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Notation

e limsupx, or lim, ..o,
n—oo

For a sequence of reals {z,,} we define limsup, _, ., 2, = lim, 0 (SUP2p, T )-
We have limsup,,_, ., x, = oo if and only if the sequence {z,} is not bounded
from above, i.e., if for every A > 0 there is n with z,, > A.

In case that the sequence {z,} is bounded from above, we have lim sup,,_, . z, =
a where « is the largest limit point ('limes superior’) of the sequence {x,}, in
other words, for every ¢ > 0 there are infinitely many n such that z,, > o —¢,
while there are only finitely many n such that x, > o + €.

e liminfx, or lim, , =,
n—o0

For a sequence of reals {z,} we define liminf,_,. z, := lim,_, (infm>n :cm)
We have liminf,, ., x,, = —o0 if the sequence {z,} is not bounded from below,
and the smallest limit point ("limes inferior’) of the sequence {x,} otherwise.

o J(2) = glx) + O(h(z)) as & — o0

there are constants xg, C' such that |f(z) — g(z)| < Ch(z) for all x > x

o f(x)~g(r)asx — o0
lim@:1

2= ()
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o f(z) <yg(x), g(x) > f(x)
(Vinogradov symbols; used only if g(x) > 0 for all sufficiently large x, i.e.,
there is xy such that g(x) > 0 for all x > z)

f(z) = O(g(x)) as x — oo, that is, there are constants xy > 0,C > 0 such
that |f(z)] < Cg(x) for all z > x

o f(z)=g(x)
(used only if f(z) > 0, g(x) > 0 for all sufficiently large x)

there are constants xg, Cy,Cy > 0 such that C f(x) < g(z) < Cyf(x) for all
T = Ty

o f(x) = Nglx)) a5 7 — o0
(defined only if g(z) > 0 for > xy for some xy > 0)

lim sup @)l > 0, that is, there is a sequence {z,} with z,, = oo as n — o0
o0 9(T)

such that lim [f(zn)]

> 0 (possibly co)

o f(z)=0%(g(x)) as x — oo
(defined only if g(z) > 0 for z > x for some xy > 0)

f(z) f(x)

limsup ——= > 0, liminf ——= < 0, that is, there are sequences {z, } and {y,}

with z,, — 00, y, — 00 as n — oo such that lim f(@n)

n—00 g(xn)
lim f(Yn)
n—00 g(yn)

> 0 (possibly co) and

< 0 (possibly —o0)
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o (1)

Number of primes < z

o (z;q,a)

Number of primes p with p = a (mod ¢) and p < z

Todt
Li(z) = / oot this is a good approximation for 7(z).
o logt

v



Chapter 0O

Prerequisites

We have collected some facts from algebra and analysis which we will not discuss
during our course, which will not be a subject of the examination, but to which we
will have to refer quite often. Students are requested to read this through.

0.1 Groups

Literature:
P. Stevenhagen: Collegedictaat Algebra 1 (Dutch), Universiteit Leiden.
S. Lang: Algebra, 2nd ed., Addison-Wesley, 1984.

0.1.1 Definition

A group is a set G, together with an operation - : GxG — G satisfying the following
axioms:

® (91-92) 93 =91 (g2 g3) for all g1, 92,93 € G;
e there is eq € G such that g-eq =eg-g =g for all g € G}

o for all g € G thereishe Gwithg-h=h-g=eq.
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From these axioms it follows that the unit element eg is uniquely determined, and
that the inverse h defined by the last axiom is uniquely determined; henceforth we
write ¢! for this h.

If moreover, g1 - g2 = g2 - g1, we say that the group G is abelian or commutative.

Remark. For n € Z-q, g € G we write ¢" for g multiplied with itself n times. Fur-
ther, ¢° := eq and g" := (g~ ")l for n € Zy. This is well-defined by the associative
axiom, and we have (¢™)(g") = g™, (¢"™)" = g™ for m,n € Z.

0.1.2 Subgroups

Let G be a group with group operation -. A subgroup of G is a subset H of GG
that is a group with the group operation of G. This means that ¢g; - go € H for
all 1,90 € H; e € H; and g7 € H for all g € H. It is easy to see that H is a
subgroup of G if and only if g, - g, ' € H for all g1, g, € H. We write H < G if H is
a subgroup of G.

0.1.3 Cosets, order, index

Let G be a group and H a subgroup of G. The left cosets of G with respect to H
are the sets gH = {g-h: h € H}. Two left cosets g1 H, goH are equal if and only
if gfng € H.

The right cosets of G with respect to H are the sets Hg ={h-g: h € H}. Two
right cosets Hgi, Hg, are equal if and only if gog;* € H.

There is a one-to-one correspondence between the left cosets and right cosets of
G with respect to H, given by gH <> Hg™!
the same cardinality as the collection of right cosets. This cardinality is called the
index of H in G, notation (G : H).

. Thus, the collection of left cosets has

The order of a group G is its cardinality, notation |G|. Assume that |G| is finite.
Let again H be a subgroup of G. Since the left cosets w.r.t. H are pairwise disjoint
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and have the same number of elements as H, and likewise for right cosets, we have

- 16l
(G H) = [

An important consequence of this is, that |H| divides |G].

0.1.4 Normal subgroup, factor group

Let G be a group, and H a subgroup of G. We call H a normal subgroup of G if
gH = Hg, that is, if gHg™! = H for every g € G.

Let H be a normal subgroup of GG. Then the cosets of G with respect to H
form a group with group operation (g1 H) - (92H) = (g192) - H. This operation is
well-defined. We denote this group by G/H; it is called the factor group of G with
respect to H. Notice that the unit element of G/H is e¢H = H. If G is finite, we
have |G/H|= (G: H) = |G|/|H].

0.1.5 Order of an element

Let G be a group, and g € G. The order of g, notation ord(g), is the smallest
positive integer n such that g™ = eg; if such an integer n does not exist we say that
¢ has infinite order.

We recall some properties of orders of group elements. Suppose that g € G has
finite order n.

o ¢° = ¢’ < a=0b(modn).

e Let k € Z. Then ord(¢*) = n/ged(k, n).

e {ec,9,¢% ...,9" '} is a subgroup of G of cardinality n = ord(g). Hence if G
is finite, then ord(g) divides |G|. Consequently, ¢/°! = eg.

Example. Let ¢ be a positive integer. A prime residue class modulo ¢ is a residue
class of the type amodgq, where ged(a,q) = 1. The prime residue classes form
a group under multiplication, which is denoted by (Z/qZ)*. The unit element of
this group is 1mod g, and the order of this group is ¢(g), that is the number of
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positive integers < ¢ that are coprime with ¢. It follows that if ged(a, q) = 1, then
a?@ =1 (mod q).

0.1.6 Cyclic groups

The cyclic group generated by g, denoted by (g), is given by {g* : k € Z}. In case
that G = (g) is finite, say of order n > 2, we have

<g> :{6G290797927"'7gn_1}7 gn:eG‘
So g has order n.

Example 1. u, = {p € C*: p"* = 1}, that is the group of roots of unity of order n
is a cyclic group of order n. For a generator of y, one may take any primitive root
of unity of order n, i.e., e2™*/" with k € Z, gcd(k,n) = 1.

Example 2. Let p be a prime number, and (Z/pZ)* = {amod p, ged(a,p) = 1} the
group of prime residue classes modulo p with multiplication. This is a cyclic group
of order p — 1.

Let G = (g) be a cyclic group and H a subgroup of G. Let k be the smallest
positive integer such that ¢* € H. Using, e.g., division with remainder, one shows
that ¢" € H if and only if » = 0 (mod k). Hence H = (¢*) and (G : H) = k.

0.1.7 Homomorphisms and isomorphisms

Let G, G5 be two groups. A homomorphism from G; to Gy isamap f: G; = G,
such that f(g192) = f(g1)f(g2) for all g1,¢92 € G and f(eq,) = eq,. This implies
that f(g~') = f(g)~" for g € G\

Let f: G; — G5 be a homomorphism. The kernel and image of f are given by

Ker(f) :={g9€Gi: f(9) =ea,}, [f(G1)={f(9): g€ G},

respectively. Notice that Ker(f) is a normal subgroup of G;. It is easy to check that
f is injective if and only if Ker(f) = {eg, }

Let G be a group and H a normal subgroup of G. Then
f:G—>G/H: g— gH
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is a surjective homomorphism from G to G/H, the canonical homomorphism from
G to G/H. Notice that the kernel of this homomorphism is H. Thus, every normal
subgroup of GG occurs as the kernel of some homomorphism.

A homomorphism f : G; — G5 which is bijective is called an isomorphism from
(G1 to G». In case that there is an isomorphism from G; to G5 we say that G1, G
are isomorphic, notation G; = (G,. Notice that a homomorphism f: G; — G5 is an
isomorphism if and only if Ker(f) = {eg,} and f(G1) = G3. Further, in this case
the inverse map f~!: Gy — G is also an isomorphism.

Let f: G; — G be a homomorphism of groups and H = Ker(f). This yields
an isomorphism

f:Gi/H = f(Gh): f(gH) = f(g).

Proposition 0.1. Let C' be a cyclic group. If C is infinite, then it is isomorphic
to Z* (the additive group of Z). If C' has finite order n, then it is isomorphic to
(Z/nZ)" (the additive group of residue classes modulo n).

Proof. Let C = (g). Define f : ZT — C by n — g¢". This is a surjective homomor-
phism; let H denote its kernel. Thus, Z*/H = C. We have H = {0} if C' is infinite,
and H = nZ™" if C has order n. This implies the proposition. O

0.1.8 Direct products

Let Gy, ..., G, be groups. Denote by eg, the unit element of G;. The direct product
G1 X -+ X G, is the set of tuples (g1,...,¢.) with g; € G; for i = 1,...,r, endowed
with the group operation

(gla v 797‘) ’ (hla .- '7h7"> - (glh17 S 7grh7">‘

This is obviously a group, with unit element (eg,, . . ., eg,) and inverse (gy,...,g,) "' =

(91" 0).

Proposition 0.2. Let G, G1,...,G, be groups. Then the following two assertions
are equivalent:

(i) G =Gy X X G,y

(ii) there are subgroups Hy, ..., H, of G satisfying the following properties:
(a) H; =G, fori=1,...,r;



(b) Hy, ..., H, commute, that is, H;H; = H;H; fori,j=1,...,r;

(c) G=Hy---H,, ie., every element of G can be expressed as gy - - - g, with g; € H;
forio=1,... r;

(d) Hy, ..., H, are independent, i.e., if g; € H; (i=1,...,r) are any elements such
that g1 --- g, = eq, then g =eqg fori=1,...,r.

Proof. (ii) = (i). Properties (b),(c),(d) imply that
Hi x---xH.—G:(g1,---,9) = g1 Gr

is a group isomorphism. Together with (a) this implies (i).

(i) = (i1). Let G’ := Gy x -+ x G, and for i = 1,...,r, define the group

G; = {(€G17"'7gi7"'7eGr> © 9 eGl}

where the i-th coordinate is g; and the other components are the unit elements
of the respective groups. Clearly, G = G; for i = 1,...,r, G,..., G commute,
G'=G)---G and G,...,G. are independent. Let f: G — G; x --- x G, be
an isomorphism and H; := f~!(G}) for i = 1,...,r. Then Hy,..., H, satisfy (a)-
(d). O

Notice that (b),(c),(d) imply that every element of G' can be expressed uniquely
as a product gy ---¢g, with g; € H; fort=1,...,r.

In what follows, if a group G has subgroups Hj, ..., H, satisfying (b),(c),(d), we
say that G is the direct product of Hy, ..., H,, and denote thisby G = Hy x---x H,.

0.1.9 Abelian groups

The group operation of an abelian group is often denoted by +, but in this course
we stick to the multiplicative notation. The unit element of an abelian group A
is denoted by 1 or 14. It is obvious that every subgroup of an abelian group is a
normal subgroup. In Proposition 0.2, the condition that Hy, ..., H, commute holds
automatically so it can be dropped.

The following important theorem, which we state without proof, implies that the
finite cyclic groups are the building blocks of the finite abelian groups.
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Theorem 0.3. Every finite abelian group is a direct product of finite cyclic groups.
Proof. See S. Lang, Algebra, 2nd ed. Addison-Wesley, 1984, Ch.1, §10. m

Let A be a finite, multiplicatively written abelian group of order > 2 with unit
element 1. Theorem 0.3 implies that A is a direct product of cyclic subgroups, say
Cy,...,C,. Assume that C; has order n; > 2; then C; = (h;), where h; € A is an
element of order n;. We call {hq,...,h,.} a basis for A.

Every element of A can be expressed uniquely as g; ---g., where g; € C; for
i = 1,...,r. Further, every element of C; can be expressed as a power h¥ and
h¥ =1 if and only if k = 0 (mod n;). Together with Proposition 0.2 this implies the
following characterization of a basis for A:

A={nf- phb EeZfori=1,...,r},

(0.1) there are integers nq,...,n, > 2 such that
At bk =1 <= k; = 0(modn;) fori=1,...,r.

0.2 Infinite products in analysis

Let {A,}22, be a sequence of complex numbers. We define

00 N
[]4.:= lim J] A
N—o0
n=1 n=1

provided the limit exists.

In applications it will be important that [[7 A, # 0. It is not sufficient to
assume that all A, # 0, for instance [ 2, (1 — %) = 0. In general, we have

H A, exists and is # 0, o0 <= A,, # 0 for all n and Z log A,, converges,

n=1 n=1
where we take the principal logarithm, i.e., with imaginary part in (—m,n|. The
following criterion is more useful for our purposes.

Proposition 0.4. Assume that >~ |A, — 1| < co. Then the following hold:

(i) 1,2, A exists and is # too, and [[ -, A, # 0 if A, # 0 for all n.

(ii) 11,2, An is invariant under rearrangements of the A, i.e., if o is any bijection
of Lo, then 117, Asm) exists and is equal to [[,~; Ay.
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Proof. (i) Let a,, := |A,—1| forn =1,2,.... Let M, N be integers with N > M > 0.
Then, using |1 + z| < el for z € C and

‘Hl—i—zl—l‘ 1—i—|zl) exp(Z\ziD—lforzl,...,zre(c,

=1
we get
N M M N
(0.2) T4 -T14: = J]14l-| I] 4.1
n=1 n=1 n=1 n=M+1
M N
g n| " n —1
o (30 <exp<n%a) )

which tends to 0 as M, N — oo. Hence [[)~, A, = limy_ Hi:[:l A, exists and is
finite.

Assume that A, # 0 for all n. Choose M such that Y °  a, < 3.
N > M we have

JIgE

Then for

= H1A| I 14

n=1 n=M+1
N M
> H|An|-(1— > a) =TIl =C >0,
n=1 n=M-4+1 n=1
hence ’ . > C' > 0. This proves (i).

(ii) Let M, N be positive integers such that N > M and {o(1),...,0(N)} con-
tains {1,..., M}. Similarly to (0.2) we get

N

1 an>—HA

n=

< exp (i an> - | exp ( Z a(,(n)> —1

n=1 n<N,o(n)>M

If for fixed M we let first N — oo and then let M — oo, the right-hand side tends
to 0. Hence [[77, Aoy = 111 An. O



0.3 Uniform convergence

We consider functions f : D — C where D can be any set. We can express each
such function as g + th where g, h are functions from D to R. We write ¢ = Re f
and h =1Im f.

We recall that if D is a topological space (in this course mostly a subset of R"
with the usual topology), then f is continuous if and only if Re f and Im f are
continuous.

In case that D C R, we say that f is differentiable if and only if Re f and Im f are
differentiable, and in that case we define the derivative of f by f' = (Re f) +i(Im f)".

In what follows, let D be any set and {F,} = {F,}>°, a sequence of functions
from D to C.

Definition. We say that {F,} converges pointwise on D if F(z) := lim, o F,(2)
exists for all z € D, and that {F,} converges uniformly on D if moreover,

lim (sup |Fo(2) — F(z)|) = 0.

n—oo 2€D

Facts:

e {F),} converges uniformly on D if and only if lim (sup |Fy(2) — Fn(2) |) =0.
M,N—oo \ D
e Let D be a topological space, assume that all functions F}, are continuous, and
that {F,} converges to a function F" uniformly on D. Then F' is continuous
on D.

Let again D be any set and {F,}>2; a sequence of functions from D to C.
We say that the series >~ | F), converges pointwise/uniformly on D if the partial
sums ZZ:1 F,, converge pointwise/uniformly on D. Further, we say that >~ | F,
is pointwise absolutely convergent on D if >  |F,(z)| converges for every z € D.

Proposition 0.5 (Weierstrass criterion for series). Assume that there are finite real
numbers M,, such that

|F.(2)| < M, forz€ D, n>1, ZM” converges.

n=1



Then >, F, is both uniformly convergent, and pointwise absolutely convergent on

D.

We need a similar result for infinite products of functions. Let again D be any
set and {F, : D — C}>2, a sequence of functions. We define the limit function

HZL F, by

00 N
HFn(z) = lim F.(z) (z€ D),
n=1 Nﬁoonzl

provided that for every z € D the limit exists.

We say that [[~ | F,, converges uniformly on D if the limit function F :=
[[2, F, exists for every z € D, and

]éiﬁmoo <sup F(z) — H F.(2) ) = 0.

zeD

Proposition 0.6 (Weierstrass criterion for infinite products). Assume that there
are finite real numbers M, such that

|Fo(z) = 1| < M, forze€ D, n>1, ZM" converges.
n=1

Then [[,~, Fn is uniformly convergent on D and moreover, if z € D is such that
F.(z) # 0 for all n, then also F(z) # 0.

Proof. Applying (0.2) with A,, = F,(z) and using |F,(z) — 1| < M, for z € D, we
obtain that for any two integers M, N with N > M > 0, and all z € D,

rN[Fn(z) — ﬁFn(z) < exp (iM,J . (exp ( i\[: Mn> - 1) :
n=1 n=1 n=1 n=M+1

Since the right-hand side is independent of z and tends to 0 as M, N — oo, the
uniform convergence follows. Further, if F,,(z) # 0 for all n then [[2, F,(z) # 0 by
Proposition 0.4. O
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0.4 Integration

In this course, all integrals will be Lebesgue integrals of real or complex measurable
functions on R™ (always with respect to the Lebesgue measure on R™). It is not
really necessary to know what these are, and you will be perfectly able to follow the
course without any knowledge of Lebesgue theory. But we will often have to deal
with infinite integrals of infinite series of functions, and to handle these, Lebesgue
theory is much more convenient than the theory of Riemann integrals.

It is important to mention here that Lebesgue integrals are equal to Riemann
integrals whenever the latter are defined. However, Lebesgue integrals can be defined
for a much larger class of functions. Further, in Lebesgue theory there are some very
powerful convergence theorems for sequences of functions, theorems on interchanging
multiple integrals, etc., which we will frequently apply. If you are willing to take for
granted that all functions appearing in this course are measurable, there will be no
problem to understand or apply these theorems.

In this subsection we have collected a few useful facts, which are amply sufficient
for our course.

0.4.1 Measurable sets

The length of a bounded interval I = [a, b], [a,]), (a, b] or (a,b), where a,b € R, a < b,
is given by I(I) := b — a. Let n € Z>1. An interval in R" is a cartesian product of
bounded intervals I =[], I;. We define the volume of I by I(I) :=[];_, I(L;).

Let A be an arbitrary subset of R". We define the outer measure of A by
N (A) = inf Y U(T),
i=1

where the infimum is taken over all countable unions of intervals | J;=, I; D A. We
say that a set A is measurable if

A(S)=A(SNA)+ X(SNA°) for every S C R",

where A° = R™ \ A is the complement of A. In this case we define the (Lebesgue)
measure of A by A(A) := A*(A). This measure may be finite or infinite. It can be
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shown that intervals are measurable, and that A(I) = [(I) for any interval I in R™.

Facts:

e A countable union [ J;°, A; of measurable sets A; is measurable. Further, the
complement of a measurable set is measurable. Hence a countable intersection
of measurable sets is measurable.

e All open and closed subsets of R™ are measurable.

o Let A = U2, A; be a countable union of pairwise disjoint measurable sets.
Then A(A) = >"° M(A4;), where we agree that A(A) = 0 if A(4;) = 0 for all 7.

e Under the assumption of the axiom of choice, one can construct non-measurable
subsets of R"™.

Let A be a measurable subset of R". We say that a particular condition holds for
almost all x € A, it if holds for all z € A with the exception of a subset of Lebesgue
measure 0. If the condition holds for almost all z € R™, we say that it holds almost
everywhere.

All sets occurring in this course will be measurable; we will never bother about
the verification in individual cases.

0.4.2 Measurable functions

A function f: R™ — R is called measurable if for every a € R, the set
{r € R": f(z) > a} is measurable.

A function f: R™ — C is measurable if both Re f and Im f are measurable.

Facts:

e If A C R™is measurable then its characteristic function, given by I4(x) = 1 if
x € A, I4(z) = 0 otherwise is measurable.

e Every continuous function f : R* — C is measurable. More generally, f is
measurable if its set of discontinuities has Lebesgue measure 0.

12



o If f,g: R® — C are measurable then f + g and fg are measurable. Further,
the function given by = — f(z)/g(z) if g(z) # 0 and = +— 0 if g(z) = 0 is
measurable.

o If f g: R" — R are measurable, then so are max(f,g) and min(f,g).

o If {fi: R" — C} is a sequence of measurable functions and f; — f pointwise
on R", then f is measurable.

All functions occurring in our course can be proved to be measurable by com-
bining the above facts. We will always omit such nasty verifications, and take the
measurability of the functions for granted.

0.4.3 Lebesgue integrals

The Lebesgue integral is defined in various steps.

1) An elementary function on R” is a function of the type f = >"._, ¢;Ip,, where
Dy, ..., D, are pairwise disjoint measurable subsets of R", and ¢y, ..., ¢, positive
reals. Then we define [ fdz := 3., ¢;A(D;).

2) Let f : R” — R be measurable and f > 0 on R™. Then we define [ fdz :=
sup [ gdx where the supremum is taken over all elementary functions g < f. Thus,
[ fdz is defined and > 0 but it may be infinite.

3) Let f: R™ — R be an arbitrary measurable function. Then we define

/fdx ::/max(f,O)da:—/max(—f,O)dx,

provided that at least one of the integrals is finite. If both integrals are finite, we
say that f is integrable or summable.

4) Let f : R" — C be measurable. We say that f is integrable if both Re f and
Im f are integrable, and in that case we define

/fdx - /(Ref)da:—l—i/(lmf)dx.

5) Let D be a measurable subset of R™. Let f be a complex function defined on a
set containing D. We define f - Ip by defining it to be equal to f on D and equal
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to 0 outside D. We say that f is measurable on D if f - Ip is measurable. Further,
we say that f is integrable over D if f - Ip is integrable, and in that case we define

[p fdz = [ f-Ipde.
Facts:

e Let D be a measurable subset of R" and f : D — C a measurable function.
Then f is integrable over D if and only if fD |f|ldx < oo and in that case,

| [, fdx| < [, |f]da.

e Let again D be a measurable subset of R” and f: D — C, g: D — Ry
measurable functions, such that [, gdx < oo and |f| < g on D. Then f is
integrable over D, and | [, fdz| < [, gdx.

e Let D be a closed interval in R” and f : D — C a bounded function which
is Riemann integrable over D. Then f is Lebesgue integrable over D and the
Lebesgue integral | p Jdz is equal to the Riemann integral Il p fx)da.

e Let f: [0,00) = C be such that the improper Riemann integral [;°|f(z)|dx
converges. Then the improper Riemann integral fooo f(x)dx converges as well,
and it is equal to the Lebesgue integral f[o,oo) fdx. However, an improper
Riemann integral [ f(2)dx which is convergent, but for which [;* | f(z)|dz =
oo can not be interpreted as a Lebesgue integral. The same applies to the other
types of improper Riemann integrals, e.g., fab f(z)dz where f is unbounded on

(a,b).

e An absolutely convergent series of complex terms .~ a, may be interpreted
as a Lebesgue integral. Define the function A by A(z) := a, for z € R with
n<xz<n+1and A(z) := 0 for x < 0. Then A is measurable and integrable,
and Y o7 a, = [ Adz.

0.4.4 Important theorems

Theorem 0.7 (Dominated Convergence Theorem). Let D C R™ be a measurable
set and {fr : D — C}yso a sequence of functions that are all integrable over D,
and such that fr, — f pointwise on D. Assume that there is an integrable function
g: D — Ry such that |fe(z)| < g(x) for allx € D, k > 0. Then f is integrable
over D, and [, frdz — [, fdx.
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Corollary 0.8. let D C R"™ be a measurable set of finite measure and {fy, : D —
Cliso a sequence of functions that are all integrable over D, and such that fr — f
uniformly on D. Then f is integrable over D, and [, frdx — [, fdx.

Proof. Let € > 0. There is ko such that |f(z) — fe(z)| < € for all z € D, k > k.
The constant function x — € is integrable over D since D has finite measure. Hence
for k > ko, f — fi is integrable over D, and so f is integrable over D. Consequently,
|f| is integrable over D. Now |fi| < € + |f] for k > ky. So by the Dominated
Convergence Theorem, [, fydx — [ fdz. O

In the theorem below, we write points of R™*" as (z,y) with x € R™, y €
R"™. Further, dz, dy, d(x,y) denote the Lebesgue measures on R™, R™ R™"
respectively.

Theorem 0.9 (Fubini-Tonelli). Let Dy, Dy be measurable subsets of R™ R™, respec-
tively, and f : D1 X Dy — C a measurable function. Assume that at least one of the
integrals

[ i [ ( A eldy) dr. [ 2 ( A en)lde) dy

is finite. Then they are all finite and equal.
Further, f is integrable over Dy x Do, x +— f(x,y) is integrable over Dy for almost
ally € Do, y — f(x,y) is integrable over Dy for almost all x € Dy, and

L, fviten = [ ( D2f<x,y>dy) aa= [ ( 5 Flap)ds ) dy.

Corollary 0.10. Let D be a measurable subset of R™ and {fy : D — C}iso a
sequence of functions that are all integrable over D and such that ;- | fx| converges
pointwise on D. Assume that at least one of the quantities

> [l [ (X ial)is

is finite. Then Y -, fi is integrable over D and

g | pwio= [ <k§fk(x)>dx.
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Proof. Apply the Theorem of Fubini-Tonelli with n = 1, D1 = D, Dy = [0, 00),
F(z,y) = fr(x) where k is the integer with k <y < k + 1. O

Corollary 0.11. Let {akl}z?z:o be a double sequence of complex numbers such that
at least one of

22?; < ;§§;|(lkl|>, ;Si; ( ;Ei; hlkl|>

converges. Then both

(o)

k=0

NE

i <iakl>u

k=0 [=0 l

I
)

converge and are equal.

Proof. Apply the Theorem of Fubini-Tonelli with m = n =1, D; = Dy = [0, 00),
F(z,y) = ay; where k,[ are the integers with k <z <k + 1, <y <l+1. O

0.4.5 Useful inequalities

We have collected some inequalities, stated without proof, which frequently show
up in analytic number theory. The proofs belong to a course in measure theory or
functional analysis.

Proposition 0.12. Let D be a measurable subset of R™ and f,g : D — C mea-

surable functions. Let p,q be reals > 1 with % + % = 1. Then if all integrals are
defined,

1/p 1/q
’/ fg- da:’ < (/ |f]pdx> . (/ \g\%lx) (Hélder’s Inequality).
D D D

In particular,

1/2 1/2
‘/ fgdx‘ < (/ \f\%lx) . (/ |g|2da:> (Cauchy-Schwarz’ Inequality).
D D D

Corollary 0.13. Let aq,...,a,, by,...,b. be complex numbers and p,q reals > 1
with % + % =1. Then

< (Z |an|p>1/p- (Z 1) Y (Hotder).

n=1 n=1 n=1
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In particular,

.
> anb,
n=1

This follows from Proposition 0.12 by taking D = [0,7), f(x) = a,, g(x) = b, for
n—1<z<nn=1,...r.

< (zr: |an\2)1/2 : (i |bn|2>l/2 (Cauchy-Schwarz).

A function ¢ from an interval I C R to R is called convez if p((1 —t)z + ty) <
(1 —t)p(x) +te(y) holds for all z,y € I and all t € [0, 1]. In particular, ¢ is convex
on I if ¢ is twice differentiable and ¢” > 0 on I.

Proposition 0.14. Let D be a measurable subset of R™ with 0 < A(D) < oo, let
f: D — Ry be a Lebesgue integrable function and let ¢ : Rug — R be a convex
function. Then

90(%@/ f'dHU) < ﬁ/(gDOf)dx (Jensen’s Inequality).
D D

Corollary 0.15. Let ay,...,a, be positive reals, and let ¢ : Ry — R be a convex
function. Then
SEOINEES ST
n=1
In particular,
%Z > y/ay---a, (arithmetic mean > geometric mean,).
=1

The first assertion follows by applying Proposition 0.14 with D = [0,r) and f(x) =
a, for x € [n — 1,n). The second assertion follows by applying the first with

p(x) = —logx.

0.5 Line integrals

0.5.1 Paths in C

We consider continuous functions ¢ : [a,b] — C, where a,b € R and a < b. Two
continuous functions ¢ : [a,b] — C, g5 : [¢,d] — C are called equivalent if there is
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a continuous monotone increasing function ¢ : [a,b] — [c, d] such that g; = g2 0 .
The equivalence classes of this relation are called paths (in C), and a function g :
la,b] — C representing a path is called a parametrization of the path. Roughly
speaking, a path is a curve in C, together with a direction in which it is traversed.

A (continuously) differentiable path is a path represented by a (continuously)
differentiable function g : [a,b] — C.

Let v be a path. Choose a parametrization g : [a,b] — C of 7. We call g(a) the
start point and g(b) the end point of . Further, g([a,b]) is called the support of ~.
By saying that a function is continuous on v, or that v is contained in a particular
set, etc., we mean the support of .

The path v is said to be closed if its end point is equal to its start point, i.e., if
g(a) = g(b). The path ~ is called a contour if it is closed, has no self-intersections,
and is traversed counterclockwise (we will not give the cumbersome formal definition
of this intuitively obvious notion).

o

2~

Let 71, 72 be paths, such that the end point of v, is equal to the start point of
vo. We define v; + 75 to be the path obtained by first traversing v, and then ~s.
For instance, if g1 : [a,b] — C is a parametrization of +; then we may choose a
parametrization g, : [b,¢] — C of 7; then ¢ : [a,c] — C defined by g(t) := g1(¢) if
a<t<b g(t):=go(t) if b <t < cisa parametrization of v, + 7s.

Given a path 7, we define —v to be the path traversed in the opposite direction,
i.e., the start point of —v is the end point of v and conversely.

18



Let v be a path and F : v — C a continuous function on (the support of) 7.
Then F(7) is the path such that if ¢ : [a,b] — C is a parametrization of v then
Fog:la,b — C is a parametrization of F'(7).

0.5.2 Line integrals

All paths occurring in our course will be built up from circle segments and line
segments. So for our purposes, it suffices to define integrals of continuous functions
along piecewise continuously differentiable paths, these are paths of the shape v, +
-« ++7,, where 7y, . .., 7, are continuously differentiable paths, and fori =1,... r—1,
the end point of ~; coincides with the start point of ;1.

let v be a continuously differentiable path, and f : v — C a continuous function.
Choose a continuously differentiable parametrization g : [a,b] — C of 7. Then we
define

b
JECE O
o' a
Further, we define the length of v by
b
L) = [ gl

These notions do not depend on the choice of g.
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If v=2 4 .-+, is a piecewise continuously differentiable path with continu-
ously differentiable pieces 71,...,7, and f: v — C is continuous, we define

/f(z)dz = Z f(z)dz

and
T

L) =3 L(3).

In case that v is closed, we write fv f(2)dz. It can be shown that the value of this
integral is independent of the choice of the common start point and end point of ~.

We mention here that line integrals fy f(2)dz can be defined also for paths v that
are not necessarily piecewise continuously differentiable. For piecewise continuously
differentiable paths, this new definition coincides with the one given above.

Let v be any path and choose a parametrization g : [a,b] — C of 7. A partition
of [a,b] is a tuple P = (to,...,ts) where a =ty <ty < --- <ty = b. We define the
length of v by

L{y) = sup Z lg(t;) — g(ti1)],

where the supremum is taken over all partitions P of [a,b]. This does not depend on
the choice of g. We call v rectifiable if L(7) < oo (in another language, this means
that the function g is of bounded variation).

Let v be a rectifiable path, and ¢ : [a,b] — C a parametrization of 7. Given a
partition P = (to,...,ts) of [a,b], we define the mesh of P by

(5(P> = max |tl — tz‘_1|.

1<i<s

A sequence of intermediate points of P is a tuple W = (wy,...,ws) such that
to<wip <t <wy <ty <+ <t

Let f: 7 — C be a continuous function. For a partition P of [a,b] and a tuple
of intermediate points W of P we define

S(f,9, P, W) := Zf(g(wz))(g(tz) —g(ti-1)).
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One can show that there is a finite number, denoted f7 f(2)dz, such that for any
choice of parametrization ¢g : [a,0] — C of v and any sequence (F,, W,)n>o of
partitions P, of [a, b] and sequences of intermediate points W, of P, with §(P,) — 0,

[ )z = lim (7.9 P W),

In another language, [, f(2)dz is equal to the Riemann-Stieltjes integral ff f(g(t)dg(t).

0.5.3 Properties of line integrals

Below (and in the remainder of the course), by a path we will mean a piecewise
continuously differentiable path. In fact, all properties below hold for line integrals
over rectifiable paths, but in textbooks on complex analysis, these properties are
never proved in this generality.

e Let v be a path, and f: vy — C continuous. Then

//f(z)dz

e Let 1,7 be two paths such that the end point of 7, and the start point of v,
coincide. Let f: v + 72 — C continuous. Then

/Wm2 f(2)dz = [ﬂ f(2)dz + [,2 £(2)dz.

e Let v be a path and f : v — C continuous. Then

BCIES /Y ().

< L(v) - sup | £(2)]-

zey

e Let v be a path and {f, : v — C}>2, a sequence of continuous functions.
Suppose that f, — f uniformly on v, i.e., sup,c. [fn(2) = f(2)| = 0 asn — oco.
Then f is continuous on 7, and [0 fu(2)dz — [ f(2)dz as n — oo.

e (Call a function F : U — C on an open subset U of C analytic if for every
z € U the limit

F(z)= lim F(z+h)— F(z)
heC, h—0 h
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exists. Let v be a path with start point zy and end point 21, and let F' be an
analytic function defined on an open set U C C that contains v. Then

/F'(z)dz = F(z1) — F(z).

y

e Let v be apath and F' an analytic function defined on some open set containing
~v. Further, let f: F'(v) — C be continuous. Then

/me (w)dw = A F(F (=) F'(2)dz.

Examples. 1. Let v,, denote the circle with center a and radius r, traversed
counterclockwise. For 7, we may choose a parametrization ¢ — a+7re*™ ¢ € [0, 1].
Let n € Z. Then

1
7{ (z—a)"dz = / re? ™ g - re?™ M dt
0

Ya,r
= 2mir™™! /1 p2n+D)mit gy 2t if n = —1;
0 0 ifn#-1

2. For zg,z; € C, denote by [zg, z1] the line segment from zy to z;. For [z, z1] we
may choose a parametrization t — 2o + t(z1 — 29), t € [0,1]. Let f : [29, 21] — C be
continuous. Then

z)d(z) = 20 z1 — 20))(z1 — zp)dt.
/Mfm) /0f< Ttz — 20)) (21— o)t

0.6 Topology

We recall some facts about the topology of C.

0.6.1 Basic facts

Let a € C, r € R.y. We define the open disk and closed disk with center a and
radius 7,

D(a,r)={2€C: |z—a|<r}, D(a,r)={z€C: |z—a|] <}
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Recall that a subset U of C is called open if either U = (), or for every a € U there
is 0 > 0 with D(a,d) C U. A subset U of C is closed if its complement U¢ = C\ U
is open. It is easy to verify that the union of any possibly infinite collection of
open subsets of C is open. Further, the intersection of finitely many open subsets
is open. Consequently, the intersection of any possibly infinite collection of closed
sets is closed, and the union of finitely many closed subsets is closed.

A subset S of C is called compact, if for every collection {U, }ne; of open subsets
of C with S C |J,¢; Ua there is a finite subset F of I such that S C J,cp Us, in
other words, every open cover of S has a finite subcover.

acF

By the Heine-Borel Theorem, a subset of C is compact if and only if it is closed
and bounded.

Let U be a non-empty subset of C. A point zg € C is called a limit point of U if
there is a sequence {z,} in U such that all z, are distinct and z, — 29 as n — 0.
Recall that a non-empty subset U of C is closed if and only if each of its limit points
belongs to U.

Let U be a non-empty subset of C, and S C U. Then S is called discrete in U if
it has no limit points in U. Recall that by the Bolzano- Weierstrass Theorem, every
infinite subset of a compact set K has a limit point in K. This implies that S is
discrete in U if and only if for every compact set K with K C U, the intersection
K NS is finite.

Let U be a non-empty, open subset of C. We say that U is connected if there are
no non-empty open sets Uy, Uy with U = U; UU, and U; NU, = (). We say that U is
pathwise connected if for every zy, z; € U there is a path v C U with start point z
and end point z;. A fact (typical for the topological space C) is that a non-empty
open subset U of C is connected if and only if it is pathwise connected.

Let U be any, non-empty open subset of C. We can express U as a disjoint union
Uaer Ua, with I some index set, such that two points of U belong to the same set U,
if and only if they are connected by a path contained in U. The sets U, are open,
connected, and pairwise disjoint. We call these sets U, the connected components
of U.

23



0.6.2 Homotopy

Let U C C and 7,7 two paths in U
with start point z; and end point z;.
Then 71,7, are homotopic in U if one can
be continuously deformed into the other
within U. More precisely this means the
following: there are parametrizations f :
[0,1] = C of v, g : [0,1] — C of 75 and
a continuous map H : [0,1] x [0,1] — U
with the following properties:

f@t), H(1,t)=g(t) for 0 <t < 1;

H(s,0) =29, H(s,1)=2z for0<s<1.

Let U C C be open and non-empty. We
call U simply connected ('without holes’)
if it is connected and if every closed path
in U can be contracted to a point in U,
that is, if 2y is any point in U and 7 is any
closed path in U containing z,, then 7 is
homotopic in U to 2.

A map f: Dy — Dy, where Dy, Dy are subsets of C, is called a homeomorphism

if f is a bijection, and both f and f~! are continuous. Homeomorphisms preserve

topological properties of sets such as openness, closedness, boundedness, (simple)

connectedness, etc.

Theorem 0.16 (Schoenflies Theorem for curves). Let v be a contour in C. Then
there is a homeomorphism f : C — C such that f(yo1) = 7y, where vy 1 is the unit
circle with center 0 and radius 1, traversed counterclockwise.

Corollary 0.17 (Jordan Curve Theorem). Let v be a contour in C. Then C\~ has
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two connected components, Uy and Uy. The component Uy is bounded and simply
connected, while Uy is unbounded.

The component Uj is called the interior
of 7, notation int(y), and U, the exterior
of 7, notation ext ().

0.7 Complex analysis

0.7.1 Basics

In what follows, U is a non-empty open subset of C and f : U — C a function. We
say that f is holomorphic or analytic in zg € U if
o J2) = ()
2—20 Z— 2
In that case, the limit is denoted by f’(zp). We say that f is analytic on U if f is
analytic in every z € U; in that case, the derivative f’(z) is defined for every z € U.

exists.

We say that f is analytic around zj if it is analytic on some open disk D(zg,d) for
some § > 0. Finally, given a not necessarily open subset A of C and a function
f: A— C, we say that f is analytic on A if there is an open set U O A such that
f is defined on U and analytic on U. An everywhere analytic function f: C — C
is called entire.

For any two analytic functions f, g on some open set U C C,we have the usual

rules for differentiation (f4+g) = f'+¢’, (fg) = f'g+fg and (f/9) = (9f'— fq')/g*
(the latter is defined for any z with g(z) # 0). Further, given a non-empty set U C C,
and analytic functions f: U — C, g : f(U) — C, the composition g o f is analytic

on U and (go f) = (g0 f) - f"
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Recall that a power series around zy € C is an infinite sum
oo
Z an(z — 2)"
n=0
with a,, € C for all n € Z>,. The radius of convergence of this series is given by

-1
R=R;= (limsup Vi ]an])

n—oo

We state without proof the following fact.

Theorem 0.18. Let zp € C and f(z) = Y - an(z — 2)" a power series around
2o € C with radius of convergence R > 0. Then f defines a function on D(zy, R)
which is analytic infinitely often. For k > 0 the k-th derivative f®) of f has a power
series expansion with radius of convergence R given by

:Znn—l c(n— k4 1Day(z — 20)" "
n=k

In each of the examples below, R denotes the radius of convergence of the given

power series.

Z Z— R=o00, (e*) =¢e*.
n!
n=0
0 2n
cos z = (eiz—ke_iz)/QZZ(—l)"%, R =00, cos’z=—sinz.
n=0 ’
) ) 0 »2n+1
sinz = (e —e ﬂz)/Qz’—Z(—l)"m, R =00, sin’z = cosz.

=3 () R=1, ((1+2)°) =a(1+2)

where a € C, (a) ala—1)- (a—n+1)‘
n n!

o0

1)n-
log(l—i—z):Z(T-z", R=1, log’(1+2z)=(1+2)"

n=1
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0.7.2 Cauchy’s Theorem and some applications

In the remainder of this course, a path will always be a piecewise continuously
differentiable path. Recall that for a piecewise continuously differentiable path ~,
say v = 1 + -+ + 7, where v,...,7, are paths with continuously differentiable
parametrizations g; : [a;, b;] — C, and for a continuous function f: v — C we have

S, @)z = 00, [ flgi0)gi()dt.

Theorem 0.19 (Cauchy). Let U C C be a non-empty open set and f: U — C an
analytic function. Further, let v1,y2 be two paths in U with the same start point and
end point that are homotopic in U. Then

A/@@:Aﬁ@@

Proof. Any textbook on complex analysis. m

Corollary 0.20. Let U C C be a non-empty, open, simply connected set, and
f: U — C an analytic function. Then for any closed path v in U,

ﬁf@ﬂz:O

Proof. The path v is homotopic in U to a point, and a line integral along a point is
0. m

Corollary 0.21. Let v1,7, be two contours (closed paths without self-intersections
traversed counterclockwise), such that 7, is contained in the interior of v;. Let
U C C be an open set which contains 1,7, and the region between ~; and .
Further, let f: U — C be an analytic function. Then

ij@mzﬁj@w

Proof.
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Let zp, 21 be points on vy, 7, respectively,
and let o be a path from zy to z; lying in-
side the region between v, and 7, without
self-intersections.

Then v, is homotopic in U to the path a + 5 — «, which consists of first traversing
a, then 75, and then « in the opposite direction. Hence

j{l f(z)dz = (/aJr}i—/) F(2)dz = ]if(Z)dz.

Corollary 0.22 (Cauchy’s Integral Formula). Let v be a contour in C, U C C an

]

open set containing v and its interior, zo a point in the interior of v, and f : U — C
an analytic function. Then

1 fR)

2m ), 2z — 2o

-dz = f(z).

Proof.

Let 7.5 be the circle with center z,
and radius 0, traversed counterclockwise.
Then by Corollary 0.21 we have for any
sufficiently small § > 0,

RO G O

2m ), 2z — 2o 211 s £ T A0
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Now, since f(z) is continuous, hence uniformly continuous on any sufficiently small
compact set containing zy,

f(2)

2mi ), 2z — 20

~dz — f(z0)]| =

L]{ 6M-d2—f(20)

211 Z— 2
D

' = +(562’”t)
562ﬂﬁ

S0t dt — f(z)

(20 + 6€™) — f(z0)} dt’ < sup |f(z0 + 0e*™) — f(20)]

0<i<1

—0 as o /0.

This completes our proof. n

We now show that every analytic function f on a simply connected set has an
anti-derivative. We first prove a simple lemma.

Lemma 0.23. Let U C C be a non-empty, open, connected set, and let f: U — C
be an analytic function such that ' =0 on U. Then f is constant on U.

Proof. Fix a point 2y € U and let z € U be arbitrary. Take a path v, in U from z,
to z which exists since U is (pathwise) connected. Then

£(2) — flz0) = / f(w)dw =

Corollary 0.24. Let U C C be a non-empty, open, simply connected set, and

[]

f: U — C an analytic function. Then there exists an analytic function F': U — C
with F" = f. Further, F' is determined uniquely up to addition with a constant.

Proof (sketch). If Fy, F, are any two analytic functions on U with F| = FJ = f, then
F| — F is constant on U since U is connected. This shows that an anti-derivative
of f is determined uniquely up to addition with a constant. It thus suffices to prove
the existence of an analytic function F' on U with F' = f.
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Fix zgp € U. Given z € U, we define F(z)

\ by
i
rar Fe) = [ fw)de,
// V=
) / where 7, is any path in U from z, to z.
- This does not depend on the choice of ~,.

For let v1,v2 be any two paths in U from

2o to z. Then ~; — 75 (the path consisting

of first traversing 7, and then 7, in the opposite direction) is homotopic to zy since
U is simply connected, hence

/71 f(z)dz — [ﬁ) f(z)dz = ]glw f(2)dz = 0.

To prove that limj,_, w = f(z), take a path ~, from z; to z and then the

line segment [z, z + h| from z to z + h. Then since f is uniformly continuous on any
sufficiently small compact set around z,

</z+[z,z+h] _/% )f(w)dw = /[Z’Hh] Fw)dw

_ A{ﬂz+ﬁWﬂh:h(ﬂ@ﬁ:é%ﬂz+ﬂ0—f@ﬂﬁ).

F(z+h) — F(z)

So
_F 1
PEEB=ED g = | [t - senan
0
< sup |f(z+th) — f(2)] =0 as h — 0.
0<t<1
This completes our proof. L]

Example. Let U C C be a non-empty, open, simply connected subset of C with
0 ¢ U. Then 1/z has an anti-derivative on U.

For instance, if U = C\ {z € C: Rez < 0} we may take as anti-derivative of
1/z,
Log z :=log |z| + iArg z,
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where Arg z is the argument of z in the interval (—m, 7) (this is called the principal
value of the logarithm).

On {z € C: |z — 1| < 1} we may take as anti-derivative of 1/z the power series

0.7.3 Taylor series

Theorem 0.25. Let U C C be a non-empty, open set and f: U — C an analytic
function. Further, let zy € U and R > 0 be such that D(zo, R) C U. Then f has a
Taylor series expansion

f(z) = Zan(z —29)" converging for z € D(zo, R).
n=0
Further, we have for n € Zy,

1
(0.3) an——% (ZL-CZZ for any r with 0 < r < R.

N 271 — Zo)nJrl

Proof. We fix z € D(z, R) and use w to indicate a complex variable. Choose r with
|z — 20| < r < R. By Cauchy’s integral formula,

1(z) - iyi Jw) g,

27 Lw—z
We rewrite the integrand. We have

fw) fw)  fw) _(l_z—z())—l

w=z (w—20) — (2 —2) w— 2 w— 2
- L) Sl e

The latter series converges uniformly on 7., For let M := sup,¢,. |f(w)[. Then

f(w) <M (M)n —. M,

su (2 — 2)"
p (w — 29) 1 ( 0)

’we'Yzo,'r' r r
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and >~ M, converges since |z — z| < r. Consequently,

1) = g A

21 w— z

T 2mi 71“ _0( _<Z))n+1 (2—20)”) dw

= z—2 1 _fw) - dw
N Z( )" {27ri f{zw (w — zg)"+1 d } '

n=0

Now Theorem 0.25 follows since by Corollary 0.21 the integral in (0.3) is independent
of r. O]

Corollary 0.26. Let U C C be a non-empty, open set, and f: U — C an analytic
function. Then f is analytic on U infinitely often, that is, for every k > 0 the k-the
derivative f*) exists, and is analytic on U.

Proof. Pick z € U. Choose § > 0 such that D(z,6) C U. Then for w € D(z,6) we
have

- n 1 F(w)
f(w):;an(w_z) Wlthanz%éz’rm'dwfor0<r<5.
Now for every k > 0, the k-th derivative f*)(2) exists and is equal to kla. ]

Corollary 0.27. Let v be a contour in C, and U an open subset of C containing ~y
and its interior. Further, let f: U — C be an analytic function. Then for every z
in the interior of v and every k > 0 we have

FP(2) = E%% dw.

271

Proof. Choose 6 > 0 such that +, s lies in the interior of . By Corollary 0.21,

1 f(w) _ 1 f(w)
2_7”% (w — 2)F+1 Hdw = i j{w (w — 2)F+ - dw.

By the argument in Corollary 0.26, this is equal to f*)(z2)/k!. ]
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We prove a generalization of Cauchy’s integral formula.

Corollary 0.28. Let 1,7 be two contours such that v, is lying in the interior of
vo. Let U C C be an open set which contains v1,v2 and the region between 7y, ¥s.
Further, let f : U — C be an analytic function. Then for any zo in the region
between v, and 5 we have

PR B O (IR WY O [

2 J,, 2 — 20 21 )\, 2 — 20

dz.

Proof. We have seen that around 2, the function f has a Taylor expansion f(z) =
Yoo gan(z — 2)". Define the function on U,

f(z) —ag

Z— 20

9(2) == (2 # 20);  9(20) == ar.

The function g is clearly analytic on U \ {zy}. Further,

9(2) — 9(20)

o
= E an(z — 20)"" 2 = ay as z — z.
Z— 20

n=2
Hence g is also analytic at z = 2y. In particular, ¢ is analytic in the region between
~v1 and 7,. So by Corollary 0.21,

j{l g(2)dz = }i g(z)dz.

Together with Corollaries 0.22, 0.21 this implies

1 1
f(z0) =ap = — LU S W
2mi )., 2 — 20 2mi Sy, 2 — 20
1 1
R O OISR G (O
27 ), 2 — 20 21 ), 2 — 20

0.7.4 Isolated singularities, Laurent series, meromorphic func-
tions

We define the punctured disk with center zy € C and radius r > 0 by

D°(zp,r)={2€C:0<|z— 2| <7}
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If f is an analytic function defined on D°(zg,r) for some r > 0, we call 2y an
1solated singularity of f. In case that there exists an analytic function g on the
non-punctured disk D(zp,r) such that g(z) = f(2) for z € D%(zg,7), we call z a
removable singularity of f.

Theorem 0.29. Let U C C be a non-empty, open set and f : U — C an analytic
function. Further, let zo € U, and let R > 0 be such that D°(zy, R) C U. Then f
has a Laurent series expansion

o0

f(2) = Z an(z — 20)" converging for z € D°(zo, R).

n=—oo

Further, we have for n € Z,

1 f(z) ,
(0.4) n = 5 jio,r R dz for any r with 0 <r < R.

Proof. We fix z € D%(zy, R) and use w to denote a complex variable. Choose ry, 75
with 0 <7 < |z — 20| <72 < R.

By Corollary 0.28 we have

1 1

(0.5) f(z) = —f f(w) cdw — — f(w) cdw =: I1 — I,

271 w—z 27 J, w—z

20,72 20,71

say. Completely similarly to Theorem 0.25, one shows that

N o 1 f(w)

I Zzan(Z—Zo) with a, = 2_7TZ W'dw.
n=0 Vzg:r2

Notice that for w on the inner circle v,, ,, we have

flw) f(w)  fw) .(1_m)‘1

w—z  (w—z)—(z—2) 22—z z— 2y

= =D Fw)(z = 20) " (w — z)™

Further, one easily shows that the latter series converges uniformly to f(w)/(w — 2)
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on 7., - After a substitution n = —m — 1, it follows that

—1 - m —m—1
ST (; f(w)(w = wo)" (z = z0) ) dw
-1
n 1 f(w)
= —n:Z_OO Gn(Z — Zo) s with Ay = % o m - dw.

By substituting the expressions for I3, Iy obtained above into (0.5), we obtain

[e.e]

flz) =1 — L= Z an(z — 20)".

n=—oo

Further, by Corollary 0.21 we have
1 f(w)

a, = — —
" 2m e (W — 20)" T

-dw

for any n € Z and any r with 0 < r < R. This completes our proof.

]

Let U C C be an open set, zg € U and f: U \ {20} — C an analytic function.
Then zq is an isolated singularity of f, and there is R > 0 such that f has a Laurent

series expansion
oo

f(2)= ) aulz—2)"

n=-—oo

converging for 2 € D%(2y, R). Notice that zj is a removable singularity of f if a,, = 0

for all n < 0.

The point zj is called

e an essential singularity of f if there are infinitely many n < 0 with a,, # 0;

e a pole of order k of f for some k > 0 if a_; # 0 and a,, = 0 for n < —k; a pole

of order 1 is called simple;

e a zero of order k of f for some k > 0 if ax # 0 and a,, = 0 for n < k; a zero

of order 1 is called simple.
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Notice that if f has a zero of order £ at 2, then in particular, zy is a removable
singularity of f and so we may assume that f is defined and analytic at z,. Moreover,
2o is a zero of order k of f if and only if fUW(z) = 0 for j = 0,...,k — 1, and
f¥(z) # 0.

For f, zy as above, we define
ord,,(f) := smallest k € Z such that a; # 0.

Thus,

zp essential singularity of f <= ord,,(f) = —oc;
2o pole of order k of f <= ord,,(f) = —k;
2o zero of order k of f <= ord,,(f) = k.

Further, ord,,(f) = k if and only if there is a function g that is analytic around z
such that f(2) = (z — 20)*g(2) for z # 2y and g(z) # 0.

Lemma 0.30. Let R > 0 and let f,g : D%z, R) — C be two analytic functions.
Assume that g # 0 on D°(zq, R), and that zy is not an essential singularity of f or
g. Then

OI'dZO(f + g) > min (Ordzo (f)v Ordzo (g))7
ord,, (fg) = ord.,(f) + ord.,(g);
ord,(f/g) = ord.,(f) — ord;,(g).

Proof. Exercise.

The function ord,, is an example of a discrete valuation. A discrete valuation on a
field K is a surjective map v : K — Z U {oo} such that v(0) = oo; v(z) € Z for
x e K, x#0;v(zy) =v(r)+v(y) for z,y € K; and v(z +y) > min(v(z),v(y)) for
r,y € K. L]

A meromorphic function on U is a complex function f with the following prop-
erties:
(1) there is a set S discrete in U such that f is defined and analytic on U \ S;
(ii) all elements of S are poles of f.

We say that a complex function f is meromorphic around z, if f is analytic on
DOz, r) for some r > 0, and z; is a pole of f.
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It is easy to verify that if f, g are meromorphic functions on U then so are f + ¢
and f -g. It can be shown as well (less trivial) that if U is connected and ¢ is a
non-zero meromorphic function on U, then the set of zeros of f is discrete in U.
The zeros of g are poles of 1/g, and the poles of g are zeros of 1/g. Hence 1/g is
meromorphic on U. Consequently, if U is an open, connected subset of C, then the
functions meromorphic on U form a field.

0.7.5 Residues, logarithmic derivatives

Let 20 € C, R >0 and let f: D%z, R) — C be an analytic function. Then f has
a Laurent series expansion converging on D°(z, R):

o0

flz) = Z an(z — 20)".

We define the residue of f at zg by
res(zo, f) == a_;.

In particular, if f is analytic at zo then res(zg, f) = 0. By Theorem 0.29 we have

res(zo, f =5 f f(z

for any r with 0 < r < R.

Theorem 0.31 (Residue Theorem). let v be a contour in C. let zy,. .., z, be in the
interior of v. Let f be a complex function that is analytic on an open set containing
v and the interior of v minus {z1,...,2,}. Then

97 j{f )dz = res(z,,f).

Proof. We proceed by induction on ¢. First let ¢ = 1. Choose r > 0 such that v, ,
lies in the interior of 7. Then by Corollary 0.21,

omi j{f % . f(2)dz = res(z1, f).
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Now let ¢ > 1 and assume the Residue
Theorem is true for fewer than ¢ points.
We cut v into two pieces, the piece v, from
a point wy to wy and the piece v, from w;
to wy so that v = 1 + 2. Then we take a
path 3 from w; to wy inside the interior
of v without self-intersections; this gives

two contours y; + 3 and —73 + ¥o.

We choose 73 in such a way that it does not hit any of the points z1, ..., z, and both
the interiors of these contours contain points from z1, ..., z,. Without loss of gener-
ality, we assume that the interior of v; +73 contains z1, ..., 2, with 0 < m < ¢, while
the interior of —v3 + 7, contains z,,41, ..., 2,. Then by the induction hypothesis,
=S OISy Oy IO
— 2)dz = — z)dz + — z)dz
2mi J, 27 J, 27 J.,
1 1
= — f(z)dz + — f(2)dz
2mi Y1+73 2mi —¥3+72
m q q
= Zres(ziaf)+ Z res(zi,f) = Zres(zi7f)7
i=1 i=m+1 i=1
completing our proof. O

We have collected some useful facts about residues. Both f, g are analytic func-
tions on D°(z,r) for some r > 0.

Lemma 0.32. (i) f has a simple pole or removable singularity at zo with residue «

< lim (2 — 20) f(2) = a <= f(z2) —

15 analytic around zp.
220 Z— 2

(i) Suppose f has a pole of order 1 at zy and g is analytic and non-zero at zy. Then

res(20, fg) = g(20)res(z0, f)-

(iii) Suppose that f is analytic and non-zero at zy and g has a zero of order 1 at z.
Then f/g has a pole of order 1 at zy, and

res(z20, f/9) = f(20)/9 (20)-
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Proof. Exercise. O]

Let U be a non-empty, open subset of C and f a meromorphic function on U
which is not identically zero. We define the logarithmic derivative of f by

f'I1.

Suppose that U is simply connected and f is analytic and has no zeros on U. Then
f'/f has an anti-derivative h : U — C. One easily verifies that (¢"/f) = 0. Hence
eh/f is constant on U. By adding a suitable constant to h we can achieve that
el = f. That is, we may view h as the logarithm of f, and f’/f as the derivative of
this logarithm. But we will work with f’/f also if U is not simply connected and/or
f has zeros or poles on U. In that case, we call f'/f also the logarithmic derivative
of f, although it need not be the derivative of some function.

The following facts are easy to prove: if f, g are two meromorphic functions on
U that are not identically zero, then

Gy _ 1 ¢ Ul _ S ¢
fo f 9 fla f g
Further, if U is connected, then
9
7 = = <= f = cg for some constant c.

Lemma 0.33. Let zg € C, r > 0 and let f : D°(zp,7) — C be analytic. Assume
that zo s either a removable singularity or a pole of f. Then zy is a simple pole or
(if zo is neither a zero nor a pole of f) a removable singularity of f'/f, and

res(zo, f'/f) = ord,, (f).

Proof. Let ord,,(f) = k. This means that f(z) = (2 — 29)*g(2) with g analytic
around zy and g(zp) # 0. Consequently,
fropbza) ¢k ¢

= + £,
f z—2 g z—z g

The function ¢'/g is analytic around zy since g(zp) # 0. So by Lemma 0.32,
res(zo, f'/f) = k. ]
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Corollary 0.34. Let v be a contour in C, U an open subset of C containing v and
its interior, and f a meromorphic function on U. Assume that f has no zeros or
poles on 7y and let zy, ..., z, be the zeros and poles of f inside v. Then

<1
2m’7

where Z, P denote the number of zeros and poles of f inside v, counted with their

I
i)

q
dz=>Y ord.(f)=Z—P,
=1

multiplicities.

Proof. By Theorem 0.31 and Lemma 0.33 we have

% ff/((j; dz = zq:reS(me//f) = iordzi(f) —7_P
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