# ANALYTIC NUMBER THEORY 

## Fall 2016

## Jan-Hendrik Evertse

e-mail: evertse@math.leidenuniv.nl office: 248 (Snellius)<br>tel: 071-5277148

## Efthymios Sofos

e-mail: e.sofos@math.leidenuniv.nl office: 238 (Snellius) tel. 071-5277146

course website:
http://pub.math.leidenuniv.nl/~evertsejh/ant.shtml

## Literature

Below is a list of recommended additional literature. Much of the material of this course has been taken from the books of Jameson and the two books of Davenport.
H. Davenport, Multiplicative Number Theory (2nd ed.), Springer Verlag, Graduate Texts in Mathematics 74, 1980.
H. Davenport, Analytic methods for Diophantine equations and Diophantine inequalities, Cambridge University Press, 1963, reissued in 2005 in the Cambridge Mathematical Library series.
A. Granville, What is the best approach to counting primes, arXiv:1406.3754 [math.NT].
A.E. Ingham, The distribution of prime numbers, Cambridge University Press, 1932 (reissued in 1990).
H. Iwaniec, E. Kowalski, Analytic Number Theory, American Mathematical Society Colloquium Publications 53, American Mathematical Society, 2004.
G.J.O. Jameson, The Prime Number Theorem, London Mathematical Society, Student Texts 53, Cambridde University Press, 2003.
S. Lang, Algebraic Number Theory, Addison-Wesley, 1970. S. Lang, Complex Analysis (4th. ed.), Springer Verlag, Graduate Texts in Mathematics 103, 1999.
D.J. Newman, Analytic Number Theory, Springer Verlag, Graduate Texts in Mathematics 177, 1998.
E.C. Titchmarsh, The theory of the Riemann zeta function (2nd. ed., revised by D.R. Heath-Brown), Oxford Science Publications, Clarendon Press Oxford, 1986.
R.C. Vaughan, The Hardy-Littlewood method (2nd ed.), Cambridge University Press, 1997.

## Notation

- $\limsup x_{n}$ or $\overline{\lim }_{n \rightarrow \infty} x_{n}$
$n \rightarrow \infty$
For a sequence of reals $\left\{x_{n}\right\}$ we define $\lim \sup _{n \rightarrow \infty} x_{n}:=\lim _{n \rightarrow \infty}\left(\sup _{m \geqslant n} x_{m}\right)$. We have $\lim \sup _{n \rightarrow \infty} x_{n}=\infty$ if and only if the sequence $\left\{x_{n}\right\}$ is not bounded from above, i.e., if for every $A>0$ there is $n$ with $x_{n}>A$.
In case that the sequence $\left\{x_{n}\right\}$ is bounded from above, we have $\lim \sup _{n \rightarrow \infty} x_{n}=$ $\alpha$ where $\alpha$ is the largest limit point ('limes superior') of the sequence $\left\{x_{n}\right\}$, in other words, for every $\varepsilon>0$ there are infinitely many $n$ such that $x_{n} \geqslant \alpha-\varepsilon$, while there are only finitely many $n$ such that $x_{n} \geqslant \alpha+\varepsilon$.
- $\liminf _{n \rightarrow \infty} x_{n}$ or $\underline{\lim }_{n \rightarrow \infty} x_{n}$

For a sequence of reals $\left\{x_{n}\right\}$ we define $\liminf _{n \rightarrow \infty} x_{n}:=\lim _{n \rightarrow \infty}\left(\inf _{m \geqslant n} x_{m}\right)$. We have $\liminf _{n \rightarrow \infty} x_{n}=-\infty$ if the sequence $\left\{x_{n}\right\}$ is not bounded from below, and the smallest limit point ('limes inferior') of the sequence $\left\{x_{n}\right\}$ otherwise.

- $f(x)=g(x)+O(h(x))$ as $x \rightarrow \infty$
there are constants $x_{0}, C$ such that $|f(x)-g(x)| \leqslant C h(x)$ for all $x \geqslant x_{0}$
- $f(x)=g(x)+o(h(x))$ as $x \rightarrow \infty$
$\lim _{x \rightarrow \infty} \frac{f(x)-g(x)}{h(x)}=0$
- $f(x) \sim g(x)$ as $x \rightarrow \infty$
$\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=1$
- $f(x) \ll g(x), g(x) \gg f(x)$
(Vinogradov symbols; used only if $g(x)>0$ for all sufficiently large $x$, i.e., there is $x_{0}$ such that $g(x)>0$ for all $x \geqslant x_{0}$ )
$f(x)=O(g(x))$ as $x \rightarrow \infty$, that is, there are constants $x_{0}>0, C>0$ such that $|f(x)| \leqslant C g(x)$ for all $x \geqslant x_{0}$
- $f(x) \asymp g(x)$
(used only if $f(x)>0, g(x)>0$ for all sufficiently large $x$ )
there are constants $x_{0}, C_{1}, C_{2}>0$ such that $C_{1} f(x) \leqslant g(x) \leqslant C_{2} f(x)$ for all $x \geqslant x_{0}$
- $f(x)=\Omega(g(x))$ as $x \rightarrow \infty$
(defined only if $g(x)>0$ for $x \geqslant x_{0}$ for some $x_{0}>0$ )
$\limsup _{x \rightarrow \infty} \frac{|f(x)|}{g(x)}>0$, that is, there is a sequence $\left\{x_{n}\right\}$ with $x_{n} \rightarrow \infty$ as $n \rightarrow \infty$ such that $\lim _{n \rightarrow \infty} \frac{\left|f\left(x_{n}\right)\right|}{g\left(x_{n}\right)}>0($ possibly $\infty$ )
- $f(x)=\Omega^{ \pm}(g(x))$ as $x \rightarrow \infty$
(defined only if $g(x)>0$ for $x \geqslant x_{0}$ for some $x_{0}>0$ )
$\limsup _{x \rightarrow \infty} \frac{f(x)}{g(x)}>0, \liminf _{x \rightarrow \infty} \frac{f(x)}{g(x)}<0$, that is, there are sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ with $x_{n} \rightarrow \infty, y_{n} \rightarrow \infty$ as $n \rightarrow \infty$ such that $\lim _{n \rightarrow \infty} \frac{f\left(x_{n}\right)}{g\left(x_{n}\right)}>0$ (possibly $\infty$ ) and $\lim _{n \rightarrow \infty} \frac{f\left(y_{n}\right)}{g\left(y_{n}\right)}<0($ possibly $-\infty)$
- $\pi(x)$

Number of primes $\leqslant x$

- $\pi(x ; q, a)$

Number of primes $p$ with $p \equiv a(\bmod q)$ and $p \leqslant x$

- $\operatorname{Li}(x)$
$\operatorname{Li}(x)=\int_{2}^{x} \frac{d t}{\log t} ;$ this is a good approximation for $\pi(x)$.


## Chapter 0

## Prerequisites

We have collected some facts from algebra and analysis which we will not discuss during our course, which will not be a subject of the examination, but to which we will have to refer quite often. Students are requested to read this through.

### 0.1 Groups

## Literature:

P. Stevenhagen: Collegedictaat Algebra 1 (Dutch), Universiteit Leiden.
S. Lang: Algebra, 2nd ed., Addison-Wesley, 1984.

### 0.1.1 Definition

A group is a set $G$, together with an operation $\cdot: G \times G \rightarrow G$ satisfying the following axioms:

- $\left(g_{1} \cdot g_{2}\right) \cdot g_{3}=g_{1} \cdot\left(g_{2} \cdot g_{3}\right)$ for all $g_{1}, g_{2}, g_{3} \in G ;$
- there is $e_{G} \in G$ such that $g \cdot e_{G}=e_{G} \cdot g=g$ for all $g \in G$;
- for all $g \in G$ there is $h \in G$ with $g \cdot h=h \cdot g=e_{G}$.

From these axioms it follows that the unit element $e_{G}$ is uniquely determined, and that the inverse $h$ defined by the last axiom is uniquely determined; henceforth we write $g^{-1}$ for this $h$.

If moreover, $g_{1} \cdot g_{2}=g_{2} \cdot g_{1}$, we say that the group $G$ is abelian or commutative.
Remark. For $n \in \mathbb{Z}_{>0}, g \in G$ we write $g^{n}$ for $g$ multiplied with itself $n$ times. Further, $g^{0}:=e_{G}$ and $g^{n}:=\left(g^{-1}\right)^{|n|}$ for $n \in \mathbb{Z}_{<0}$. This is well-defined by the associative axiom, and we have $\left(g^{m}\right)\left(g^{n}\right)=g^{m+n},\left(g^{m}\right)^{n}=g^{m n}$ for $m, n \in \mathbb{Z}$.

### 0.1.2 Subgroups

Let $G$ be a group with group operation •. A subgroup of $G$ is a subset $H$ of $G$ that is a group with the group operation of $G$. This means that $g_{1} \cdot g_{2} \in H$ for all $g_{1}, g_{2} \in H ; e_{G} \in H$; and $g^{-1} \in H$ for all $g \in H$. It is easy to see that $H$ is a subgroup of $G$ if and only if $g_{1} \cdot g_{2}^{-1} \in H$ for all $g_{1}, g_{2} \in H$. We write $H \leqslant G$ if $H$ is a subgroup of $G$.

### 0.1.3 Cosets, order, index

Let $G$ be a group and $H$ a subgroup of $G$. The left cosets of $G$ with respect to $H$ are the sets $g H=\{g \cdot h: h \in H\}$. Two left cosets $g_{1} H, g_{2} H$ are equal if and only if $g_{1}^{-1} g_{2} \in H$.

The right cosets of $G$ with respect to $H$ are the sets $H g=\{h \cdot g: h \in H\}$. Two right cosets $H g_{1}, H g_{2}$ are equal if and only if $g_{2} g_{1}^{-1} \in H$.

There is a one-to-one correspondence between the left cosets and right cosets of $G$ with respect to $H$, given by $g H \leftrightarrow H g^{-1}$. Thus, the collection of left cosets has the same cardinality as the collection of right cosets. This cardinality is called the index of $H$ in $G$, notation $(G: H)$.

The order of a group $G$ is its cardinality, notation $|G|$. Assume that $|G|$ is finite. Let again $H$ be a subgroup of $G$. Since the left cosets w.r.t. $H$ are pairwise disjoint
and have the same number of elements as $H$, and likewise for right cosets, we have

$$
(G: H)=\frac{|G|}{|H|}
$$

An important consequence of this is, that $|H|$ divides $|G|$.

### 0.1.4 Normal subgroup, factor group

Let $G$ be a group, and $H$ a subgroup of $G$. We call $H$ a normal subgroup of $G$ if $g H=H g$, that is, if $g H g^{-1}=H$ for every $g \in G$.

Let $H$ be a normal subgroup of $G$. Then the cosets of $G$ with respect to $H$ form a group with group operation $\left(g_{1} H\right) \cdot\left(g_{2} H\right)=\left(g_{1} g_{2}\right) \cdot H$. This operation is well-defined. We denote this group by $G / H$; it is called the factor group of $G$ with respect to $H$. Notice that the unit element of $G / H$ is $e_{G} H=H$. If $G$ is finite, we have $|G / H|=(G: H)=|G| /|H|$.

### 0.1.5 Order of an element

Let $G$ be a group, and $g \in G$. The order of $g$, notation $\operatorname{ord}(g)$, is the smallest positive integer $n$ such that $g^{n}=e_{G}$; if such an integer $n$ does not exist we say that $g$ has infinite order.

We recall some properties of orders of group elements. Suppose that $g \in G$ has finite order $n$.

- $g^{a}=g^{b} \Longleftrightarrow a \equiv b(\bmod n)$.
- Let $k \in \mathbb{Z}$. Then $\operatorname{ord}\left(g^{k}\right)=n / \operatorname{gcd}(k, n)$.
- $\left\{e_{G}, g, g^{2}, \ldots, g^{n-1}\right\}$ is a subgroup of $G$ of cardinality $n=\operatorname{ord}(g)$. Hence if $G$ is finite, then $\operatorname{ord}(g)$ divides $|G|$. Consequently, $g^{|G|}=e_{G}$.

Example. Let $q$ be a positive integer. A prime residue class modulo $q$ is a residue class of the type $a \bmod q$, where $\operatorname{gcd}(a, q)=1$. The prime residue classes form a group under multiplication, which is denoted by $(\mathbb{Z} / q \mathbb{Z})^{*}$. The unit element of this group is $1 \bmod q$, and the order of this group is $\varphi(q)$, that is the number of
positive integers $\leqslant q$ that are coprime with $q$. It follows that if $\operatorname{gcd}(a, q)=1$, then $a^{\varphi(q)} \equiv 1(\bmod q)$.

### 0.1.6 Cyclic groups

The cyclic group generated by $g$, denoted by $\langle g\rangle$, is given by $\left\{g^{k}: k \in \mathbb{Z}\right\}$. In case that $G=\langle g\rangle$ is finite, say of order $n \geqslant 2$, we have

$$
\langle g\rangle=\left\{e_{G}=g^{0}, g, g^{2}, \ldots, g^{n-1}\right\}, \quad g^{n}=e_{G} .
$$

So $g$ has order $n$.
Example 1. $\mu_{n}=\left\{\rho \in \mathbb{C}^{*}: \rho^{n}=1\right\}$, that is the group of roots of unity of order $n$ is a cyclic group of order $n$. For a generator of $\mu_{n}$ one may take any primitive root of unity of order $n$, i.e., $e^{2 \pi i k / n}$ with $k \in \mathbb{Z}, \operatorname{gcd}(k, n)=1$.

Example 2. Let $p$ be a prime number, and $(\mathbb{Z} / p \mathbb{Z})^{*}=\{a \bmod p, \operatorname{gcd}(a, p)=1\}$ the group of prime residue classes modulo $p$ with multiplication. This is a cyclic group of order $p-1$.

Let $G=\langle g\rangle$ be a cyclic group and $H$ a subgroup of $G$. Let $k$ be the smallest positive integer such that $g^{k} \in H$. Using, e.g., division with remainder, one shows that $g^{r} \in H$ if and only if $r \equiv 0(\bmod k)$. Hence $H=\left\langle g^{k}\right\rangle$ and $(G: H)=k$.

### 0.1.7 Homomorphisms and isomorphisms

Let $G_{1}, G_{2}$ be two groups. A homomorphism from $G_{1}$ to $G_{2}$ is a map $f: G_{1} \rightarrow G_{2}$ such that $f\left(g_{1} g_{2}\right)=f\left(g_{1}\right) f\left(g_{2}\right)$ for all $g_{1}, g_{2} \in G$ and $f\left(e_{G_{1}}\right)=e_{G_{2}}$. This implies that $f\left(g^{-1}\right)=f(g)^{-1}$ for $g \in G_{1}$.

Let $f: G_{1} \rightarrow G_{2}$ be a homomorphism. The kernel and image of $f$ are given by

$$
\operatorname{Ker}(f):=\left\{g \in G_{1}: f(g)=e_{G_{2}}\right\}, \quad f\left(G_{1}\right)=\left\{f(g): g \in G_{1}\right\}
$$

respectively. Notice that $\operatorname{Ker}(f)$ is a normal subgroup of $G_{1}$. It is easy to check that $f$ is injective if and only if $\operatorname{Ker}(f)=\left\{e_{G_{1}}\right\}$.

Let $G$ be a group and $H$ a normal subgroup of $G$. Then

$$
f: G \rightarrow G / H: g \mapsto g H
$$

is a surjective homomorphism from $G$ to $G / H$, the canonical homomorphism from $G$ to $G / H$. Notice that the kernel of this homomorphism is $H$. Thus, every normal subgroup of $G$ occurs as the kernel of some homomorphism.

A homomorphism $f: G_{1} \rightarrow G_{2}$ which is bijective is called an isomorphism from $G_{1}$ to $G_{2}$. In case that there is an isomorphism from $G_{1}$ to $G_{2}$ we say that $G_{1}, G_{2}$ are isomorphic, notation $G_{1} \cong G_{2}$. Notice that a homomorphism $f: G_{1} \rightarrow G_{2}$ is an isomorphism if and only if $\operatorname{Ker}(f)=\left\{e_{G_{1}}\right\}$ and $f\left(G_{1}\right)=G_{2}$. Further, in this case the inverse map $f^{-1}: G_{2} \rightarrow G_{1}$ is also an isomorphism.

Let $f: G_{1} \rightarrow G_{2}$ be a homomorphism of groups and $H=\operatorname{Ker}(f)$. This yields an isomorphism

$$
\bar{f}: G_{1} / H \rightarrow f\left(G_{1}\right): \bar{f}(g H)=f(g)
$$

Proposition 0.1. Let $C$ be a cyclic group. If $C$ is infinite, then it is isomorphic to $\mathbb{Z}^{+}$(the additive group of $\mathbb{Z}$ ). If $C$ has finite order $n$, then it is isomorphic to $(\mathbb{Z} / n \mathbb{Z})^{+}$(the additive group of residue classes modulo $n$ ).

Proof. Let $C=\langle g\rangle$. Define $f: \mathbb{Z}^{+} \rightarrow C$ by $n \mapsto g^{n}$. This is a surjective homomorphism; let $H$ denote its kernel. Thus, $\mathbb{Z}^{+} / H \cong C$. We have $H=\{0\}$ if $C$ is infinite, and $H=n \mathbb{Z}^{+}$if $C$ has order $n$. This implies the proposition.

### 0.1.8 Direct products

Let $G_{1}, \ldots, G_{r}$ be groups. Denote by $e_{G_{i}}$ the unit element of $G_{i}$. The direct product $G_{1} \times \cdots \times G_{r}$ is the set of tuples $\left(g_{1}, \ldots, g_{r}\right)$ with $g_{i} \in G_{i}$ for $i=1, \ldots, r$, endowed with the group operation

$$
\left(g_{1}, \ldots, g_{r}\right) \cdot\left(h_{1}, \ldots, h_{r}\right)=\left(g_{1} h_{1}, \ldots, g_{r} h_{r}\right)
$$

This is obviously a group, with unit element $\left(e_{G_{1}}, \ldots, e_{G_{r}}\right)$ and inverse $\left(g_{1}, \ldots, g_{r}\right)^{-1}=$ $\left(g_{1}^{-1}, \ldots, g_{r}^{-1}\right)$.

Proposition 0.2. Let $G, G_{1}, \ldots, G_{r}$ be groups. Then the following two assertions are equivalent:
(i) $G \cong G_{1} \times \cdots \times G_{r}$;
(ii) there are subgroups $H_{1}, \ldots, H_{r}$ of $G$ satisfying the following properties:
(a) $H_{i} \cong G_{i}$ for $i=1, \ldots, r$;
(b) $H_{1}, \ldots, H_{r}$ commute, that is, $H_{i} H_{j}=H_{j} H_{i}$ for $i, j=1, \ldots, r$;
(c) $G=H_{1} \cdots H_{r}$, i.e., every element of $G$ can be expressed as $g_{1} \cdots g_{r}$ with $g_{i} \in H_{i}$ for $i=1, \ldots, r$;
(d) $H_{1}, \ldots, H_{r}$ are independent, i.e., if $g_{i} \in H_{i}(i=1, \ldots, r)$ are any elements such that $g_{1} \cdots g_{r}=e_{G}$, then $g_{i}=e_{G}$ for $i=1, \ldots, r$.

Proof. (ii) $\Rightarrow(i)$. Properties (b),(c),(d) imply that

$$
H_{1} \times \cdots \times H_{r} \rightarrow G:\left(g_{1}, \ldots, g_{r}\right) \mapsto g_{1} \cdots g_{r}
$$

is a group isomorphism. Together with (a) this implies (i).
$(i) \Rightarrow(i i)$. Let $G^{\prime}:=G_{1} \times \cdots \times G_{r}$ and for $i=1, \ldots, r$, define the group

$$
G_{i}^{\prime}:=\left\{\left(e_{G_{1}}, \ldots, g_{i}, \ldots, e_{G_{r}}\right): g_{i} \in G_{i}\right\}
$$

where the $i$-th coordinate is $g_{i}$ and the other components are the unit elements of the respective groups. Clearly, $G_{i}^{\prime} \cong G_{i}$ for $i=1, \ldots, r, G_{1}^{\prime}, \ldots, G_{r}^{\prime}$ commute, $G^{\prime}=G_{1}^{\prime} \cdots G_{r}^{\prime}$ and $G_{1}^{\prime}, \ldots, G_{r}^{\prime}$ are independent. Let $f: G \rightarrow G_{1} \times \cdots \times G_{r}$ be an isomorphism and $H_{i}:=f^{-1}\left(G_{i}^{\prime}\right)$ for $i=1, \ldots, r$. Then $H_{1}, \ldots, H_{r}$ satisfy (a)(d).

Notice that (b),(c),(d) imply that every element of $G$ can be expressed uniquely as a product $g_{1} \cdots g_{r}$ with $g_{i} \in H_{i}$ for $i=1, \ldots, r$.

In what follows, if a group $G$ has subgroups $H_{1}, \ldots, H_{r}$ satisfying (b),(c),(d), we say that $G$ is the direct product of $H_{1}, \ldots, H_{r}$, and denote this by $G=H_{1} \times \cdots \times H_{r}$.

### 0.1.9 Abelian groups

The group operation of an abelian group is often denoted by + , but in this course we stick to the multiplicative notation. The unit element of an abelian group $A$ is denoted by 1 or $1_{A}$. It is obvious that every subgroup of an abelian group is a normal subgroup. In Proposition 0.2, the condition that $H_{1}, \ldots, H_{r}$ commute holds automatically so it can be dropped.

The following important theorem, which we state without proof, implies that the finite cyclic groups are the building blocks of the finite abelian groups.

Theorem 0.3. Every finite abelian group is a direct product of finite cyclic groups.
Proof. See S. Lang, Algebra, 2nd ed. Addison-Wesley, 1984, Ch.1, §10.

Let $A$ be a finite, multiplicatively written abelian group of order $\geqslant 2$ with unit element 1. Theorem 0.3 implies that $A$ is a direct product of cyclic subgroups, say $C_{1}, \ldots, C_{r}$. Assume that $C_{i}$ has order $n_{i} \geqslant 2$; then $C_{i}=\left\langle h_{i}\right\rangle$, where $h_{i} \in A$ is an element of order $n_{i}$. We call $\left\{h_{1}, \ldots, h_{r}\right\}$ a basis for $A$.

Every element of $A$ can be expressed uniquely as $g_{1} \cdots g_{r}$, where $g_{i} \in C_{i}$ for $i=1, \ldots, r$. Further, every element of $C_{i}$ can be expressed as a power $h_{i}^{k}$, and $h_{i}^{k}=1$ if and only if $k \equiv 0\left(\bmod n_{i}\right)$. Together with Proposition 0.2 this implies the following characterization of a basis for $A$ :

$$
\left\{\begin{array}{l}
A=\left\{h_{1}^{k_{1}} \cdots h_{r}^{k_{r}}: \quad k_{i} \in \mathbb{Z} \text { for } i=1, \ldots, r\right\},  \tag{0.1}\\
\text { there are integers } n_{1}, \ldots, n_{r} \geqslant 2 \text { such that } \\
h_{1}^{k_{1}} \cdots h_{r}^{k_{r}}=1 \Longleftrightarrow k_{i} \equiv 0\left(\bmod n_{i}\right) \text { for } i=1, \ldots, r .
\end{array}\right.
$$

### 0.2 Infinite products in analysis

Let $\left\{A_{n}\right\}_{n=1}^{\infty}$ be a sequence of complex numbers. We define

$$
\prod_{n=1}^{\infty} A_{n}:=\lim _{N \rightarrow \infty} \prod_{n=1}^{N} A_{n}
$$

provided the limit exists.
In applications it will be important that $\prod_{n=1}^{\infty} A_{n} \neq 0$. It is not sufficient to assume that all $A_{n} \neq 0$, for instance $\prod_{n=2}^{\infty}\left(1-\frac{1}{n}\right)=0$. In general, we have

$$
\prod_{n=1}^{\infty} A_{n} \text { exists and is } \neq 0, \pm \infty \Longleftrightarrow A_{n} \neq 0 \text { for all } n \text { and } \sum_{n=1}^{\infty} \log A_{n} \text { converges, }
$$

where we take the principal logarithm, i.e., with imaginary part in $(-\pi, \pi]$. The following criterion is more useful for our purposes.

Proposition 0.4. Assume that $\sum_{n=1}^{\infty}\left|A_{n}-1\right|<\infty$. Then the following hold:
(i) $\prod_{n=1}^{\infty} A_{n}$ exists and is $\neq \pm \infty$, and $\prod_{n=1}^{\infty} A_{n} \neq 0$ if $A_{n} \neq 0$ for all $n$.
(ii) $\prod_{n=1}^{\infty} A_{n}$ is invariant under rearrangements of the $A_{n}$, i.e., if $\sigma$ is any bijection of $\mathbb{Z}_{>0}$, then $\prod_{n=1}^{\infty} A_{\sigma(n)}$ exists and is equal to $\prod_{n=1}^{\infty} A_{n}$.

Proof. (i) Let $a_{n}:=\left|A_{n}-1\right|$ for $n=1,2, \ldots$. Let $M, N$ be integers with $N>M>0$. Then, using $|1+z| \leqslant e^{|z|}$ for $z \in \mathbb{C}$ and

$$
\left|\prod_{i=1}^{r}\left(1+z_{i}\right)-1\right| \leqslant \prod_{i=1}^{r}\left(1+\left|z_{i}\right|\right)-1 \leqslant \exp \left(\sum_{i=1}^{r}\left|z_{i}\right|\right)-1 \text { for } z_{1}, \ldots, z_{r} \in \mathbb{C}
$$

we get

$$
\begin{align*}
\left|\prod_{n=1}^{N} A_{n}-\prod_{n=1}^{M} A_{n}\right| & =\prod_{n=1}^{M}\left|A_{n}\right| \cdot\left|\prod_{n=M+1}^{N} A_{n}-1\right|  \tag{0.2}\\
& \leqslant \exp \left(\sum_{n=1}^{M} a_{n}\right) \cdot\left(\exp \left(\sum_{n=M+1}^{N} a_{n}\right)-1\right)
\end{align*}
$$

which tends to 0 as $M, N \rightarrow \infty$. Hence $\prod_{n=1}^{\infty} A_{n}=\lim _{N \rightarrow \infty} \prod_{n=1}^{N} A_{n}$ exists and is finite.

Assume that $A_{n} \neq 0$ for all $n$. Choose $M$ such that $\sum_{n=M}^{\infty} a_{n}<\frac{1}{2}$. Then for $N>M$ we have

$$
\begin{aligned}
\left|\prod_{n=1}^{N} A_{n}\right| & =\prod_{n=1}^{M}\left|A_{n}\right| \cdot \prod_{n=M+1}^{N}\left|A_{n}\right| \\
& \geqslant \prod_{n=1}^{M}\left|A_{n}\right| \cdot\left(1-\sum_{n=M+1}^{N} a_{n}\right) \geqslant \frac{1}{2} \prod_{n=1}^{M}\left|A_{n}\right|=: C>0
\end{aligned}
$$

hence $\left|\prod_{n=1}^{\infty} A_{n}\right| \geqslant C>0$. This proves (i).
(ii) Let $M, N$ be positive integers such that $N>M$ and $\{\sigma(1), \ldots, \sigma(N)\}$ contains $\{1, \ldots, M\}$. Similarly to (0.2) we get

$$
\left|\prod_{n=1}^{N} A_{\sigma(n)}-\prod_{n=1}^{M} A_{n}\right| \leqslant \exp \left(\sum_{n=1}^{M} a_{n}\right) \cdot\left(\exp \left(\sum_{n \leqslant N, \sigma(n)>M} a_{\sigma(n)}\right)-1\right) .
$$

If for fixed $M$ we let first $N \rightarrow \infty$ and then let $M \rightarrow \infty$, the right-hand side tends to 0. Hence $\prod_{n=1}^{\infty} A_{\sigma(n)}=\prod_{n=1}^{\infty} A_{n}$.

### 0.3 Uniform convergence

We consider functions $f: D \rightarrow \mathbb{C}$ where $D$ can be any set. We can express each such function as $g+i h$ where $g, h$ are functions from $D$ to $\mathbb{R}$. We write $g=\operatorname{Re} f$ and $h=\operatorname{Im} f$.

We recall that if $D$ is a topological space (in this course mostly a subset of $\mathbb{R}^{n}$ with the usual topology), then $f$ is continuous if and only if $\operatorname{Re} f$ and $\operatorname{Im} f$ are continuous.

In case that $D \subseteq \mathbb{R}$, we say that $f$ is differentiable if and only if $\operatorname{Re} f$ and $\operatorname{Im} f$ are differentiable, and in that case we define the derivative of $f$ by $f^{\prime}=(\operatorname{Re} f)^{\prime}+i(\operatorname{Im} f)^{\prime}$.

In what follows, let $D$ be any set and $\left\{F_{n}\right\}=\left\{F_{n}\right\}_{n=1}^{\infty}$ a sequence of functions from $D$ to $\mathbb{C}$.

Definition. We say that $\left\{F_{n}\right\}$ converges pointwise on $D$ if $F(z):=\lim _{n \rightarrow \infty} F_{n}(z)$ exists for all $z \in D$, and that $\left\{F_{n}\right\}$ converges uniformly on $D$ if moreover,

$$
\lim _{n \rightarrow \infty}\left(\sup _{z \in D}\left|F_{n}(z)-F(z)\right|\right)=0
$$

## Facts:

- $\left\{F_{n}\right\}$ converges uniformly on $D$ if and only if $\lim _{M, N \rightarrow \infty}\left(\sup _{z \in D}\left|F_{M}(z)-F_{N}(z)\right|\right)=0$.
- Let $D$ be a topological space, assume that all functions $F_{n}$ are continuous, and that $\left\{F_{n}\right\}$ converges to a function $F$ uniformly on $D$. Then $F$ is continuous on $D$.

Let again $D$ be any set and $\left\{F_{n}\right\}_{n=1}^{\infty}$ a sequence of functions from $D$ to $\mathbb{C}$. We say that the series $\sum_{n=1}^{\infty} F_{n}$ converges pointwise/uniformly on $D$ if the partial sums $\sum_{n=1}^{k} F_{n}$ converge pointwise/uniformly on $D$. Further, we say that $\sum_{n=1}^{\infty} F_{n}$ is pointwise absolutely convergent on $D$ if $\sum_{n=1}^{\infty}\left|F_{n}(z)\right|$ converges for every $z \in D$.

Proposition 0.5 (Weierstrass criterion for series). Assume that there are finite real numbers $M_{n}$ such that

$$
\left|F_{n}(z)\right| \leqslant M_{n} \text { for } z \in D, n \geqslant 1, \quad \sum_{n=1}^{\infty} M_{n} \text { converges. }
$$

Then $\sum_{n=1}^{\infty} F_{n}$ is both uniformly convergent, and pointwise absolutely convergent on D.

We need a similar result for infinite products of functions. Let again $D$ be any set and $\left\{F_{n}: D \rightarrow \mathbb{C}\right\}_{n=1}^{\infty}$ a sequence of functions. We define the limit function $\prod_{n=1}^{\infty} F_{n}$ by

$$
\prod_{n=1}^{\infty} F_{n}(z):=\lim _{N \rightarrow \infty} \prod_{n=1}^{N} F_{n}(z) \quad(z \in D)
$$

provided that for every $z \in D$ the limit exists.
We say that $\prod_{n=1}^{\infty} F_{n}$ converges uniformly on $D$ if the limit function $F:=$ $\prod_{n=1}^{\infty} F_{n}$ exists for every $z \in D$, and

$$
\lim _{N \rightarrow \infty}\left(\sup _{z \in D}\left|F(z)-\prod_{n=1}^{N} F_{n}(z)\right|\right)=0 .
$$

Proposition 0.6 (Weierstrass criterion for infinite products). Assume that there are finite real numbers $M_{n}$ such that

$$
\left|F_{n}(z)-1\right| \leqslant M_{n} \text { for } z \in D, n \geqslant 1, \quad \sum_{n=1}^{\infty} M_{n} \text { converges. }
$$

Then $\prod_{n=1}^{\infty} F_{n}$ is uniformly convergent on $D$ and moreover, if $z \in D$ is such that $F_{n}(z) \neq 0$ for all $n$, then also $F(z) \neq 0$.

Proof. Applying (0.2) with $A_{n}=F_{n}(z)$ and using $\left|F_{n}(z)-1\right| \leqslant M_{n}$ for $z \in D$, we obtain that for any two integers $M, N$ with $N>M>0$, and all $z \in D$,

$$
\left|\prod_{n=1}^{N} F_{n}(z)-\prod_{n=1}^{M} F_{n}(z)\right| \leqslant \exp \left(\sum_{n=1}^{M} M_{n}\right) \cdot\left(\exp \left(\sum_{n=M+1}^{N} M_{n}\right)-1\right) .
$$

Since the right-hand side is independent of $z$ and tends to 0 as $M, N \rightarrow \infty$, the uniform convergence follows. Further, if $F_{n}(z) \neq 0$ for all $n$ then $\prod_{n=1}^{\infty} F_{n}(z) \neq 0$ by Proposition 0.4.

### 0.4 Integration

In this course, all integrals will be Lebesgue integrals of real or complex measurable functions on $\mathbb{R}^{n}$ (always with respect to the Lebesgue measure on $\mathbb{R}^{n}$ ). It is not really necessary to know what these are, and you will be perfectly able to follow the course without any knowledge of Lebesgue theory. But we will often have to deal with infinite integrals of infinite series of functions, and to handle these, Lebesgue theory is much more convenient than the theory of Riemann integrals.

It is important to mention here that Lebesgue integrals are equal to Riemann integrals whenever the latter are defined. However, Lebesgue integrals can be defined for a much larger class of functions. Further, in Lebesgue theory there are some very powerful convergence theorems for sequences of functions, theorems on interchanging multiple integrals, etc., which we will frequently apply. If you are willing to take for granted that all functions appearing in this course are measurable, there will be no problem to understand or apply these theorems.

In this subsection we have collected a few useful facts, which are amply sufficient for our course.

### 0.4.1 Measurable sets

The length of a bounded interval $I=[a, b],[a, b),(a, b]$ or $(a, b)$, where $a, b \in \mathbb{R}, a<b$, is given by $l(I):=b-a$. Let $n \in \mathbb{Z}_{\geqslant 1}$. An interval in $\mathbb{R}^{n}$ is a cartesian product of bounded intervals $I=\prod_{i=1}^{n} I_{i}$. We define the volume of $I$ by $l(I):=\prod_{i=1}^{n} l\left(I_{i}\right)$.

Let $A$ be an arbitrary subset of $\mathbb{R}^{n}$. We define the outer measure of $A$ by

$$
\lambda^{*}(A):=\inf \sum_{i=1}^{\infty} l\left(I_{i}\right)
$$

where the infimum is taken over all countable unions of intervals $\bigcup_{i=1}^{\infty} I_{i} \supset A$. We say that a set $A$ is measurable if

$$
\lambda^{*}(S)=\lambda^{*}(S \cap A)+\lambda^{*}\left(S \cap A^{c}\right) \text { for every } S \subseteq \mathbb{R}^{n}
$$

where $A^{c}=\mathbb{R}^{n} \backslash A$ is the complement of $A$. In this case we define the (Lebesgue) measure of $A$ by $\lambda(A):=\lambda^{*}(A)$. This measure may be finite or infinite. It can be
shown that intervals are measurable, and that $\lambda(I)=l(I)$ for any interval $I$ in $\mathbb{R}^{n}$.

## Facts:

- A countable union $\bigcup_{i=1}^{\infty} A_{i}$ of measurable sets $A_{i}$ is measurable. Further, the complement of a measurable set is measurable. Hence a countable intersection of measurable sets is measurable.
- All open and closed subsets of $\mathbb{R}^{n}$ are measurable.
- Let $A=\cup_{i=1}^{\infty} A_{i}$ be a countable union of pairwise disjoint measurable sets. Then $\lambda(A)=\sum_{i=1}^{\infty} \lambda\left(A_{i}\right)$, where we agree that $\lambda(A)=0$ if $\lambda\left(A_{i}\right)=0$ for all $i$.
- Under the assumption of the axiom of choice, one can construct non-measurable subsets of $\mathbb{R}^{n}$.

Let $A$ be a measurable subset of $\mathbb{R}^{n}$. We say that a particular condition holds for almost all $x \in A$, it if holds for all $x \in A$ with the exception of a subset of Lebesgue measure 0 . If the condition holds for almost all $x \in \mathbb{R}^{n}$, we say that it holds almost everywhere.

All sets occurring in this course will be measurable; we will never bother about the verification in individual cases.

### 0.4.2 Measurable functions

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called measurable if for every $a \in \mathbb{R}$, the set $\left\{x \in \mathbb{R}^{n}: f(x)>a\right\}$ is measurable.

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is measurable if both $\operatorname{Re} f$ and $\operatorname{Im} f$ are measurable.

## Facts:

- If $A \subset \mathbb{R}^{n}$ is measurable then its characteristic function, given by $I_{A}(x)=1$ if $x \in A, I_{A}(x)=0$ otherwise is measurable.
- Every continuous function $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is measurable. More generally, $f$ is measurable if its set of discontinuities has Lebesgue measure 0 .
- If $f, g: \mathbb{R}^{n} \rightarrow \mathbb{C}$ are measurable then $f+g$ and $f g$ are measurable. Further, the function given by $x \mapsto f(x) / g(x)$ if $g(x) \neq 0$ and $x \mapsto 0$ if $g(x)=0$ is measurable.
- If $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are measurable, then so are $\max (f, g)$ and $\min (f, g)$.
- If $\left\{f_{k}: \mathbb{R}^{n} \rightarrow \mathbb{C}\right\}$ is a sequence of measurable functions and $f_{k} \rightarrow f$ pointwise on $\mathbb{R}^{n}$, then $f$ is measurable.

All functions occurring in our course can be proved to be measurable by combining the above facts. We will always omit such nasty verifications, and take the measurability of the functions for granted.

### 0.4.3 Lebesgue integrals

The Lebesgue integral is defined in various steps.

1) An elementary function on $\mathbb{R}^{n}$ is a function of the type $f=\sum_{i=1}^{r} c_{i} I_{D_{i}}$, where $D_{1}, \ldots, D_{r}$ are pairwise disjoint measurable subsets of $\mathbb{R}^{n}$, and $c_{1}, \ldots, c_{r}$ positive reals. Then we define $\int f d x:=\sum_{i=1}^{r} c_{i} \lambda\left(D_{i}\right)$.
2) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be measurable and $f \geqslant 0$ on $\mathbb{R}^{n}$. Then we define $\int f d x:=$ $\sup \int g d x$ where the supremum is taken over all elementary functions $g \leqslant f$. Thus, $\int f d x$ is defined and $\geqslant 0$ but it may be infinite.
3) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be an arbitrary measurable function. Then we define

$$
\int f d x:=\int \max (f, 0) d x-\int \max (-f, 0) d x
$$

provided that at least one of the integrals is finite. If both integrals are finite, we say that $f$ is integrable or summable.
4) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ be measurable. We say that $f$ is integrable if both $\operatorname{Re} f$ and $\operatorname{Im} f$ are integrable, and in that case we define

$$
\int f d x:=\int(\operatorname{Re} f) d x+i \int(\operatorname{Im} f) d x
$$

5) Let $D$ be a measurable subset of $\mathbb{R}^{n}$. Let $f$ be a complex function defined on a set containing $D$. We define $f \cdot I_{D}$ by defining it to be equal to $f$ on $D$ and equal
to 0 outside $D$. We say that $f$ is measurable on $D$ if $f \cdot I_{D}$ is measurable. Further, we say that $f$ is integrable over $D$ if $f \cdot I_{D}$ is integrable, and in that case we define $\int_{D} f d x:=\int f \cdot I_{D} d x$.

## Facts:

- Let $D$ be a measurable subset of $\mathbb{R}^{n}$ and $f: D \rightarrow \mathbb{C}$ a measurable function. Then $f$ is integrable over $D$ if and only if $\int_{D}|f| d x<\infty$ and in that case, $\left|\int_{D} f d x\right| \leqslant \int_{D}|f| d x$.
- Let again $D$ be a measurable subset of $\mathbb{R}^{n}$ and $f: D \rightarrow \mathbb{C}, g: D \rightarrow \mathbb{R}_{\geqslant 0}$ measurable functions, such that $\int_{D} g d x<\infty$ and $|f| \leqslant g$ on $D$. Then $f$ is integrable over $D$, and $\left|\int_{D} f d x\right| \leqslant \int_{D} g d x$.
- Let $D$ be a closed interval in $\mathbb{R}^{n}$ and $f: D \rightarrow \mathbb{C}$ a bounded function which is Riemann integrable over $D$. Then $f$ is Lebesgue integrable over $D$ and the Lebesgue integral $\int_{D} f d x$ is equal to the Riemann integral $\int_{D} f(x) d x$.
- Let $f:[0, \infty) \rightarrow \mathbb{C}$ be such that the improper Riemann integral $\int_{0}^{\infty}|f(x)| d x$ converges. Then the improper Riemann integral $\int_{0}^{\infty} f(x) d x$ converges as well, and it is equal to the Lebesgue integral $\int_{[0, \infty)} f d x$. However, an improper Riemann integral $\int_{0}^{\infty} f(x) d x$ which is convergent, but for which $\int_{0}^{\infty}|f(x)| d x=$ $\infty$ can not be interpreted as a Lebesgue integral. The same applies to the other types of improper Riemann integrals, e.g., $\int_{a}^{b} f(x) d x$ where $f$ is unbounded on $(a, b)$.
- An absolutely convergent series of complex terms $\sum_{n=0}^{\infty} a_{n}$ may be interpreted as a Lebesgue integral. Define the function $A$ by $A(x):=a_{n}$ for $x \in \mathbb{R}$ with $n \leqslant x<n+1$ and $A(x):=0$ for $x<0$. Then $A$ is measurable and integrable, and $\sum_{n=0}^{\infty} a_{n}=\int A d x$.


### 0.4.4 Important theorems

Theorem 0.7 (Dominated Convergence Theorem). Let $D \subseteq \mathbb{R}^{n}$ be a measurable set and $\left\{f_{k}: D \rightarrow \mathbb{C}\right\}_{k \geqslant 0}$ a sequence of functions that are all integrable over $D$, and such that $f_{k} \rightarrow f$ pointwise on $D$. Assume that there is an integrable function $g: D \rightarrow \mathbb{R}_{\geqslant 0}$ such that $\left|f_{k}(x)\right| \leqslant g(x)$ for all $x \in D, k \geqslant 0$. Then $f$ is integrable over $D$, and $\int_{D} f_{k} d x \rightarrow \int_{D} f d x$.

Corollary 0.8. let $D \subset \mathbb{R}^{n}$ be a measurable set of finite measure and $\left\{f_{k}: D \rightarrow\right.$ $\mathbb{C}\}_{k \geqslant 0}$ a sequence of functions that are all integrable over $D$, and such that $f_{k} \rightarrow f$ uniformly on $D$. Then $f$ is integrable over $D$, and $\int_{D} f_{k} d x \rightarrow \int_{D} f d x$.

Proof. Let $\varepsilon>0$. There is $k_{0}$ such that $\left|f(x)-f_{k}(x)\right|<\varepsilon$ for all $x \in D, k>k_{0}$. The constant function $x \mapsto \varepsilon$ is integrable over $D$ since $D$ has finite measure. Hence for $k>k_{0}, f-f_{k}$ is integrable over $D$, and so $f$ is integrable over $D$. Consequently, $|f|$ is integrable over $D$. Now $\left|f_{k}\right|<\varepsilon+|f|$ for $k>k_{0}$. So by the Dominated Convergence Theorem, $\int_{D} f_{k} d x \rightarrow \int_{D} f d x$.

In the theorem below, we write points of $\mathbb{R}^{m+n}$ as $(x, y)$ with $x \in \mathbb{R}^{m}, y \in$ $\mathbb{R}^{n}$. Further, $d x, d y, d(x, y)$ denote the Lebesgue measures on $\mathbb{R}^{m}, \mathbb{R}^{n}, \mathbb{R}^{m+n}$, respectively.

Theorem 0.9 (Fubini-Tonelli). Let $D_{1}, D_{2}$ be measurable subsets of $\mathbb{R}^{m}, \mathbb{R}^{n}$, respectively, and $f: D_{1} \times D_{2} \rightarrow \mathbb{C}$ a measurable function. Assume that at least one of the integrals

$$
\int_{D_{1} \times D_{2}}|f(x, y)| d(x, y), \quad \int_{D_{1}}\left(\int_{D_{2}}|f(x, y)| d y\right) d x, \quad \int_{D_{2}}\left(\int_{D_{1}}|f(x, y)| d x\right) d y
$$

is finite. Then they are all finite and equal.
Further, $f$ is integrable over $D_{1} \times D_{2}, x \mapsto f(x, y)$ is integrable over $D_{1}$ for almost all $y \in D_{2}, y \mapsto f(x, y)$ is integrable over $D_{2}$ for almost all $x \in D_{1}$, and

$$
\int_{D_{1} \times D_{2}} f(x, y) d(x, y)=\int_{D_{1}}\left(\int_{D_{2}} f(x, y) d y\right) d x=\int_{D_{2}}\left(\int_{D_{1}} f(x, y) d x\right) d y
$$

Corollary 0.10. Let $D$ be a measurable subset of $\mathbb{R}^{m}$ and $\left\{f_{k}: D \rightarrow \mathbb{C}\right\}_{k \geqslant 0} a$ sequence of functions that are all integrable over $D$ and such that $\sum_{k=0}^{\infty}\left|f_{k}\right|$ converges pointwise on $D$. Assume that at least one of the quantities

$$
\sum_{k=0}^{\infty} \int_{D}\left|f_{k}(x)\right| d x, \quad \int_{D}\left(\sum_{k=0}^{\infty}\left|f_{k}(x)\right|\right) d x
$$

is finite. Then $\sum_{k=0}^{\infty} f_{k}$ is integrable over $D$ and

$$
\sum_{k=0}^{\infty} \int_{D} f_{k}(x) d x=\int_{D}\left(\sum_{k=0}^{\infty} f_{k}(x)\right) d x
$$

Proof. Apply the Theorem of Fubini-Tonelli with $n=1, D_{1}=D, D_{2}=[0, \infty)$, $F(x, y)=f_{k}(x)$ where $k$ is the integer with $k \leqslant y<k+1$.

Corollary 0.11. Let $\left\{a_{k l}\right\}_{k, l=0}^{\infty}$ be a double sequence of complex numbers such that at least one of

$$
\sum_{k=0}^{\infty}\left(\sum_{l=0}^{\infty}\left|a_{k l}\right|\right), \quad \sum_{l=0}^{\infty}\left(\sum_{k=0}^{\infty}\left|a_{k l}\right|\right)
$$

converges. Then both

$$
\sum_{k=0}^{\infty}\left(\sum_{l=0}^{\infty} a_{k l}\right), \quad \sum_{l=0}^{\infty}\left(\sum_{k=0}^{\infty} a_{k l}\right)
$$

converge and are equal.
Proof. Apply the Theorem of Fubini-Tonelli with $m=n=1, D_{1}=D_{2}=[0, \infty)$, $F(x, y)=a_{k l}$ where $k, l$ are the integers with $k \leqslant x<k+1, l \leqslant y<l+1$.

### 0.4.5 Useful inequalities

We have collected some inequalities, stated without proof, which frequently show up in analytic number theory. The proofs belong to a course in measure theory or functional analysis.

Proposition 0.12. Let $D$ be a measurable subset of $\mathbb{R}^{n}$ and $f, g: D \rightarrow \mathbb{C}$ measurable functions. Let $p, q$ be reals $>1$ with $\frac{1}{p}+\frac{1}{q}=1$. Then if all integrals are defined,

$$
\left|\int_{D} f g \cdot d x\right| \leqslant\left(\int_{D}|f|^{p} d x\right)^{1 / p} \cdot\left(\int_{D}|g|^{q} d x\right)^{1 / q} \quad \text { (Hölder's Inequality). }
$$

In particular,

$$
\left|\int_{D} f g d x\right| \leqslant\left(\int_{D}|f|^{2} d x\right)^{1 / 2} \cdot\left(\int_{D}|g|^{2} d x\right)^{1 / 2} \quad \text { (Cauchy-Schwarz' Inequality). }
$$

Corollary 0.13. Let $a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{r}$ be complex numbers and $p, q$ reals $>1$ with $\frac{1}{p}+\frac{1}{q}=1$. Then

$$
\left|\sum_{n=1}^{r} a_{n} b_{n}\right| \leqslant\left(\sum_{n=1}^{r}\left|a_{n}\right|^{p}\right)^{1 / p} \cdot\left(\sum_{n=1}^{r}\left|b_{n}\right|^{q}\right)^{1 / q} \quad \text { (Hölder). }
$$

In particular,

$$
\left|\sum_{n=1}^{r} a_{n} b_{n}\right| \leqslant\left(\sum_{n=1}^{r}\left|a_{n}\right|^{2}\right)^{1 / 2} \cdot\left(\sum_{n=1}^{r}\left|b_{n}\right|^{2}\right)^{1 / 2} \quad \text { (Cauchy-Schwarz). }
$$

This follows from Proposition 0.12 by taking $D=[0, r), f(x)=a_{n}, g(x)=b_{n}$ for $n-1 \leqslant x<n, n=1, \ldots, r$.

A function $\varphi$ from an interval $I \subseteq \mathbb{R}$ to $\mathbb{R}$ is called convex if $\varphi((1-t) x+t y) \leqslant$ $(1-t) \varphi(x)+t \varphi(y)$ holds for all $x, y \in I$ and all $t \in[0,1]$. In particular, $\varphi$ is convex on $I$ if $\varphi$ is twice differentiable and $\varphi^{\prime \prime} \geqslant 0$ on $I$.

Proposition 0.14. Let $D$ be a measurable subset of $\mathbb{R}^{n}$ with $0<\lambda(D)<\infty$, let $f: D \rightarrow \mathbb{R}_{>0}$ be a Lebesgue integrable function and let $\varphi: \mathbb{R}_{>0} \rightarrow \mathbb{R}$ be a convex function. Then

$$
\varphi\left(\frac{1}{\lambda(D)} \int_{D} f \cdot d x\right) \leqslant \frac{1}{\lambda(D)} \int_{D}(\varphi \circ f) d x \quad \text { (Jensen's Inequality). }
$$

Corollary 0.15. Let $a_{1}, \ldots, a_{r}$ be positive reals, and let $\varphi: \mathbb{R}_{>0} \rightarrow \mathbb{R}$ be a convex function. Then

$$
\varphi\left(\frac{1}{r} \sum_{n=1}^{r} a_{n}\right) \leqslant \frac{1}{r} \sum_{n=1}^{r} \varphi\left(a_{n}\right) .
$$

In particular,

$$
\frac{1}{r} \sum_{n=1}^{r} a_{n} \geqslant \sqrt[r]{a_{1} \cdots a_{n}} \quad \text { (arithmetic mean } \geqslant \text { geometric mean). }
$$

The first assertion follows by applying Proposition 0.14 with $D=[0, r)$ and $f(x)=$ $a_{n}$ for $x \in[n-1, n)$. The second assertion follows by applying the first with $\varphi(x)=-\log x$.

### 0.5 Line integrals

### 0.5.1 Paths in $\mathbb{C}$

We consider continuous functions $g:[a, b] \rightarrow \mathbb{C}$, where $a, b \in \mathbb{R}$ and $a<b$. Two continuous functions $g_{1}:[a, b] \rightarrow \mathbb{C}, g_{2}:[c, d] \rightarrow \mathbb{C}$ are called equivalent if there is
a continuous monotone increasing function $\varphi:[a, b] \rightarrow[c, d]$ such that $g_{1}=g_{2} \circ \varphi$. The equivalence classes of this relation are called paths (in $\mathbb{C}$ ), and a function $g$ : $[a, b] \rightarrow \mathbb{C}$ representing a path is called a parametrization of the path. Roughly speaking, a path is a curve in $\mathbb{C}$, together with a direction in which it is traversed.

A (continuously) differentiable path is a path represented by a (continuously) differentiable function $g:[a, b] \rightarrow \mathbb{C}$.

Let $\gamma$ be a path. Choose a parametrization $g:[a, b] \rightarrow \mathbb{C}$ of $\gamma$. We call $g(a)$ the start point and $g(b)$ the end point of $\gamma$. Further, $g([a, b])$ is called the support of $\gamma$. By saying that a function is continuous on $\gamma$, or that $\gamma$ is contained in a particular set, etc., we mean the support of $\gamma$.

The path $\gamma$ is said to be closed if its end point is equal to its start point, i.e., if $g(a)=g(b)$. The path $\gamma$ is called a contour if it is closed, has no self-intersections, and is traversed counterclockwise (we will not give the cumbersome formal definition of this intuitively obvious notion).


Let $\gamma_{1}, \gamma_{2}$ be paths, such that the end point of $\gamma_{1}$ is equal to the start point of $\gamma_{2}$. We define $\gamma_{1}+\gamma_{2}$ to be the path obtained by first traversing $\gamma_{1}$ and then $\gamma_{2}$. For instance, if $g_{1}:[a, b] \rightarrow \mathbb{C}$ is a parametrization of $\gamma_{1}$ then we may choose a parametrization $g_{2}:[b, c] \rightarrow \mathbb{C}$ of $\gamma_{2}$; then $g:[a, c] \rightarrow \mathbb{C}$ defined by $g(t):=g_{1}(t)$ if $a \leqslant t \leqslant b, g(t):=g_{2}(t)$ if $b \leqslant t \leqslant c$ is a parametrization of $\gamma_{1}+\gamma_{2}$.

Given a path $\gamma$, we define $-\gamma$ to be the path traversed in the opposite direction, i.e., the start point of $-\gamma$ is the end point of $\gamma$ and conversely.


Let $\gamma$ be a path and $F: \gamma \rightarrow \mathbb{C}$ a continuous function on (the support of) $\gamma$. Then $F(\gamma)$ is the path such that if $g:[a, b] \rightarrow \mathbb{C}$ is a parametrization of $\gamma$ then $F \circ g:[a, b] \rightarrow \mathbb{C}$ is a parametrization of $F(\gamma)$.

### 0.5.2 Line integrals

All paths occurring in our course will be built up from circle segments and line segments. So for our purposes, it suffices to define integrals of continuous functions along piecewise continuously differentiable paths, these are paths of the shape $\gamma_{1}+$ $\cdots+\gamma_{r}$, where $\gamma_{1}, \ldots, \gamma_{r}$ are continuously differentiable paths, and for $i=1, \ldots, r-1$, the end point of $\gamma_{i}$ coincides with the start point of $\gamma_{i+1}$.
let $\gamma$ be a continuously differentiable path, and $f: \gamma \rightarrow \mathbb{C}$ a continuous function. Choose a continuously differentiable parametrization $g:[a, b] \rightarrow \mathbb{C}$ of $\gamma$. Then we define

$$
\int_{\gamma} f(z) d z:=\int_{a}^{b} f(g(t)) g^{\prime}(t) d t
$$

Further, we define the length of $\gamma$ by

$$
L(\gamma):=\int_{a}^{b}\left|g^{\prime}(t)\right| d t
$$

These notions do not depend on the choice of $g$.

If $\gamma=\gamma_{1}+\cdots+\gamma_{r}$ is a piecewise continuously differentiable path with continuously differentiable pieces $\gamma_{1}, \ldots, \gamma_{r}$ and $f: \gamma \rightarrow \mathbb{C}$ is continuous, we define

$$
\int_{\gamma} f(z) d z:=\sum_{i=1}^{r} \int_{\gamma_{i}} f(z) d z
$$

and

$$
L(\gamma):=\sum_{i=1}^{r} L\left(\gamma_{i}\right)
$$

In case that $\gamma$ is closed, we write $\oint_{\gamma} f(z) d z$. It can be shown that the value of this integral is independent of the choice of the common start point and end point of $\gamma$.

We mention here that line integrals $\int_{\gamma} f(z) d z$ can be defined also for paths $\gamma$ that are not necessarily piecewise continuously differentiable. For piecewise continuously differentiable paths, this new definition coincides with the one given above.

Let $\gamma$ be any path and choose a parametrization $g:[a, b] \rightarrow \mathbb{C}$ of $\gamma$. A partition of $[a, b]$ is a tuple $P=\left(t_{0}, \ldots, t_{s}\right)$ where $a=t_{0}<t_{1}<\cdots<t_{s}=b$. We define the length of $\gamma$ by

$$
L(\gamma):=\sup _{P} \sum_{i=1}^{s}\left|g\left(t_{i}\right)-g\left(t_{i-1}\right)\right|,
$$

where the supremum is taken over all partitions $P$ of $[a, b]$. This does not depend on the choice of $g$. We call $\gamma$ rectifiable if $L(\gamma)<\infty$ (in another language, this means that the function $g$ is of bounded variation).

Let $\gamma$ be a rectifiable path, and $g:[a, b] \rightarrow \mathbb{C}$ a parametrization of $\gamma$. Given a partition $P=\left(t_{0}, \ldots, t_{s}\right)$ of $[a, b]$, we define the mesh of $P$ by

$$
\delta(P):=\max _{1 \leqslant i \leqslant s}\left|t_{i}-t_{i-1}\right| .
$$

A sequence of intermediate points of $P$ is a tuple $W=\left(w_{1}, \ldots, w_{s}\right)$ such that $t_{0}<w_{1}<t_{1}<w_{2}<t_{2}<\cdots<t_{s}$.

Let $f: \gamma \rightarrow \mathbb{C}$ be a continuous function. For a partition $P$ of $[a, b]$ and a tuple of intermediate points $W$ of $P$ we define

$$
S(f, g, P, W):=\sum_{i=1}^{s} f\left(g\left(w_{i}\right)\right)\left(g\left(t_{i}\right)-g\left(t_{i-1}\right)\right)
$$

One can show that there is a finite number, denoted $\int_{\gamma} f(z) d z$, such that for any choice of parametrization $g:[a, b] \rightarrow \mathbb{C}$ of $\gamma$ and any sequence $\left(P_{n}, W_{n}\right)_{n \geqslant 0}$ of partitions $P_{n}$ of $[a, b]$ and sequences of intermediate points $W_{n}$ of $P_{n}$ with $\delta\left(P_{n}\right) \rightarrow 0$,

$$
\int_{\gamma} f(z) d z=\lim _{n \rightarrow \infty} S\left(f, g, P_{n}, W_{n}\right)
$$

In another language, $\int_{\gamma} f(z) d z$ is equal to the Riemann-Stieltjes integral $\int_{a}^{b} f(g(t)) d g(t)$.

### 0.5.3 Properties of line integrals

Below (and in the remainder of the course), by a path we will mean a piecewise continuously differentiable path. In fact, all properties below hold for line integrals over rectifiable paths, but in textbooks on complex analysis, these properties are never proved in this generality.

- Let $\gamma$ be a path, and $f: \gamma \rightarrow \mathbb{C}$ continuous. Then

$$
\left|\int_{\gamma} f(z) d z\right| \leqslant L(\gamma) \cdot \sup _{z \in \gamma}|f(z)|
$$

- Let $\gamma_{1}, \gamma_{2}$ be two paths such that the end point of $\gamma_{1}$ and the start point of $\gamma_{2}$ coincide. Let $f: \gamma_{1}+\gamma_{2} \rightarrow \mathbb{C}$ continuous. Then

$$
\int_{\gamma_{1}+\gamma_{2}} f(z) d z=\int_{\gamma_{1}} f(z) d z+\int_{\gamma_{2}} f(z) d z
$$

- Let $\gamma$ be a path and $f: \gamma \rightarrow \mathbb{C}$ continuous. Then

$$
\int_{-\gamma} f(z) d z=-\int_{\gamma} f(z) d z
$$

- Let $\gamma$ be a path and $\left\{f_{n}: \gamma \rightarrow \mathbb{C}\right\}_{n=1}^{\infty}$ a sequence of continuous functions. Suppose that $f_{n} \rightarrow f$ uniformly on $\gamma$, i.e., $\sup _{z \in \gamma}\left|f_{n}(z)-f(z)\right| \rightarrow 0$ as $n \rightarrow \infty$. Then $f$ is continuous on $\gamma$, and $\int_{\gamma} f_{n}(z) d z \rightarrow \int_{\gamma} f(z) d z$ as $n \rightarrow \infty$.
- Call a function $F: U \rightarrow \mathbb{C}$ on an open subset $U$ of $\mathbb{C}$ analytic if for every $z \in U$ the limit

$$
F^{\prime}(z)=\lim _{h \in \mathbb{C}, h \rightarrow 0} \frac{F(z+h)-F(z)}{h}
$$

exists. Let $\gamma$ be a path with start point $z_{0}$ and end point $z_{1}$, and let $F$ be an analytic function defined on an open set $U \subset \mathbb{C}$ that contains $\gamma$. Then

$$
\int_{\gamma} F^{\prime}(z) d z=F\left(z_{1}\right)-F\left(z_{0}\right)
$$

- Let $\gamma$ be a path and $F$ an analytic function defined on some open set containing $\gamma$. Further, let $f: F(\gamma) \rightarrow \mathbb{C}$ be continuous. Then

$$
\int_{F(\gamma)} f(w) d w=\int_{\gamma} f(F(z)) F^{\prime}(z) d z
$$

Examples. 1. Let $\gamma_{a, r}$ denote the circle with center $a$ and radius $r$, traversed counterclockwise. For $\gamma_{a, r}$ we may choose a parametrization $t \mapsto a+r e^{2 \pi i t}, t \in[0,1]$. Let $n \in \mathbb{Z}$. Then

$$
\begin{aligned}
\oint_{\gamma_{a, r}}(z-a)^{n} d z & =\int_{0}^{1} r^{n} e^{2 n \pi i t} \cdot 2 \pi i \cdot r e^{2 \pi i t} d t \\
& =2 \pi i r^{n+1} \int_{0}^{1} e^{2(n+1) \pi i t} d t= \begin{cases}2 \pi i & \text { if } n=-1 \\
0 & \text { if } n \neq-1\end{cases}
\end{aligned}
$$

2. For $z_{0}, z_{1} \in \mathbb{C}$, denote by $\left[z_{0}, z_{1}\right]$ the line segment from $z_{0}$ to $z_{1}$. For $\left[z_{0}, z_{1}\right]$ we may choose a parametrization $t \mapsto z_{0}+t\left(z_{1}-z_{0}\right), t \in[0,1]$. Let $f:\left[z_{0}, z_{1}\right] \rightarrow \mathbb{C}$ be continuous. Then

$$
\int_{\left[z_{0}, z_{1}\right]} f(z) d(z)=\int_{0}^{1} f\left(z_{0}+t\left(z_{1}-z_{0}\right)\right)\left(z_{1}-z_{0}\right) d t
$$

### 0.6 Topology

We recall some facts about the topology of $\mathbb{C}$.

### 0.6.1 Basic facts

Let $a \in \mathbb{C}, r \in \mathbb{R}_{>0}$. We define the open disk and closed disk with center $a$ and radius $r$,

$$
D(a, r)=\{z \in \mathbb{C}:|z-a|<r\}, \quad \bar{D}(a, r)=\{z \in \mathbb{C}:|z-a| \leqslant r\}
$$

Recall that a subset $U$ of $\mathbb{C}$ is called open if either $U=\emptyset$, or for every $a \in U$ there is $\delta>0$ with $D(a, \delta) \subset U$. A subset $U$ of $\mathbb{C}$ is closed if its complement $U^{c}=\mathbb{C} \backslash U$ is open. It is easy to verify that the union of any possibly infinite collection of open subsets of $\mathbb{C}$ is open. Further, the intersection of finitely many open subsets is open. Consequently, the intersection of any possibly infinite collection of closed sets is closed, and the union of finitely many closed subsets is closed.

A subset $S$ of $\mathbb{C}$ is called compact, if for every collection $\left\{U_{\alpha}\right\}_{\alpha \in I}$ of open subsets of $\mathbb{C}$ with $S \subset \bigcup_{\alpha \in I} U_{\alpha}$ there is a finite subset $F$ of $I$ such that $S \subset \bigcup_{\alpha \in F} U_{\alpha}$, in other words, every open cover of $S$ has a finite subcover.

By the Heine-Borel Theorem, a subset of $\mathbb{C}$ is compact if and only if it is closed and bounded.

Let $U$ be a non-empty subset of $\mathbb{C}$. A point $z_{0} \in \mathbb{C}$ is called a limit point of $U$ if there is a sequence $\left\{z_{n}\right\}$ in $U$ such that all $z_{n}$ are distinct and $z_{n} \rightarrow z_{0}$ as $n \rightarrow \infty$. Recall that a non-empty subset $U$ of $\mathbb{C}$ is closed if and only if each of its limit points belongs to $U$.

Let $U$ be a non-empty subset of $\mathbb{C}$, and $S \subset U$. Then $S$ is called discrete in $U$ if it has no limit points in $U$. Recall that by the Bolzano-Weierstrass Theorem, every infinite subset of a compact set $K$ has a limit point in $K$. This implies that $S$ is discrete in $U$ if and only if for every compact set $K$ with $K \subset U$, the intersection $K \cap S$ is finite.

Let $U$ be a non-empty, open subset of $\mathbb{C}$. We say that $U$ is connected if there are no non-empty open sets $U_{1}, U_{2}$ with $U=U_{1} \cup U_{2}$ and $U_{1} \cap U_{2}=\emptyset$. We say that $U$ is pathwise connected if for every $z_{0}, z_{1} \in U$ there is a path $\gamma \subset U$ with start point $z_{0}$ and end point $z_{1}$. A fact (typical for the topological space $\mathbb{C}$ ) is that a non-empty open subset $U$ of $\mathbb{C}$ is connected if and only if it is pathwise connected.

Let $U$ be any, non-empty open subset of $\mathbb{C}$. We can express $U$ as a disjoint union $\bigcup_{\alpha \in I} U_{\alpha}$, with $I$ some index set, such that two points of $U$ belong to the same set $U_{\alpha}$ if and only if they are connected by a path contained in $U$. The sets $U_{\alpha}$ are open, connected, and pairwise disjoint. We call these sets $U_{\alpha}$ the connected components of $U$.

### 0.6.2 Homotopy



Let $U \subseteq \mathbb{C}$ and $\gamma_{1}, \gamma_{2}$ two paths in $U$ with start point $z_{0}$ and end point $z_{1}$. Then $\gamma_{1}, \gamma_{2}$ are homotopic in $U$ if one can be continuously deformed into the other within $U$. More precisely this means the following: there are parametrizations $f$ : $[0,1] \rightarrow \mathbb{C}$ of $\gamma_{1}, g:[0,1] \rightarrow \mathbb{C}$ of $\gamma_{2}$ and a continuous map $H:[0,1] \times[0,1] \rightarrow U$ with the following properties:

$$
\begin{aligned}
& H(0, t)=f(t), \quad H(1, t)=g(t) \text { for } 0 \leqslant t \leqslant 1 ; \\
& H(s, 0)=z_{0}, \quad H(s, 1)=z_{1} \text { for } 0 \leqslant s \leqslant 1
\end{aligned}
$$



Let $U \subseteq \mathbb{C}$ be open and non-empty. We call $U$ simply connected ('without holes') if it is connected and if every closed path in $U$ can be contracted to a point in $U$, that is, if $z_{0}$ is any point in $U$ and $\gamma$ is any closed path in $U$ containing $z_{0}$, then $\gamma$ is homotopic in $U$ to $z_{0}$.

A map $f: D_{1} \rightarrow D_{2}$, where $D_{1}, D_{2}$ are subsets of $\mathbb{C}$, is called a homeomorphism if $f$ is a bijection, and both $f$ and $f^{-1}$ are continuous. Homeomorphisms preserve topological properties of sets such as openness, closedness, boundedness, (simple) connectedness, etc.

Theorem 0.16 (Schoenflies Theorem for curves). Let $\gamma$ be a contour in $\mathbb{C}$. Then there is a homeomorphism $f: \mathbb{C} \rightarrow \mathbb{C}$ such that $f\left(\gamma_{0,1}\right)=\gamma$, where $\gamma_{0,1}$ is the unit circle with center 0 and radius 1 , traversed counterclockwise.

Corollary 0.17 (Jordan Curve Theorem). Let $\gamma$ be a contour in $\mathbb{C}$. Then $\mathbb{C} \backslash \gamma$ has
two connected components, $U_{1}$ and $U_{2}$. The component $U_{1}$ is bounded and simply connected, while $U_{2}$ is unbounded.


The component $U_{1}$ is called the interior of $\gamma$, notation $\operatorname{int}(\gamma)$, and $U_{2}$ the exterior of $\gamma$, notation $\operatorname{ext}(\gamma)$.

### 0.7 Complex analysis

### 0.7.1 Basics

In what follows, $U$ is a non-empty open subset of $\mathbb{C}$ and $f: U \rightarrow \mathbb{C}$ a function. We say that $f$ is holomorphic or analytic in $z_{0} \in U$ if

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} \text { exists. }
$$

In that case, the limit is denoted by $f^{\prime}\left(z_{0}\right)$. We say that $f$ is analytic on $U$ if $f$ is analytic in every $z \in U$; in that case, the derivative $f^{\prime}(z)$ is defined for every $z \in U$. We say that $f$ is analytic around $z_{0}$ if it is analytic on some open disk $D\left(z_{0}, \delta\right)$ for some $\delta>0$. Finally, given a not necessarily open subset $A$ of $\mathbb{C}$ and a function $f: A \rightarrow \mathbb{C}$, we say that $f$ is analytic on $A$ if there is an open set $U \supseteq A$ such that $f$ is defined on $U$ and analytic on $U$. An everywhere analytic function $f: \mathbb{C} \rightarrow \mathbb{C}$ is called entire.

For any two analytic functions $f, g$ on some open set $U \subseteq \mathbb{C}$, we have the usual rules for differentiation $(f \pm g)^{\prime}=f^{\prime} \pm g^{\prime},(f g)^{\prime}=f^{\prime} g+f g^{\prime}$ and $(f / g)^{\prime}=\left(g f^{\prime}-f g^{\prime}\right) / g^{2}$ (the latter is defined for any $z$ with $g(z) \neq 0$ ). Further, given a non-empty set $U \subseteq \mathbb{C}$, and analytic functions $f: U \rightarrow \mathbb{C}, g: f(U) \rightarrow \mathbb{C}$, the composition $g \circ f$ is analytic on $U$ and $(g \circ f)^{\prime}=\left(g^{\prime} \circ f\right) \cdot f^{\prime}$.

Recall that a power series around $z_{0} \in \mathbb{C}$ is an infinite sum

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

with $a_{n} \in \mathbb{C}$ for all $n \in \mathbb{Z}_{\geqslant 0}$. The radius of convergence of this series is given by

$$
R=R_{f}=\left(\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}\right)^{-1}
$$

We state without proof the following fact.
Theorem 0.18. Let $z_{0} \in \mathbb{C}$ and $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ a power series around $z_{0} \in \mathbb{C}$ with radius of convergence $R>0$. Then $f$ defines a function on $D\left(z_{0}, R\right)$ which is analytic infinitely often. For $k \geqslant 0$ the $k$-th derivative $f^{(k)}$ of $f$ has a power series expansion with radius of convergence $R$ given by

$$
f^{(k)}(z)=\sum_{n=k}^{\infty} n(n-1) \cdots(n-k+1) a_{n}\left(z-z_{0}\right)^{n-k} .
$$

In each of the examples below, $R$ denotes the radius of convergence of the given power series.

$$
\begin{array}{ll}
e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}, & R=\infty, \quad\left(e^{z}\right)^{\prime}=e^{z} . \\
\cos z=\left(e^{i z}+e^{-i z}\right) / 2=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!}, & R=\infty, \quad \cos ^{\prime} z=-\sin z \\
\sin z=\left(e^{i z}-e^{-i z}\right) / 2 i=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!}, & R=\infty, \quad \sin ^{\prime} z=\cos z . \\
(1+z)^{\alpha}=\sum_{n=0}^{\infty}\binom{\alpha}{n} z^{n}, & R=1, \quad\left((1+z)^{\alpha}\right)^{\prime}=\alpha(1+z)^{\alpha-1} \\
\text { where } \alpha \in \mathbb{C}, \quad\binom{\alpha}{n}=\frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n!} . & R=1, \quad \log ^{\prime}(1+z)=(1+z)^{-1} .
\end{array}
$$

### 0.7.2 Cauchy's Theorem and some applications

In the remainder of this course, a path will always be a piecewise continuously differentiable path. Recall that for a piecewise continuously differentiable path $\gamma$, say $\gamma=\gamma_{1}+\cdots+\gamma_{r}$ where $\gamma_{1}, \ldots, \gamma_{r}$ are paths with continuously differentiable parametrizations $g_{i}:\left[a_{i}, b_{i}\right] \rightarrow \mathbb{C}$, and for a continuous function $f: \gamma \rightarrow \mathbb{C}$ we have $\int_{\gamma} f(z) d z=\sum_{i=1}^{r} \int_{a_{i}}^{b_{i}} f\left(g_{i}(t)\right) g_{i}^{\prime}(t) d t$.

Theorem 0.19 (Cauchy). Let $U \subseteq \mathbb{C}$ be a non-empty open set and $f: U \rightarrow \mathbb{C}$ an analytic function. Further, let $\gamma_{1}, \gamma_{2}$ be two paths in $U$ with the same start point and end point that are homotopic in $U$. Then

$$
\int_{\gamma_{1}} f(z) d z=\int_{\gamma_{2}} f(z) d z
$$

Proof. Any textbook on complex analysis.

Corollary 0.20. Let $U \subseteq \mathbb{C}$ be a non-empty, open, simply connected set, and $f: U \rightarrow \mathbb{C}$ an analytic function. Then for any closed path $\gamma$ in $U$,

$$
\oint_{\gamma} f(z) d z=0 .
$$

Proof. The path $\gamma$ is homotopic in $U$ to a point, and a line integral along a point is 0 .

Corollary 0.21. Let $\gamma_{1}, \gamma_{2}$ be two contours (closed paths without self-intersections traversed counterclockwise), such that $\gamma_{2}$ is contained in the interior of $\gamma_{1}$. Let $U \subset \mathbb{C}$ be an open set which contains $\gamma_{1}, \gamma_{2}$ and the region between $\gamma_{1}$ and $\gamma_{2}$. Further, let $f: U \rightarrow \mathbb{C}$ be an analytic function. Then

$$
\oint_{\gamma_{1}} f(z) d z=\oint_{\gamma_{2}} f(z) d z
$$

Proof.


Let $z_{0}, z_{1}$ be points on $\gamma_{1}, \gamma_{2}$ respectively, and let $\alpha$ be a path from $z_{0}$ to $z_{1}$ lying inside the region between $\gamma_{1}$ and $\gamma_{2}$ without self-intersections.

Then $\gamma_{1}$ is homotopic in $U$ to the path $\alpha+\gamma_{2}-\alpha$, which consists of first traversing $\alpha$, then $\gamma_{2}$, and then $\alpha$ in the opposite direction. Hence

$$
\oint_{\gamma_{1}} f(z) d z=\left(\int_{\alpha}+\oint_{\gamma_{2}}-\int_{\alpha}\right) f(z) d z=\oint_{\gamma_{2}} f(z) d z
$$

Corollary 0.22 (Cauchy's Integral Formula). Let $\gamma$ be a contour in $\mathbb{C}, U \subset \mathbb{C}$ an open set containing $\gamma$ and its interior, $z_{0}$ a point in the interior of $\gamma$, and $f: U \rightarrow \mathbb{C}$ an analytic function. Then

$$
\frac{1}{2 \pi i} \oint_{\gamma} \frac{f(z)}{z-z_{0}} \cdot d z=f\left(z_{0}\right)
$$

Proof.


Let $\gamma_{z_{0}, \delta}$ be the circle with center $z_{0}$ and radius $\delta$, traversed counterclockwise. Then by Corollary 0.21 we have for any sufficiently small $\delta>0$,

$$
\frac{1}{2 \pi i} \oint_{\gamma} \frac{f(z)}{z-z_{0}} \cdot d z=\frac{1}{2 \pi i} \oint_{\gamma_{z_{0}, \delta}} \frac{f(z)}{z-z_{0}} \cdot d z
$$

Now, since $f(z)$ is continuous, hence uniformly continuous on any sufficiently small compact set containing $z_{0}$,

$$
\begin{aligned}
& \left|\frac{1}{2 \pi i} \oint_{\gamma} \frac{f(z)}{z-z_{0}} \cdot d z-f\left(z_{0}\right)\right|=\left|\frac{1}{2 \pi i} \oint_{\gamma_{z_{0}, \delta}} \frac{f(z)}{z-z_{0}} \cdot d z-f\left(z_{0}\right)\right| \\
& \quad=\left|\int_{0}^{1} \frac{f\left(z_{0}+\delta e^{2 \pi i t}\right)}{\delta e^{2 \pi i t}} \cdot \delta e^{2 \pi i t} d t-f\left(z_{0}\right)\right| \\
& \quad=\left|\int_{0}^{1}\left\{f\left(z_{0}+\delta e^{2 \pi i t}\right)-f\left(z_{0}\right)\right\} d t\right| \leqslant \sup _{0 \leqslant t \leqslant 1}\left|f\left(z_{0}+\delta e^{2 \pi i t}\right)-f\left(z_{0}\right)\right| \\
& \quad \rightarrow 0 \text { as } \delta \downarrow 0 .
\end{aligned}
$$

This completes our proof.

We now show that every analytic function $f$ on a simply connected set has an anti-derivative. We first prove a simple lemma.

Lemma 0.23. Let $U \subseteq \mathbb{C}$ be a non-empty, open, connected set, and let $f: U \rightarrow \mathbb{C}$ be an analytic function such that $f^{\prime}=0$ on $U$. Then $f$ is constant on $U$.

Proof. Fix a point $z_{0} \in U$ and let $z \in U$ be arbitrary. Take a path $\gamma_{z}$ in $U$ from $z_{0}$ to $z$ which exists since $U$ is (pathwise) connected. Then

$$
f(z)-f\left(z_{0}\right)=\int_{\gamma_{z}} f^{\prime}(w) d w=0
$$

Corollary 0.24. Let $U \subset \mathbb{C}$ be a non-empty, open, simply connected set, and $f: U \rightarrow \mathbb{C}$ an analytic function. Then there exists an analytic function $F: U \rightarrow \mathbb{C}$ with $F^{\prime}=f$. Further, $F$ is determined uniquely up to addition with a constant.

Proof (sketch). If $F_{1}, F_{2}$ are any two analytic functions on $U$ with $F_{1}^{\prime}=F_{2}^{\prime}=f$, then $F_{1}^{\prime}-F_{2}^{\prime}$ is constant on $U$ since $U$ is connected. This shows that an anti-derivative of $f$ is determined uniquely up to addition with a constant. It thus suffices to prove the existence of an analytic function $F$ on $U$ with $F^{\prime}=f$.


Fix $z_{0} \in U$. Given $z \in U$, we define $F(z)$ by

$$
F(z):=\int_{\gamma_{z}} f(w) d w
$$

where $\gamma_{z}$ is any path in $U$ from $z_{0}$ to $z$. This does not depend on the choice of $\gamma_{z}$. For let $\gamma_{1}, \gamma_{2}$ be any two paths in $U$ from $z_{0}$ to $z$. Then $\gamma_{1}-\gamma_{2}$ (the path consisting
of first traversing $\gamma_{1}$ and then $\gamma_{2}$ in the opposite direction) is homotopic to $z_{0}$ since $U$ is simply connected, hence

$$
\int_{\gamma_{1}} f(z) d z-\int_{\gamma_{2}} f(z) d z=\oint_{\gamma_{1}-\gamma_{2}} f(z) d z=0
$$

To prove that $\lim _{h \rightarrow 0} \frac{F(z+h)-F(z)}{h}=f(z)$, take a path $\gamma_{z}$ from $z_{0}$ to $z$ and then the line segment $[z, z+h]$ from $z$ to $z+h$. Then since $f$ is uniformly continuous on any sufficiently small compact set around $z$,

$$
\begin{aligned}
F(z+h)-F(z) & =\left(\int_{\gamma_{z}+[z, z+h]}-\int_{\gamma_{z}}\right) f(w) d w=\int_{[z, z+h]} f(w) d w \\
& =\int_{0}^{1} f(z+t h) h d t=h\left(f(z)+\int_{0}^{1}(f(z+t h)-f(z)) d t\right) .
\end{aligned}
$$

So

$$
\begin{aligned}
\left|\frac{F(z+h)-F(z)}{h}-f(z)\right| & =\left|\int_{0}^{1}(f(z+t h)-f(z)) d t\right| \\
& \leqslant \sup _{0 \leqslant t \leqslant 1}|f(z+t h)-f(z)| \rightarrow 0 \text { as } h \rightarrow 0
\end{aligned}
$$

This completes our proof.
Example. Let $U \subset \mathbb{C}$ be a non-empty, open, simply connected subset of $\mathbb{C}$ with $0 \notin U$. Then $1 / z$ has an anti-derivative on $U$.

For instance, if $U=\mathbb{C} \backslash\{z \in \mathbb{C}: \operatorname{Re} z \leqslant 0\}$ we may take as anti-derivative of $1 / z$,

$$
\log z:=\log |z|+i \operatorname{Arg} z
$$

where $\operatorname{Arg} z$ is the $\operatorname{argument}$ of $z$ in the interval $(-\pi, \pi)$ (this is called the principal value of the logarithm).

On $\{z \in \mathbb{C}:|z-1|<1\}$ we may take as anti-derivative of $1 / z$ the power series

$$
\sum_{n=1}^{\infty}(-1)^{n-1} \frac{(z-1)^{n}}{n}
$$

### 0.7.3 Taylor series

Theorem 0.25. Let $U \subseteq \mathbb{C}$ be a non-empty, open set and $f: U \rightarrow \mathbb{C}$ an analytic function. Further, let $z_{0} \in U$ and $R>0$ be such that $D\left(z_{0}, R\right) \subseteq U$. Then $f$ has a Taylor series expansion

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \quad \text { converging for } z \in D\left(z_{0}, R\right)
$$

Further, we have for $n \in \mathbb{Z}_{\geqslant 0}$,

$$
\begin{equation*}
a_{n}=\frac{1}{2 \pi i} \oint_{\gamma_{z_{0}, r}} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} \cdot d z \text { for any } r \text { with } 0<r<R \tag{0.3}
\end{equation*}
$$

Proof. We fix $z \in D\left(z_{0}, R\right)$ and use $w$ to indicate a complex variable. Choose $r$ with $\left|z-z_{0}\right|<r<R$. By Cauchy's integral formula,

$$
f(z)=\frac{1}{2 \pi i} \oint_{\gamma_{z_{0}}, r} \frac{f(w)}{w-z} \cdot d w
$$

We rewrite the integrand. We have

$$
\begin{aligned}
\frac{f(w)}{w-z} & =\frac{f(w)}{\left(w-z_{0}\right)-\left(z-z_{0}\right)}=\frac{f(w)}{w-z_{0}} \cdot\left(1-\frac{z-z_{0}}{w-z_{0}}\right)^{-1} \\
& =\frac{f(w)}{w-z_{0}} \cdot \sum_{n=0}^{\infty}\left(\frac{z-z_{0}}{w-z_{0}}\right)^{n}=\sum_{n=0}^{\infty} \frac{f(w)}{\left(w-z_{0}\right)^{n+1}} \cdot\left(z-z_{0}\right)^{n}
\end{aligned}
$$

The latter series converges uniformly on $\gamma_{z_{0}, r}$. For let $M:=\sup _{w \in \gamma_{z_{0}, r}}|f(w)|$. Then

$$
\sup _{w \in \gamma_{z_{0}, r}}\left|\frac{f(w)}{\left(w-z_{0}\right)^{n+1}} \cdot\left(z-z_{0}\right)^{n}\right| \leqslant \frac{M}{r}\left(\frac{\left|z-z_{0}\right|}{r}\right)^{n}=: M_{n}
$$

and $\sum_{n=0}^{\infty} M_{n}$ converges since $\left|z-z_{0}\right|<r$. Consequently,

$$
\begin{aligned}
f(z) & =\frac{1}{2 \pi i} \oint_{\gamma_{z_{0}, r}} \frac{f(w)}{w-z} \cdot d w \\
& =\frac{1}{2 \pi i} \oint_{\gamma_{z_{0}, r}} \sum_{n=0}^{\infty}\left(\frac{f(w)}{\left(w-z_{0}\right)^{n+1}} \cdot\left(z-z_{0}\right)^{n}\right) d w \\
& =\sum_{n=0}^{\infty}\left(z-z_{0}\right)^{n}\left\{\frac{1}{2 \pi i} \oint_{\gamma_{z_{0}, r}} \frac{f(w)}{\left(w-z_{0}\right)^{n+1}} \cdot d w\right\} .
\end{aligned}
$$

Now Theorem 0.25 follows since by Corollary 0.21 the integral in ( 0.3 ) is independent of $r$.

Corollary 0.26. Let $U \subseteq \mathbb{C}$ be a non-empty, open set, and $f: U \rightarrow \mathbb{C}$ an analytic function. Then $f$ is analytic on $U$ infinitely often, that is, for every $k \geqslant 0$ the $k$-the derivative $f^{(k)}$ exists, and is analytic on $U$.

Proof. Pick $z \in U$. Choose $\delta>0$ such that $D(z, \delta) \subset U$. Then for $w \in D(z, \delta)$ we have

$$
f(w)=\sum_{n=0}^{\infty} a_{n}(w-z)^{n} \text { with } a_{n}=\frac{1}{2 \pi i} \oint_{\gamma_{z, r}} \frac{f(w)}{(w-z)^{n+1}} \cdot d w \text { for } 0<r<\delta
$$

Now for every $k \geqslant 0$, the $k$-th derivative $f^{(k)}(z)$ exists and is equal to $k!a_{k}$.
Corollary 0.27. Let $\gamma$ be a contour in $\mathbb{C}$, and $U$ an open subset of $\mathbb{C}$ containing $\gamma$ and its interior. Further, let $f: U \rightarrow \mathbb{C}$ be an analytic function. Then for every $z$ in the interior of $\gamma$ and every $k \geqslant 0$ we have

$$
f^{(k)}(z)=\frac{k!}{2 \pi i} \oint_{\gamma} \frac{f(w)}{(w-z)^{k+1}} \cdot d w
$$

Proof. Choose $\delta>0$ such that $\gamma_{z, \delta}$ lies in the interior of $\gamma$. By Corollary 0.21,

$$
\frac{1}{2 \pi i} \oint_{\gamma} \frac{f(w)}{(w-z)^{k+1}} \cdot d w=\frac{1}{2 \pi i} \oint_{\gamma_{z, \delta}} \frac{f(w)}{(w-z)^{k+1}} \cdot d w
$$

By the argument in Corollary 0.26 , this is equal to $f^{(k)}(z) / k$ !.

We prove a generalization of Cauchy's integral formula.
Corollary 0.28. Let $\gamma_{1}, \gamma_{2}$ be two contours such that $\gamma_{1}$ is lying in the interior of $\gamma_{2}$. Let $U \subset \mathbb{C}$ be an open set which contains $\gamma_{1}, \gamma_{2}$ and the region between $\gamma_{1}, \gamma_{2}$. Further, let $f: U \rightarrow \mathbb{C}$ be an analytic function. Then for any $z_{0}$ in the region between $\gamma_{1}$ and $\gamma_{2}$ we have

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{\gamma_{2}} \frac{f(z)}{z-z_{0}} d z-\frac{1}{2 \pi i} \oint_{\gamma_{1}} \frac{f(z)}{z-z_{0}} d z
$$

Proof. We have seen that around $z_{0}$ the function $f$ has a Taylor expansion $f(z)=$ $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$. Define the function on $U$,

$$
g(z):=\frac{f(z)-a_{0}}{z-z_{0}} \quad\left(z \neq z_{0}\right) ; \quad g\left(z_{0}\right):=a_{1} .
$$

The function $g$ is clearly analytic on $U \backslash\left\{z_{0}\right\}$. Further,

$$
\frac{g(z)-g\left(z_{0}\right)}{z-z_{0}}=\sum_{n=2}^{\infty} a_{n}\left(z-z_{0}\right)^{n-2} \rightarrow a_{2} \text { as } z \rightarrow z_{0}
$$

Hence $g$ is also analytic at $z=z_{0}$. In particular, $g$ is analytic in the region between $\gamma_{1}$ and $\gamma_{2}$. So by Corollary 0.21,

$$
\oint_{\gamma_{1}} g(z) d z=\oint_{\gamma_{2}} g(z) d z
$$

Together with Corollaries $0.22,0.21$ this implies

$$
\begin{aligned}
f\left(z_{0}\right)=a_{0} & =\frac{1}{2 \pi i} \oint_{\gamma_{2}} \frac{a_{0}}{z-z_{0}} \cdot d z-\frac{1}{2 \pi i} \oint_{\gamma_{1}} \frac{a_{0}}{z-z_{0}} \cdot d z \\
& =\frac{1}{2 \pi i} \oint_{\gamma_{2}} \frac{f(z)}{z-z_{0}} \cdot d z-\frac{1}{2 \pi i} \oint_{\gamma_{1}} \frac{f(z)}{z-z_{0}} \cdot d z
\end{aligned}
$$

### 0.7.4 Isolated singularities, Laurent series, meromorphic functions

We define the punctured disk with center $z_{0} \in \mathbb{C}$ and radius $r>0$ by

$$
D^{0}\left(z_{0}, r\right)=\left\{z \in \mathbb{C}: 0<\left|z-z_{0}\right|<r\right\}
$$

If $f$ is an analytic function defined on $D^{0}\left(z_{0}, r\right)$ for some $r>0$, we call $z_{0}$ an isolated singularity of $f$. In case that there exists an analytic function $g$ on the non-punctured disk $D\left(z_{0}, r\right)$ such that $g(z)=f(z)$ for $z \in D^{0}\left(z_{0}, r\right)$, we call $z_{0}$ a removable singularity of $f$.

Theorem 0.29. Let $U \subseteq \mathbb{C}$ be a non-empty, open set and $f: U \rightarrow \mathbb{C}$ an analytic function. Further, let $z_{0} \in U$, and let $R>0$ be such that $D^{0}\left(z_{0}, R\right) \subseteq U$. Then $f$ has a Laurent series expansion

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \quad \text { converging for } z \in D^{0}\left(z_{0}, R\right)
$$

Further, we have for $n \in \mathbb{Z}$,

$$
\begin{equation*}
a_{n}=\frac{1}{2 \pi i} \oint_{\gamma_{z_{0}, r}} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} \cdot d z \text { for any } r \text { with } 0<r<R . \tag{0.4}
\end{equation*}
$$

Proof. We fix $z \in D^{0}\left(z_{0}, R\right)$ and use $w$ to denote a complex variable. Choose $r_{1}, r_{2}$ with $0<r_{1}<\left|z-z_{0}\right|<r_{2}<R$.

By Corollary 0.28 we have

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi i} \oint_{\gamma_{z_{0}, r_{2}}} \frac{f(w)}{w-z} \cdot d w-\frac{1}{2 \pi i} \oint_{\gamma_{z_{0}, r_{1}}} \frac{f(w)}{w-z} \cdot d w=: I_{1}-I_{2}, \tag{0.5}
\end{equation*}
$$

say. Completely similarly to Theorem 0.25 , one shows that

$$
I_{1}=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \text { with } a_{n}=\frac{1}{2 \pi i} \oint_{\gamma_{0}, r_{2}} \frac{f(w)}{\left(w-z_{0}\right)^{n+1}} \cdot d w
$$

Notice that for $w$ on the inner circle $\gamma_{z_{0}, r_{1}}$ we have

$$
\begin{aligned}
\frac{f(w)}{w-z} & =\frac{f(w)}{\left(w-z_{0}\right)-\left(z-z_{0}\right)}=-\frac{f(w)}{z-z_{0}} \cdot\left(1-\frac{w-z_{0}}{z-z_{0}}\right)^{-1} \\
& =-\sum_{m=0}^{\infty} f(w)\left(z-z_{0}\right)^{-m-1}\left(w-z_{0}\right)^{m}
\end{aligned}
$$

Further, one easily shows that the latter series converges uniformly to $f(w) /(w-z)$
on $\gamma_{z_{0}, r_{1}}$. After a substitution $n=-m-1$, it follows that

$$
\begin{aligned}
I_{2} & =\frac{-1}{2 \pi i} \oint_{\gamma_{z_{0}, r_{2}}}\left(\sum_{m=0}^{\infty} f(w)\left(w-w_{0}\right)^{m}\left(z-z_{0}\right)^{-m-1}\right) \cdot d w \\
& =-\sum_{n=-\infty}^{-1} a_{n}\left(z-z_{0}\right)^{n}, \text { with } a_{n}=\frac{1}{2 \pi i} \oint_{\gamma_{z_{0}, r_{1}}} \frac{f(w)}{\left(w-z_{0}\right)^{n+1}} \cdot d w
\end{aligned}
$$

By substituting the expressions for $I_{1}, I_{2}$ obtained above into (0.5), we obtain

$$
f(z)=I_{1}-I_{2}=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

Further, by Corollary 0.21 we have

$$
a_{n}=\frac{1}{2 \pi i} \oint_{\gamma_{z_{0}, r}} \frac{f(w)}{\left(w-z_{0}\right)^{n+1}} \cdot d w
$$

for any $n \in \mathbb{Z}$ and any $r$ with $0<r<R$. This completes our proof.

Let $U \subseteq \mathbb{C}$ be an open set, $z_{0} \in U$ and $f: U \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ an analytic function. Then $z_{0}$ is an isolated singularity of $f$, and there is $R>0$ such that $f$ has a Laurent series expansion

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

converging for $z \in D^{0}\left(z_{0}, R\right)$. Notice that $z_{0}$ is a removable singularity of $f$ if $a_{n}=0$ for all $n<0$.

The point $z_{0}$ is called

- an essential singularity of $f$ if there are infinitely many $n<0$ with $a_{n} \neq 0$;
- a pole of order $k$ of $f$ for some $k>0$ if $a_{-k} \neq 0$ and $a_{n}=0$ for $n<-k$; a pole of order 1 is called simple;
- a zero of order $k$ of $f$ for some $k>0$ if $a_{k} \neq 0$ and $a_{n}=0$ for $n<k$; a zero of order 1 is called simple.

Notice that if $f$ has a zero of order $k$ at $z_{0}$ then in particular, $z_{0}$ is a removable singularity of $f$ and so we may assume that $f$ is defined and analytic at $z_{0}$. Moreover, $z_{0}$ is a zero of order $k$ of $f$ if and only if $f^{(j)}\left(z_{0}\right)=0$ for $j=0, \ldots, k-1$, and $f^{(k)}\left(z_{0}\right) \neq 0$.

For $f, z_{0}$ as above, we define

$$
\operatorname{ord}_{z_{0}}(f):=\text { smallest } k \in \mathbb{Z} \text { such that } a_{k} \neq 0
$$

Thus,
$z_{0}$ essential singularity of $f \Longleftrightarrow \operatorname{ord}_{z_{0}}(f)=-\infty$;
$z_{0}$ pole of order $k$ of $f \Longleftrightarrow \operatorname{ord}_{z_{0}}(f)=-k$;
$z_{0}$ zero of order $k$ of $f \Longleftrightarrow \operatorname{ord}_{z_{0}}(f)=k$.
Further, $\operatorname{ord}_{z_{0}}(f)=k$ if and only if there is a function $g$ that is analytic around $z_{0}$ such that $f(z)=\left(z-z_{0}\right)^{k} g(z)$ for $z \neq z_{0}$ and $g\left(z_{0}\right) \neq 0$.

Lemma 0.30. Let $R>0$ and let $f, g: D^{0}\left(z_{0}, R\right) \rightarrow \mathbb{C}$ be two analytic functions. Assume that $g \neq 0$ on $D^{0}\left(z_{0}, R\right)$, and that $z_{0}$ is not an essential singularity of $f$ or g. Then

$$
\begin{aligned}
& \operatorname{ord}_{z_{0}}(f+g) \geqslant \min \left(\operatorname{ord}_{z_{0}}(f), \operatorname{ord}_{z_{0}}(g)\right) ; \\
& \operatorname{ord}_{z_{0}}(f g)=\operatorname{ord}_{z_{0}}(f)+\operatorname{ord}_{z_{0}}(g) \\
& \operatorname{ord}_{z_{0}}(f / g)=\operatorname{ord}_{z_{0}}(f)-\operatorname{ord}_{z_{0}}(g)
\end{aligned}
$$

Proof. Exercise.
The function $\operatorname{ord}_{z_{0}}$ is an example of a discrete valuation. A discrete valuation on a field $K$ is a surjective map $v: K \rightarrow \mathbb{Z} \cup\{\infty\}$ such that $v(0)=\infty ; v(x) \in \mathbb{Z}$ for $x \in K, x \neq 0 ; v(x y)=v(x)+v(y)$ for $x, y \in K$; and $v(x+y) \geqslant \min (v(x), v(y))$ for $x, y \in K$.

A meromorphic function on $U$ is a complex function $f$ with the following properties:
(i) there is a set $S$ discrete in $U$ such that $f$ is defined and analytic on $U \backslash S$;
(ii) all elements of $S$ are poles of $f$.

We say that a complex function $f$ is meromorphic around $z_{0}$ if $f$ is analytic on $D^{0}\left(z_{0}, r\right)$ for some $r>0$, and $z_{0}$ is a pole of $f$.

It is easy to verify that if $f, g$ are meromorphic functions on $U$ then so are $f+g$ and $f \cdot g$. It can be shown as well (less trivial) that if $U$ is connected and $g$ is a non-zero meromorphic function on $U$, then the set of zeros of $f$ is discrete in $U$. The zeros of $g$ are poles of $1 / g$, and the poles of $g$ are zeros of $1 / g$. Hence $1 / g$ is meromorphic on $U$. Consequently, if $U$ is an open, connected subset of $\mathbb{C}$, then the functions meromorphic on $U$ form a field.

### 0.7.5 Residues, logarithmic derivatives

Let $z_{0} \in \mathbb{C}, R>0$ and let $f: D^{0}\left(z_{0}, R\right) \rightarrow \mathbb{C}$ be an analytic function. Then $f$ has a Laurent series expansion converging on $D^{0}\left(z_{0}, R\right)$ :

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n} .
$$

We define the residue of $f$ at $z_{0}$ by

$$
\operatorname{res}\left(z_{0}, f\right):=a_{-1}
$$

In particular, if $f$ is analytic at $z_{0}$ then $\operatorname{res}\left(z_{0}, f\right)=0$. By Theorem 0.29 we have

$$
\operatorname{res}\left(z_{0}, f\right)=\frac{1}{2 \pi i} \oint_{\gamma_{z_{0}}, r} f(z) d z
$$

for any $r$ with $0<r<R$.
Theorem 0.31 (Residue Theorem). let $\gamma$ be a contour in $\mathbb{C}$. let $z_{1}, \ldots, z_{q}$ be in the interior of $\gamma$. Let $f$ be a complex function that is analytic on an open set containing $\gamma$ and the interior of $\gamma$ minus $\left\{z_{1}, \ldots, z_{q}\right\}$. Then

$$
\frac{1}{2 \pi i} \oint_{\gamma} f(z) d z=\sum_{i=1}^{q} \operatorname{res}\left(z_{i}, f\right)
$$

Proof. We proceed by induction on $q$. First let $q=1$. Choose $r>0$ such that $\gamma_{z_{1}, r}$ lies in the interior of $\gamma$. Then by Corollary 0.21 ,

$$
\frac{1}{2 \pi i} \oint_{\gamma} f(z) d z=\frac{1}{2 \pi i} \oint_{\gamma_{z_{1}}, r} f(z) d z=\operatorname{res}\left(z_{1}, f\right)
$$



Now let $q>1$ and assume the Residue Theorem is true for fewer than $q$ points. We cut $\gamma$ into two pieces, the piece $\gamma_{1}$ from a point $w_{0}$ to $w_{1}$ and the piece $\gamma_{2}$ from $w_{1}$ to $w_{0}$ so that $\gamma=\gamma_{1}+\gamma_{2}$. Then we take a path $\gamma_{3}$ from $w_{1}$ to $w_{0}$ inside the interior of $\gamma$ without self-intersections; this gives two contours $\gamma_{1}+\gamma_{3}$ and $-\gamma_{3}+\gamma_{2}$.

We choose $\gamma_{3}$ in such a way that it does not hit any of the points $z_{1}, \ldots, z_{q}$ and both the interiors of these contours contain points from $z_{1}, \ldots, z_{q}$. Without loss of generality, we assume that the interior of $\gamma_{1}+\gamma_{3}$ contains $z_{1}, \ldots, z_{m}$ with $0<m<q$, while the interior of $-\gamma_{3}+\gamma_{2}$ contains $z_{m+1}, \ldots, z_{q}$. Then by the induction hypothesis,

$$
\begin{aligned}
\frac{1}{2 \pi i} \oint_{\gamma} f(z) d z & =\frac{1}{2 \pi i} \oint_{\gamma_{1}} f(z) d z+\frac{1}{2 \pi i} \oint_{\gamma_{2}} f(z) d z \\
& =\frac{1}{2 \pi i} \oint_{\gamma_{1}+\gamma_{3}} f(z) d z+\frac{1}{2 \pi i} \oint_{-\gamma_{3}+\gamma_{2}} f(z) d z \\
& =\sum_{i=1}^{m} \operatorname{res}\left(z_{i}, f\right)+\sum_{i=m+1}^{q} \operatorname{res}\left(z_{i}, f\right)=\sum_{i=1}^{q} \operatorname{res}\left(z_{i}, f\right)
\end{aligned}
$$

completing our proof.
We have collected some useful facts about residues. Both $f, g$ are analytic functions on $D^{0}\left(z_{0}, r\right)$ for some $r>0$.

Lemma 0.32. (i) $f$ has a simple pole or removable singularity at $z_{0}$ with residue $\alpha$

$$
\Longleftrightarrow \lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)=\alpha \Longleftrightarrow f(z)-\frac{\alpha}{z-z_{0}} \text { is analytic around } z_{0} .
$$

(ii) Suppose $f$ has a pole of order 1 at $z_{0}$ and $g$ is analytic and non-zero at $z_{0}$. Then

$$
\operatorname{res}\left(z_{0}, f g\right)=g\left(z_{0}\right) \operatorname{res}\left(z_{0}, f\right)
$$

(iii) Suppose that $f$ is analytic and non-zero at $z_{0}$ and $g$ has a zero of order 1 at $z_{0}$. Then $f / g$ has a pole of order 1 at $z_{0}$, and

$$
\operatorname{res}\left(z_{0}, f / g\right)=f\left(z_{0}\right) / g^{\prime}\left(z_{0}\right)
$$

Proof. Exercise.

Let $U$ be a non-empty, open subset of $\mathbb{C}$ and $f$ a meromorphic function on $U$ which is not identically zero. We define the logarithmic derivative of $f$ by

$$
f^{\prime} / f
$$

Suppose that $U$ is simply connected and $f$ is analytic and has no zeros on $U$. Then $f^{\prime} / f$ has an anti-derivative $h: U \rightarrow \mathbb{C}$. One easily verifies that $\left(e^{h} / f\right)^{\prime}=0$. Hence $e^{h} / f$ is constant on $U$. By adding a suitable constant to $h$ we can achieve that $e^{h}=f$. That is, we may view $h$ as the logarithm of $f$, and $f^{\prime} / f$ as the derivative of this logarithm. But we will work with $f^{\prime} / f$ also if $U$ is not simply connected and/or $f$ has zeros or poles on $U$. In that case, we call $f^{\prime} / f$ also the logarithmic derivative of $f$, although it need not be the derivative of some function.

The following facts are easy to prove: if $f, g$ are two meromorphic functions on $U$ that are not identically zero, then

$$
\frac{(f g)^{\prime}}{f g}=\frac{f^{\prime}}{f}+\frac{g^{\prime}}{g}, \quad \frac{(f / g)^{\prime}}{f / g}=\frac{f^{\prime}}{f}-\frac{g^{\prime}}{g}
$$

Further, if $U$ is connected, then

$$
\frac{f^{\prime}}{f}=\frac{g^{\prime}}{g} \Longleftrightarrow f=c g \text { for some constant } c .
$$

Lemma 0.33. Let $z_{0} \in \mathbb{C}, r>0$ and let $f: D^{0}\left(z_{0}, r\right) \rightarrow \mathbb{C}$ be analytic. Assume that $z_{0}$ is either a removable singularity or a pole of $f$. Then $z_{0}$ is a simple pole or (if $z_{0}$ is neither a zero nor a pole of $f$ ) a removable singularity of $f^{\prime} / f$, and

$$
\operatorname{res}\left(z_{0}, f^{\prime} / f\right)=\operatorname{ord}_{z_{0}}(f)
$$

Proof. Let $\operatorname{ord}_{z_{0}}(f)=k$. This means that $f(z)=\left(z-z_{0}\right)^{k} g(z)$ with $g$ analytic around $z_{0}$ and $g\left(z_{0}\right) \neq 0$. Consequently,

$$
\frac{f^{\prime}}{f}=k \frac{\left(z-z_{0}\right)^{\prime}}{z-z_{0}}+\frac{g^{\prime}}{g}=\frac{k}{z-z_{0}}+\frac{g^{\prime}}{g} .
$$

The function $g^{\prime} / g$ is analytic around $z_{0}$ since $g\left(z_{0}\right) \neq 0$. So by Lemma 0.32, $\operatorname{res}\left(z_{0}, f^{\prime} / f\right)=k$.

Corollary 0.34. Let $\gamma$ be a contour in $\mathbb{C}, U$ an open subset of $\mathbb{C}$ containing $\gamma$ and its interior, and $f$ a meromorphic function on $U$. Assume that $f$ has no zeros or poles on $\gamma$ and let $z_{1}, \ldots, z_{q}$ be the zeros and poles of $f$ inside $\gamma$. Then

$$
\frac{1}{2 \pi i} \oint_{\gamma} \frac{f^{\prime}(z)}{f(z)} \cdot d z=\sum_{i=1}^{q} \operatorname{ord}_{z_{i}}(f)=Z-P
$$

where $Z, P$ denote the number of zeros and poles of $f$ inside $\gamma$, counted with their multiplicities.

Proof. By Theorem 0.31 and Lemma 0.33 we have

$$
\frac{1}{2 \pi i} \oint_{\gamma} \frac{f^{\prime}(z)}{f(z)} \cdot d z=\sum_{i=1}^{q} \operatorname{res}\left(z_{i}, f^{\prime} / f\right)=\sum_{i=1}^{q} \operatorname{ord}_{z_{i}}(f)=Z-P .
$$

