Chapter 11

The singular series

Recall that by Theorems 10.3 and 10.4 together provide us the estimate

\[R(n) = \mathcal{S}(n) \Gamma\left(\frac{4}{3}\right) \frac{n^2}{2} + o(n^2), \]

where the singular series \(\mathcal{S}(n) \) was defined in Chapter 10 as

\[\mathcal{S}(n) = \sum_{q=1}^{\infty} \frac{S(q)}{q^9}, \]

with

\[S(q) = \sum_{1 \leq a \leq q, \gcd(a,q)=1} S(q,a)^9 e(-an/q), \quad S(q,a) = \sum_{m=1}^{q} e(am^3/q). \]

The definition of the Gamma function shows that \(\Gamma\left(\frac{4}{3}\right) > 0 \), hence if we could prove that \(\mathcal{S}(n) > 0 \) then the main result of our lectures, Theorem 8.1, would be established with

\[c = \frac{\mathcal{S}(n)}{2} \Gamma\left(\frac{4}{3}\right)^9. \]

Our aim in this chapter is to prove \(\mathcal{S}(n) > 0 \) and furthermore to provide a conceptual description of \(\mathcal{S}(n) \). Define for each \(q \in \mathbb{N} \),

\[M_n(q) := \#\{(x_1, \ldots, x_9) \in (\mathbb{Z} \cap [1, q])^9 : x_1^3 + \cdots + x_9^3 \equiv n (\text{mod } q)\}, \]

173
where here and below, the x_i denote integers. For prime powers $q = p^k$ we might guess that for each of the p^{8k} choices for the variables $1 \leq x_1, \ldots, x_8 \leq p^k$ there exist at most 3 solutions of the cubic equation in the variable x_9,

$$x_1^3 + \cdots + x_9^3 \equiv n \pmod{p^k}.$$

Hence it is natural to consider the following limit for every prime p,

$$(11.2) \quad \sigma_p(n) := \lim_{k \to \infty} \frac{M_n(p^k)}{p^{8k}}.$$

Theorem 11.1. The limit (11.2) exists and is positive. Furthermore the infinite product $\prod_p \sigma_p(n)$, taken over all primes, converges absolutely to the singular series,

$$\mathcal{S}(n) = \prod_p \sigma_p(n).$$

The constants $\sigma_p(n)$ are called p-adic Hardy–Littlewood densities and, as (11.2) reveals, they are intimately connected to solving the equation

$$x_1^3 + \cdots + x_9^3 = n$$

modulo positive integers q. Of course, if there is some $q \in \mathbb{N}$ such that

$$x_1^3 + \cdots + x_9^3 \equiv n \pmod{q}$$

has no solutions for x_i then $R(n) = 0$. One interpretation of Theorem 11.1 is that it provides evidence for the opposite; namely that if $x_1^3 + \cdots + x_9^3 = n$ is soluble modulo every q then it can be solved in the integers. This is not true in general, a counterexample is given by

$$4x_1^2 + 25x_2^2 - 5x_3^2 = 1.$$

11.1 Relating $\mathcal{S}(n)$ to $\sigma_p(n)$.

Lemma 11.2. Let q_1, q_2 be coprime integers and let $q := q_1 q_2$. Then for all

$$a_1 \in \mathbb{Z} \cap [1, q_1], \quad a_2 \in \mathbb{Z} \cap [1, q_2]$$

we have

$$S(q_1, a_1)S(q_2, a_2) = S(q, a),$$

where $a := a_1 q_2 + a_2 q_1$.

174
Proof. As the variable \(m_1 \) ranges through all residue classes (mod \(q_1 \)) in the sum

\[
S(q_1, a_1) = \sum_{m_1 \pmod{q_1}} e\left(\frac{a_1 m_1^3}{q_1}\right)
\]

we see that, due to the coprimality of \(q_1, q_2 \), the integers \(m_1 q_2 \) also cover all residue classes (mod \(q_1 \)). Hence we may write

\[
S(q_1, a_1) = \sum_{m_1 \pmod{q_1}} e\left(\frac{a_1 (m_1 q_2)^3}{q_1}\right),
\]

and the fact that for any positive integer \(q \) the function \(e\left(\frac{a}{q}\right) \) is periodic (mod \(q \)), allows us to write

\[
S(q_1, a_1) = \sum_{m_1 \pmod{q_1}} e\left(\frac{a_1 (m_1 q_2 q_1)^3}{q_1}\right).
\]

A similar argument shows that

\[
S(q_2, a_2) = \sum_{m_2 \pmod{q_2}} e\left(\frac{a_2 (m_1 q_2 + m_2 q_1)^3}{q_2}\right).
\]

Thus we are led to

\[
S(q_1, a_1)S(q_2, a_2) = \sum_{m_1 \pmod{q_1}} \sum_{m_2 \pmod{q_2}} e\left(\frac{a_1 (m_1 q_2 + m_2 q_1)^3}{q_1} + \frac{a_2 (m_1 q_2 + m_2 q_1)^3}{q_2}\right),
\]

which equals

\[
\sum_{m_1 \pmod{q_1}} \sum_{m_2 \pmod{q_2}} e\left(\frac{(a_1 q_2 + a_2 q_1) (m_1 q_2 + m_2 q_1)^3}{q_1 q_2}\right).
\]

We can see that as the variables \(m_1, m_2 \) range through all available residue classes (mod \(q_1 \)) and (mod \(q_2 \)) respectively, then the variable

\[
m := m_1 q_2 + m_2 q_1
\]

takes each residue class (mod \(q_1 q_2 \)) once. Therefore the last sum equals

\[
\sum_{m \pmod{q_1 q_2}} e\left(\frac{(a_1 q_2 + a_2 q_1) m^3}{q_1 q_2}\right),
\]

which concludes our proof. \(\square \)
Lemma 11.3. The function $S(q)$ is multiplicative.

Proof. Let q_1, q_2 be coprime positive integers. Then the sets
\[
\{a_1 \in \mathbb{Z} \cap [1, q_1] : \gcd(a_1, q_1) = 1\} \times \{a_2 \in \mathbb{Z} \cap [1, q_2] : \gcd(a_2, q_2) = 1\}
\]
and \(\{a \in \mathbb{Z} \cap [1, q] : \gcd(a, q) = 1\}\) are in 1–1 correspondence. This can be seen by mapping \((a_1 \text{mod } q_1, a_2 \text{mod } q_2)\) to \(a\text{mod } q\), where \(a := a_1 q_2 + a_2 q_1\). Hence we may write
\[
S(q) = \sum_{1 \leq a_1 \leq q_1} \sum_{1 \leq a_2 \leq q_2} S(q, a) S(q, a_1) S(q, a_2) e\left(-n \frac{(a_1 q_2 + a_2 q_1)}{q}\right).
\]
The identity
\[
e\left(-n \frac{(a_1 q_2 + a_2 q_1)}{q}\right) = e\left(-n \frac{a_1}{q_1}\right) e\left(-n \frac{a_2}{q_2}\right)
\]
and Lemma 11.2 allows us to deduce
\[
S(q) = \left(\sum_{1 \leq a_1 \leq q_1} S(q_1, a_1) e\left(-n \frac{a_1}{q_1}\right)\right) \left(\sum_{1 \leq a_2 \leq q_2} S(q_2, a_2) e\left(-n \frac{a_2}{q_2}\right)\right),
\]
which is sufficient. \(\square\)

Recall that we have proved in Chapter 10 that \(\mathcal{G}(n)\) is an absolutely convergent series, a fact which, when combined with Lemma 11.3 shows that the Euler product of \(\mathcal{G}(n)\) is
\[
(11.3) \quad \mathcal{G}(n) = \prod_p \left(1 + \sum_{m=1}^{\infty} \frac{S(p^m)}{p^{9m}}\right)
\]
and furthermore that for each prime \(p\),
\[
(11.4) \quad \lim_{k \to +\infty} \left(1 + \sum_{m=1}^{k} \frac{S(p^m)}{p^{9m}}\right) \text{ exists.}
\]

Lemma 11.4. For each prime \(p\) and \(k \in \mathbb{N}\) we have
\[
1 + \sum_{m=1}^{k} \frac{S(p^m)}{p^{9m}} = \frac{M_n(p^k)}{p^{8k}}.
\]
Proof. We begin by detecting solutions \(x_i \) of the equation

\[
x_1^3 + \cdots + x_9^3 \equiv n \pmod{p^k}
\]

using certain exponential functions. To this end observe that for each integer \(x \) we have

\[
\frac{1}{p^k} \sum_{\alpha=1}^{p^k} e \left(\frac{\alpha x}{p^k} \right) = \begin{cases} 1 & \text{if } x \equiv 0 \pmod{p^k}, \\ 0 & \text{otherwise.} \end{cases}
\]

Thus writing

\[M_n(p^k) = \sum_{1 \leq x_1, \ldots, x_9 \leq p^k} a_n(x_1, \ldots x_9) \] with \(a_n(x_1, \ldots x_9) = \begin{cases} 1 & \text{if } x_1^3 + \cdots + x_9^3 - n \equiv 0 \pmod{p^k}, \\ 0 & \text{otherwise} \end{cases} \]

and inverting the order of summation, we see that \(M_n(p^k) \) equals

\[
\frac{1}{p^k} \sum_{\alpha=1}^{p^k} \sum_{1 \leq x_1, \ldots, x_9 \leq p^k} e \left(\alpha \frac{(x_1^3 + \cdots + x_9^3 - n)}{p^k} \right) = \frac{1}{p^k} \sum_{\alpha=1}^{p^k} S(p^k, \alpha)^9 e(-\alpha n/p^k).
\]

Let \(\nu_p(\alpha) := t \) where \(t \) is the integer such that \(p^t \) divides \(\alpha \) but \(p^{t+1} \) does not divide \(\alpha \). Then each integer \(\alpha \) in the last sum can be factorised uniquely as \(\alpha = p^{k-m}a \), where \(m := k - \nu_p(\alpha) \) and \(a \) is coprime to \(p \). Note that \(1 \leq \alpha \leq p^k \), hence the only possible values for \(m \) and \(a \) are

\[0 \leq m \leq k, \quad 1 \leq a \leq p^m.
\]

Note that the identity \(\alpha = p^{k-m}a \) implies that

\[
S(p^k, \alpha) = \sum_{1 \leq x \leq p^k} e \left(\frac{ax^3}{p^m} \right) = p^{k-m} S(p^m, a),
\]

hence we obtain that \(\sum_{\alpha=1}^{p^k} S(p^k, \alpha)^9 e(-\alpha n/p^k) \) is equal to

\[
p^{9k} \sum_{m=0}^{k} p^{-9m} \sum_{1 \leq a \leq p^m \text{gcd}(a,p^m)=1} S(p^m, a)^9 e(-an/p^m) = p^{9k} \sum_{m=0}^{k} p^{-9m} S(p^m).
\]

This is sufficient for our lemma. \(\square \)
Combining (11.4) and Lemma 11.4 shows that the limit (11.2), that defines $\sigma_p(n)$, exists. In addition, Lemma 11.4 and (11.3) show that

$$\mathcal{G}(n) = \prod_p \sigma_p(n),$$

hence the only remaining part regarding the verification of Theorem 11.1 is the positivity of each $\sigma_p(n)$. This is the aim of the last section.

Remark 11.5. The absolute convergence of the series defining $\mathcal{G}(n)$ guarantees that the infinite product in Theorem 11.1 is absolutely convergent. As such, it has a strictly positive value if and only if each of the p-adic factors is strictly positive. Therefore the positivity of each $\sigma_p(n)$ guarantees that the constant c in Theorem 8.1 does not vanish, which, in turn, implies that for all large enough integers n the function $R(n)$ is positive, i.e. there exists at least one representation of n as a sum of exactly 9 positive integer cubes.

11.2 Positivity of the p-adic densities.

For primes p define the quantity

$$\gamma_p := \begin{cases} 2 & \text{if } p = 2, 3, \\ 1 & \text{if } p > 3. \end{cases}$$

Lemma 11.6. For each prime p, every element in $\mathbb{Z}/p^n\mathbb{Z}$ is the sum of at most 9 cubes of elements of $\mathbb{Z}/p^n\mathbb{Z}$, at least one of which is coprime to p.

Proof. The statement is obvious when $p = 2$ or 3, since one can add 1^3 several times. Assume that $p > 3$, so that $\gamma_p = 1$. We have that $0(\text{mod } p)$ equals $1^3 + (-1)^3(\text{mod } p)$, hence it is sufficient to prove that each element of $(\mathbb{Z}/p\mathbb{Z})^* := (\mathbb{Z}/p\mathbb{Z}) \setminus \{0\}$ is a sum of at most 9 cubes. We know that this set forms a cyclic group under multiplication. Pick a generator g and consider the subgroup

$$\Gamma_p := \{g^{3m} \text{ (mod } p) : m \in \mathbb{N}\},$$

which has order

$$\frac{p - 1}{\gcd(p - 1, 3)}.$$
If \(p \equiv 2 \pmod{3} \) then \(\Gamma_p = (\mathbb{Z}/p\mathbb{Z})^* \), hence our lemma holds. In the remaining case, \(p \equiv 1 \pmod{3} \), the set \(\Gamma_p \) has \((p - 1)/3\) elements. Let \(C_1 := \Gamma_p \) and for each \(m \in \mathbb{N} \) with \(m \geq 2 \) denote by \(C_m \) the elements of \((\mathbb{Z}/p\mathbb{Z})^*\) that are a sum of \(m \) elements of \(\Gamma_m \) but not a sum of \(m - 1 \) elements of \(\Gamma_m \). Fix \(j \geq 1 \) and consider the minimum element \(x \in (\mathbb{Z}/p\mathbb{Z})^* \) that is not in any of \(C_1, C_2, \ldots, C_j \). Then \(x - 1 \) or \(x - 2 \) is also in \((\mathbb{Z}/p\mathbb{Z})^*\) and must therefore be a sum of at most \(j \) cubes. Applying this for \(j = 1 \) and \(j = 3 \) we infer that at least 3 of \(C_1, C_2, \ldots, C_5 \) must be non-empty. Also note that for each \(j \) we have \(\Gamma_p C_j \subset C_j \), hence if \(C_j \) is not empty then it must contain at least \#\(\Gamma_p = p - 1 \) elements. Assume that \((\mathbb{Z}/p\mathbb{Z})^* \neq \bigcup_{i=1}^{5} C_i \).

Then
\[
p - 1 > \sum_{j=1}^{5} \#C_j = \sum_{1 \leq j \leq 5, \#C_j \neq 0} \#C_j \geq \frac{p - 1}{3} \sum_{1 \leq j \leq 5, \#C_j \neq 0} 1 \geq p - 1,
\]
which is a contradiction. This proves that each element of \(x \in (\mathbb{Z}/p\mathbb{Z})^* \) is a sum of at most 5 cubes, all of which are coprime to \(p \).

We deduce that for each \(n \in \mathbb{N} \) and prime \(p \), there is at least one solution of
\[
x_1^3 + \cdots + x_9^3 \equiv n \pmod{p^\gamma_p}
\]
with \(p \nmid x_j \) for some \(j \). For each \(i \neq j \) and \(k > \gamma_p \), there are \(p^{k-\gamma_p} \) elements \(y_i \pmod{p^k} \) with \(y_i \equiv x_i \pmod{p^\gamma_p} \). For any of those \((p^{k-\gamma_p})^8\) choices we note that
\[
n - \sum_{i \neq j} y_i^3 \equiv n - \sum_{i \neq j} x_i^3 \equiv x_j^3 \pmod{p},
\]
hence
\[
\mu := n - \sum_{i \neq j} y_i^3
\]
is an integer coprime to \(p \) for which the equation \(x^3 \equiv \mu \pmod{p} \) has a solution. Hensel’s lemma allows us to lift this solution to a solution \(\pmod{p^k} \), thereby giving rise to a solution of
\[
\sum_{i=1}^{9} x_i^3 \equiv n \pmod{p^k}.
\]
This implies that \(M_n(p^k) \geq (p^{k-\gamma_p})^8 \), hence \(\sigma_p(n) \geq p^{-8\gamma_p} > 0 \), thus concluding the proof of Theorem 11.1. \(\square \)