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§1. Introduction.

In 1955, Roth [15] proved his celebrated theorem, that for every real algebraic
number α and every real κ > 2 the inequality

(1.1) |α− x

y
| < {max(|x|, |y|)}−κ in x, y ∈ Z with gcd (x, y) = 1

has only finitely many solutions. Roth’s proof is by contradiction. Assuming that
(1.1) has infinitely many solutions, Roth constructed an auxiliary polynomial in a
large number of variables, k say, of which all low order partial derivatives vanish in
a point (x1/y1, . . . , xk/yk) for certain solutions (x1, y1), . . . , (xk, yk) of (1.1), and
then showed, using a non-vanishing result now known as Roth’s lemma, that this
is not possible.

Assume that 2 < κ < 3. By making explicit Roth’s arguments, Davenport and
Roth [3] determined an explicit upper bound for the number of solutions of (1.1)
and this was improved later by Mignotte [12]. Bombieri and van der Poorten [1]
obtained a much better upper bound by using instead of Roth’s lemma a non-
vanishing result for polynomials of Esnault and Viehweg [4]. Recently, Corvaja [2]
gave an alternative proof of the result of Bombieri and van der Poorten, in which
he replaced the construction of an auxiliary polynomial by the use of interpolation
determinants as introduced by Laurent in transcendence theory.

We recall the result of Bombieri and van der Poorten. The Mahler measure M(α)
of an algebraic number α (always assumed to belong to C) is defined by

M(α) := |a0|
r∏
i=1

max(1, |α(i)|) ,

where r = degα, α(1), . . . , α(r) are the conjugates of α over Q and a0 is a rational
integer such that the coefficients of the polynomial f(X) = a0

∏r
i=1(X −α(i)) are

rational integers with gcd 1. In particular, M(x/y) = max(|x|, |y|) for x, y ∈ Z
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with gcd (x, y) = 1. Now let κ = 2 + δ with 0 < δ < 1, and α an algebraic number
of degree r. Bombieri and van der Poorten proved that (1.1) has at most

c1 · δ−5(log r)2 log
( log r

δ

)
solutions with M(x/y) ≥ c2M(α) and at most

c3δ
−1 log

(
1 + logM(α)

)
solutions with M(x/y) < c2M(α), where c1, c2, c3 are explicitly computable ab-
solute constants. We mention that recently Schmidt [21] gave an explicit upper
bound for the number of solutions of (1.1) in the complementary case κ ≥ 3.

We deal with the analogue of (1.1) in which the unknowns are algebraic numbers
of given degree, i.e. we consider the inequality

(1.2) |α− ξ| < M(ξ)−κ in algebraic numbers ξ of degree t,

where α is an algebraic number, κ a positive real, and t ≥ 1. In 1921, Siegel [22],
[23] showed that (1.2) has only finitely many solutions if κ exceeds some bound
depending on t and the degree of α. In 1966, Ramachandra [14] proved the same
with a smaller lower bound for κ, but still depending on the degree of α. In 1971,
Wirsing [24] succeeded in proving Roth’s conjecture that (1.2) has only finitely
many solutions if

(1.3) κ > 2t .

Independently, Schmidt [17] (Theorem 3) proved that the number of solutions of
(1.2) is finite if

(1.4) κ > t+ 1 .

In fact, the latter can be derived from Schmidt’s Subspace theorem, cf. [19], p.
278. The lower bound t+ 1 can be shown to be best possible.

It is our purpose to derive an explicit upper bound for the number of solutions of
(1.2). For this, one needs, apart from the Diophantine approximation arguments
of Wirsing or Schmidt in an explicit form, a “gap principle,” which states that so-
lutions of (1.2) are far away from each other. In §2 we derive a simple gap principle
for κ > 2t which is similar to one which appeared already in Ramachandra’s paper
[14]. The proof of this gap principle uses a Liouville-type inequality for differences
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of algebraic numbers. For obtaining a gap principle for t+ 1 < κ ≤ 2t one would
need an effective improvement of this Liouville-type inequality which, if existing,
seems to be very difficult to prove.

We derive an upper bound for the number of solutions of (1.2) with κ > 2t by
combining the gap principle in §2 with Wirsing’s arguments. Another possible
approach is to use ideas which are used in the proof of the quantitative Subspace
theorem, e.g. in [20] or [6], but this would lead to a larger bound. One of Wirsing’s
main tools was Leveque’s generalisation of Roth’s lemma to number fields ([10],
Chap. 4). Instead, we use the sharpening of this from [5]. Our result is as follows:

Theorem 1. Let α be an algebraic number of degree r, t an integer ≥ 1, and

κ = 2t+ δ with 0 < δ < 1.

(i). (1.2) has at most

2×107 · t7δ−4 · log 4r · log log 4r

solutions ξ with M(ξ) ≥ max
(
4t(t+1)/δ, M(α)

)
.

(ii). (1.2) has at most

2(t+3)2
δ−1 log(2 + δ−1) + t2δ−1 · log log 4M(α)

solutions ξ with M(ξ) < max
(
4t(t+1)/δ, M(α)

)
.

We derive a result more general than Theorem 1. For every algebraic number ξ
of degree t we fix an ordering of its conjugates ξ(1), . . . , ξ(t). Let α1, . . . , αt be
algebraic numbers. Further, let ϕ1, . . . , ϕt be non-negative reals. We introduce
the notation

|x, y| := max(|x|, |y|) for x, y ∈ C .

Consider the system of inequalities

|αi − ξ(i)|
2|1, αi| · |1, ξ(i)|

≤ M(ξ)−ϕi (i = 1, . . . , t)(1.5)

in algebraic numbers ξ of degree t .

The denominators have been inserted for technical convenience. Wirsing [24]
proved that (1.5) has only finitely many solutions if

(1.6) max
I

(#I)2
(∑
i∈I

ϕ−1
i

)−1
> 2t ,
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where the maximum is taken over all non-empty subsets I of {i ∈ {1, . . . , t} : ϕi 6=
0} and where # is used to denote the cardinality of a set. In [24] §3, Wirsing showed
that

(1.7) (
t∑

j=1

1
2j − 1

)−1 ≤
maxI (#I)2

(∑
i∈I ϕ

−1
i

)−1

ϕ1 + · · ·+ ϕt
≤ 1

for all non-negative reals ϕ1, . . . , ϕt with ϕ1 + · · ·+ϕt > 0, and that the upper and
lower bound are best possible. In fact, the upper bound is assumed if and only if
all non-zero numbers among ϕ1, . . . , ϕt are equal. So condition (1.6) is in general
stronger than

(1.8) ϕ1 + · · ·+ ϕt > 2t .

We prove the following quantitative version of Wirsing’s result:

Theorem 2. Let α1, . . . , αt be algebraic numbers with

(1.9) max
i=1,...,t

M(αi) = M, [Q(α1, . . . , αt) : Q] = r

and ϕ1, . . . , ϕt non-negative reals for which

(1.10) max
I

(#I)2
(∑
i∈I

ϕ−1
i

)−1 ≥ 2t+ δ with 0 < δ < 1 .

Put κ := ϕ1 + · · ·+ ϕt.

(i). (1.5) has at most

2×107 · t7δ−4 · log 4r · log log 4r

solutions with M(ξ) ≥ max
(
4t(t+1)/(κ−2t), M

)
.

(ii). (1.5) has at most

2t
2+t+κ+4

(
1 +

log(2 + 1
κ−2t )

log(1 + κ−2t
t )

)
+ t · log log 4M

log(1 + κ−2t
t )

solutions ξ with M(ξ) < max
(
4t(t+1)/(κ−2t), M

)
.

It is due to a limitation of Wirsing’s method that we have to impose condition
(1.6) on ϕ1, . . . , ϕt. In §2, we shall derive a gap principle for system (1.5) which is
non-trivial if the weaker condition (1.8) holds. It is conceivable that by combining
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this gap principle with techniques used in the proof of the quantitative Subspace
theorem, one can derive an explicit (but larger) upper bound for the number of
solutions of (1.5) with (1.8) replacing (1.6).

Theorem 1 follows at once from Theorem 2 with α1 = α, ϕ1 = κ and αi = 0, ϕi = 0
for i = 2, . . . , t, on observing that in that case we have maxI (#I)2

(∑
i∈I ϕ

−1
i

)−1

= κ, κ− 2t = δ < 1 and log (1 + (κ− 2t)/t) = log (1 + δ/t) ≥ δ/2t.

Another application of Theorem 2 is to an inequality involving resultants. The
resultant R(f, g) of two polynomials f(X) = a0X

r+a1X
r−1 + · · ·+ar and g(X) =

b0X
t + b1X

t−1 + · · · + bt with a0 6= 0, b0 6= 0 is defined by the determinant of
order r + t,

(1.11) R(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 · · · · · · ar
a0 a1 · · · · · · ar

. . . . . .
a0 a1 · · · · · · ar

b0 b1 · · · bt
b0 b1 · · · bt

. . . . . .
. . . . . .

b0 b1 · · · bt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

of which the first t rows consist of coefficients of f and the last r rows of coefficients
of g. If f(X) = a0

∏r
i=1(X − αi) and g(X) = b0

∏t
j=1(X − ξj), then

(1.12) R(f, g) = at0b
r
0

r∏
i=1

t∏
j=1

(αi − ξj) .

Hence R(f, g) = 0 if and only if f and g have a common zero (cf. [9], Chap. V,
§10).

We define the Mahler measure of a polynomial f(X) = a0

∏r
i=1(X − αi) ∈ C[X]

by

M(f) := |a0|
r∏
i=1

max(1, |αi|) .

We fix a polynomial f(X) ∈ Z[X] of degree r and a positive real κ and consider
the inequality in unknown polynomials g,

0 < |R(f, g)| < M(g)r−κ(1.13)

in polynomials g(X) ∈ Z[X] of degree t .
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In [24], Wirsing proved that (1.13) has only finitely many solutions if f has no
multiple zeros and if

(1.14) κ > 2t
(
1 +

1
3

+ · · ·+ 1
2t− 1

)
.

Schmidt [18] showed that (1.14) can be relaxed to

(1.15) κ > 2t

if f has no multiple zeros and no irreducible factors in Z[X] of degree ≤ t. Finally,
from a result of Ru and Wong ([16], Thm. 4.1), which is a consequence of the Sub-
space theorem, it follows that (1.14) can be relaxed to (1.15) for every polynomial
f without multiple zeros.

We consider (1.13) only for irreducible polynomials g. Then one can reduce (1.13)
to a finite number of systems of inequalities (1.5). Using this, we derive from
Theorem 2 an upper bound for the number of irreducible polynomials g satisfying
(1.13) with κ satisfying (1.14). We mention that we would be able to derive such
an upper bound for all κ > 2t if we had an upper bound for the number of solutions
of (1.5) for all ϕ1, . . . , ϕt with ϕ1 + · · ·+ ϕt > 2t.

A polynomial in Z[X] is said to be primitive if its coefficients have gcd 1.

Theorem 3. Let f be a primitive polynomial in Z[X] of degree r with no multiple

zeros. Suppose that

(1.16) κ = (2t+ δ)
(
1 +

1
3

+ · · ·+ 1
2t− 1

)
with 0 < δ < 1 .

Then there are at most

1015(δ−1)t+3 · (100r)t log 4r · log log 4r

primitive, irreducible polynomials g(X) ∈ Z[X] of degree t with

0 < |R(f, g)| < M(f)t ·M(g)r−κ,(1.17)

M(g) ≥ (28r2tM(f)4(r−1)t)δ
−1(1+ 1

3 +···+ 1
2t−1 )−1

.(1.18)

In (1.17), we have inserted the factor M(f)t to make the inequality homogeneous
in f ; without this factor, our bound would not have been better.
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§2. A gap principle.

In this section, we derive a gap principle for the system of inequalities

|αi − ξ(i)|
2|1, αi| · |1, ξ(i)|

≤ M(ξ)−ϕi (i = 1, . . . , t)(1.5)

in algebraic numbers ξ of degree t ,

where α1, . . . , αt are algebraic numbers, and ϕ1, . . . , ϕt are reals with

(2.1) ϕi ≥ 0 for i = 1, . . . , t, κ := ϕ1 + · · ·+ ϕt > 2t .

After that, we prove part (ii) of Theorem 2. Our gap principle is as follows:

Lemma 1. (i). Let ξ1, . . . , ξt+1 be distinct solutions of (1.5) with M(ξt+1) ≥
M(ξt) ≥ · · · ≥M(ξ1). Then

(2.2) U−1M(ξt+1) ≥
(
U−1M(ξ1)

)1+(κ−2t)/t
where U := 2t(t+1)/(κ−2t) .

(ii). Put C := [t · 2t2+κ+1]. Let ξ1, . . . , ξC+1 be distinct solutions of (1.5) with

M(ξC+1) ≥M(ξC) ≥ · · · ≥M(ξ1). Then

(2.3) 2M(ξC+1) ≥
(
2M(ξ1)

)1+(κ−2t)/t
.

Proof. Since solutions of (1.5) are assumed to have degree t, at least two numbers
among ξ1, . . . , ξt+1 are not conjugate to each other, ξ := ξi, η := ξj with i < j, say.
Denote the minimal polynomials (in Z[X] with coefficients having gcd 1) of ξ, η by
f, g, respectively. Then f and g have no common zeros, i.e. their resultant R(f, g)
is a non-zero integer. Let f(X) = a0

∏t
k=1(X − ξ(k)), g(X) = b0

∏t
l=1(X − η(l)).

Then by (1.12) (on noting that a0, b0 are cancelled) we have

(2.4)
|R(f, g)|

M(ξ)tM(η)t
=

t∏
k=1

t∏
l=1

|ξ(k) − η(l)|
|1, ξ(k)| · |1, η(l)|

,

and since R(f, g) is a non-zero integer, this implies the Liouville-type inequality,

(2.5)
t∏

k=1

t∏
l=1

|ξ(k) − η(l)|
|1, ξ(k)| · |1, η(l)|

≥ 1
M(ξ)tM(η)t

.

We estimate the left-hand side from above. For k 6= l we use the trivial estimate

(2.6)
|ξ(k) − η(l)|
|1, ξ(k)| · |1, η(l)|

≤ 2 .
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Let k = l ∈ {1, . . . , t}. We apply the following variation on the triangle inequality:

(2.7)
|x− y|
|1, x| · |1, y|

≤ |x− z|
|1, x| · |1, z|

+
|z − y|
|1, z| · |1, y|

for x, y, z ∈ C .

Thus, using that ξ, η satisfy (1.5),

|ξ(k) − η(k)|
|1, ξ(k)| · |1, η(k)|

≤ |ξ(k) − αk|
|1, ξ(k)| · |1, αk|

+
|η(k) − αk|
|1, η(k)| · |1, αk|

≤ 2M(ξ)−ϕk + 2M(η)−ϕk ≤ 4M(ξ)−ϕk .

Together with (2.5), (2.6) this implies

(2.8)
1

M(ξ)tM(η)t
≤ 2t

2+tM(ξ)−(ϕ1+···+ϕt) = Uκ−2tM(ξ)−κ ,

whence
U−1M(η) ≥

(
U−1M(ξ)

)1+(κ−2t)/t
.

Together with M(ξ1) ≤M(ξ) ≤M(η) ≤M(ξt+1) this implies (2.2).

(ii). Let p be a prime number which will be chosen later. We partition the solutions
of (1.5) into equivalence classes as follows. Let ξ and η be solutions of (1.5) with
minimal polynomials f, g, respectively. By definition, both f and g have t + 1
integer coefficients without a common factor. We call ξ, η equivalent if there is an
integer λ, not divisible by p, such that 1

p (f − λg) has its coefficients in Z, in other
words, if the reductions modulo p of the vectors of coefficients of f, g, respectively,
represent the same point in the t-dimensional projective space Pt(Fp). Clearly, the
number of equivalence classes is at most the number of points in Pt(Fp), which is

(2.9)
pt+1 − 1
p− 1

≤ 2pt .

Now for equivalent ξ, η with minimal polynomials f, g and with λ as above we
have by (1.11), that

(2.10) R(f, g) = R(f − λg, g) = ptR( 1
p (f − λg), g) ≡ 0 (mod pt) .

Choose p such that 2t−1+κ/t ≤ p < 2t+κ/t. Then by (2.9), the number of equiva-
lence classes is at most 2pt < 2t

2+κ+1. So among the solutions ξ1, . . . , ξC+1 there
must be at least t+ 1 belonging to the same equivalence class. Among these t+ 1
solutions we can choose two, ξ := ξi and η := ξj , say, with i < j, which are not
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conjugate to each other. Now if f, g are the minimal polynomials of ξ, η, then in
view of (2.4), (2.10), we can replace (2.5) by

t∏
k=1

t∏
l=1

|ξ(k) − η(l)|
|1, ξ(k)| · |1, η(l)|

≥ pt

M(ξ)tM(η)t
≥ 2t

2−t+κ

M(ξ)tM(η)t
.

By repeating the argument of (i) we obtain instead of (2.8),

2t
2−t+κ

M(ξ)tM(η)t
≤ 2t

2+tM(ξ)−(ϕ1+···+ϕt) = 2t
2+tM(ξ)−κ

and so
2M(η) ≥

(
2M(ξ)

)1+(κ−2t)/t
.

Together with M(ξ1) ≤M(ξ) ≤M(η) ≤M(ξC+1) this implies (2.3). �

We need the following simple consequence of Lemma 1:

Lemma 2. (i). Let A,B be reals with B ≥ A ≥ U2 = 4t(t+1)/(κ−2t). Then the

number of solutions ξ of (1.5) with A ≤M(ξ) < B is at most

t ·
(

1 +
log(2 logB/ logA)
log(1 + (κ− 2t)/t)

)
.

(ii). Let A,B be reals with B ≥ A ≥ 1. Then the number of solutions ξ of (1.5)

with A ≤M(ξ) < B is at most

C ·
(

1 +
log(log 2B/ log 2A)
log(1 + (κ− 2t)/t)

)
.

Proof. (i). Put θ := 1 + (κ− 2t)/t. Let k be the smallest integer with(
U−1A

)θk ≥ U−1B .

Part (i) of Lemma 1 implies that for each i ∈ {0, . . . , k − 1}, (1.5) has at most t
solutions ξ with (U−1A)θ

i ≤ U−1M(ξ) < (U−1A)θ
i+1

. Hence (1.5) has at most
t · k solutions with A ≤ M(ξ) < B. Now part (i) follows since in view of our
assumption A ≥ U2 we have

k ≤ 1 +
log(logU−1B/ logU−1A)

log θ
≤ 1 +

log(2 logB/ logA)
log θ

.

(ii). Use part (ii) of Lemma 1 and repeat the argument given above with 2 replacing
U−1 and C · k replacing t · k. �
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Proof of part (ii) of Theorem 2.
Put θ := 1 + (κ− 2t)/t. We first estimate the number of solutions ξ of (1.5) with
4t(t+1)/(κ−2t) ≤M(ξ) < max(4t(t+1)/(κ−2t),M). Assuming that M ≥
4t(t+1)/(κ−2t), we infer from part (i) of Lemma 2 that this number is at most

t ·
(

1 +
log
(
2 logM

/ t(t+1)
κ−2t log 4

)
log θ

)
≤ t ·

(
1 +

log(θ logM)
log θ

)
(2.12)

≤ t ·
(

2 +
log log 4M

log θ

)
.

This is clearly also true if M < 4t(t+1)/(κ−2t).

We now estimate the number of solutions ξ of (1.5) with M(ξ) < 4t(t+1)/(κ−2t).
From part (ii) of Lemma 2 with A = 1, B = 4t(t+1)/(κ−2t) it follows that this
number is at most

t·2t
2+κ+1 ·

(
1+

log(1 + 2t(t+1)
κ−2t )

log θ

)
≤ t·2t

2+κ+1 ·3 log
(
2t(t+1)

)
·
(

1+
log(2 + 1

κ−2t )
log θ

)
.

Together with (2.12) this implies that the total number of solutions of (1.5) with
M(ξ) < max(4t(t+1)/(κ−2t),M) is at most

2t
2+t+κ+4

(
1 +

log(2 + 1
κ−2t )

log θ

)
+ t · log log 4M

log θ

which is precisely the upper bound in part (ii) of Theorem 2. �

§3. Construction of the auxiliary polynomial.

For an algebraic number ξ we put

|| ξ || := max(|ξ(1)|, . . . , |ξ(r)|),

where ξ(1), . . . , ξ(r) are the conjugates of ξ over Q. More generally, for a vector
x := (ξ1, . . . , ξR) with algebraic coordinates we put

||x || := max(|| ξ1 ||, . . . , || ξR ||) .

The ring of integers of an algebraic number field K (assumed to be contained in
C) is denoted by OK . We need the following consequence of Siegel’s lemma:
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Lemma 3. Let K be an algebraic number field of degree r. Further, let R, S be

rational integers with

(3.1) 0 < S ≤ R, rS > (r − 1)R ,

let A be a positive real and let a1, . . . ,aS ∈ KR be K-linearly independent vectors

for which there are rational integers q1, . . . , qS with

(3.2) 0 < qi ≤ A, qiai ∈ ORK , || qiai || ≤ A for i = 1, . . . , S .

Then there are β1, . . . , βS ∈ OK such that

x :=
S∑
i=1

βiai ∈ ZR\{0},(3.3)

||x || ≤
{
C(K) · SA

} rS
rS−(r−1)R ,(3.4)

|βi| ≤
{
C(K) · SA

} rS
rS−(r−1)R for i = 1, . . . , S ,(3.5)

where C(K) is a constant depending only on K.

Proof. Lemma 3 may be proved by applying a sophisticated version of Siegel’s
lemma of Bombieri-Vaaler type, but then some extra work must be done to get a
good upper bound for the numbers |βi|. Instead, we give a direct proof of Lemma
3, following Wirsing [24]. C1(K), C2(K), . . . denote constants depending only on
K.

Put a′i := qiai for i = 1, . . . , S. We search for β′1, . . . , β
′
S ∈ OK such that

(3.6) x :=
S∑
i=1

β′ia
′
i ∈ ZR\{0} .

Then (3.3) holds with

(3.7) βi = qiβ
′
i for i = 1, . . . , S .

Let {ω1, . . . , ωr} be a Z-basis of OK with ω1 = 1. We can express α ∈ OK as

(3.8) α =
r∑
i=1

xiωi with xi ∈ Z, |xi| ≤ C1(K)||α || for i = 1, . . . , r ;
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the upper bounds for |xi| follow by taking conjugates and solving x1, . . . , xr from
the system of linear equations α(j) =

∑r
i=1 xiω

(j)
i (j = 1, . . . , r), using Cramer’s

rule. Now we have

a′i =
r∑
j=1

ωjbij with bij ∈ ZR for i = 1, . . . , S, j = 1, . . . , r,(3.9)

β′i =
r∑

k=1

ωkzik with zik ∈ Z for i = 1, . . . , S, k = 1, . . . , r.(3.10)

Define the integers ujkl by

ωjωk =
r∑
l=1

ujklωl for j, k ∈ {1, . . . , r} .

Then we obtain
S∑
i=1

β′ia
′
i =

S∑
i=1

r∑
j=1

r∑
k=1

ωjωkzikbij(3.11)

=
r∑
l=1

ωl

{ S∑
i=1

r∑
k=1

zikcikl
}

with cikl :=
r∑
j=1

ujklbij ∈ ZR .

By (3.8), (3.2) we have

(3.12) ||bij || ≤ C2(K)||a′i || ≤ C2(K)A for i = 1, . . . , S, j = 1, . . . , r,

so

(3.13) || cikl || ≤ C3(K)A for i = 1, . . . , S, k = 1, . . . , r, l = 1, . . . , r .

Recalling that ω1 = 1, we infer that
∑S
i=1 β

′
ia
′
i ∈ ZR if and only if the coefficients

of ω2, . . . , ωr in (3.11) are 0, i.e.

(3.14)
S∑
i=1

r∑
k=1

zikcikl = 0 for l = 2, . . . , r .

Since the vectors cikl have R coordinates, (3.14) is a system of R(r− 1) equations
in Sr unknowns. Since Sr > R(r − 1), we have by the most basic form of Siegel’s
lemma (cf. [19], p. 127), that system (3.14) has a non-trivial solution in integers
zik with

max
i,k
|zik| ≤

{
rS ·max

i,k,l
|| cikl ||

} R(r−1)
Sr−R(r−1)

(3.15)

≤
{
C4(K) · SA

} R(r−1)
Sr−R(r−1)

by (3.13).
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By (3.14) we have that x :=
∑S
i=1 β

′
ia
′
i is equal to the coefficient of ω1 = 1 in

(3.11), i.e.

x =
S∑
i=1

r∑
k=1

zikc1kl .

Together with (3.15), (3.13) this implies

||x || ≤ Sr ·
(

max
i,k
|zik|

)(
max
k,l
|| c1kl ||

)
≤
(
C5(K) · SA

)1+
R(r−1)

Sr−R(r−1)
=
(
C5(K) · SA

) Sr
Sr−R(r−1)

.

Moreover, (3.10) and (3.15) imply

|β′i| ≤ C6(K)
{
C4(K) · SA

} R(r−1)
Sr−R(r−1)

and so, by (3.7),

|βi| = |qi||β′i| ≤ A|β′i| ≤
(
C7(K) · SA

) Sr
Sr−R(r−1)

for i = 1, . . . , S .

This completes the proof of Lemma 3. �

Let α1, . . . , αt be the algebraic numbers from Theorem 2 and put K :=
Q(α1, . . . , αt). By assumption we have

(1.9) max
i=1,...,t

M(αi) = M, [K : Q] = r .

Let γ1, . . . , γt be non-negative real numbers with γ1+· · ·+γt = 1. For i = 0, 1, 2, . . .
we define the polynomial of degree i,

pi(X) := (X − α1)j1(i) · · · (X − αt)jt(i),(3.16)

with jl(i) = [γl · i] for l = 1, . . . , t− 1, jt(i)−
t−1∑
l=1

[γl · i] .

Let k, d1, . . . , dk be positive integers and put

Ik = {0, . . . , d1} × · · · × {0, . . . , dk} .

By i we denote a tuple (i1, . . . , ik) ∈ Ik. For a polynomial P with integer coeffi-
cients, we denote by ||P || the maximum of the absolute values of its coefficients.
The next lemma gives our auxiliary polynomial:
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Lemma 4. Assume that

(3.17)
2d1+···+dk

(d1 + 1) · · · (dk + 1)
≥ C(K)

where C(K) is the constant from Lemma 3. Let I be a subset of Ik with

(3.18) #I ≤ 1
2r

(d1 + 1) · · · (dk + 1) .

Then there are βi ∈ OK for i ∈ Ik\I such that

P (X1, . . . , Xk) :=
∑

i∈Ik\I

βipi1(X1) · · · pik(Xk) ∈ Z[X1, . . . , Xk]\{0} ,(3.19)

||P || ≤
(
4M
)2r(d1+···+dk)

,(3.20)

|βi| ≤
(
4M
)2r(d1+···+dk) for i ∈ Ik\I .(3.21)

Proof. Let i > 0. Then

pi(X) = (X − αi1) · · · (X − αii) with αi1, . . . , αii ∈ {α1, . . . , αt}.

Let qij ∈ Z>0 be the leading coefficient of the minimal polynomial of αij . Clearly,
by (1.9) we have

(3.22) qij ≤M(αij) ≤M, qij ||αij || ≤M(αij) ≤M .

The coefficient of Xj1
1 · · ·X

jk
k in pi1(X1) · · · pik(Xk) is equal to

(3.23) α(i, j) = ±
k∏
h=1

∑
Sh

∏
lh∈Sh

αih,lh ,

where for h = 1, . . . , k, the sum is taken over all subsets Sh of {1, . . . , ih} of
cardinality ih − jh. Define the rational integer

q(i, j) :=
k∏
h=1

ih∏
j=1

qih,j .

By (3.23) we have q(i, j)α(i, j) ∈ OK and by (3.23), (3.22) we have

q(i, j) ≤Md1+···+dk ,(3.24)

|| q(i, j)α(i, j) || ≤
k∏
h=1

(
ih

ih − jh

)
M i1+···+ik ≤ (2M)d1+···+dk .
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We apply Lemma 3 with R = (d1 +1) · · · (dk+1), S = R−#I and {a1, . . . ,aS} =
{pi1(X1) · · · pik(Xk) : i ∈ Ik\I}. (3.18) implies condition (3.1) and (3.24) implies
(3.2) with A = (2M)d1+···+dk . Note that by (3.17) we have

C(K) · SA ≤ C(K)(d1 + 1) · · · (dk + 1)A ≤ (4M)d1+···+dk

and that by (3.18), we have Sr ≥ (r − 1
2 )R, whence

Sr

Sr −R(r − 1)
≤

(r − 1
2 )R

1
2R

≤ 2r .

Together with Lemma 3 this implies at once that there are βi (i ∈ Ik\I) with
(3.19)-(3.21). �

§4. Combinatorial lemmas.

We will have to estimate the values of the auxiliary polynomial constructed in §3
in certain points and for this purpose we need some combinatorial lemmas. We
use the arguments from elementary probability theory introduced by Wirsing [24],
except that we obtain better estimates by using the following lemma instead of
Chebyshev’s inequality:

Lemma 5. Let X1, . . . , Xk be mutually independent random variables on some

probability space with probability measure P , such that for i = 1, . . . , k, Xi has

expectation µi and P (Xi ∈ [0, 1]) = 1. Let µ := µ1 + · · ·+ µk and let ε be a real

with 0 < ε < 2/3. Then

(4.1) P (|X1 + · · ·+Xk − µ| ≥ εk) ≤ 2e−ε
2k/3 (e = 2.7182 . . .) .

Proof. Clearly, (4.1) follows from

P (X1 + · · ·+Xk − µ ≥ εk) ≤ e−ε
2k/3 ,(4.2)

P (X1 + · · ·+Xk − µ ≤ −εk) ≤ e−ε
2k/3 ,(4.3)

and (4.3) follows from (4.2) by replacing Xi by 1 − Xi, µi by 1 − µi in (4.2) for
i = 1, . . . , k. So it suffices to prove (4.2).

For i = 1, . . . , k, denote by σ2
i the variance of Xi, i.e. the expectation of (Xi−µi)2;

since P (Xi ∈ [0, 1]) = 1 this variance exists and is ≤ 1. Put s2 :=
∑k
i=1 σ

2
i . We

may assume that s2 > 0 since otherwise P (Xi = µi) = 1 for i = 1, . . . , t and we
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are done. By the inequality at the bottom of p. 267, Section 19 of Loève [11] we
have

(4.4) P
(X1 + · · ·+Xk − µ

s
≥ ε′

)
≤ exp

(
− tε′ + t2

2
(1 +

tc

2
)
)

for ε′ > 0 ,

where c is such that P (|(Xi − µi)/s| ≤ c) = 1 for i = 1, . . . , k and t is any real
with 0 < t ≤ c−1. (Loève uses the notation S′ for (X1 + · · · + Xk − µ)/s). We
apply (4.4) with ε′ = kε/s, c = 1/s and t = εs. Then the right-hand side of (4.4)
becomes

exp
(
− ε2k +

ε2s2

2
(1 +

ε

2
)
)
≤ exp (−ε2k/3)

since s2 ≤ k, 0 < ε < 2/3. This implies (4.2). �

Let ε be a real and let k, t, d1, . . . , dk be positive integers with

0 < ε <
1
6t

,(4.5)

dh >
104

ε
for h = 1, . . . , k .(4.6)

Define the sets
Ik = {0, . . . , d1} × · · · × {0, . . . , dk} ,
Ck = {1, . . . , t}k .

We will use i to denote a tuple (i1, . . . , ik) ∈ Ik and c to denote a tuple (c1, . . . , ck)
∈ Ck.

Lemma 6. There is a subset I of Ik with

#I ≤ 24ε−1e−ε
2k/4(d1 + 1) · · · (dk + 1)

such that for all i ∈ Ik\I and all x ∈ [0, 1] we have∣∣#{h ∈ {1, . . . , k} :
ih
dh
≤ x

}
− kx

∣∣ ≤ εk .
Proof. For x ∈ [0, 1], i ∈ Ik we put s(i, x) := #

{
h ∈ {1, . . . , k} : ih

dh
≤ x

}
. We

endow Ik with the probability measure P such that each tuple i = (i1, . . . , ik) ∈ Ik
has probability 1/#Ik = 1/(d1 + 1) · · · (dk + 1). Fix x ∈ [0, 1]. For h = 1, . . . , k,
define the random variable Xh = Xh(i) on Ik by Xh = 1 if 0 ≤ ih/dh ≤ x and
Xh = 0 if x < ih/dh ≤ 1. Thus, X1, . . . , Xk are mutually independent and Xh has
expectation µh = P (Xh = 1) = ([xdh] + 1)/(dh + 1) for h = 1, . . . , k. By Lemma
5 with (0.9− 10−4)ε replacing ε we have

P
(
|X1 + · · ·+Xk − (µ1 + · · ·+ µk)| > (0.9− 10−4)εk

)
≤ 2e−ε

2k/4 .
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By (4.6) we have

|µh − x| =
|[xdh] + 1− xdh − x|

dh + 1
≤ 1
dh + 1

< 10−4ε for h = 1, . . . , k .

Hence
P (|X1 + · · ·+Xk − kx| > 0.9εk) ≤ 2e−ε

2k/4 .

This implies that for each fixed x ∈ [0, 1] there exists a subset I(x) of Ik with

|s(i, x)− kx| ≤ 0.9εk for i ∈ Ik\I(x) , #I(x) ≤ 2e−ε
2k/4 .

Now let n = [10/ε] + 1 and take

I :=
n
∪
m=0
I(
m

n
) .

Then
#I ≤ 2(n+ 1)e−ε

2k/4 ≤ 24ε−1e−ε
2k/4 .

Let x ∈ [0, 1] and choose m ∈ {0, . . . , n− 1} with m/n ≤ x ≤ (m+ 1)/n. Then for
i ∈ Ik\I = ∩nm=0(Ik\I(mn )) we have

s(i, x) ≤ s(i, m+ 1
n

) ≤ k(
m+ 1
n

+ 0.9ε) ≤ k(x+
1
n

+ 0.9ε) ≤ k(x+ ε),

s(i, x) ≥ s(i, m
n

) ≥ k(
m

n
− 0.9ε) ≥ k(x− 1

n
− 0.9ε) ≥ k(x− ε),

which is what we wanted to prove. �

Lemma 7. Let I be the set from Lemma 6. Then for i ∈ Ik\I, h = 1, . . . , k we

have

|
iπ(h)

dπ(h)
− h

k
| ≤ ε ,

where π is the permutation of (1, . . . , k) such that

iπ(1)

dπ(1)
≤ · · · ≤

iπ(k)

dπ(k)
.

Proof. Fix i ∈ Ik\I, h ∈ {1, . . . , k} and put x := iπ(h)/dπ(h). By definition, the
number of integers j with j ∈ {1, . . . , k}, ij/dj ≤ x is equal to h. Lemma 6 implies
that |h− kx| ≤ εk. This implies Lemma 7. �

Lemma 8. There is a subset C of Ck with

#C ≤ 2te−ε
2k/3 · tk ,
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such that for each c ∈ Ck\C, c ∈ {1, . . . , t} we have

(4.7) |#
{
h ∈ {1, . . . , k} : ck = c

}
− k

t
| ≤ εk .

Proof. Lemma 8 follows once we have proved that for each c ∈ {1, . . . , t} there
is a subset C(c) of Ck with #C(c) ≤ 2e−ε

2k/3tk such that for each c ∈ Ck\C(c)

we have (4.7). We endow Ck with the probability measure P such that each
c = (c1, . . . , ck) ∈ Ck has probability 1/#Ck = 1/tk. Fix c ∈ {1, . . . , t}. For
h = 1, . . . , k, define the random variable Xh = Xh(c) on Ck by Xh = 1 if ch = c

and Xh = 0 if ch 6= c. Then X1, . . . , Xk are mutually independent and Xh has
expectation 1/t for h = 1, . . . , k. Now by Lemma 5 we have

#
{

c ∈ Ck : |#
{
h ∈ {1, . . . , k} : ck = c

}
− k

t | ≥ εk
}

tk

= P (|X1 + · · ·+Xk −
k

t
| ≥ εk) ≤ 2e−ε

2k/3

which is what we wanted to prove. �

The next lemma is the main result of this section:

Lemma 9. Let ϕ1, . . . , ϕt be non-negative reals satisfying (1.10), and let ε be a

real and k, t, d1, . . . , dk integers satisfying (4.5),(4.6). Then there are subsets I of

Ik = {0, . . . , d1} × · · · × {0, . . . , dk} and C of Ck = {1, . . . , t}k with

#I ≤ 24ε−1e−ε
2k/4 · (d1 + 1) · · · (dk + 1) ,(4.8)

#C ≤ 2te−ε
2k/3 · tk ,(4.9)

and non-negative reals γ1, . . . , γt with γ1 + · · · + γt = 1, such that for all tuples

i ∈ Ik\I, c ∈ Ck\C we have

(4.10)
k∑
h=1

ih
dh
γchϕch ≥

( k

2t2
− 3εk

t

)
· (2t+ δ) .

Remark. The lower bound of (4.10) cannot be improved by another choice of
γ1, . . . , γt.

Proof. We prove Lemma 9 with the sets I from Lemmas 6 and and C from Lemma
8. These sets satisfy (4.8), (4.9), respectively. By (1.10), there is a subset I of
{1, . . . , t} such that (#I)2

(∑
j∈I ϕ

−1
j

)−1 ≥ 2t+ δ. Choose

γi := 0 for i ∈ {1, . . . , t}\I, γi := ϕ−1
i

/
(
∑
j∈I

ϕ−1
j )−1 for i ∈ I .
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Then (4.10) follows once we have proved that for every i = (i1, . . . , ik) ∈ Ik\I,
c = (c1, . . . , ck) ∈ Ck\C,

(4.11)
∑

h: ch∈I

ih
dh
≥
( k

2t2
− 3εk

t

)(
#I
)2
.

Fix i ∈ Ik\I, c ∈ Ck\C. Let T := #{h ∈ {1, . . . , k} : ch ∈ I} and let π be a
permutation of (1, . . . , k) such that iπ(1)/dπ(1) ≤ · · · ≤ iπ(k)/dπ(k). By Lemma 8,
Lemma 7, respectively, we have

(#I)k(
1
t
− ε) ≤ T ≤ (#I)k(

1
t

+ ε) ,
iπ(h)

dπ(h)
≥ h

k
− ε for h = 1, . . . , k.

Hence

∑
h: ch∈I

ih
dh
≥

T∑
h=1

iπ(h)

dπ(h)
≥

T∑
h=1

(h
k
− ε
)
≥ 1

2k
T 2 − εT

≥ 1
2k
k2(#I)2(

1
t
− ε)2 − εk(

1
t

+ ε)#I ≥
( k

2t2
− 3εk

t

)(
#I
)2

where we used that ε < 1
t by (4.5) and #I ≤ (#I)2. This proves (4.11). �

§5. Estimation of certain values of the auxiliary polynomial.

Let α1, . . . , αt be the algebraic numbers and ϕ1, . . . , ϕt the reals from Theorem 2.
Thus, maxI (#I)2

(∑
i∈I ϕ

−1
i

)−1 ≥ 2 + δ with 0 < δ < 1. Define

ε =
δ

34t2
,(5.1)

k =
[
3.5×104 · t4δ−2

(
1 +

1
2

log t
)(

1 +
1
2

log δ−1
)

log 4r
]

(5.2)

and let d1, . . . , dk be integers satisfying

(5.3) d1 ≥ d2 ≥ · · · ≥ dk ≥ max(
104t

ε
, C(K))

where C(K) is the constant from Lemma 3. Thus, (4.5) and (4.6) are satisfied
and Lemma 9 is applicable. Let I and C be the sets, and γ1, . . . , γt the reals from
Lemma 9. Then

#I ≤ 1
2r

(d1 + 1) · · · (dt + 1) ,(5.4)

#C ≤ tε · tk .(5.5)
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Namely, (5.4) and (5.5) follow from (4.8), (4.9) and the inequalities 24ε−1e−kε
2/4 ≤

1
2r , 2te−kε

2/3 ≤ tε, and these inequalities hold true since by (5.1), (5.2) we have

max
(

4ε−2 log
48r
ε
, 3ε−2 log

2
ε

)
= 4624t4δ−2

(
log 1632 + 2 log t+ log δ−1 + log r

)
< 3.5×104 · t4δ−2

(
1 +

1
2

log t
)(

1 +
1
2

log δ−1
)

log 4r − 1 < k .

We apply Lemma 4 with these k, d1, . . . , dk, I and γ1, . . . , γt; this is possible since
(5.3) and (5.4) imply the conditions (3.17) and (3.18) of Lemma 4. Let P be the
auxiliary polynomial from Lemma 4, i.e.

(5.6) P (X1, . . . , Xk) =
∑

i∈Ik\I

βipi1(X1) · · · pik(Xk) ,

where for i = 1, 2, . . . pi(X) is given by (3.16). Further, let ξ1, . . . , ξk be solutions
of (1.5) with

M(ξ1) ≥ (6M)68t2(2r+t)/δ ,(5.7)

M(ξ1)d1 ≤M(ξh)dh ≤M(ξ1)d1(1+ε2) for h = 1, . . . , k .(5.8)

For a polynomial in k variables X1, . . . , Xk and a tuple of non-negative integers
j = (j1, . . . , jk) define the differential operator

Dj =
1

j1! · · · jk!
∂j1+···+jk

∂Xj1
1 · · · ∂X

jk
k

;

note that Dj maps polynomials with coefficients in Z to polynomials with coeffi-
cients in Z. We need the following estimate:

Lemma 10. (i). For each tuple c = (c1, . . . , ck) ∈ Ck\C and for each tuple of

non-negative integers j = (j1, . . . , jk) with

(5.9)
k∑
h=1

jh
dh

<
εk

t

we have

|DjP (ξ(c1)
1 , . . . , ξ

(ck)
k )| ≤ (6M)(2r+t)(d1+···+dk)

( k∏
h=1

|1, ξ(ch)
h |dh

)
·(5.10)

·
(
M(ξ1)d1

)−(2t+δ)((k/2t2)−5kε/t)
.
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(ii). For each tuple c ∈ Ck and each tuple of non-negative integers j we have

(5.11) |DjP (ξ(c1)
1 , . . . , ξ

(ck)
k )| ≤ (6M)(2r+t)(d1+···+dk)

( k∏
h=1

|1, ξ(ch)
h |dh

)
.

Proof. In addition to the hypotheses made above we assume that

(5.12) 0 ≤ ϕl ≤ 2t+ δ for l = 1, . . . , t .

This is no loss of generality. Namely, suppose that for instance ϕ1 > 2t+ δ. Then
ξ1, . . . , ξt satisfy (1.5) with ϕ1 = 2t + δ and ϕl = 0 for l = 2, . . . , t. Then these
new ϕl satisfy (1.10) and we can prove Lemma 10 with these new ϕl.

For every non-negative integer j we define the differential operator for polynomials
in one variable X, Dj = (1/j!)dj/dXj . Then for each i ≥ 0, j ≥ 0 we have

Djpi(X) = Dj
( t∏
l=1

(X − αl)jl(i)
)

=
∑

0≤jl≤jl(i)
j1+···+jt=j

t∏
l=1

(
jl(i)
jl

)
(X − αl)jl(i)−jl .

For h ∈ {1, . . . , k}, c ∈ {1, . . . , t} we have by (1.5),

(5.13) |αc − ξ(c)
h | ≤ 2|1, αc| · |1, ξ(c)

h | ·M(ξh)−ϕc

and, trivially,

(5.14) |αl − ξ(c)
h | ≤ 2|1, αl| · |1, ξ(c)

h | for l = 1, . . . , t .

Further, by (3.16) we have that pi(X) =
∏t
l=1(X − αl)jl(i) where the jl(i) are

non-negative integers with

t∑
l=1

jl(i) = i, jl(i) ≥ γli− 1 for l = 1, . . . , t .

Together with (5.8), (5.12) these imply

|Djpi(ξ
(c)
h )|(5.15)

≤
∑

0≤jl≤jl(i)
j1+···+jl=j

t∏
l=1

(
jl(i)
jl

)(
2|1, αl| · |1, ξ(c)

h |
)jl(i)−jl ·M(ξh)−ϕc(jc(i)−jc)

≤ (4M t|1, ξ(c)
h |)

i ·M(ξh)−γcϕci+ϕc(j+1)

≤ (4M t|1, ξ(c)
h |)

i ·
(
M(ξ1)d1

)−γcϕc(i/dh)+(1+ε2)(2t+δ)(j+1)/dh .
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We now use Lemma 9. Let c = (c1, . . . , ck) ∈ Ck\C, i = (i1, . . . , ik) ∈ Ik\I, and
j = (j1, . . . , jk) a tuple of non-negative integers satisfying (5.9). Then by (5.15)
we have

|Dj
k∏
h=1

pih(ξ(ch)
h )| ≤ AB

(
M(ξ1)d1

)−C
with A = (4M t)d1+···+dt , B =

∏k
h=1 |1, ξ

(ch)
h |dh and

C =
k∑
h=1

ih
dh
γchϕch − (1 + ε2)(2t+ δ)

( k∑
h=1

jh
dh

+
k∑
h=1

1
dh

)
.

We have
k∑
h=1

ih
dh
γchϕch ≥ (2t+ δ)

( k
2t2
− 3εk

t

)
by Lemma 9,

(1 + ε2)
( k∑
h=1

jh
dh

+
k∑
h=1

1
dh

)
<

2εk
t

by (5.9), (5.1), (5.3),

hence
C ≥ (2t+ δ)

( k
2t2
− 5εk

t

)
.

Now (5.6) and the estimates for βi in Lemma 4 give

|DjP (ξ(c1)
1 , . . . , ξ

(ck)
k )| ≤ A′B

(
M(ξ1)d1

)−C
with

A′ = A
( ∑

i∈Ik\I

|βi|
)

≤ (4M t)d1+···+dk · 2d1+···+dk(4M)2r(d1+···+dk)

≤ (6M)(2r+t)(d1+···+dk) .

This proves part (i) of Lemma 10. We obtain part (ii) by observing that, as a
consequence of (5.14), we can replace (5.15) by the trivial estimate |Djpi(ξ

(c)
h | ≤

(4M t|1, ξ(c)
h |)i and so all estimates made above remain valid if we replace the

exponent C on M(ξ1)d1 by 0. �

Lemma 11. Suppose that ε, k, d1, . . . , dk satisfy (5.1)-(5.3) and that ξ1, . . . , ξk
are solutions of (1.5) satisfying (5.7),(5.8). Let P be the polynomial from Lemma

4, with the set I and the reals γ1, . . . , γt from Lemma 9. Then there is a tuple

c = (c1, . . . , ck) ∈ Ck = {1, . . . , t}k such that for each tuple j = (j1, . . . , jk) of

non-negative integers with
∑k
h=1 jh/dh < εk/t we have

(5.16) DjP (ξ(c1)
1 , . . . , ξ

(ct)
t ) = 0 .
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Proof. We assume the contrary. Let L be the normal extension of Q generated by
the numbers ξ(c)

h (h = 1, . . . , k, c = 1, . . . , t). We call two tuples c = (c1, . . . , ck),
c′ = (c′1, . . . , c

′
k) ∈ Ck conjugate if there is an Q-automorphism of L mapping the

tuple (ξ(c1)
1 , . . . , ξ

(ct)
t ) to (ξ(c′1)

1 , . . . , ξ
(c′t)
t ). From our assumption, it follows that for

every c ∈ Ck there is a tuple jc with (5.9) such that DjcP (ξ(c1)
1 , . . . , ξ

(ct)
t ) 6= 0.

Since P has its coefficients in Z, there is no loss of generality in assuming that
jc = jc′ whenever c and c′ are conjugate. For h = 1, . . . , k, let qh ∈ Z>0 denote
the leading coefficient of the minimal polynomial of ξh. Define the number

Z :=
(
qd1
1 · · · q

dk
k

)tk−1 ∏
c∈Ck

DjcP (ξ(c1)
1 , . . . , ξ

(ct)
t ) .

Then Z 6= 0. We will obtain a contradiction by showing that Z ∈ Z and |Z| < 1.

We first show that Z ∈ Z. Since for conjugate tuples c, c′ we have jc = jc′ , the
number Z is invariant under automorphisms of L, i.e. Z ∈ Q. Denote the fractional
ideal with respect to the ring of integers of L generated by µ1, . . . , µm ∈ L by
(µ1, . . . , µm). For c ∈ Ck we have

(5.17) DjcP (ξ(c1)
1 , . . . , ξ

(ct)
t ) ∈ (1, ξ(c1)

1 )d1 · · · (1, ξ(ck)
k )dk

since the polynomial DjcP has its coefficients in Z and has degree ≤ dh in Xh. The
minimal polynomial of ξh is qh

∏t
c=1(X− ξ(c)

h ). The coefficients of this polynomial
are integers with gcd 1. On the other hand, by Gauss’ lemma for fractional ideals
in number fields, the ideal generated by the coefficients of this polynomial is equal
to qh

∏t
c=1(1, ξ(c)

h ); therefore, qh
∏t
c=1(1, ξ(c)

h ) = (1). Together with (5.17) this
implies

Z ∈ (qd1
1 · · · q

dk
k )t

k−1
( ∏

c∈Ck

(1, ξ(c1)
1 )d1 · · · (1, ξ(ck)

k )dk
)

=
( k∏
h=1

{
qh(1, ξ(1)

h ) · · · (1, ξ(t)
h )
}dh)tk−1

= (1) .

Hence Z ∈ Z.

We now show that |Z| < 1. Lemma 10 gives

|Z| ≤ A1B1

(
M(ξ1)d1

)−C1
,

with

A1 = (6M)(2r+t)(d1+···+dk)tk ,

B1 = (qd1
1 · · · q

dk
k )t

k−1 ∏
c∈Ck

( k∏
h=1

|1, ξ(ch)
h |dh

)
=
( k∏
h=1

M(ξh)dh
)tk−1

,

C1 =
(
#Ck\C

)
· (2t+ δ){ k

2t2
− 5εk

t
} .
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Further,

A1 ≤ (6M)(2r+t)ktkd1 by (5.3),

B1 ≤M(ξ1)kt
k−1d1(1+ε2) by (5.8),

C1 ≥ (1− εt)tk(2t+ δ){ k
2t2
− 5εk

t
} = ktk−1 · (1− εt)

( 1
2t
− 5ε

)
(2t+ δ) by (5.5).

Therefore,

|Z| ≤
(
A2M(ξ1)−C2

)ktk−1d1

,

with

A2 = (6M)t(2r+t) ,

C2 = −(1 + ε2) + (1− εt)
( 1

2t
− 5ε

)
(2t+ δ)

=
δ

2t
− 11εt− 11

2
εδ + 10ε2t2 + 5ε2tδ − ε2 > δ

2t
− 33

2
εt since δ < t

≥ δ

68t
by (5.1) .

Together with (5.7) this implies that |Z| < 1. �

§6. Completion of the proof of part (i) of Theorem 2.

We apply Lemma 12 below, which is the sharpening of Roth’s lemma from [5].
We mention that this sharpening was proved by making explicit the arguments in
Faltings’ proof of his Product theorem [7]. A result slightly weaker than Lemma
12 follows from Ferretti’s work [8]. For further information on Faltings’ Product
theorem we refer to [13]. We recall that for a polynomial P with coefficients in Z,
||P || denotes the maximum of the absolute values of its coefficients.

Lemma 12. Let σ be a real and k, d1, . . . , dk integers such that k ≥ 2, 0 < σ ≤
k + 1 and

(6.1)
dh
dh+1

≥ ω1 :=
2k3

σ
for h = 1, . . . , k − 1.

Further, let P be a non-zero polynomial in Z[X1, . . . , Xk] of degree at most dh in

Xh for h = 1, . . . , k and ξ1, . . . , ξk non-zero algebraic numbers such that

M(ξh)dh/deg ξh ≥
(

4d1+···+dk ||P ||
)ω2

for h = 1, . . . , k(6.2)

with ω2 :=
(3k3

σ

)k
.
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Then there is a tuple j = (j1, . . . , jk) of non-negative integers with

k∑
h=1

jh
dh

< σ , DjP (ξ1, . . . , ξk) 6= 0 .

Proof. This follows from Theorem 3 and the Remark on pp. 221,222 of [5]. We
mention that Theorem 3 of [5] has instead of (6.2) the assumption H(ξh)dh >

{ed1+···+dkH(P )}ω2 , with heights H(ξh), H(P ) defined in [5]. This is implied by
(6.2) since H(ξh) ≥ M(ξh)1/deg ξh and since for polynomials P ∈ Z[X1, . . . , Xk],
H(P ) is equal to the Euclidean norm of the vector of coefficients of P so H(P ) ≤
{(d1 + 1) · · · (dk + 1)}1/2||P ||. �

Let ϕ1, . . . , ϕt be non-negative reals satisfying (1.10). Let ε and k be given by
(5.1), (5.2), respectively. Put

(6.3) σ :=
εk

t
.

Thus, the quantities ω1, ω2 in Lemma 12 are equal to

(6.4) ω1 =
2k2t

ε
, ω2 =

(3k2t

ε

)k
=
(3ω1

2

)k
.

We prove the following:

Lemma 13. (1.5) has no solutions ξ1, . . . , ξk with

M(ξ1) ≥
(
4M
)3rkω2

,(6.5)

M(ξh+1) ≥M(ξh)3ω1/2 for h = 1, . . . , k − 1 .(6.6)

Proof. We assume the contrary and obtain a contradiction by applying Lemmas
11 and 12. We choose integers d1, . . . , dk as follows: take

(6.7) dk ≥ max
(104t

ε2
, C(K)

)
and let d1, . . . , dk−1 be the integers defined by

dk logM(ξk)− logM(ξ1) < d1 logM(ξ1) ≤ dk logM(ξk),

d1 logM(ξ1) ≤ dh logM(ξh) < d1 logM(ξ1) + logM(ξh) for h = 2, . . . , k − 1 .

(6.7) implies that

logM(ξ1)
dk logM(ξk)

< 10−4ε2 ,

logM(ξh)
d1 logM(ξ1)

≤
(
1− 10−4ε2

)−1 logM(ξh)
dk logM(ξk)

≤ ε2 for h = 2, . . . , k − 1,
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so

(6.8) M(ξ1)d1 ≤M(ξh)dh ≤M(ξ1)d1(1+ε2) for h = 1, . . . , k.

Further, (6.8) and (6.6) imply that

(6.9)
dh
dh+1

≥ (1 + ε2)−1 · logM(ξh+1)
M(ξh)

≥ (1 + ε2)−1 3ω1

2
> ω1 .

We apply Lemma 11. Let P be the polynomial from Lemma 4. We assumed (5.1)
and (5.2), and (5.3) is a consequence of (6.7) and (6.9). Further, (5.7) follows
from (6.5),(5.1),(5.2) and (6.4), while (5.8) follows from (6.8). So by Lemma 11
we have that there is a tuple c ∈ Ck such that for each tuple of non-negative
integers j = (j1, . . . , jk) with

(5.9)
k∑
h=1

jh
dh

<
εk

t

we have DjP (ξ(c1)
1 , . . . , ξ

(ct)
t ) = 0.

We now apply Lemma 12 with σ = εk
t and with ξ(ch)

h replacing ξh for h = 1, . . . , k.
From (6.9) we know already that (6.1) holds. Further, we have for h = 1, . . . , k,

M(ξh)dh ≥M(ξ1)d1 ≥ (4M)3rkd1ω2 by (6.8), (6.5)

≥ (4M)3r(d1+···+dk)ω2 by (6.9)

≥
(
4d1+···+dk ||P ||

)ω2 by (3.20).

Hence (6.2) is also satisfied. It follows that there is a tuple j with (5.9) for which
DjP (ξ(c1)

1 , . . . , ξ
(ct)
t ) 6= 0. This is contrary to what we proved above. Thus, our

assumption that Lemma 13 is false leads to a contradiction. �

We now complete the proof of part (i) of Theorem 2. Define a sequence of solutions
ξ1, ξ2, . . . of (1.5) as follows: ξ1 is a solution ξ of (1.5) such that M(ξ) ≥ (4M)3rkω2

and M(ξ) is minimal; and for h = 1, 2, . . . , ξh+1 is a solution ξ of (1.5) such that
M(ξ) ≥ M(ξh)3ω1/2 and M(ξ) is minimal. From Lemma 13 it follows, that this
sequence has at most k − 1 elements.

Let A := max(4t(t+1)/(κ−2t),M) be the lower bound in part (i) of Theorem 2. Put
θ := 1 + (κ − 2t)/t. By assumption, the solutions of (1.5) lie in the union of the
intervals I0 = [A, (4M)3rkω2 ] and Ih = [M(ξh),M(ξh)3ω1/2] (h = 1, 2, . . .). By
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part (i) of Lemma 2 and 4M ≤ Aθ we have that the number of solutions ξ in I0 is
at most

t
(

1 +
log(2 log{(4M)3rkω2}/ logA)

log θ

)
≤ t
(

1 +
log{6rkω2θ}

log θ

)
≤ t
(

2 +
log 6rk
log θ

+ k
log 3ω1/2

log θ

)
≤ t
(

2 + k
log 3ω1

log θ

)
by (5.1), (5.2), (6.4).

Moreover, by part (i) of Lemma 2 we have for h = 1, 2, . . . , that the number of
solutions in Ih is at most

t
(

1 +
log(2 log{M(ξh)3ω1/2}/ logM(ξh))

log θ

)
≤ t
(

1 +
log 3ω1

log θ

)
.

Since we have at most k − 1 intervals Ih (h ≥ 1), it follows that (1.5) has at most

N := t
(
k + 1 + (2k − 1)

log 3ω1

log θ

)
solutions with M(ξ) ≥ A. We estimate this from above. From (1.7) it follows that
κ =

∑t
l=1 ϕl ≥ 2t+ δ so

log θ ≥ log(1 +
δ

t
) ≥ δ

2t
.

Further,

log 3ω1 = log
6k2t

ε
by (6.4)

≤ log
(

2.5×1011 · t11δ−5
(
1 +

1
2

log t
)2(1 +

1
2

log δ−1
)2(log 4r)2

)
by (5.1), (5.2)

< 27 + 12 log t+ 6 log δ−1 + 2 log log 4r using
(
1 +

1
2

log x
)2 ≤ x for x ≥ 1

< 85
(
1 +

1
2

log t
)(

1 +
1
2

log δ−1
)
· log log 4r using log log 4r ≥ log log 4.

Together with (5.2) this implies

N ≤ kt · (1 +
4t
δ

log 3ω1) < 5kt2δ−1 log 3ω1

< 5× 3.5×104 × 85 · t6
(
1 +

1
2

log t
)2 · δ−3

(
1 +

1
2

log δ−1
)2 log 4r log log 4r

< 2×107 · t7δ−4 log 4r · log log 4r .

This completes the proof of part (i) of Theorem 2. �
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§7. Proof of Theorem 3.

We need the following combinatorial lemma:

Lemma 14. Let θ be a real with 0 < θ < 1 and t an integer ≥ 1. There exists

a set P , consisting of tuples ρ = (ρ1, . . . , ρt) with ρ1 ≥ ρ2 ≥ · · · ≥ ρt ≥ 0 and

1− θ ≤
∑t
i=1 ρi ≤ 1, such that #P ≤ 4

{
e2( 1

2 + 1+θ−1

t )
}t−1

and such that for all

reals F1, . . . , Ft,Λ with

0 < F1 ≤ F2 ≤ · · · ≤ Ft ≤ 1, F1 · · ·Ft ≤ Λ

there is a tuple ρ ∈ P with Fi ≤ Λρi for i = 1, . . . , t.

Proof. We assume without loss of generality that F1 · · ·Ft = Λ and that t ≥ 2
(otherwise we may take ρ1 = 1). Define ci by Fi = Λci for i = 1, . . . , t; thus,
c1 ≥ · · · ≥ ct ≥ 0 and c1 + · · ·+ ct = 1. Put

g := [θ−1(t− 1)] + 1, fi = [cig], ρi = fi/g for i = 1, . . . , t .

Then clearly, Fi ≤ Λρi for i = 1, . . . , t. Since cig − 1 < fi ≤ cig, we have
g − t <

∑t
i=1 fi ≤ g and therefore, g − t + 1 ≤

∑t
i=1 fi ≤ g since the fi are

integers. It follows that 1 − θ ≤
∑t
i=1 ρi ≤ 1. Further, the tuple ρ = (ρ1, . . . , ρt)

belongs to the set

P :=
{(f1

g
, . . . ,

ft
g

)
: f1, . . . , ft ∈ Z, f1 ≥ · · · ≥ ft ≥ 0, g − t+ 1 ≤

t∑
i=1

fi ≤ g
}
.

The map (f1/g, . . . , ft/g) 7→ (f1 + t− 1, f2 + t− 2, . . . , ft) maps P bijectively onto

P ′ :=
{

(h1, . . . , ht) ∈ Zt : h1 > h2 > · · · > ht ≥ 0, g′ − t+ 1 ≤
t∑
i=1

hi ≤ g′
}
,

with g′ = g+ 1
2 t(t− 1) = [θ−1(t− 1)] + 1

2 t(t− 1) + 1. Clearly, the cardinality of P ′

is at most 1/t! times the cardinality of the set of all (not necessarily decreasing)
tuples of non-negative integers (h1, . . . , ht) with g′ − t+ 1 ≤

∑t
i=1 hi ≤ g′. Using

that (
x+ y

y

)
≤ (x+ y)x+y

xxyy
= (1 +

y

x
)x(1 +

x

y
)y ≤

(
e(1 +

x

y
)
)y for x, y ≥ 1
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we infer

#P = #P ′ ≤ 1
t!

g′∑
h=g′−t+1

(
h+ t− 1
t− 1

)
≤ 1
t!
· t ·
(
g′ + t− 1
t− 1

)

≤ et

tt−1
·
(
e
(
1 + θ−1 +

t

2
+

1
t− 1

))t−1

≤ et

tt−1
·
(
e
(
1 + θ−1 +

t

2
))t−1

·
(

1 +
1

3(t− 1)

)t−1

since t ≥ 2, θ < 1

≤ 4 ·
(
e2
(1

2
+

1 + θ−1

t

))t−1

. �

Let f be the polynomial from Theorem 3, i.e.

f(X) = a0(X − α1) · · · (X − αr)

where the coefficients of f are rational integers, f is primitive, and α1, . . . , αr are
distinct. Further, let g be a primitive, irreducible polynomial in Z[X] of degree t
satisfying

0 < |R(f, g)| < M(f)t ·M(g)r−κ,(1.17)

M(g) ≥ (28r2tM(f)4(r−1)t)δ
−1(1+ 1

3 +···+ 1
2t−1 )−1

(1.18)

where

(1.16) κ = (2t+ δ)
(
1 +

1
3

+ · · ·+ 1
2t− 1

)
with 0 < δ < 1 .

Then
g(X) = b0(X − ξ(1)) · · · (X − ξ(t))

where ξ(1), . . . , ξ(t) are the conjugates of an algebraic number ξ of degree t and
b0 ∈ Z. We order ξ(1), . . . , ξ(t) in such a way that

(7.1) min
j=1,...,r

|αj − ξ(1)|
|1, αj |

≤ · · · ≤ min
j=1,...,r

|αj − ξ(t)|
|1, αj |

.

We show that ξ satisfies one from a finite collection of systems (1.5) to which
Theorem 2 is applicable. From (1.12) it follows that

(7.2)
|R(f, g)|

M(f)tM(g)r
=

t∏
i=1

r∏
j=1

|αj − ξ(i)|
|1, αj | · |1, ξ(i)|

.
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For i = 1, . . . , t, let αji be the zero of f for which

|αji − ξ(i)|
|1, αji |

= min
j=1,...,r

|αj − ξ(i)|
|1, αj |

.

From triangle inequality (2.7) it follows that for j 6= ji,

|αj − ξ(i)|
|1, αj | · |1, ξ(i)|

≥ 1
2

( |αj − ξ(i)|
|1, αj | · |1, ξ(i)|

+
|αji − ξ(i)|
|1, αji | · |1, ξ(i)|

)
≥ |αji − αj |

2|1, αji | · |1, αj |
.

Further, using that the discriminant D(f) = a2r−2
0

∏
1≤p<q≤r(αp − αq)2 is a non-

zero rational integer,

∏
j 6=ji

|αji − αj |
2|1, αji | · |1, αj |

≥
∏

1≤p<q≤r

|αp − αq|
2|1, αp| · |1, αq|

=
|D(f)|1/2

2r(r−1)/2M(f)r−1

≥ 1
2r(r−1)/2M(f)r−1

.

Together with (7.2) this implies that

|R(f, g)|
M(f)tM(g)r

≥ C−1
t∏
i=1

|αji − ξ(i)|
2|1, αji | · |1, ξ(i)|

,(7.3)

with C =
(

21+r(r−1)/2M(f)r−1
)t
.

Put κ′ := (1+ 1
3+· · ·+ 1

2t−1 )(2t+ 3
4δ). From (1.18) it follows thatM(g) ≥ C(κ−κ′)−1

.
By combining this with (7.3), (1.17) and using that M(g) = M(ξ) we get

t∏
i=1

|αji − ξ(i)|
2|1, αji | · |1, ξ(i)|

≤ C ·M(g)−κ ≤M(ξ)−κ
′
.

We now apply Lemma 14 to Fj := |αji − ξ(i)|/(2 · |1, αji | · |1, ξ(i)|) for j = 1, . . . , t
and Λ = M(ξ)−κ

′
. It is trivial that Ft ≤ 1 and together with (7.1) this gives

0 < F1 ≤ · · · ≤ Ft ≤ 1. Put

(7.4) κ′′ := (1 +
1
3

+ · · ·+ 1
2t− 1

)(2t+
1
2
δ), θ := 1− κ′′/κ′ = δ/(8t+ 3δ) .

Letting P be the set from Lemma 14, we infer that there is a tuple ρ = (ρ1, . . . , ρt)
∈ P such that

(7.5)
|αji − ξ(i)|

2|1, αji | · |1, ξ(i)|
≤M(ξ)−ρiκ

′
= M(ξ)−ϕi for i = 1, . . . , t,
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where ϕi := ρiκ
′. Note that

∑t
i=1 ϕi ≥ κ′′. Together with (1.7) this implies

max
I

(#I)2
(∑
i∈I

ϕ−1
i

)−1 ≥
( t∑
j=1

1
2j − 1

)−1 · κ′′ = 2t+
δ

2
.

Further, we have

M(f) ≥ max
i=1,...,r

M(αi), [Q(αj1 , . . . , αjt) : Q] ≤ rt,

M(ξ) = M(g) ≥ max(4t(t+1)/(κ′′−2t),M(f)) by (1.18).

Hence from part (i) of Theorem 2 with δ/2 replacing δ it follows that each sys-
tem (7.5) has at most 3.2×108t7δ−4 log 4rt log log 4rt solutions ξ coming from an
irreducible polynomial g satisfying (1.17), (1.18).

By (7.4) we have

#P ≤ 4
(
e2
(1

2
+

1 + θ−1

t

))t−1

= 4
(
e2
(1

2
+

8
δ

+
4
t

))t−1

≤ 4
(
e2
(1

2
+

8
δ

))t−1(
1 +

1
2t

)t−1

≤ 7
(
63δ−1

)t−1
.

Further, for the tuple (j1, . . . , jt) we have at most rt possiblilities. Therefore, we
have at most 7rt(63δ−1)t−1 possibilities for the system (7.5). We conclude that
the total number of primitive, irreducible polynomials g satisfying (1.17), (1.18)
is at most

7rt(63δ−1)t−1 · 3.2×108t7δ−4 log 4rt log log 4rt

≤ 1015(δ−1)t+3 · (100r)t log 4r log log 4r .

This completes the proof of Theorem 3. �
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