
Chapter 1

Introduction to prime number

theory

1.1 The Prime Number Theorem

In the first part of this course, we focus on the theory of prime numbers. We use

the following notation: we write f(x) ∼ g(x) as x → ∞ if limx→∞ f(x)/g(x) = 1,

and denote by log x the natural logarithm. The central result is the Prime Number

Theorem:

Theorem 1.1 (Prime Number Theorem, Hadamard, de la Vallée Poussin, 1896).

let π(x) denote the number of primes 6 x. Then

π(x) ∼ x

log x
as x→∞.

This result was conjectured by Legendre in 1798. In 1851/52, Chebyshev proved

that if the limit limx→∞ π(x) log x/x exists, then it must be equal to 1, but he

couldn’t prove the existence of the limit. However, Chebyshev came rather close,

by showing that there is an x0, such that for all x > x0,

0.921
x

log x
< π(x) < 1.056

x

log x
.

In 1859, Riemann published a very influential paper (B. Riemann, Über die

Anzahl der Primzahlen unter einer gegebenen Große, Monatshefte der Berliner
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Akademie der Wissenschaften 1859, 671–680; also in Gesammelte Werke, Leipzig

1892, 145–153) in which he related the distribution of prime numbers to properties

of the function in the complex variable s,

ζ(s) =
∞∑
n=1

n−s

(nowadays called the Riemann zeta function). It is well-known that ζ(s) converges

absolutely for all s ∈ C with Re s > 1, and that it diverges for s ∈ C with Re s 6 1.

Moreover, ζ(s) defines an analytic (complex differentiable) function on {s ∈ C :

Re s > 1}. Riemann obtained another expression for
∑∞

n=1 n
−s that can be defined

everywhere on C \ {1} and defines an analytic function on this set; in fact it can be

shown that it is the only analytic function on C \ {1} that coincides with
∑∞

n=1 n
−s

on {s ∈ C : Re s > 1}. This analytic function is also denoted by ζ(s). Riemann

proved the following properties of ζ(s):

• ζ(s) has a pole of order 1 in s = 1 with residue 1, that is, lims→1(s−1)ζ(s) = 1;

• ζ(s) satisfies a functional equation that relates ζ(s) to ζ(1− s);

• ζ(s) has zeros in s = −2,−4,−6, . . . (the trivial zeros). The other zeros lie in

the critical strip {s ∈ C : 0 < Re s < 1}.

Riemann stated the following still unproved

conjecture:

Riemann Hypothesis (RH).

All zeros of ζ(s) in the critical strip lie on the

axis of symmetry of the functional equation,

i.e., the line Re s = 1
2
.
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Riemann made several other conjectures about the distribution of the zeros of

ζ(s), and further, he stated without proof a formula that relates

θ(x) :=
∑
p6x

log p (sum over all primes 6 x)

to the zeros of ζ(s) in the critical strip. These other conjectures of Riemann were

proved by Hadamard in 1893, and the said formula was proved by von Mangoldt in

1895.

Finally, in 1896, Hadamard and de la Vallée Poussin independently proved the

Prime Number Theorem. Their proofs used a fair amount of complex analysis. A

crucial ingredient for their proofs is, that ζ(s) 6= 0 if Re s = 1 and s 6= 1. In 1899, de

la Vallée Poussin obtained the following Prime Number Theorem with error term:

Let

Li(x) :=

∫ x

2

dt

log t
.

Then there is a constant c > 0 such that

(1.1) π(x) = Li(x) +O
(
xe−c

√
log x
)

as x→∞.

Exercise 1.1. a) Prove that for every integer n > 1,∫ x

2

dt

(log t)n
= O

( x

(log x)n

)
as x→∞,

where the constant implied by the O-symbol may depend on n (in other words,

there are C > 0, x0 > 0, possibly depending on n, such that |
∫ x
2

dt
(log t)n

| 6
C · x/(log x)n for x > x0).

Hint. Choose an appropriate function f(x) with 2 < f(x) < x, split the inte-

gral into
∫ f(x)
2

+
∫ x
f(x)

and estimate both integrals from above, using |
∫ b
a
g(t)dt| 6

(b− a) maxa6t6b |g(t)|.

b) Prove that for every integer n > 1,

Li(x) =
x

log x
+1!

x

(log x)2
+ · · ·+(n−1)!

x

(log x)n
+O

( x

(log x)n+1

)
as x→∞,

where the constant implied by the O-symbol may depend on n.

Hint. Use repeated integration by parts.
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This implies that Li(x) is a much better approximation to π(x) than x/ log x.

Corollary 1.2. lim
x→∞

π(x)− Li(x)

π(x)− x/ log x
= 0.

Proof. We combine the above exercise and (1.1) and use that

(1.2)
xe−c

√
log x

x/(log x)n
= en log log x−c

√
log x → 0 as x→∞ for every n > 0.

This gives

π(x)− x

log x
= Li(x)− x

log x
+ π(x)− Li(x)

=
x

(log x)2
+O

( x

(log x)3

)
+O

(
xe−c

√
log x
)

=
x

(log x)2
+O

( x

(log x)3

)
=

x

(log x)2
·
(

1 +O
( 1

log x

))
∼ x

(log x)2
as x→∞

and subsequently, on applying (1.1) and (1.2),

π(x)− Li(x)

π(x)− x/ log x
∼ π(x)− Li(x)

x/(log x)2
= O

(
xe−c

√
log x

x/(log x)2

)
→ 0 as x→∞.

In fact, in his proof of (1.1), de la Vallée

Poussin used that for some constant c > 0,

ζ(s) 6= 0

for all s with Re s > 1− c

log(|Im s|+ 2)
.

A zero free region for ζ(s) is a subset S of the

critical strip of which it is known that ζ(s) 6=
0 on S. In general, a larger provable zero free

region for ζ(s) leads to a better estimate for

π(x)− Li(x).
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In 1958, Korobov and Vinogradov independently showed that for every α > 2
3

there is a constant c(α) > 0 such that

ζ(s) 6= 0 for all s with Re s > 1− c(α)

(log(|Im s|+ 2))α
.

From this, they deduced that for every β < 3
5

there is a constant c′(β) > 0 with

π(x) = Li(x) +O
(
xe−c

′(β)(log x)β
)

as x→∞.

This has not been improved so far.

On the other hand, in 1901 von Koch proved that the Riemann Hypothesis is

equivalent to

π(x) = Li(x) +O
(√

x(log x)2
)

as x→∞,

which is of course much better than the result of Korobov and Vinogradov.

After Hadamard and de la Vallée Poussin, several other proofs of the Prime

Number theorem were given, all based on complex analysis. In the 1930’s, Wiener

and Ikehara proved a general so-called Tauberian theorem (from functional analysis)

which implies the Prime Number Theorem in a very simple manner. In 1948, Erdős

and Selberg independently found an elementary proof, “elementary” meaning that

the proof avoids complex analysis or functional analysis, but definitely not that the

proof is easy! In 1980, Newman gave a new, simple proof of the Prime Number

Theorem, based on complex analysis. Korevaar observed that Newman’s approach

can be used to prove a simpler version of the Wiener-Ikehara Tauberian theorem

with a not so difficult proof based on complex analysis alone and avoiding functional

analysis. In this course, we prove the Tauberian theorem via Newman’s method,

and deduce from this the Prime Number Theorem as well as the Prime Number

Theorem for arithmetic progressions (see below).

1.2 Primes in arithmetic progressions

In 1839–1842 Dirichlet (the founder of analytic number theory) proved that every

arithmetic progression contains infinitely many primes. Otherwise stated, he proved

that for every integer q > 2 and every integer a with gcd(a, q) = 1, there are infinitely

many primes p such that

p ≡ a (mod q).
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His proof is based on so-called L-functions. To define these, we have to introduce

Dirichlet characters. A Dirichlet character modulo q is a function χ : Z → C with

the following properties:

• χ(1) = 1;

• χ(b1) = χ(b2) for all b1, b2 ∈ Z with b1 ≡ b2 (mod q);

• χ(b1b2) = χ(b1)χ(b2) for all b1, b2 ∈ Z;

• χ(b) = 0 for all b ∈ Z with gcd(b, q) > 1.

The principal character modulo q is given by

χ
(q)
0 (a) = 1 if gcd(a, q) = 1, χ

(q)
0 (a) = 0 if gcd(a, q) > 1.

Example. Let χ be a character modulo 5. Since 24 ≡ 1 (mod 5) we have χ(2)4 = 1.

Hence χ(2) ∈ {1, i,−1,−i}. In fact, the Dirichlet characters modulo 5 are given by

χj (j = 1, 2, 3, 4) where

χ(b) = 1 if b ≡ 1 (mod 5),

χ(b) = i if b ≡ 2 (mod 5),

χ(b) = −1 if b ≡ 4 ≡ 22(mod 5),

χ(b) = −i if b ≡ 3 ≡ 23(mod 5),

χ(b) = 0 if b ≡ 0 (mod 5).

In general, by the Euler-Fermat Theorem, if b, q are integers with q > 2 and

gcd(b, q) = 1, then bϕ(q) ≡ 1 (mod q), where ϕ(q) is the number of positive inte-

gers a 6 q that are coprime with q. Hence χ(b)ϕ(q) = 1.

The L-function associated with a Dirichlet character χ modulo q is given by

L(s, χ) =
∞∑
n=1

χ(n)n−s.

Since |χ(n)| ∈ {0, 1} for all n, this series converges absolutely for all s ∈ C with

Re s > 1. Further, many of the results for ζ(s) can be generalized to L-functions:

• if χ is not a principal character, then L(s, χ) has an analytic continuation to

C, while if χ = χ
(q)
0 is the principal character modulo q it has an analytic

continuation to C \ {1}, with lims→1(s− 1)L(s, χ
(q)
0 ) =

∏
p|q(1− p−1).
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• there is a functional equation, relating L(s, χ) to L(1 − s, χ), where χ is the

complex conjugate character, defined by χ(b) := χ(b) for b ∈ Z.

Furthermore, there is a generalization of the Riemann Hypothesis:

Generalized Riemann Hypothesis (GRH): Let χ be a Dirichlet character mod-

ulo q for any integer q > 2. Then the zeros of L(s, χ) in the critical strip lie on the

line Re s = 1
2
.

De la Vallée Poussin managed to prove the following generalization of the Prime

Number Theorem, using properties of L-functions instead of ζ(s):

Theorem 1.3 (Prime Number Theorem for arithmetic progressions). let q, a be

integers with q > 2 and gcd(a, q) = 1. Denote by π(x; q, a) the number of primes p

with p 6 x and p ≡ a (mod q). Then

π(x; q, a) ∼ 1

ϕ(q)
· x

log x
as x→∞.

Corollary 1.4. Let q be an integer > 2. Then for all integers a coprime with q we

have

lim
x→∞

π(x; q, a)

π(x)
=

1

ϕ(q)
.

This shows that in some sense, the primes are evenly distributed over the prime

residue classes modulo q.

1.3 An elementary result for prime numbers

We finish this introduction with an elementary proof, going back to Erdős, of a

weaker version of the Prime Number Theorem.

Theorem 1.5. We have

1
2 ·

x

log x
6 π(x) 6 2

x

log x
for x > 3.

The proof is based on some simple lemmas. For an integer n 6= 0 and a prime

number p, we denote by ordp(n) the largest integer k such that pk divides n.

Further, we denote by [x] the largest integer 6 x.

47



Lemma 1.6. Let n be an integer > 1 and p a prime number. Then

ordp(n!) =
∞∑
j=1

[
n

pj

]
.

Remark. This is a finite sum.

Proof. We count the number of times that p divides n!. Each multiple of p that

is 6 n contributes a factor p. Each multiple of p2 that is 6 n contributes another

factor p, each multiple of p3 that is 6 n another factor p, and so on. Hence

ordp(n!) =
∞∑
j=1

(number of multiples of pj 6 n) =
∞∑
j=1

[
n

pj

]
.

Lemma 1.7. Let a, b be integers with a > 2b > 0. Then∏
a−b+16p6a

p divides

(
a

b

)
.

Proof. We have (
a

b

)
=
a(a− 1) · · · (a− b+ 1)

1 · 2 · · · b
, a− b+ 1 > b.

Hence any prime with a− b+ 1 6 p 6 a divides the numerator but not the denom-

inator.

Lemma 1.8. Let a, b be integers with a > b > 0. Suppose that some prime power

pk divides
(
a
b

)
. Then pk 6 a.

Proof. Let p be a prime. By Lemma 1.6 we have

ordp

((
a

b

))
= ordp

(
a!

b!(a− b)!

)
=

∞∑
j=1

([
a

pj

]
−
[
a− b
pj

]
−
[
b

pj

])
.

Each summand is either 0 or 1. Further, each summand with pj > a is 0. Hence

ordp

((
a
b

))
6 α, where α is the largest j with pj 6 a. This proves our lemma.
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Lemma 1.9. Let n be an integer > 1. Then

2n

n+ 1
6

(
n

[n/2]

)
6 2n−1.

Proof.
(

n
[n/2]

)
is the largest among the binomial coefficients

(
n
0

)
, . . . ,

(
n
n

)
. Hence

2n =
n∑
j=0

(
n

j

)
6 (n+ 1)

(
n

[n/2]

)
.

This establishes the lower bound for
(

n
[n/2]

)
. To prove the upper bound, we distin-

guish between the cases n = 2k + 1 odd and n = 2k even. First, let n = 2k + 1 be

odd. Then (
n

[n/2]

)
=

(
2k + 1

k

)
=

1

2

((
2k + 1

k

)
+

(
2k + 1

k + 1

))
6

1

2

2k+1∑
j=0

(
2k + 1

j

)
= 22k = 2n−1.

Now, let n = 2k be even. Then since
(

2k
k−1

)
> 1

2

(
2k
k

)
for k > 1,(

n

[n/2]

)
=

(
2k

k

)
6

1

2

((
2k

k − 1

)
+

(
2k

k

)
+

(
2k

k + 1

))
6

1

2

2k∑
j=0

(
2k

j

)
= 22k−1 = 2n−1.

Proof of π(x) > 1
2
x/ log x. It is easy to check that π(x) > 1

2
x/ log x for 3 6 x 6 100.

Assume that x > 100. Let n := [x]; then n 6 x < n+ 1.

Write
(

n
[n/2]

)
= pk11 · · · pktt , where the pi are distinct primes, and the ki positive

integers. By Lemma 1.8 we have pkii 6 n for i = 1, . . . , t. Then also pi 6 n for

i = 1, . . . , t, hence t 6 π(n). It follows that(
n

[n/2]

)
6 nπ(n).
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So by Lemma 1.9, nπ(n) > 2n/(n+ 1). Consequently,

π(x) = π(n) >
n log 2− log(n+ 1)

log n

>
(x− 1) log 2− log(x+ 1)

log x
> 1

2

x

log x
for x > 100.

Proof of π(x) 6 2x/ log x. Let again n = [x]. Since t/ log t is an increasing function

of t, it suffices to prove that π(n) 6 2 · n/ log n for all integers n > 3. We proceed

by induction on n.

It is straightforward to verify that π(n) 6 2 · n/ log n for 3 6 n 6 200. Let

n > 200, and suppose that π(m) 6 2 ·m/ logm for all integers m with 3 6 m < n.

If n is even, then we can use π(n) = π(n− 1) and that t/ log t is increasing. Assume

that n = 2k + 1 is odd. Then by Lemma 1.7, we have(
2k + 1

k

)
>

∏
k+26p62k+1

p > (k + 2)π(2k+1)−π(k+1).

Using Lemma 1.9, this leads to (k + 2)π(2k+1)−π(k+1) 6 22k, or

π(2k + 1)− π(k + 1) 6
2k log 2

log(k + 2)
.

Finally, applying the induction hypothesis to π(k+1) and using k+2 > k+1 > n/2,

we arrive at

π(n) = π(2k + 1) 6
2k log 2

log(k + 2)
+

2(k + 1)

log(k + 1)

<
(log 2 + 1)n+ 1

log(n/2)
< 2

n

log n
for n > 200.
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