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21. Considerthedifferentialequation

y′′ +
α

x s y′ +
β

x t y = 0, (i)

whereα �= 0 and β �= 0 are real numbers,and s and t arepositive integersthat for the
momentarearbitrary.
(a) Show thatif s > 1 or t > 2, thenthepoint x = 0 isan irregularsingularpoint.
(b) Try to find asolutionof Eq.(i) of theform

y =

∞
∑

n=0

an xr+n, x > 0. (ii)

Show thatif s = 2 and t = 2, thenthereis only onepossiblevalue of r for which thereis
a formalsolutionof Eq.(i) of theform (ii).
(c) Show thatif s = 1 and t = 3, thentherearenosolutionsof Eq.(i) of theform (ii).
(d) Show thatthemaximumvaluesof s andt for which theindicial equationis quadratic
in r [and hencewe canhopeto find two solutionsof the form (ii)] ares = 1 and t = 2.
Thesearepreciselytheconditionsthatdistinguisha “weaksingularity,” oraregularsingular
point, from an irregularsingularpoint,aswedefinedthemin Section5.4.

As a noteof cautionwe shouldpoint out thatwhile it is sometimespossibleto obtaina formal
seriessolutionof theform (ii) at anirregularsingularpoint, theseriesmaynot have apositive
radiusof convergence.SeeProblem20 for an example.

5.8 Bessel’sEquation

In this sectionwe considerthreespecialcasesof Bessel’s12 equation,

x2y′′ + xy′ + (x2 − ν2)y = 0, (1)

whereν is a constant,which illustratethetheorydiscussedin Section5.7. It iseasyto
show that x = 0 is a regularsingularpoint. For simplicity we consideronly thecase
x > 0.

BesselEquation of Order Zero. This exampleillustratesthe situationin which the
rootsof theindicial equationareequal.Settingν = 0 in Eq. (1) gives

L[y] = x2y′′ + xy′ + x2y = 0. (2)

Substituting

y = φ(r, x) = a0xr +

∞
∑

n=1

an xr+n, (3)

12FriedrichWilhelm Bessel(1784–1846)embarkedonacareerin businessasayouth,but soonbecameinterested
in astronomyand mathematics.He was appointeddirectorof the observatory at Königsberg in 1810andheld
this positionuntil his death.His study of planetaryperturbationsled him in 1824to make the first systematic
analysisof thesolutions,known asBesselfunctions,of Eq. (1). He is alsofamousfor makingthefirst accurate
determination(1838)of thedistancefrom theearthto astar.

ODE
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weobtain

L[φ](r, x) =

∞
∑

n=0

an[(r + n)(r + n − 1) + (r + n)]xr+n +

∞
∑

n=0

an xr+n+2

= a0[r(r − 1) + r ]xr + a1[(r + 1)r + (r + 1)]xr+1

+

∞
∑

n=2

{an[(r + n)(r + n − 1) + (r + n)] + an−2}xr+n = 0. (4)

The roots of the indicial equationF(r) = r(r − 1) + r = 0 are r1 = 0 and r2 = 0;
hencewehave thecaseof equalroots.Therecurrencerelationis

an(r) = −
an−2(r)

(r + n)(r + n − 1) + (r + n)
= −

an−2(r)

(r + n)2 , n ≥ 2. (5)

To determiney1(x) we setr equalto 0. Thenfrom Eq. (4) it follows that for the
coefficient of xr+1 to bezerowe mustchoosea1 = 0. Hencefrom Eq. (5), a3 = a5 =

a7 = · · · = 0. Further,

an(0) = −an−2(0)/n2, n = 2, 4, 6, 8, . . . ,

or letting n = 2m, weobtain

a2m(0) = −a2m−2(0)/(2m)2, m = 1, 2, 3, . . . .

Thus

a2(0) = −
a0

22 , a4(0) =
a0

2422 , a6(0) = −
a0

26(3 · 2)2 ,

and,in general,

a2m(0) =
(−1)ma0

22m(m!)2 , m = 1, 2, 3, . . . . (6)

Hence

y1(x) = a0

[

1 +

∞
∑

m=1

(−1)m x2m

22m(m!)2

]

, x > 0. (7)

The function in brackets is known as the Besselfunction of the first kind of order
zeroand is denotedby J0(x). It follows from Theorem5.7.1thattheseriesconverges
for all x , and that J0 is analyticat x = 0. Someof the importantpropertiesof J0 are
discussedin the problems.Figure5.8.1 shows the graphsof y = J0(x) andsomeof
thepartial sumsof theseries(7).

To determiney2(x) we will calculatea′
n(0). Thealternative procedurein which we

simply substitutethe form (23) of Section5.7 in Eq. (2) and thendeterminethe bn
is discussedin Problem10. First we notefrom thecoefficient of xr+1 in Eq. (4) that
(r + 1)2a1(r) = 0. It follows that not only doesa1(0) = 0 but also a′

1(0) = 0. It is
easyto deducefrom therecurrencerelation(5) thata′

3(0) = a′
5(0) = · · · = a′

2n+1(0) =

· · · = 0; henceweneedonly computea′
2m(0), m = 1, 2, 3, . . . . FromEq.(5) wehave

a2m(r) = −a2m−2(r)/(r + 2m)2, m = 1, 2, 3, . . . .
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FIGURE 5.8.1 Polynomialapproximationsto J0(x). The value of n is the degree of the
approximatingpolynomial.

By solvingthis recurrencerelationweobtain

a2m(r) =
(−1)ma0

(r + 2)2(r + 4)2 · · · (r + 2m − 2)2(r + 2m)2 , m = 1, 2, 3, . . . . (8)

Thecomputationof a′
2m(r) canbecarriedoutmostconvenientlyby notingthatif

f (x) = (x − α1)
β1(x − α2)

β2(x − α3)
β3 · · · (x − αn)

βn ,

andif x is not equalto α1, α2, . . . , αn, then

f ′(x)

f (x)
=

β1

x − α1

+
β2

x − α2

+ · · · +
βn

x − αn

.

Applying this resultto a2m(r) from Eq. (8) wefind that

a′
2m(r)

a2m(r)
= −2

(

1

r + 2
+

1

r + 4
+ · · · +

1

r + 2m

)

,

and,settingr equalto 0, weobtain

a′
2m(0) = −2

[

1

2
+

1

4
+ · · · +

1

2m

]

a2m(0).

Substitutingfor a2m(0) from Eq. (6), andletting

Hm = 1 +
1

2
+

1

3
+ · · · +

1

m
, (9)

weobtain,finally,

a′
2m(0) = −Hm

(−1)ma0

22m(m!)2 , m = 1, 2, 3, . . . .
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The secondsolutionof the Besselequationof order zerois found bysettinga0 = 1
andsubstitutingfor y1(x) anda′

2m(0) = b2m(0) in Eq.(23) of Section5.7. Weobtain

y2(x) = J0(x) ln x +

∞
∑

m=1

(−1)m+1Hm

22m(m!)2 x2m, x > 0. (10)

Insteadof y2, thesecondsolutionisusuallytaken to be acertainlinearcombination
of J0 andy2. It isknown astheBesselfunctionof thesecondkind of orderzeroand is
denotedby Y0. Following Copson(Chapter12),wedefine13

Y0(x) =
2

π
[y2(x) + (γ − ln 2)J0(x)]. (11)

Here γ is a constant,known as the Euler–Máscheroni (1750–1800)constant;it is
definedby theequation

γ = lim
n→∞

(Hn − ln n) ∼= 0.5772. (12)

Substitutingfor y2(x) in Eq. (11),weobtain

Y0(x) =
2

π

[

(

γ + ln
x

2

)

J0(x) +

∞
∑

m=1

(−1)m+1Hm

22m(m!)2 x2m

]

, x > 0. (13)

Thegeneralsolutionof theBesselequationof orderzerofor x > 0 is

y = c1J0(x) + c2Y0(x).

Notethat J0(x) → 1 asx → 0 andthat Y0(x) hasalogarithmic singularityatx = 0;
that is, Y0(x) behaves as (2/π) ln x whenx → 0 throughpositive values.Thusif we
areinterestedin solutionsof Bessel’sequationof orderzerothatarefinite at theorigin,
which isoften thecase,wemustdiscardY0. Thegraphsof thefunctionsJ0 andY0 are
shown in Figure5.8.2.

It is interestingto notefrom Figure5.8.2 thatfor x large both J0(x) andY0(x) are
oscillatory. Sucha behavior might beanticipatedfrom theoriginal equation;indeedit
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FIGURE 5.8.2 TheBesselfunctionsof orderzero.

13Otherauthorsuseotherdefinitionsfor Y0. Thepresentchoicefor Y0 is alsoknown as theWeber(1842–1913)
function.
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is true for thesolutionsof theBesselequationof orderν. If we divide Eq. (1) by x2,
weobtain

y′′ +
1

x
y′ +

(

1 −
ν2

x2

)

y = 0.

For x very large it is reasonableto suspectthat the terms(1/x)y′ and (ν2/x2)y are
small and hencecanbe neglected.If this is true, thenthe Besselequationof orderν
canbeapproximatedby

y′′ + y = 0.

The solutionsof this equationare sin x andcos x ; thuswe might anticipatethat the
solutionsof Bessel’s equationfor large x aresimilar to linear combinationsof sin x
andcosx . This is correctinsofar as theBesselfunctionsareoscillatory;however, it is
only partly correct.For x large thefunctionsJ0 andY0 alsodecayasx increases;thus
the equation y′′ + y = 0 doesnot provide an adequateapproximationto the Bessel
equationfor large x , and a moredelicateanalysisis required.In fact,it is possibleto
show that

J0(x) ∼=

(

2

πx

)1/2

cos
(

x −
π

4

)

as x → ∞, (14)

andthat

Y0(x) ∼=

(

2

πx

)1/2

sin
(

x −
π

4

)

as x → ∞. (15)

Theseasymptoticapproximations,as x → ∞, are actuallyvery good.For example,
Figure 5.8.3 shows that the asymptoticapproximation(14) to J0(x) is reasonably
accuratefor all x ≥ 1. Thusto approximateJ0(x) over theentirerange fromzeroto
infinity, onecanusetwo or threetermsof theseries(7) for x ≤ 1 and theasymptotic
approximation(14) for x ≥ 1.
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Asymptotic approximation: y = (2/  x)1/2 cos(x –   /4)π π

FIGURE 5.8.3 Asymptoticapproximationto J0(x).
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BesselEquation of Order One-Half. This exampleillustratesthesituationin which
therootsof theindicial equationdiffer by apositive integer, but thereis nologarithmic
termin thesecondsolution.Settingν = 1

2 in Eq. (1) gives

L[y] = x2y′′ + xy′ +
(

x2 − 1
4

)

y = 0. (16)

If wesubstitutetheseries(3) for y = φ(r, x), weobtain

L[φ](r, x) =

∞
∑

n=0

[

(r + n)(r + n − 1) + (r + n) − 1
4

]

an xr+n +

∞
∑

n=0

an xr+n+2

= (r2 − 1
4)a0xr +

[

(r + 1)2 − 1
4

]

a1xr+1

+

∞
∑

n=2

{[

(r + n)2 − 1
4

]

an + an−2

}

xr+n = 0. (17)

The rootsof the indicial equationare r1 = 1
2, r2 = −1

2; hencethe rootsdiffer by an
integer. Therecurrencerelationis

[

(r + n)2 − 1
4

]

an = −an−2, n ≥ 2. (18)

Correspondingto thelargerrootr1 = 1
2 wefind from thecoefficientof xr+1 in Eq.(17)

that a1 = 0. Hence,from Eq. (18), a3 = a5 = · · · = a2n+1 = · · · = 0. Further, for
r = 1

2,

an = −
an−2

n(n + 1)
, n = 2, 4, 6 . . . ,

or letting n = 2m, weobtain

a2m = −
a2m−2

2m(2m + 1)
, m = 1, 2, 3, . . . .

By solvingthis recurrencerelationwefind that

a2 = −
a0

3!
, a4 =

a0

5!
, . . .

and,in general,

a2m =
(−1)ma0

(2m + 1)!
, m = 1, 2, 3, . . . .

Hence,takinga0 = 1, weobtain

y1(x) = x1/2

[

1 +

∞
∑

m=1

(−1)m x2m

(2m + 1)!

]

= x−1/2
∞

∑

m=0

(−1)m x2m+1

(2m + 1)!
, x > 0. (19)

Thepowerseriesin Eq.(19) is preciselytheTaylorseriesfor sin x ; henceonesolution
of theBesselequationof orderone-halfis x−1/2 sinx . TheBesselfunctionof thefirst
kind of orderone-half,J1/2, is defined as (2/π)1/2y1. Thus

J1/2(x) =

(

2

πx

)1/2

sinx, x > 0. (20)
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Correspondingto the root r2 = −1
2 it is possiblethat we may have difficulty in

computinga1 sinceN = r1 − r2 = 1. However, from Eq. (17) for r = −1
2 the coef-

ficientsof xr andxr+1 arebothzeroregardlessof thechoiceof a0 anda1. Hencea0
anda1 canbechosenarbitrarily. From therecurrencerelation(18) we obtaina setof
even-numberedcoefficientscorrespondingtoa0 andasetof odd-numberedcoefficients
correspondingto a1. Thusno logarithmic termisneededto obtainasecondsolutionin
this case.It is left asanexerciseto show that,for r = −1

2,

a2n =
(−1)na0

(2n)!
, a2n+1 =

(−1)na1

(2n + 1)!
, n = 1, 2, . . . .

Hence

y2(x) = x−1/2

[

a0

∞
∑

n=0

(−1)n x2n

(2n)!
+ a1

∞
∑

n=0

(−1)nx2n+1

(2n + 1)!

]

= a0

cosx

x1/2 + a1

sinx

x1/2 , x > 0. (21)

Theconstanta1 simplyintroducesamultipleof y1(x). Thesecondlinearlyindependent
solutionof theBesselequationof orderone-halfisusuallytaken to be thesolutionfor
which a0 = (2/π)1/2 anda1 = 0. It is denotedby J

−1/2. Then

J
−1/2(x) =

(

2

πx

)1/2

cosx, x > 0. (22)

Thegeneralsolutionof Eq. (16) is y = c1J1/2(x) + c2J
−1/2(x).

By comparingEqs.(20) and(22) with Eqs.(14) and(15) we seethat,exceptfor a
phaseshift of π/4, the functionsJ

−1/2 and J1/2 resembleJ0 andY0, respectively, for
large x . Thegraphsof J1/2 andJ

−1/2 areshown in Figure5.8.4.
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FIGURE 5.8.4 TheBesselfunctionsJ1/2 andJ
−1/2.
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BesselEquation of Order One. This exampleillustratesthe situationin which the
roots of the indicial equationdiffer by a positive integer and the secondsolution
involvesa logarithmicterm.Settingν = 1 in Eq. (1) gives

L[y] = x2y′′ + xy′ + (x2 − 1)y = 0. (23)

If we substitutethe series(3) for y = φ(r, x) andcollect termsas in the preceding
cases,weobtain

L[φ](r, x) = a0(r
2 − 1)xr + a1[(r + 1)2 − 1]xr+1

+

∞
∑

n=2

{[(r + n)2 − 1]an + an−2}xr+n = 0. (24)

Therootsof theindicial equationare r1 = 1 and r2 = −1. Therecurrencerelationis

[(r + n)2 − 1]an(r) = −an−2(r), n ≥ 2. (25)

Correspondingto thelargerroot r = 1 therecurrencerelationbecomes

an = −
an−2

(n + 2)n
, n = 2, 3, 4, . . . .

We also find from the coefficient of xr+1 in Eq. (24) that a1 = 0; hencefrom the
recurrencerelationa3 = a5 = · · · = 0. For even valuesof n, let n = 2m; then

a2m = −
a2m−2

(2m + 2)(2m)
= −

a2m−2

22(m + 1)m
, m = 1, 2, 3, . . . .

By solvingthis recurrencerelationweobtain

a2m =
(−1)ma0

22m(m + 1)!m!
, m = 1, 2, 3, . . . . (26)

TheBesselfunctionof thefirstkindof orderone,denotedby J1, isobtainedbychoosing
a0 = 1/2. Hence

J1(x) =
x

2

∞
∑

m=0

(−1)m x2m

22m(m + 1)!m!
. (27)

Theseriesconvergesabsolutelyfor all x , so thefunction J1 is analyticeverywhere.
In determiningasecondsolutionof Bessel’sequationof orderone,we illustratethe

methodof directsubstitution.Thecalculationof thegeneraltermin Eq. (28) below is
rathercomplicated,but thefirst few coefficientscanbefoundfairly easily. According
to Theorem5.7.1weassumethat

y2(x) = a J1(x) ln x + x−1

[

1 +

∞
∑

n=1

cnxn

]

, x > 0. (28)

Computingy′
2(x), y′′

2(x), substitutingin Eq. (23),andmakinguseof thefactthat J1 is
asolutionof Eq. (23) give

2ax J ′
1(x) +

∞
∑

n=0

[(n − 1)(n − 2)cn + (n − 1)cn − cn]xn−1 +

∞
∑

n=0

cnxn+1 = 0, (29)
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wherec0 = 1. Substitutingfor J1(x) from Eq. (27),shifting theindicesof summation
in thetwo series,andcarryingout several stepsof algebragive

−c1 + [0 · c2 + c0]x +

∞
∑

n=2

[(n2 − 1)cn+1 + cn−1]xn

= −a

[

x +

∞
∑

m=1

(−1)m(2m + 1)x2m+1

22m(m + 1)! m!

]

. (30)

From Eq. (30) we observe first that c1 = 0, anda = −c0 = −1. Further, sincethere
areonly oddpowersof x on theright, thecoefficient of eachevenpower of x on the
left mustbe zero.Thus,since c1 = 0, we have c3 = c5 = · · · = 0. Correspondingto
theoddpowersof x weobtaintherecurrencerelation[let n = 2m + 1 in theserieson
theleft sideof Eq. (30)]

[(2m + 1)2 − 1]c2m+2 + c2m =
(−1)m(2m + 1)

22m(m + 1)! m!
, m = 1, 2, 3, . . . . (31)

Whenwesetm = 1 in Eq. (31),weobtain

(32 − 1)c4 + c2 = (−1)3/(22 · 2!).

Notice thatc2 canbeselectedarbitrarily, and thenthis equationdeterminesc4. Also
noticethat in the equationfor the coefficient of x , c2 appearedmultiplied by 0, and
thatequationwasusedto determinea. That c2 is arbitraryis not surprising,sincec2

is the coefficient of x in the expressionx−1[1 +
∞
∑

n=1
cnxn]. Consequently, c2 simply

generatesa multiple of J1, and y2 is only determinedup to an additive multiple of J1.
In accordwith theusualpracticewe choosec2 = 1/22. Thenweobtain

c4 =
−1

24 · 2

[

3

2
+ 1

]

=
−1

242!

[(

1 +
1

2

)

+ 1

]

=
(−1)

24 · 2!
(H2 + H1).

It is possibleto show thatthesolutionof therecurrencerelation(31) is

c2m =
(−1)m+1(Hm + Hm−1)

22mm!(m − 1)!
, m = 1, 2, . . .

with theunderstandingthat H0 = 0. Thus

y2(x) = −J1(x) ln x +
1

x

[

1 −

∞
∑

m=1

(−1)m(Hm + Hm−1)

22mm!(m − 1)!
x2m

]

, x > 0. (32)

The calculationof y2(x) using the alternative procedure[seeEqs. (19) and (20)
of Section5.7] in which we determinethe cn(r2) is slightly easier. In particularthe
latterprocedureyields thegeneralformulafor c2m without thenecessityof solvinga
recurrencerelationof the form(31) (seeProblem11). In this regard the readermay
alsowish to comparethe calculationsof the secondsolutionof Bessel’s equationof
orderzeroin thetext andin Problem10.
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The secondsolutionof Eq. (23), the Besselfunctionof the secondkind of order
one,Y1, is usually taken to be acertainlinear combinationof J1 and y2. Following
Copson(Chapter12),Y1 is definedas

Y1(x) =
2

π
[−y2(x) + (γ − ln 2)J1(x)], (33)

whereγ is definedin Eq.(12).Thegeneralsolutionof Eq. (23) for x > 0 is

y = c1J1(x) + c2Y1(x).

Noticethatwhile J1 is analyticatx = 0, thesecondsolutionY1 becomesunboundedin
thesamemanneras1/x asx → 0. Thegraphsof J1 andY1 areshown in Figure5.8.5.
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FIGURE 5.8.5 TheBesselfunctionsJ1 andY1.

PROBLEMS In eachof Problems1 through4 show thatthegiven differentialequationhasaregularsingular
pointat x = 0, anddeterminetwo linearly independentsolutionsfor x > 0.

1. x2y′′ + 2xy′ + xy = 0 2. x2y′′ + 3xy′ + (1 + x)y = 0
3. x2y′′ + xy′ + 2xy = 0 4. x2y′′ + 4xy′ + (2 + x)y = 0
5. Find two linearly independentsolutionsof theBesselequationof order 3

2 ,

x2y′′ + xy′ + (x2 − 9
4)y = 0, x > 0.

6. Show thattheBesselequationof orderone-half,

x2y′′ + xy′ + (x2 − 1
4)y = 0, x > 0,

canbereducedto theequation

v′′ + v = 0

by the changeof dependentvariable y = x−1/2v(x). From this concludethat y1(x) =

x−1/2 cosx andy2(x) = x−1/2 sinx aresolutionsof theBesselequationof orderone-half.
7. Show directly thattheseriesfor J0(x), Eq.(7), convergesabsolutelyfor all x .
8. Show directly that the seriesfor J1(x), Eq. (27), convergesabsolutelyfor all x andthat

J ′
0(x) = −J1(x).


