernste technieken uit de getaltheorie en de algebräısche meetkunde, deels door

henzelf ontwikkeld. Het staat wel vast dat deze technieken in de tijd van Fermat nooit
ontdekt hadden kunnen worden.

Wiles’ bewijs van de laatste stelling van Fermat is geenszins een op zichzelf

staande prestatie. Het werd enerzijds mogelijk gemaakt door een lange reeks eerdere
ontwikkelingen, en is anderzijds een beslissende stap geweest in de richting van nieuwe

ontdekkingen in de getaltheorie. Al deze vorderingen zijn, kort gezegd, pogingen tot

het begrijpen van een opmerkelijk verband tussen twee op het eerste gezicht totaal
verschillende takken van de wiskunde: de Galoistheorie en de theorie van modulaire

vormen. We zullen hieronder kort een idee geven van deze beide gebieden.

De Galoistheorie

Een gereedschap dat tegenwoordig onmisbaar is bij het bestuderen van oplossingen

van vergelijkingen, is de Galoistheorie, genoemd naar de Franse wiskundige Évariste

Galois (1811–1832). Ondanks zijn vroegtijdige dood (op 20-jarige leeftijd bij een
pistoolduel met een nooit geheel opgehelderde aanleiding) heeft Galois zijn stempel

gedrukt op de wiskunde na hem.

De fundamentele observatie van Galois was dat oplossingen van vergelijkingen

allerlei symmetrieën kunnen hebben. Laten we bijvoorbeeld eens kijken naar de ver-
gelijking

x4 − 4x2 + 2 = 0.

Deze vergelijking heeft precies vier verschillende oplossingen, namelijk

−
√

2 +
√

2, −
√

2 −
√

2,

√
2 −

√
2,

√
2 +

√
2.

Er bestaan verschillende algebräısche relaties tussen deze oplossingen. Die zijn in dit

geval zodanig van aard dat er precies vier manieren zijn waarop we de oplossingen

onderling kunnen verwisselen zonder deze relaties geweld aan te doen. Deze verwis-
selingen blijken we te kunnen krijgen door het bovenstaande ‘vierkant’ met oplossingen

een aantal kwartslagen met de klok mee te draaien.

In plaats van per vergelijking de symmetrieën van de verzameling oplossingen te
bekijken, kunnen we ook proberen het totaal aan symmetrieën van alle algebräısche
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getallen tegelijkertijd te bestuderen. Het object dat daarbij centraal staat, heet de Ga-

loisgroep van de algebräısche getallen. Dit is een nogal gecompliceerd object, wat ertoe

heeft geleid dat er allerlei geavanceerde technieken ontwikkeld zijn om het enigszins
grijpbaar te maken.

Modulaire vormen

Een ander onderwerp dat in de twintigste eeuw intensief is onderzocht – en dat op

het eerste gezicht niet zoveel met de Galoistheorie te maken heeft – is de theorie
van modulaire vormen. Het is moeilijk om in een paar zinnen uit te leggen wat

modulaire vormen precies zijn of om een portret te schetsen dat recht doet aan de

vele interessante eigenschappen ervan. Eén van de manieren om een modulaire vorm
te beschrijven is door middel van een zogeheten q-reeks, een bepaald soort oneindige

som. Om een indruk te geven van hoe een modulaire vorm er in de gedaante van een

q-reeks uitziet, geven we hier twee voorbeelden:

E4 =
−B4

8
+

∞∑

n=1

σ3(n)qn

=
1

240
+ q + 9q2 + 28q3 + 73q4 + 126q5 + 252q6 + 344q7 + . . .

en

∆ = q

∞∏

m=1

(1 − qm)24

= q − 24q2 + 252q3 − 1472q4 + 4830q5 − 6048q6 − 16744q7 + . . .

Het is ook mogelijk modulaire vormen op verschillende manieren grafisch weer te
geven. Voor de doeleinden van dit proefschrift zit de interessante informatie echter in

de coëfficiënten van modulaire vormen: de getallen die in de voorbeelden hierboven

voor de machten van q staan.

Een opmerkelijk verband

De Franse wiskundige Jean-Pierre Serre wierp aan het einde van de jaren 1960 het ver-

moeden op dat er voor elke modulaire vorm een collectie ‘vlakke voorstellingen’ van de

Galoisgroep van de algebräısche getallen zou moeten zijn met specifieke eigenschappen

die bepaald worden door de modulaire vorm. Het bestaan van dergelijke vlakke voor-
stellingen zou een bepaald verschijnsel met betrekking tot coëfficiënten van modulaire

vormen verklaren. Niet lang daarna liet de Belgische wiskundige Pierre Deligne zien

hoe zulke vlakke voorstellingen met behulp van geavanceerde meetkundige technieken
inderdaad geconstrueerd kunnen worden.

Eén van de eenvoudigste voorbeelden van een vlakke voorstelling is de manier

waarop zojuist door middel van een meetkundige beschrijving – het draaien van
het vierkant – de symmetrieën van de verzameling oplossingen van de vergelijking

x4 − 4x2 + 2 = 0 aanschouwelijk gemaakt werden. Eerlijkheidshalve moet vermeld

worden dat dit specifieke voorbeeld niet modulair is: doordat er geen complexe getal-

len in voorkomen, hebben we met een zogenaamde even voorstelling te maken, terwijl
modulaire exemplaren altijd oneven zijn.
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Dit proefschrift

Voor ‘gewone’ modulaire vormen zouden we een oneindige hoeveelheid informatie

nodig hebben om de bijbehorende vlakke voorstelling volledig te beschrijven. Voor

zogeheten modulaire vormen over eindige lichamen wordt de vlakke voorstelling echter
door een eindige hoeveelheid gegevens vastgelegd. Omdat ‘vlakke voorstelling van de

Galoisgroep van de algebräısche getallen die hoort bij een modulaire vorm over een

eindig lichaam’ een hele mond vol is, noemen we zo’n object in de rest van deze

samenvatting kortweg een modulaire voorstelling .
Om verschillende redenen is het een interessante vraag hoe we modulaire voor-

stellingen concreet uit kunnen rekenen. Eén daarvan is dat de eerdergenoemde coëffi-

ciënten van modulaire vormen via zulke voorstellingen snel berekend kunnen worden.
Deze vraag is het onderwerp geweest van eerder onderzoek van mijn promotor en

verschillende Leidse en buitenlandse medewerkers. Zij hebben in de afgelopen jaren

een strategie ontwikkeld om modulaire voorstellingen te berekenen in het geval dat
het zogeheten niveau, een maat voor de complexiteit, gelijk is aan 1. In dit proef-

schrift heb ik voortgebouwd op hun methoden en heb deze uitgebreid naar modulaire

voorstellingen van hoger niveau.

Het eindproduct van dit proefschrift is een algoritme (een ‘rekenrecept’) om
gegeven een modulaire vorm een concrete beschrijving van de bijbehorende vlakke

voorstelling te vinden. Het belangrijkste ingrediënt van zo’n concrete beschrijving is

een algebräısche vergelijking met de eigenschap dat de symmetrieën van de oplossingen
de gezochte vlakke voorstelling leveren. Een probleem is dat het lastig te voorspellen

is hoe ingewikkeld die vergelijking eruit ziet. Een maat voor de complexiteit van de

vergelijking is de hoogte. Deze hoogte is grotendeels bepalend voor de tijd die nodig
is om de berekening uit te voeren. Om te bewijzen dat onze algoritme efficiënt is,

moeten we dan ook deze hoogte begrenzen. Hiervoor benutten we de Arakelovtheorie,

een interessant stuk wiskunde waarop we hier helaas niet kunnen ingaan.

Een interessant gevolg van de in dit proefschrift bewezen resultaten gaat over
sommen van kwadraten, een klassiek onderwerp uit de getaltheorie. Als k en n posi-

tieve gehele getallen zijn, schrijven we rk(n) voor het aantal manieren waarop n

geschreven kan worden als een som van k kwadraten van gehele getallen. Om allerlei
moeilijkheden te omzeilen, beperken we ons tot de situatie waar k een even getal is.

Er bestaan formules voor rk(n) wanneer k gelijk is aan 2, 4, 6, 8 of 10. Deze formules

zijn eind achttiende, begin negentiende eeuw gevonden door Legendre, Gauß, Jacobi
en Liouville, klinkende namen uit de wiskundige geschiedenis.

Voor grotere waarden van k zijn er weliswaar allerlei formules bekend, maar die

helpen weinig om rk(n) snel te berekenen. Het is sinds kort zelfs bekend dat er voor

geen enkele k ≥ 12 een formule is die lijkt op de formules voor k ≤ 10. Met de resul-
taten van dit proefschrift kan echter het volgende bewezen worden. Neem ten eerste

aan dat we de ontbinding van n in priemfactoren kennen. (Er zijn wel algoritmen

om die te vinden, maar die zijn niet efficiënt in de betekenis die wij nodig hebben.)
Neem ten tweede aan dat de gegeneraliseerde Riemannhypothese waar is. Dit is een

beroemd onbewezen vermoeden dat samenhangt met de verdeling van priemgetallen.

Dan is het mogelijk om rk(n) efficiënt te berekenen. Onder dezelfde voorwaarden
kunnen ook coëfficiënten van algemenere modulaire vormen snel berekend worden.

228



Dankwoord

Dit proefschrift zou niet tot stand gekomen zijn zonder mijn promotor Bas Edixhoven

en mijn copromotor Robin de Jong. Het is me een groot genoegen geweest om de
afgelopen jaren met jullie samen te werken. Ik ben jullie veel dank verschuldigd voor

jullie inzichten, suggesties en correcties.

Je remercie les membres de la promotiecommissie pour leur aide et pour avoir
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