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Abstract

By an ABC-hit, we mean a triple (a, b, c) of relatively prime positive
integers such that a+b = c and rad(abc) < c. Denote by N(X) the number
of ABC-hits (a, b, c) with c ≤ X. In this paper we discuss lower bounds
for N(X). In particular we prove that for every ε > 0 and X large enough

N(X) ≥ exp
“

(log X)1/2−ε
”

.

1 Introduction

Definition 1. A triple (a, b, c) ∈ Z3
>0 is called an ABC-sum if a + b = c and

gcd(a, b, c) = 1.

The ABC conjecture states that for every ε > 0 there exist at most finitely many
ABC-sums (a, b, c) such that c > (rad(abc))

1+ε
.

Definition 2. An ABC-sum (a, b, c) is called an ABC-hit if c > rad(abc).

It is easy to construct infinitely many ABC-hits. Let for example s ∈ Z≥2 and p
be a prime not dividing s. Now define for every n ∈ Z>0 an ABC-sum (an, bn, cn)
by letting

an = s(p−1)pn − 1, bn = 1, cn = s(p−1)pn

.

Since s(p−1)pn

= sφ(pn+1) ≡ 1 (mod pn+1), we have pn+1|an, hence

rad(anbncn) ≤ an

pn
· 1 · s ≤ s

pn
cn.

So for n large enough, the ABC-sums (an, bn, cn) are ABC-hits.
There are better so-called lower bounds in the ABC conjecture. C. L. Stewart
and R. Tijdeman proved in [S-T] that if C0 < 4, then there exist infinitely many
ABC-sums (a, b, c) such that

c > R exp

(

C0

√
R

log log R

)

, R := rad(abc).

Later, M. van Frankenhuysen improved this result by showing that it holds with
C0 < 4 replaced by C0 = 4

√
2. Together with an idea of H. W. Lenstra, this

C0 = 4
√

2 can even be replaced by C0 < 4 · 20.2995 4
√

2π/e; see [Fra].
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Now define the counting function N(x) : R≥0 → Z≥0 by

N(X) := |{ABC − hits (a, b, c) | c ≤ X}|.

In [S-T] and [Fra] methods from the geometry of numbers together with versions
of the prime number theorem with error term are used to arrive at the above
mentioned results. In this paper these methods are applied to prove the following
theorem.

Theorem 3. For every ε > 0 there exists an X0 > 0 such that for all X ≥ X0

N(X) ≥ exp
(

(log X)
1
2
−ε
)

.

Before we start with (the preliminaries of) the proof of this theorem, we would
like to mention that according to [G-S] we have the following upper bound.

Theorem 4. For every ε > 0 there exists an X0 > 0 such that for all X ≥ X0

N(X) ≤ X
2
3
+ε.

2 Preliminaries

In this section we discuss some isolated results used in the proof of Theorem 3.

2.1 Minkowski

We have the following generalized version of Minkowski’s convex body theorem.

Theorem 5. Let Λ ⊂ Rn be a lattice of rank n and let V be a convex, centrally

symmetric subset of Rn. If

voln(V ) > m2n det Λ

for some m ∈ Z>0, then V contains at least m different pairs of nonzero lattice

points ±vi ∈ Λ, i = 1, . . . , m.

Proof. See [Cas, Ch. III, Theorem II].

The set V that will be used in the theorem above is (up to a scalar multiple)
described in the following lemma.

Lemma 6. Let n ∈ Z>0 and define the subset V ⊂ Rn as

V := {x ∈ Rn |
n
∑

i=1
xi>0

xi ≤ 1 and

n
∑

i=1
xi<0

|xi| ≤ 1}.

Then voln(V ) = (2n)!
n!3 .
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Proof. Let p be an integer satisfying 0 ≤ p ≤ n, define

Kp := {x = (x1, . . . , xn) ∈ Rn | xi ≥ 0 for i ≤ p and xi ≤ 0 for i > p}

We will compute the volume of V contained in Kp. First define the ‘m-dimensional
hyperpyramid’

Ym := {x = (x1, . . . , xm) ∈ Rm | x1, . . . , xm ≥ 0 and

m
∑

i=1

xi ≤ 1},

which has volume 1/m!. Identify Rn with Rp ×Rn−p, then it follows that Kp ∩
Vn = Yp × (−Yn−p). So

voln(Kp ∩ Vn) = volp(Yp).voln−p(Yn−p) =
1

p!(n − p)!
.

Now let I ⊂ {1, 2, . . . , n} and define

KI := {x = (x1, . . . , xn) ∈ Rn | xi ≥ 0 for i ∈ I and xi ≤ 0 for i 6∈ I}.

Adding up the volumes of V contained in KI for all 2n possible sets I gives
the volume of V . Note that Kp = K{1,2,...,p}. If I contains p elements then by
symmetry also voln(KI ∩V ) = 1/(p!(n−p)!). If I contains p elements, there are
(

n
p

)

possibilities for the set I . Summing over all possible sets I we arrive at

voln(V ) =

n
∑

p=0

(

n

p

)

1

p!(n − p)!
=

1

n!

n
∑

p=0

(

n

p

)2

.

From the identity
∑n

k=0

(

n
k

)2
=
(

2n
n

)

(which can be proven by considering the
identity (1 + x)n(1 + x)n = (1 + x)2n and comparing the coefficients of xn on
both sides) we conclude

voln(V ) =
1

n!

(

2n

n

)

=
(2n)!

n!3
.

2.2 The Prime Number Theorem

Let π(x) denote the number of primes ≤ x. Then for any k ∈ Z>0

π(x) = x

(

1

log x
+

1!

log2 x
+ . . . +

(k − 1)!

logk x
+ O

(

1

logk+1 x

))

.

For a proof see [Ing, p. 65]. Taking k = 3 we obtain a formula with the precision
we need:

π(x) = x

(

1

log x
+

1

log2 x
+

2

log3 x
+ O

(

1

log4 x

))

. (1)

Using this version of the prime number theorem with error term, we can now
derive two formulas that will be needed later.
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Lemma 7. Let x ∈ R>0 and denote by n := π(x)− 1 the number of odd primes

≤ x and by p1, . . . , pn the first n odd primes. Then

n
∑

i=1

log pi = n log
(x

e

)

− x

log2 x
+ O

(

x

log3 x

)

,

n
∑

i=1

log log pi = n log
(x

n

)

+ O
(

x

log3 x

)

.

Proof. For f(y) = log y or f(y) = log log y we have

n
∑

i=1

f(pi) = [f(y)π(y)]
x
2 −

∫ x

2

f ′(y)π(y)dy. (2)

Now let f(y) = log y. Using (1) we have

[f(y)π(y)]x2 = x

(

1 +
1

log x
+

2

log2 x
+ O

(

1

log3 x

))

(3)

and
∫ x

2

f ′(y)π(y)dy =

∫ x

2

(

1

log y
+

1

log2 y
+ O

(

1

log3 y

))

dy. (4)

Partial integration shows that for m ∈ N

∫ b

a

1

logm y
dy =

[

y

logm y

]b

a

+ m

∫ b

a

1

logm+1 y
dy. (5)

So (4) becomes

∫ x

2

f ′(y)π(y)dy =
x

log x
+

2x

log2 x
+

∫ x

2

O
(

1

log3 y

)

dy

=
x

log x
+

2x

log2 x
+ O

(

x

log3 x

)

.

Substituting this and (3) in equation (2) yields

n
∑

i=1

log pi = x + O
(

x

log3 x

)

. (6)

By definition we have n = π(x)− 1. Rewriting equation (1) using the geometric
series, we obtain

n = x

(

1

log x − 1
+

1

log3 x
+ O

(

1

log4 x

))

.

Multiplication with log x − 1 now gives

n(log x − 1) = x +
x

log2 x
+ O

(

x

log3 x

)

. (7)
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From this and (6) we now obtain the first part of the lemma.
Now let f(y) = log log y. Using equation (1) we have

[f(y)π(y)]
x
2 = (log log x)(n + 1) + O (1) = n log log x + O (log log x) (8)

and
∫ x

2

f ′(y)π(y)dy =

∫ x

2

(

1

log2 y
+ O

(

1

log3 y

))

dy. (9)

Partial integration (5) gives

∫ x

2

f ′(y)π(y)dy =
x

log2 x
+ O

(

x

log3 x

)

. (10)

Substituting this and (8) in equation (2) yields

n
∑

i=1

log log pi = n log log x − x

log2 x
+ O

(

x

log3 x

)

. (11)

On the other hand

n log(log x − 1) = n

(

log log x + log

(

1 − 1

log x

))

= n

(

log log x −
(

1

log x
+ O

(

1

log2 x

)))

= n log log x − x

log2 x
+ O

(

x

log3 x

)

,

where the second equality follows from a first order Taylor expansion, and the
third from (1). Together with (11) we obtain

n
∑

i=1

log log pi = n log(log x − 1) + O
(

x

log3 x

)

. (12)

We conclude:

n
∑

i=1

log log pi = n log

(

n(log x − 1)

n

)

+ O
(

x

log3 x

)

= n log





x
(

1 + O
(

1
log2 x

))

n



+ O
(

x

log3 x

)

= n

(

log
(x

n

)

+ log

(

1 + O
(

1

log2 x

)))

+ O
(

x

log3 x

)

= n log
(x

n

)

+ O
(

x

log x

)

.O
(

1

log2 x

)

+ O
(

x

log3 x

)

= n log
(x

n

)

+ O
(

x

log3 x

)

,
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where the first equality of course follows from equation (12), the second from
(7) and the fourth from (1) and a first order Taylor expansion. This completes
the proof of (the second part of) the lemma.

3 The Proof

We are now ready to give the proof of Theorem 3.

Proof. For q = b/c ∈ Q∗, with b, c ∈ Z and gcd(b, c) = 1, define the height
h(q) := log(max(|b|, |c|)), where |.| denotes the standard Archimedean valuation.
Let x ≥ 5 and define n := π(x) − 1 the number of odd primes ≤ x. Denote by
p1, . . . , pn the first n odd primes. Consider the subgroup of Q∗

>0 generated by
the first n odd primes

Qn := {pa1

1 . . . pan

n | ai ∈ Z}

and the subset of elements of bounded height

Qx := {q ∈ Qn | h(q) ≤ B(x)},

where B(x) : R>0 → R>0 is some function to be specified later. Define the
injective group homomorphism

ϕn : Qn → Rn : pa1

1 . . . pan

n 7→ (a1 log p1, . . . , an log pn).

Then
Λn := ϕn(Qn) = {(a1 log p1, . . . an log pn) ∈ Rn | ai ∈ Z}

is a lattice of rank n. Define two more sets

Lx := ϕn(Qx) = {y ∈ Λn |
n
∑

i=1
yi>0

yi ≤ B(x) and

n
∑

i=1
yi<0

|yi| ≤ B(x)},

Lx ⊂ Vx := {y ∈ Rn |
n
∑

i=1
yi>0

yi ≤ B(x) and
n
∑

i=1
yi<0

|yi| ≤ B(x)}.

An important fact that we will use is that there is a 1 − 1 relation between
(unordered) pairs ±y ∈ Λn − {0} and ABC-sums (a, b, c) with rad(bc)|∏n

i=1 pi,
given by (a, b, c) 7→ {ϕn(b/c),−ϕn(b/c)}. Pairs ±y ∈ Lx−{0} correspond under
this 1− 1 relation to ABC-sums (a, b, c) with rad(bc)|∏n

i=1 pi and log c ≤ B(x).
Define Qn,m := {b/c ∈ Qn | b ≡ c (mod 2m); b, c ∈ Z>0 and gcd(b, c) = 1}
and Λn,m := ϕn(Qn,m). Since 3 and 5 (mod 2m) generate (Z/2mZ)∗, we have
a surjective homomorphism Qn → (Z/2mZ)∗ with kernel equal to Qn,m. So
Qn/Qn,m ' (Z/2mZ)∗. Which gives us |Qn/Qn,m| = 2m−1, hence

|Λn/Λn,m| = 2m−1. (13)
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Let α ∈ Q with 0 < α < 1, denote by d the denominator of α and define
β := 1 − α. Let m ∈ Z be such that d|m and

2m−d <
voln(Vx)

2n det Λn
≤ 2m. (14)

Together with Lemma 6 and det Λn =
∏n

i=1 log pi we get

2m ≥ (2n)!B(x)n

2n(n!)3
∏n

i=1 log pi
= exp

(

log

(

(2n)!B(x)n

2n(n!)3

)

−
n
∑

i=1

log log pi

)

. (15)

Stirling’s formula, log n! = n log n − n + O (log n), gives

log

(

(2n)!

2n(n!)3

)

= n log

(

2e

n

)

+ O (log n) .

Using this identity and Lemma 7 we obtain from (15)

2m ≥ exp

(

n log

(

2eB(x)

x

)

+ O
(

x

log3 x

))

. (16)

Now note that αm, βm ∈ Z and that from (13) and (14) we get

voln(Vx) > 2m+n−d det Λn = 2βm+1−d2n2αm−1 det Λn = 2βm+1−d2n det Λn,αm.

We will see later that 2m → ∞ when x → ∞, hence for x large enough
2βm+1−d ∈ Z>0. So by Theorem 5 we have that for x large enough at least
2βm+1−d different pairs of nonzero lattice points ±y of Λn,αm are contained in
Vx and hence in Lx. Under the 1 − 1 relation mentioned earlier, these pairs of
points correspond to 2βm+1−d different ABC-sums (a, b, c) with log c ≤ B(x)
and

rad(bc)|
n
∏

i=1

pi, 2αm|c − b = a. (17)

We claim that for x large enough, these ABC-sums are in fact ABC-hits. From
(17), (16) and Lemma 7 we obtain

rad(abc) ≤ 2a

2αm

n
∏

i=1

pi ≤ 2c

(

1

2m

)α n
∏

i=1

pi

≤ c exp

(

−αn log

(

2eB(x)

x

)

+
n
∑

i=1

log pi + O
(

x

log3 x

)

)

= c exp

(

n log

(

x

e

(

x

2eB(x)

)α)

− x

log2 x
+ O

(

x

log3 x

))

.

Now define B(x) such that x/e · (x/(2eB(x)))α = 1, i.e.

B(x) :=
1

2

(x

e

)1+ 1
α

.
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Then for x large enough

rad(abc) ≤ c exp

(

− x

log2 x
+ O

(

x

log3 x

))

< c.

This proves our claim and we conclude that for x large enough

N(exp(B(x)) ≥ 2βm+1−d. (18)

Using (16), 2eB(x)/x = (x/e)1/α and (1) we obtain

2m ≥ exp

(

n

α
log
(x

e

)

+ O
(

x

log3 x

))

= exp

(

x

α

(

1

log x
+

1

log2 x
+

2

log3 x
+ O

(

1

log4 x

))

(log x − 1)

)

= exp

(

x

α

(

1 +
1

log2 x
+ O

(

1

log3 x

)))

.

Together with (18) we obtain that for x large enough

N(exp(B(x)) ≥ exp

(

β

α
x

(

1 +
1

log2 x
+ O

(

1

log3 x

)))

≥ exp

(

β

α
x

)

= exp
(

C ′
αB(x)

α

1+α

)

,

where C ′
α := e(1/α − 1)2α/(1+α) > 0. Since x 7→ exp(B(x)) : ]0,∞[→]1,∞[ is

surjective and monotonously increasing, we have for X large enough

N(X) ≥ exp
(

C ′
α(log X)

α

1+α

)

. (19)

Since α/(1 + α) ↑ 1/2 when α ↑ 1, we obtain that for every ε > 0 there exists a
Cε > 0 such that for X large enough

N(X) ≥ exp
(

Cε(log X)
1
2
−ε
)

.

For the final statement, note that for every ε > 0 and X large enough

log N(X) ≥ C ε

2
(log X)

1
2
− ε

2 = C ε

2
(log X)

ε

2 (log X)
1
2
−ε ≥ (log X)

1
2
−ε.

We remark that instead of using lattices to find ABC-hits, we could have used
the box principle like in [S-T]. Our method of proof then gives, that for X large
enough (19) holds, but now with C ′

α = e(1/α − 1). With this smaller constant
we of course also end up with Theorem 3. On the other hand, one can try to
find more lattice points inside Vx. Heuristically, one could expect a factor of
2n more than used in the proof. But this extra factor would only increase the
constant C ′

α in (19) and again would not change the final result. Using not only
ABC-sums (a, b, c) with a divisible by a large power of 2 to construct ABC-hits,
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but also ABC-sums with a divisible by a large power of other primes, would also
not necessarily improve Theorem 3. We do however not expect that Theorem
3 is best possible (in some natural sense). It might be possible that with some
extra effort the (log X)ε term could be replaced by some power of log log X . We
leave this to the interested reader.
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