Chapter 11

The singular series

Recall that by Theorems 10.3 and 10.4 together provide us the estimate

$$
\begin{equation*}
R(n)=\mathfrak{S}(n) \Gamma\left(\frac{4}{3}\right)^{9} \frac{n^{2}}{2}+o\left(n^{2}\right) \tag{11.1}
\end{equation*}
$$

where the singular series $\mathfrak{S}(n)$ was defined in Chapter 10 as

$$
\mathfrak{S}(n)=\sum_{q=1}^{\infty} \frac{S(q)}{q^{9}}
$$

with

$$
S(q)=\sum_{\substack{1 \leqslant a \leqslant q \\ \operatorname{gcd}(a, q)=1}} S(q, a)^{9} \mathrm{e}(-a n / q), \quad S(q, a)=\sum_{m=1}^{q} \mathrm{e}\left(a m^{3} / q\right)
$$

The definition of the Gamma function shows that $\Gamma\left(\frac{4}{3}\right)>0$, hence if we could prove that $\mathfrak{S}(n)>0$ then the main result of our lectures, Theorem 8.1, would be established with

$$
c=\frac{\mathfrak{S}(n)}{2} \Gamma\left(\frac{4}{3}\right)^{9}
$$

Our aim in this chapter is to prove $\mathfrak{S}(n)>0$ and furthermore to provide a conceptual description of $\mathfrak{S}(n)$. Define for each $q \in \mathbb{N}$,

$$
M_{n}(q):=\#\left\{\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{Z} \cap[1, q])^{9}: x_{1}^{3}+\cdots+x_{9}^{3} \equiv n(\bmod q)\right\}
$$

where here and below, the x_{i} denote integers. For prime powers $q=p^{k}$ we might guess that for each of the $p^{8 k}$ choices for the variables $1 \leqslant x_{1}, \ldots, x_{8} \leqslant p^{k}$ there exist at most 3 solutions of the cubic equation in the variable x_{9},

$$
x_{1}^{3}+\cdots+x_{9}^{3} \equiv n\left(\bmod p^{k}\right)
$$

Hence it is natural to consider the following limit for every prime p,

$$
\begin{equation*}
\sigma_{p}(n):=\lim _{k \rightarrow \infty} \frac{M_{n}\left(p^{k}\right)}{p^{8 k}} \tag{11.2}
\end{equation*}
$$

Theorem 11.1. The limit (11.2) exists and is positive. Furthermore the infinite product $\prod_{p} \sigma_{p}(n)$, taken over all primes, converges absolutely to the singular series,

$$
\mathfrak{S}(n)=\prod_{p} \sigma_{p}(n)
$$

The constants $\sigma_{p}(n)$ are called p-adic Hardy-Littlewood densities and, as (11.2) reveals, they are intimately connected to solving the equation

$$
x_{1}^{3}+\cdots+x_{9}^{3}=n
$$

modulo positive integers q. Of course, if there is some $q \in \mathbb{N}$ such that

$$
x_{1}^{3}+\cdots+x_{9}^{3} \equiv n(\bmod q)
$$

has no solutions for x_{i} then $R(n)=0$. One interpretation of Theorem 11.1 is that it provides evidence for the opposite; namely that if $x_{1}^{3}+\cdots+x_{9}^{3}=n$ is soluble modulo every q then it can be solved in the integers. This is not true in general, a counterexample is given by

$$
4 x_{1}^{2}+25 x_{2}^{2}-5 x_{3}^{2}=1
$$

11.1 Relating $\mathfrak{S}(n)$ to $\sigma_{p}(n)$.

Lemma 11.2. Let q_{1}, q_{2} be coprime integers and let $q:=q_{1} q_{2}$. Then for all

$$
a_{1} \in \mathbb{Z} \cap\left[1, q_{1}\right], \quad a_{2} \in \mathbb{Z} \cap\left[1, q_{2}\right]
$$

we have

$$
S\left(q_{1}, a_{1}\right) S\left(q_{2}, a_{2}\right)=S(q, a)
$$

where $a:=a_{1} q_{2}+a_{2} q_{1}$.

Proof. As the variable m_{1} ranges through all residue classes $\left(\bmod q_{1}\right)$ in the sum

$$
S\left(q_{1}, a_{1}\right)=\sum_{m_{1}\left(\bmod q_{1}\right)} \mathrm{e}\left(\frac{a_{1} m_{1}^{3}}{q_{1}}\right)
$$

we see that, due to the coprimality of q_{1}, q_{2}, the integers $m_{1} q_{2}$ also cover all residue classes $\left(\bmod q_{1}\right)$. Hence we may write

$$
S\left(q_{1}, a_{1}\right)=\sum_{m_{1}\left(\bmod q_{1}\right)} \mathrm{e}\left(\frac{a_{1}\left(m_{1} q_{2}\right)^{3}}{q_{1}}\right)
$$

and the fact that for any positive integer q the function $\mathrm{e}(\dot{\bar{q}})$ is periodic $(\bmod q)$, allows us to write

$$
S\left(q_{1}, a_{1}\right)=\sum_{m_{1}\left(\bmod q_{1}\right)} \mathrm{e}\left(\frac{a_{1}\left(m_{1} q_{2}\right)^{3}}{q_{1}}\right)=\sum_{m_{1}\left(\bmod q_{1}\right)} \mathrm{e}\left(\frac{a_{1}\left(m_{1} q_{2}+m_{2} q_{1}\right)^{3}}{q_{1}}\right)
$$

A similar argument shows that

$$
S\left(q_{2}, a_{2}\right)=\sum_{m_{2}\left(\bmod q_{2}\right)} \mathrm{e}\left(\frac{a_{2}\left(m_{1} q_{2}+m_{2} q_{1}\right)^{3}}{q_{2}}\right)
$$

Thus we are led to

$$
S\left(q_{1}, a_{1}\right) S\left(q_{2}, a_{2}\right)=\sum_{\substack{m_{1}\left(\bmod q_{1}\right) \\ m_{2}\left(\bmod q_{2}\right)}} \mathrm{e}\left(\frac{a_{1}\left(m_{1} q_{2}+m_{2} q_{1}\right)^{3}}{q_{1}}+\frac{a_{2}\left(m_{1} q_{2}+m_{2} q_{1}\right)^{3}}{q_{2}}\right)
$$

which equals

$$
\sum_{\substack{m_{1}\left(\bmod q_{1}\right) \\ m_{2}\left(\bmod q_{2}\right)}} \mathrm{e}\left(\frac{\left(a_{1} q_{2}+a_{2} q_{1}\right)\left(m_{1} q_{2}+m_{2} q_{1}\right)^{3}}{q_{1} q_{2}}\right)
$$

We can see that as the variables m_{1}, m_{2} range through all available residue classes $\left(\bmod q_{1}\right)$ and $\left(\bmod q_{2}\right)$ respectively, then the variable

$$
m:=m_{1} q_{2}+m_{2} q_{1}
$$

takes each residue class $\left(\bmod q_{1} q_{2}\right)$ once. Therefore the last sum equals

$$
\sum_{m\left(\bmod q_{1} q_{2}\right)} \mathrm{e}\left(\frac{\left(a_{1} q_{2}+a_{2} q_{1}\right) m^{3}}{q_{1} q_{2}}\right)
$$

which concludes our proof.

Lemma 11.3. The function $S(q)$ is multiplicative.
Proof. Let q_{1}, q_{2} be coprime positive integers. Then the sets

$$
\left\{a_{1} \in \mathbb{Z} \cap\left[1, q_{1}\right]: \operatorname{gcd}\left(a_{1}, q_{1}\right)=1\right\} \times\left\{a_{2} \in \mathbb{Z} \cap\left[1, q_{2}\right]: \operatorname{gcd}\left(a_{2}, q_{2}\right)=1\right\}
$$

and $\{a \in \mathbb{Z} \cap[1, q]: \operatorname{gcd}(a, q)=1\}$ are in $1-1$ correspondence. This can be seen by mapping $\left(a_{1}\left(\bmod q_{1}\right), a_{2}\left(\bmod q_{2}\right)\right)$ to $a(\bmod q)$, where $a:=a_{1} q_{2}+a_{2} q_{1}$. Hence we may write

$$
S(q)=\sum_{\substack{1 \leqslant a_{1} \leqslant q_{1} \\ \operatorname{gcd}\left(a_{1}, q_{1}\right)=1}} \sum_{\substack{1 \leqslant a_{2} \leqslant q_{2} \\ \operatorname{gcd}\left(a_{2}, q_{2}\right)=1}} S(q, a)^{9} \mathrm{e}\left(-n \frac{\left(a_{1} q_{2}+a_{2} q_{1}\right)}{q}\right) .
$$

The identity

$$
\mathrm{e}\left(-n \frac{\left(a_{1} q_{2}+a_{2} q_{1}\right)}{q}\right)=\mathrm{e}\left(-n \frac{a_{1}}{q_{1}}\right) \mathrm{e}\left(-n \frac{a_{2}}{q_{2}}\right)
$$

and Lemma 11.2 allows us to deduce

$$
S(q)=\left(\sum_{\substack{1 \leqslant a_{1} \leqslant q_{1} \\ \operatorname{gcd}\left(a_{1}, q_{1}\right)=1}} S\left(q_{1}, a_{1}\right)^{9} \mathrm{e}\left(-n \frac{a_{1}}{q_{1}}\right)\right)\left(\sum_{\substack{1 \leqslant a_{2} \leqslant q_{2} \\ \operatorname{gcd}\left(a_{2}, q_{2}\right)=1}} S\left(q_{2}, a_{2}\right)^{9} \mathrm{e}\left(-n \frac{a_{2}}{q_{2}}\right)\right)
$$

which is sufficient.
Recall that we have proved in Chapter 10 that $\mathfrak{S}(n)$ is an absolutely convergent series, a fact which, when combined with Lemma 11.3 shows that the Euler product of $\mathfrak{S}(n)$ is

$$
\begin{equation*}
\mathfrak{S}(n)=\prod_{p}\left(1+\sum_{m=1}^{\infty} \frac{S\left(p^{m}\right)}{p^{9 m}}\right) \tag{11.3}
\end{equation*}
$$

and furthermore that for each prime p,

$$
\begin{equation*}
\lim _{k \rightarrow+\infty}\left(1+\sum_{m=1}^{k} \frac{S\left(p^{m}\right)}{p^{9 m}}\right) \quad \text { exists. } \tag{11.4}
\end{equation*}
$$

Lemma 11.4. For each prime p and $k \in \mathbb{N}$ we have

$$
1+\sum_{m=1}^{k} \frac{S\left(p^{m}\right)}{p^{9 m}}=\frac{M_{n}\left(p^{k}\right)}{p^{8 k}} .
$$

Proof. We begin by detecting solutions x_{i} of the equation

$$
x_{1}^{3}+\cdots+x_{9}^{3} \equiv n\left(\bmod p^{k}\right)
$$

using certain exponential functions. To this end observe that for each integer x we have

$$
\frac{1}{p^{k}} \sum_{\alpha=1}^{p^{k}} \mathrm{e}\left(\alpha \frac{x}{p^{k}}\right)= \begin{cases}1 & \text { if } x \equiv 0\left(\bmod p^{k}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Thus writing
$M_{n}\left(p^{k}\right)=\sum_{1 \leqslant x_{1}, \ldots, x_{9} \leqslant p^{k}} a_{n}\left(x_{1}, \ldots x_{9}\right)$ with $a_{n}\left(x_{1}, \ldots x_{9}\right)=\left\{\begin{array}{l}1 \text { if } x_{1}^{3}+\cdots+x_{9}^{3}-n \equiv 0\left(\bmod p^{k}\right), \\ 0 \text { otherwise }\end{array}\right.$
and inverting the order of summation, we see that $M_{n}\left(p^{k}\right)$ equals

$$
\frac{1}{p^{k}} \sum_{\alpha=1}^{p^{k}} \sum_{1 \leqslant x_{1}, \ldots, x_{9} \leqslant p^{k}} \mathrm{e}\left(\alpha \frac{\left(x_{1}^{3}+\cdots+x_{9}^{3}-n\right)}{p^{k}}\right)=\frac{1}{p^{k}} \sum_{\alpha=1}^{p^{k}} S\left(p^{k}, \alpha\right)^{9} \mathrm{e}\left(-\alpha n / p^{k}\right)
$$

Let $\nu_{p}(\alpha):=t$ where t is the integer such that p^{t} divides α but p^{t+1} does not divide α. Then each integer α in the last sum can be factorised uniquely as $\alpha=p^{k-m} a$, where $m:=k-\nu_{p}(\alpha)$ and a is coprime to p. Note that $1 \leqslant \alpha \leqslant p^{k}$, hence the only possible values for m and a are

$$
0 \leqslant m \leqslant k, \quad 1 \leqslant a \leqslant p^{m} .
$$

Note that the identity $\alpha=p^{k-m} a$ implies that

$$
S\left(p^{k}, \alpha\right)=\sum_{1 \leqslant x \leqslant p^{k}} \mathrm{e}\left(\frac{a x^{3}}{p^{m}}\right)=p^{k-m} S\left(p^{m}, a\right),
$$

hence we obtain that $\sum_{\alpha=1}^{p^{k}} S\left(p^{k}, \alpha\right)^{9} \mathrm{e}\left(-\alpha n / p^{k}\right)$ is equal to

$$
p^{9 k} \sum_{m=0}^{k} p^{-9 m} \sum_{\substack{1 \leqslant a \leqslant p^{m} \\ \operatorname{gcd}\left(a, p^{m}\right)=1}} S\left(p^{m}, a\right)^{9} \mathrm{e}\left(-a n / p^{m}\right)=p^{9 k} \sum_{m=0}^{k} p^{-9 m} S\left(p^{m}\right)
$$

This is sufficient for our lemma.

Combining (11.4) and Lemma 11.4 shows that the limit (11.2), that defines $\sigma_{p}(n)$. exists. In addition, Lemma 11.4 and (11.3) show that

$$
\mathfrak{S}(n)=\prod_{p} \sigma_{p}(n)
$$

hence the only remaining part regarding the verification of Theorem 11.1 is the positivity of each $\sigma_{p}(n)$. This is the aim of the last section.

Remark 11.5. The absolute convergence of the series defining $\mathfrak{S}(n)$ guarantees that the infinite product in Theorem 11.1 is absolutely convergent. As such, it has a strictly positive value if and only if each of the p-adic factors is strictly positive. Therefore the positivity of each $\sigma_{p}(n)$ guarantees that the constant c in Theorem 8.1 does not vanish, which, in turn, implies that for all large enough integers n the function $R(n)$ is positive, i.e. there exists at least one representation of n as a sum of exactly 9 positive integer cubes.

11.2 Positivity of the p-adic densities.

For primes p define the quantity

$$
\gamma_{p}:= \begin{cases}2 & \text { if } p=2,3 \\ 1 & \text { if } p>3\end{cases}
$$

Lemma 11.6. For each prime p, every element in $\mathbb{Z} / p^{\gamma_{p}} \mathbb{Z}$ is the sum of at most 9 cubes of elements of $\mathbb{Z} / p^{\gamma_{p}} \mathbb{Z}$, at least one of which is coprime to p.

Proof. The statement is obvious when $p=2$ or 3 , since one can add 1^{3} several times. Assume that $p>3$, so that $\gamma_{p}=1$. We have that $0(\bmod p)$ equals $1^{3}+(-1)^{3}(\bmod p)$, hence it is sufficient to prove that each element of $(\mathbb{Z} / p \mathbb{Z})^{*}:=(\mathbb{Z} / p \mathbb{Z}) \backslash\{0\}$ is a sum of at most 9 cubes. We know that this set forms a cyclic group under multiplication. Pick a generator g and consider the subgroup

$$
\Gamma_{p}:=\left\{g^{3 m}(\bmod p): m \in \mathbb{N}\right\}
$$

which has order

$$
\frac{p-1}{\operatorname{gcd}(p-1,3)}
$$

If $p \equiv 2(\bmod 3)$ then $\Gamma_{p}=(\mathbb{Z} / p \mathbb{Z})^{*}$, hence our lemma holds. In the remaining case, $p \equiv 1(\bmod 3)$, the set Γ_{p} has $(p-1) / 3$ elements. Let $C_{1}:=\Gamma_{p}$ and for each $m \in \mathbb{N}$ with $m \geqslant 2$ denote by C_{m} the elements of $(\mathbb{Z} / p \mathbb{Z})^{*}$ that are a sum of m elements of Γ_{m} but not a sum of $m-1$ elements of Γ_{m}. Fix $j \geqslant 1$ and consider the minimum element $x \in(\mathbb{Z} / p \mathbb{Z})^{*}$ that is not in any of $C_{1}, C_{2}, \ldots, C_{j}$. Then $x-1$ or $x-2$ is also in $(\mathbb{Z} / p \mathbb{Z})^{*}$ and must therefore be a sum of at most j cubes. Owing to $x=(x-1)+1^{3}$ and $x=(x-2)+1^{3}+1^{3}$, we see that $x \in C_{j+1}$ or $x \in C_{j+2}$. Applying this for $j=1$ and $j=3$ we infer that at least 3 of C_{1}, \ldots, C_{5} must be non-empty. Also note that for each j we have $\Gamma_{p} C_{j} \subset C_{j}$, hence if C_{j} is not empty then it must contain at least $\# \Gamma_{p}=\frac{p-1}{3}$ elements. Assume that

$$
(\mathbb{Z} / p \mathbb{Z})^{*} \neq \cup_{i=1}^{5} C_{i} .
$$

Then

$$
p-1>\sum_{j=1}^{5} \# C_{j}=\sum_{\substack{1 \leq j \leq 5 \\ \# C_{j} \neq 0}} \# C_{j} \geqslant \frac{p-1}{3} \sum_{\substack{1 \leq j \leq 5 \\ \# C_{j} \neq 0}} 1 \geqslant p-1
$$

which is a contradiction. This proves that each element of $x \in(\mathbb{Z} / p \mathbb{Z})^{*}$ is a sum of at most 5 cubes, all of which are coprime to p.

We deduce that for each $n \in \mathbb{N}$ and prime p, there is at least one solution of

$$
x_{1}^{3}+\cdots+x_{9}^{3} \equiv n\left(\bmod p^{\gamma_{p}}\right)
$$

with $p \nmid x_{j}$ for some j. For each $i \neq j$ and $k>\gamma_{p}$ there are $p^{k-\gamma_{p}}$ elements $y_{i}\left(\bmod p^{k}\right)$ with $y_{i} \equiv x_{i}\left(\bmod p^{\gamma_{p}}\right)$. For any of those $\left(p^{k-\gamma_{p}}\right)^{8}$ choices we note that

$$
n-\sum_{i \neq j} y_{i}^{3} \equiv n-\sum_{i \neq j} x_{i}^{3} \equiv x_{j}^{3}(\bmod p),
$$

hence

$$
\mu:=n-\sum_{i \neq j} y_{i}^{3}
$$

is an integer coprime to p for which the equation $x^{3} \equiv \mu(\bmod p)$ has a solution. Hensel's lemma allows us to lift this solution to a solution $\left(\bmod p^{k}\right)$, thereby giving rise to a solution of

$$
\sum_{i=1}^{9} x_{i}^{3} \equiv n\left(\bmod p^{k}\right)
$$

This implies that $M_{n}\left(p^{k}\right) \geqslant\left(p^{k-\gamma_{p}}\right)^{8}$, hence $\sigma_{p}(n) \geqslant p^{-8 \gamma_{p}}>0$, thus concluding the proof of Theorem 11.1.

