Chapter 10

The singular integral

Our aim in this chapter is to replace the functions $\mathfrak{S}^{*}(n)$ and $J^{*}(n)$ by more convenient expressions; these will be called the singular series $\mathfrak{S}(n)$ and the singular integral $J(n)$. This will be done in section 10.1. We shall show that the order of magnitude of the singular integral is n^{2} in section 10.2.

10.1 Introducing $\mathfrak{S}(n)$ and $J(n)$

Define

$$
S(q):=\sum_{\substack{1 \leqslant a \leqslant q \\ \operatorname{gcd}(a, q)=1}} S(q, a)^{9} \mathrm{e}(-a n / q)
$$

where

$$
S(q, a)=\sum_{m=1}^{q} \mathrm{e}\left(a m^{3} / q\right) .
$$

Thus,

$$
\mathfrak{S}^{*}(n)=\sum_{q \leqslant n^{1 / 300}} \frac{S(q)}{q^{9}} .
$$

Lemma 10.1. Let a, q be coprime integers and ϵ any positive real. Then

$$
|S(a, q)|<_{\epsilon} q^{\frac{3}{4}+\epsilon} .
$$

Proof. The argument is an analogue of the differencing process (see pages 151-153 of Chapter 8). We have

$$
|S(q, a)|^{2}=\sum_{m_{2}(\bmod q)} \sum_{m_{1}(\bmod q)} \mathrm{e}\left(\frac{a}{q}\left(m_{1}^{3}-m_{2}^{3}\right)\right)
$$

The transformation $m_{1} \mapsto h_{1}$ given by $m_{1} \equiv h_{1}+m_{2}(\bmod q)$ shows that

$$
|S(q, a)|^{2}=\sum_{h_{1}(\bmod q)} \mathrm{e}\left(\frac{a}{q} h_{1}^{3}\right) \sum_{m_{2}(\bmod q)} \mathrm{e}\left(\frac{a}{q}\left(3 h_{1}\left(h_{1} m_{2}+m_{2}^{2}\right)\right)\right)
$$

hence the triangle inequality gives

$$
|S(q, a)|^{2} \leqslant \sum_{h_{1}(\bmod q)}\left|\sum_{m_{2}(\bmod q)} \mathrm{e}\left(\frac{a}{q}\left(3 h_{1}\left(h_{1} m_{2}+m_{2}^{2}\right)\right)\right)\right| .
$$

Now Cauchy's inequality reveals that

$$
|S(q, a)|^{4} \leqslant q \sum_{h_{1}(\bmod q)}\left|\sum_{m_{2}(\bmod q)} \mathrm{e}\left(\frac{a}{q}\left(3 h_{1}\left(h_{1} m_{2}+m_{2}^{2}\right)\right)\right)\right|^{2}
$$

The inner term is

$$
\left|\sum_{m_{2}(\bmod q)} \mathrm{e}\left(\frac{a}{q}\left(3 h_{1}\left(h_{1} m_{2}+m_{2}^{2}\right)\right)\right)\right|^{2}=\sum_{m_{2}, m_{3}(\bmod q)} \mathrm{e}\left(\frac{a}{q}\left(3 h_{1}\left(h_{1}\left(m_{2}-m_{3}\right)+\left(m_{2}^{2}-m_{3}^{3}\right)\right)\right)\right)
$$

and the substitution $m_{2} \mapsto h_{2}$ given by $m_{2} \equiv h m_{3}+h_{2}(\bmod q)$ leads to

$$
\sum_{h_{2}(\bmod q)} \mathrm{e}\left(3 \frac{a}{q}\left(h_{1}^{2} h_{2}+h_{1} h_{2}^{2}\right)\right) \sum_{m_{3}(\bmod q)} \mathrm{e}\left(6 \frac{a}{q} h_{1} h_{2} m_{3}\right)
$$

Note that the coprimality of a, q shows that the sum over m_{3} equals q when q divides $6 h_{1} h_{2}$ and vanishes otherwise. We obtain that

$$
|S(q, a)|^{4} \leqslant q^{2} \#\left\{1 \leqslant h_{1}, h_{2} \leqslant q: q \mid 6 h_{1} h_{2}\right\} .
$$

The integers $6 h_{1} h_{2}$ lie in the range $\left[1,6 q^{2}\right]$ and are divisible by q. Hence there exists $i \in[1,6 q]$ such that $6 h_{1} h_{2}=i q$. Therefore

$$
|S(q, a)|^{4} \leqslant q^{2} \sum_{i=1}^{6 q} \#\left\{1 \leqslant h_{1}, h_{2} \leqslant q: 6 h_{1} h_{2}=i q\right\}
$$

In order to have $6 h_{1} h_{2}=i q$ both integers h_{1}, h_{2} must divide $i q$ and there are only

$$
\tau(i q)^{2} \lll \epsilon(i q)^{\epsilon / 2} \ll q^{\epsilon}
$$

such pairs, where ϵ is any positive real. This concludes our proof.
The last lemma shows that

$$
\frac{|S(q)|}{q^{9}} \lll \epsilon \frac{1}{q^{1+\frac{1}{4}+\epsilon}}
$$

therefore the following series, usually referred to as the singular series,

$$
\begin{equation*}
\mathfrak{S}(n):=\sum_{q=1}^{\infty} \frac{S(q)}{q^{9}} \tag{10.1}
\end{equation*}
$$

converges absolutely and satisfies

$$
\mathfrak{S}(n)-\mathfrak{S}^{*}(n) \lll \sum_{q>n^{1 / 300}} \frac{1}{q^{1+\frac{1}{4}+\epsilon}} \ll \int_{n^{1 / 300}}^{\infty} \frac{\mathrm{d} t}{t^{1+\frac{1}{4}+\epsilon}}<_{\epsilon} n^{-\frac{1}{1200}+\epsilon}
$$

This shows that

$$
\begin{equation*}
\mathfrak{S}(n) \ll 1 \tag{10.2}
\end{equation*}
$$

and by (9.6) we obtain

$$
\begin{equation*}
R^{*}(n)=\left(\mathfrak{S}(n)+O_{\epsilon}\left(n^{-\frac{1}{1200}+\epsilon}\right)\right) J^{*}(n) \tag{10.3}
\end{equation*}
$$

We next replace $J^{*}(n)$ by a more suitable integral. For this we shall need to need the behaviour of $v(\beta)=\frac{1}{3} \sum_{m=1}^{n} \mathrm{e}(\beta m) / m^{2 / 3}$ in the range $|\beta| \leqslant \frac{1}{2}$.
Lemma 10.2. Let $\beta \in \mathbb{R}$ with $|\beta| \leqslant \frac{1}{2}$. Then

$$
|v(\beta)| \ll \min \left\{n^{1 / 3},|\beta|^{-1 / 3}\right\} .
$$

Proof. If β is close to 0 then the terms $\mathrm{e}(\beta m)$ in the definition of $v(\beta)$ remain close to 1 . Hence using the triangle inequality one does not loose much information,

$$
|v(\beta)| \leqslant \frac{1}{3} \sum_{1 \leqslant m \leqslant n} \frac{1}{m^{\frac{2}{3}}} \leqslant \frac{1}{3} \int_{1}^{n-1} \frac{\mathrm{~d} t}{t^{\frac{2}{3}}}+O(1) \ll n^{1 / 3} .
$$

If $|\beta| \leqslant 1 / n$ then $|\beta|^{-1 / 3}>n^{1 / 3}$, hence the claim of our lemma is evident.
In the remaining case $|\beta|>1 / n$ we see that

$$
\left|\sum_{m \leqslant 1 /|\beta|} \frac{\mathrm{e}(\beta m)}{m^{2 / 3}}\right| \leqslant \sum_{m \leqslant 1 /|\beta|} \frac{1}{m^{2 / 3}} \ll(1 /|\beta|)^{1 / 3}
$$

which is acceptable. We use partial summation to estimate the remaining sum

$$
\sum_{1 /|\beta|<m \leqslant n} \frac{\mathrm{e}(\beta m)}{m^{2 / 3}}
$$

For this purpose we define for $t \in \mathbb{R}$,

$$
A(t):=\sum_{1 \leqslant m \leqslant t} \mathrm{e}(\beta m)=\mathrm{e}(\beta m) \frac{\mathrm{e}(\beta[t])-1}{\mathrm{e}(\beta)-1}
$$

and observe that the inequality $|\mathrm{e}(\beta)-1| \gg|\beta|$, valid for $|\beta|<1 / 2$, yields

$$
A(t) \ll \frac{1}{|\beta|},
$$

with an implied constant that is independent of t. Partial summation now gives

$$
\sum_{1 /|\beta|<m \leqslant n} \frac{\mathrm{e}(\beta m)}{m^{2 / 3}}=\frac{A(n)}{n^{2 / 3}}-\frac{A(1 /|\beta|)}{|\beta|^{-2 / 3}}+\int_{1 /|\beta|}^{n} A(t) \frac{\mathrm{d} t}{t^{5 / 3}}
$$

which is

$$
\ll \frac{1 /|\beta|}{n^{2 / 3}}+\frac{|\beta|^{2 / 3}}{|\beta|}+\frac{1}{|\beta|} \frac{1}{|\beta|^{-2 / 3}} \ll|\beta|^{-1 / 3} .
$$

Define the following integral (which is usually called singular integral),

$$
\begin{equation*}
J(n):=\int_{-1 / 2}^{1 / 2} v(\beta)^{9} \mathrm{e}(-\beta n) \mathrm{d} \beta \tag{10.4}
\end{equation*}
$$

and observe that Lemma 10.2 shows that

$$
J(n) \ll \int_{0}^{1 / n} n^{9 / 3} \mathrm{~d} \beta+\int_{1 / n}^{1 / 2} \frac{\mathrm{~d} \beta}{|\beta|^{3}},
$$

hence

$$
\begin{equation*}
J(n) \ll n^{2} \tag{10.5}
\end{equation*}
$$

Now recall the definition of $J^{*}(n)$ in (9.8). We have

$$
J(n)-J^{*}(n)=\int_{n^{-1+1 / 300 \leqslant|\beta| \leqslant 1 / 2}} v(\beta)^{9} \mathrm{e}(-\beta n) \mathrm{d} \beta
$$

which according to Lemma 10.2 is

$$
\ll \int_{n^{1 / 300} / n}^{1 / 2} \beta^{-3} \mathrm{~d} \beta \ll n^{2-\frac{1}{150}}
$$

Using (10.2), (10.3) and (10.5) we find an absolute constant $\delta>0$ such that

$$
R^{*}(n)=\mathfrak{S}(n) J(n)+O\left(n^{2-\delta}\right)
$$

which when combined with (8.8), (8.10) and (9.5) yields the following theorem.
Theorem 10.3. We have

$$
\lim _{n \rightarrow+\infty}\left|\frac{R(n)}{n^{2}}-\frac{\mathfrak{S}(n) J(n)}{n^{2}}\right|=0
$$

10.2 The singular integral

The Beta function is defined as

$$
B(x, y):=\int_{0}^{1} t^{x-1}(1-t)^{y-1} \mathrm{~d} t, \quad \text { for } x, y>0
$$

Before relating the singular integral $J(n)$ to the Beta function we need some information on sums of monotone arithmetic functions. Let $f: \mathbb{Z}_{\geqslant 0} \rightarrow \mathbb{R}$ be any monotonic function. Comparing the sum $\sum_{y<n \leqslant x} f(n)$ with the integral $\int_{y}^{x} f(t) \mathrm{d} t$ we see that

$$
\sum_{y<n \leqslant x} f(n)=\int_{y}^{x} f(t) \mathrm{d} t+O(1+|f(y)|+|f(x)|)
$$

Therefore if $f: \mathbb{Z}_{\geqslant 0} \rightarrow \mathbb{R}$ is monotonic in each interval

$$
\left(0, x_{1}\right),\left(x_{1}, x_{2}\right), \ldots,\left(x_{k}, x\right)
$$

then

$$
\sum_{0 \leqslant m \leqslant n} f(m)=\int_{0}^{n} f(t) \mathrm{d} t+O\left(1+|f(0)|+|f(n)|+\sum_{i=1}^{k}\left|f\left(x_{i}\right)\right|\right)
$$

The function $f(x):=x^{\beta-1}(n-x)^{\alpha-1}$, defined for

$$
\beta \in(0,1], \alpha \geqslant \beta,
$$

has derivative $x^{\beta-2}(n-x)^{\alpha-2}((\beta-1) n-x(\alpha+\beta-2))$, which vanishes at 0 and n and $X=\frac{\beta-1}{\alpha+\beta-2}$. If $X \in(0, n)$ then

$$
\sum_{0 \leqslant m \leqslant n} f(m)=\int_{0}^{n} f(t) \mathrm{d} t+O(1+|f(X)|)
$$

and if $X \notin(0, n)$ then the error term is $O(1)$. The substitution $t \mapsto y$ given by $t=n y$ shows that

$$
\int_{0}^{n} f(t) \mathrm{d} t=n^{\alpha+\beta-1} B(\beta, \alpha)
$$

and the error term is $\ll n^{\alpha-1}$, therefore

$$
\begin{equation*}
\sum_{m=1}^{n-1} m^{\beta-1}(n-m)^{\alpha-1}=n^{\alpha+\beta-1}\left(B(\beta, \alpha)+O\left(n^{-\beta}\right)\right) \tag{10.6}
\end{equation*}
$$

Before proceeding we need to recall a few standard facts about the Gamma function. It is defined as

$$
\Gamma(t):=\int_{0}^{\infty} t^{x-1} \mathrm{e}^{-t} \mathrm{~d} t \text { for } x>0
$$

and satisfies

$$
\begin{gather*}
\Gamma(1)=1 \tag{10.7}\\
\Gamma(t+1)=t \Gamma(t) \text { for } t>0 \tag{10.8}\\
B(x, y)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)} \text { for } x, y>0 . \tag{10.9}
\end{gather*}
$$

Observe that $\Gamma(x)=(x-1)$! for every positive integer x. So $B(x, y)=\frac{x+y}{x y} \cdot\binom{x+y}{x}^{-1}$ for all positive integers x, y.

We have the following theorem.

Theorem 10.4. We have

$$
J(n)=\Gamma\left(\frac{4}{3}\right)^{9} \frac{n^{2}}{2}\left(1+O\left(n^{-1 / 3}\right)\right)
$$

Proof. We begin by proving by induction that for every integer $s \geqslant 2$, that one has

$$
\begin{equation*}
\frac{1}{3^{s}} \sum_{\substack{1 \leqslant m_{1}, \ldots, m_{s} \leqslant n \\ m_{1}+\cdots+m_{s}=n}} \frac{1}{\left(m_{1} \cdots m_{s}\right)^{\frac{2}{3}}}=\Gamma\left(\frac{4}{3}\right)^{s} \Gamma\left(\frac{s}{3}\right)^{-1} n^{\frac{s}{3}-1}\left(1+O\left(n^{-1 / 3}\right)\right) \tag{10.10}
\end{equation*}
$$

For $s=2$ this is valid due to (10.6) with $\alpha=\beta=1 / 3$, as well as (10.8) and (10.9). Assuming that (10.10) is valid for some integer $s \geqslant 2$ then

$$
\frac{1}{3^{s+1}} \sum_{\substack{1 \leqslant m_{1}, \ldots, m_{s+1} \leqslant n \\ m_{1}+\cdots+m_{s+1}=n}} \frac{1}{\left(m_{1} \cdots m_{s+1}\right)^{\frac{2}{3}}}
$$

equals

$$
\sum_{1 \leqslant m_{s+1} \leqslant n-1} \frac{1}{3 m_{s+1}^{\frac{2}{3}}}\left(\frac{1}{3^{s}} \sum_{\substack{1 \leqslant m_{1}, \ldots, m_{s} \leqslant n \\ m_{1}+\cdots+m_{s}=n-m_{s+1}}} \frac{1}{\left(m_{1} \cdots m_{s}\right)^{\frac{2}{3}}}\right)
$$

which is

$$
\Gamma\left(\frac{4}{3}\right)^{s} \Gamma\left(\frac{s}{3}\right)^{-1} \frac{1}{3} \sum_{1 \leqslant m \leqslant n-1} \frac{m^{\frac{1}{3}}}{m}(n-m)^{\frac{s}{3}-1}+O\left(\sum_{1 \leqslant m \leqslant n-1} m^{1 / 3-1}(n-m)^{\frac{(s-1)}{3}-1}\right)
$$

due to the induction hypothesis. Using (10.6) with $\beta=\frac{1}{3}$ and $\alpha=\frac{s}{3}, \frac{(s-1)}{3}-1$ respectively for the main and the error term, we conclude the proof of (10.10).

Combining (10.4) and the definition of v,

$$
v(\beta)=\frac{1}{3} \sum_{1 \leqslant m \leqslant n} \frac{\mathrm{e}(\beta m)}{m^{\frac{2}{3}}}
$$

gives

$$
J(n)=\frac{1}{3^{9}} \sum_{1 \leqslant m_{1}, \ldots, m_{9} \leqslant n} \frac{1}{\left(m_{1} \cdots m_{9}\right)^{\frac{2}{3}}} \int_{-\frac{1}{2}}^{\frac{1}{2}} \mathrm{e}\left(\beta\left(n-m_{1}-\cdots-m_{9}\right)\right) \mathrm{d} \beta .
$$

The integral vanishes except when $n-m_{1}-\cdots-m_{9}=0$, thus obtaining

$$
J(n)=\frac{1}{3^{9}} \sum_{\substack{1 \leqslant m_{1}, \ldots, m_{9} \leqslant n \\ m_{1}+\ldots+m_{9}=n}} \frac{1}{\left(m_{1} \cdots m_{9}\right)^{\frac{2}{3}}}
$$

and according to (10.10) our theorem is valid.

