Chapter 3

Dirichlet series and arithmetic
functions

An arithmetic function is a function f: Z-y — C. To such a function we associate
its Dirichlet series

Li(s) = fln)n™

where s is a complex variable. It is common practice (although this doesn’t make
sense) to write s = o + it, where 0 = Res and ¢t = Im s. It has shown very fruitful
in number theory, to study an arithmetic function by means of its Dirichlet series.
In this chapter, we prove some basic properties of Dirichlet series and arithmetic
functions.

3.1 Dirichlet series

We want to develop a theory for Dirichlet series similar to that for power series.
Every power series )" a,z" has a radius of convergence R such that the series
converges if |z| < R and diverges if |z| > R. As we will see, a Dirichlet series L¢(s) =
Yoo f(n)n™* has an abscissa of convergence oo(f) such that the series converges
for all s € C with Res > o¢(f) and diverges for all s € C with Res < o¢(f). For
instance, ((s) =Y -, n~" has abscissa of convergence 1.

We start with an important summation result, which we shall use very frequently.
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Theorem 3.1 (Partial summation, summation by parts). Let M, N be reals with
M < N. Let xy,...,x, be real numbers with M < x; < --- < z, < N, let
a(z1),...,a(z,) be complex numbers, and put A(t) := >, . alzy) for t € [M,N].
Further, let g : [M,N] — C be a differentiable function. Then

r

> alenglen) = ANV - [ a0

k=1

Proof. Let xy < M and put A(zy) := 0. Then

> a(zi)g(ee) = Y (A(xk) — A(z-1))g(w)
= S Al — S Alwn)g(wn)
= Aglen) = 3 Al (glner) — gl

Since A(t) = A(xy) for x <t < x4 we have

A(zr)(9(wp1) — g(ar)) = /M+1 A(t)g (t)dt.

Hence
(3.1) alw)g(n) = m%mwa—ilfwAmyww

~ Ayl - [ A0 O

1

In case that 1 = M,x, = N we are done. if 21y > M, then A(t) =0 for M <t < x4
and thus, [ A(t)g' (t)dt = 0. If z, < N, then A(t) = A(z,) for z, <t < N, hence

N
| A @ = AN V) = Al g
Together with (3.1) this implies Theorem 3.1. O
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Theorem 3.2. Let f : Z~o — C be an arithmetic function with the property that
there exists a constant C' > 0 such that |ij:1 f(n)] < C for every N > 1. Then
L¢(s) =>", f(n)n™* converges for every s € C with Res > 0.

More precisely, on {s € C: Res > 0} the function Ly is analytic, and for its k-th

derivative we have
Z f(n)(—logn)fn=s.

Proof. Notice that on {s € C: Res > 0}, the partial sums

Lo zf zf o (N 212, )

are analytic, and Lgck])\,(s) = N f(n)(=logn)*n=* for k > 0. We have to show
that the partial sums converge on {s € C: Res > 0}, and that analyticity and the
formula for the k-th derivative are maintained if we let N — oo.

Let s € C, Res > 0. We first rewrite Ly n(s) using partial summation. Let
F(t) == > 1ch f(n). By Theorem 3.1 (with {zy,..., 2.} = {1,..., N} and g(t) =

t~*) we have

Lyn(s) = F(N)N™* — /1N F(t)(=s)t™*"tdt = F(N)N~* + s/lN F(t)tdt.

By assumption, there is C' > 0 such that |F(t)| < C for every t > 1. Further
[t=571 = t~Res71 Hence |F(t)t~*7! < Ct 8=l Since Res > 0, the integral
J° t7Res71dt converges, therefore, [ F(t)t~**dt converges. Further, |[F(N)N~¢| <
C-NRes 5 0as N — oo. It follows that L(s) = limy_,eo Lyn(s) converges if
Res > 0.

We apply Theorem 2.7 to the sequence of partial sums {L;n(s)}. Let K be a
compact subset of {s € C: Res > 0}. There are 0 > 0, A > 0 such that Res > o
|s| < A for s € K. Thus, for s € K and N > 1, we have

N
Lix() < [FOON 15| [ [Pt i
1

N

< C~N“’+A/ C-t o 'dt=C-N"+AC -0 (1= N)
1

< C+AC- o7,
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which is an upper bound independent of s, V.

Now Theorem 2.7 implies that for s € C with Res > 0, the series Ls(s) =
limy_yoo Ly n(s) is analytic and moreover,

LP(s) = lim L) = 3 F0)(— log n)¥n~.

]

Corollary 3.3. Let f: Z~y — C be an arithmetic function and let sg € C be such
that >~ 2, f(n)n=* converges. Then for s € C with Res > Resy the function Ly
converges and s analytic, and

Zf —logn)"n=* fork >1

Proof. Write s = ¢ + s5. Then Res’ > 0 if Res > Resy. There is C' > 0 such that
| SN f(n)n~%0| < C for all N. Apply Theorem 3.2 to S°° (f(n)n=*0)n=*" O
Theorem 3.4. There exists a number oo(f) with —oo < oo(f) < oo such that
L(s) converges for all s € C with Res > oo(f) and diverges for all s € C with
Res < ao(f).

Moreover, if oo(f) < oo, then for s € C with Res > oo(f) the function Ly is
analytic, and

o0

(3.2) Lgck)(s) = Zf(n)(— logn)*n™* for k > 1

n=1

Proof. If there is no s € C for which L;(s) converges we have oo(f) = co. Assume
that L (s) converges for some s € C and define

oo(f) :==inf {o : 3s € C such that Res = o, Ly(s) converges}.

Clearly, Ls(s) diverges if Res < o¢(f). To prove that Ls(s) converges for Res >
oo(f), take such s and choose sy such that oo(f) < Resyp < Res and L¢(sq) con-
verges. By Corollary 3.3, Ly is convergent and analytic in s, and for Lgck)(s) we have
expression (3.2). O
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The number oy (f) is called the abscissa of convergence of Ly.

There exists also a real number o,(f), called the abscissa of absolute convergence
of Ly such that L(s) converges absolutely if Res > o,(f), and does not converge
absolutely if Res < a,(f).

In fact, we have 0,(f) = oo(|f]), that is the abscissa of convergence of Lz (s) =
Yoo |f(n)|n~s. For write 0 = Res. Then > > |f(n)n™%|=>_"",|f(n)|n"7 con-
verges if o > oo(|f|) and diverges if o < oo(|f]).

Theorem 3.5. For every arithmetic function f : Z~o — C we have oo(f) < 04(f) <
00(f> + 1.

Proof. 1t is clear that oo(f) < g,(f). To prove o,(f) < oo(f) + 1, we have to show
that L;(s) converges absolutely if Res > oo(f) + 1.

Take such s; then Res = 0o(f) + 1+ with € > 0. Put 0 := o¢(f) + £/2. The
series » >~ f(n)n~7 converges, hence there is a constant C' such that |f(n)n=7| < C
for all n. Therefore,

£ = £ 078 = |7 < on e
for n > 1. The series 22021 n—1-¢/2 converges, hence Zzozl | f(n)n~*| converges. [
Exercise 3.1. Show that there exist arithmetic functions f such that o,(f) =

Uo(f) + 1.

The next theorem implies that an arithmetic function is uniquely determined by
its Dirichlet series.

Theorem 3.6. Let f,qg : Z~og — C be two arithmetic functions for which there is
o € R such that Ly(s), Ly(s) converge absolutely and L;(s) = Ly(s) for all s € C
with Res > o. Then f =g.

Proof. Let h := f — g. Our assumptions imply that L;(s) converges absolutely, and
Lp(s) =0 for all s € C with Res > 0. We have to prove that h = 0.

Assume that there are positive integers n with h(n) # 0, and let m be the
smallest such n. Then for all s € C with Res > o we have

h(m)m™* = — Z h(n)n™".

n=m+1

73



Let 01 > o, and let s € C with Res > ¢1. Then

[e o] [e.e]

h(m)| < D (hm)|(m/n)"* = Y |h(n)|(m/n) (m/n) e
n=m+1 el
< m?! < Z Ih(n)] .n—m) - (m/(m + 1))Bes—e1,

The series between the parentheses is convergent, hence a finite number. So the
right-hand side tends to 0 as Re s — oo. This contradicts that h(m) # 0. O

3.2 Arithmetic functions

A multiplicative function is an arithmetic function f such that f # 0 and f(mn) =
f(m)f(n) for all positive integers m, n with ged(m,n) = 1. A strongly multiplicative
function is an arithmetic function f with the property that f # 0 and f(mn) =
f(m)f(n) for all integers m, n.

Notation. In expressions p’fl e pf* it is always assumed that the p; are distinct
prime numbers, and the k; positive integers.

We start with some simple observations.

Lemma 3.7. (i) Let f be a multiplicative function. Then f(1) = 1. Further, if
n=pyt--pi, then f(n) = f(pi*) - f(p}").

(ii) Let f,g be two multiplicative functions such that f(p*) = g(p*) for every prime
pand k € Z>y. Then f =g.

(113) let f,g be two strongly multiplicative functions such that f(p) = g(p) for every
prime p. Then f =g.

Proof. Obvious. O

We define the convolution product f x g of two arithmetic functions f, g by

(f*9)(n) = 3" f(n/d)g(d) for n € Zoo,

d|n

where 'd | n’ means that the sum is taken over all positive divisors of n.
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Examples. Define the arithmetic functions e, E' by

e(l)=1, e(n) =0 for all n € Z~1,
E(n) =1 for all n € Z~y.

Clearly, e is multiplicative, and E is strongly multiplicative. If f is any arithmetic
function, then e * f = f, while

(Ex f)(n) =) f(d).

d|n

Lemma 3.8. (i) For any two arithmetic functions f,g we have fxg=gx* f.
(ii) For any three arithmetic functions f, g, h we have (f x g) xh = f* (g*h).

Proof. Straightforward. O

Theorem 3.9. (i) Let A be the set of arithmetic functions f with f(1) # 0. Then
A with x is an abelian group with unit element e.

(i) Let M be the set of multiplicative functions. Then M with x is a subgroup of
A.

Proof. (i) We know already that * is commutative and associative and that e is the
unit element of *. It remains to verify that every element of A has a (necessarily
unique) inverse with respect to *. Let f € A. Notice that for an arithmetic function
g we have

frg=e <= f(1)g(1) =1, Zf(n/d)g(d):Oforn>1

dln
= g(1):=f)7" gln):=—f1)"" D f(n/d)g(d) for n > 1.

dln,d<n

(Clearly, the function g can be defined inductively by these last two relations. This
shows that f has an inverse with respect to *.

(ii) We first have to verify that the convolution product of two multiplicative
functions is again multiplicative. Here we use that if m,n are two coprime integers
and d is a positive divisor of mn, then d has a unique decomposition d = d;dy where
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dy is a positive divisor of m and dy a positive divisor of n. Now let f,g € M and
let m,n be two coprime positive integers. Then

(fxg)(mn) = Y fmn/d)g(d)= > f(mn/dids)g(dds)

djmn di|m,dz|n
= D> f(m/d)f(n/d>)g(d)g(dz)
dilm da|n

= | D fm/di)g(dr) | - [ D f(n/da)g(dy)

di|m da|n
= (f*xg9)(m)-(f*g)n).
This shows that f x g € M.

It remains to show that the inverse of a multiplicative function is again mul-
tiplicative. Let f € M and let f~! be its inverse with respect to *. Define h
by

h(p*) := f~1(p") for any prime power p*,
h(pi*) -~ h(pi") if no=pi* - pr.

=
=
I

Then h is multiplicative, and (f x h)(p*) = (f * f~1) (") = e(p*) for every prime
power p¥. Both f x h and e are multiplicative, so in fact f x h = e, h = f~!. Hence
f~1 is multiplicative. ]

Example. The Mdbius function p is the inverse under % of E, where E(n) =1 for
all n.

Lemma 3.10. We have

(=)' if n=py--p; with py,...,p; distinct primes,
pu(n) =

0 if n s divisible by the square of a prime.

Proof. We first compute u at the prime powers. First, u(1) = 1. Further, for every
prime p and positive integer k one has

=Y E@*/d)u(d) = p(1) + p(p) + - + plp").

d|p*
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From these relations one reads off that u(p) = —1 and u(p?) = u(p®) = --- = 0.
The expression for u(n) for arbitrary positive integers n follows by using that pu is
multiplicative. [

Theorem 3.11 (Mdébius’ Inversion Formula). Let f be an arithmetic function. De-
fine F(n) =3, f(n) forn € Zso. Then

fn) = 3" pln/d)F(d) forn € T,

dln
Proof. We have F' = F x f. Hence

pxF=px(Exf)=(uxE)xf=ex[=].

]

Examples. 1) Define p(n) := #{k € Z : 1 < k < n, ged(k,n) = 1}. It is
well-known that >, ©(d) = n for n € Z.. This implies that

p(n) =Y pu(n/dyd,

dn

or ¢ = pux I, where we define I,(n) = n® for n € Z-o, a € C. As a consequence, ¢
is multiplicative, and for n = p’fl .- pl* we have

t t

p(n) = [T el =[] -

i=1 i=1

2) Let a € C and define o4(n) = >_,, d* for n € Z>o. Then 04 = E * I,, which

implies that o, is multiplicative. Hence for n = plfl .- p* we have

t a(k‘i+1)71

p; .
. X H—p?—l if a # 0,
oa(n) = Hoa(pil) =< 7

i=1 [[E+1) ifa=o0.



3.3 Convolution product vs. Dirichlet series

We investigate the relation between the convolution product of two arithmetic func-
tions and their associated Dirichlet series.

Theorem 3.12. Let f, g be two arithmetic functions. Let s € C be such that Ly(s)
and L,(s) converge absolutely.
Then also Ly.4(s) converges absolutely, and Ly.,(s) = Lg(s)L,(s).

Proof. Since both L (s) and Ly(s) are absolutely convergent we can rearrange their
product as a double series and then rearrange the terms:

= 33 smatmn) =30 3 somiaon)
= (g (R = Lyug(s)

We now show that Ly,,(s) converges absolutely:

SIS R < S0 1l L) - 1k
k=1

= (3w ) (3 ot < oo

by following the above reasoning in opposite direction and taking absolute values
everywhere. This completes our proof. O

We define Zp(- ) = limy oo Z;;gN(' -+), and Hp(- ) = limy 00 HKN(- )
where the sums and products are taken over the primes.

Theorem 3.13. Let f be a multiplicative function. let s € C be such that Ls(s) =
oo f(n)n™% converges absolutely. Then

33) L) =TT 10w)

p

Further, L¢(s) # 0 as soon as Z;’io f(p)p™* #£0 for every prime p.
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Proof. The series Ly(s) = > 22 f(p')p™7* (p prime) converge absolutely, since
oo lf @770l < 202 1 f(n)n=*| < oo. To deal with their product we apply
Proposition 0.4. We have

Do ILp(s) =< DD @ < 3 1 f ()
p p j=1 n=1

hence the infinite product Hp L,(s) is defined, and it is 0 if and only if at least one

of the factors L,(s) is 0.

It remains to prove that Lg(s) = [[, L,(s). Let N > 1 and let py,...,p; be
the prime numbers < N. Further, let Sy be the set of integers composed of prime
numbers < N and Ty the set of remaining integers, i.e., divisible by at least one
prime > N. Since the series L,(s) (p prime) converge absolutely, we can rearrange
terms and obtain

L) = > ) @)™ ) =) flnn~
p<N J1yeeJe 20 neSy

Now clearly,

Li(s) = ][] L) =Y [T =) fla)n”

p<N neSy nely
< Z |[f(n)n™*] — 0 as N — oo.
n=N+1
This proves (3.3). O

Corollary 3.14. Let f be a strongly multiplicative function. Let s € C be such that
L (s) converges absolutely. Then

Further, L(s) # 0.

Proof. Use that

P — S —s\i 1
Zf Z(f(p)p y=1— o



Examples. 1) For s € C with Res > 1 we have

((s) = Zn_s = H(l —p )"t (Euler).

p

2) For s € C with Res > 1, the series L, (s) = >~ u(n)n* converges absolutely,

hence
o0 oo

C(s)Lu(s) =Y (Exp)(nyn™ =) e(n)n* = 1.

n=1 n=1
That is, ((s)™' = >0, p(n)n™* for s € C with Res > 1. An alternative way to
prove this, is to observe that

¢ =TI =) =TT (X np ) = - utnn~

p p

3) Recall that ¢ = g I;. The series Ly, (s) = >~ n/n®* = ((s — 1) converges
absolutely for Re s > 2. Hence

Y o)™ = Ly = Lu(s)Lr (s) = ((s = 1)/¢(s)

and L,(s) converges absolutely if Res > 2.
4) The (very important) von Mangoldt function A is defined by

logp if n = p* for some prime p and some k > 1,
A(n) = :
0 otherwise.

n 1 2 3 4 5) 6 7 8 9 10
A(n) | 0| log2 |log3 |log2 |logh |0 |log7|log2|log3| 0

For n = p¥ ... p* (unique prime factorization) we have
t ki t
ZA(n) = Z Zlogpi = Zkl-logpi = logn.
din i=1 j=1 i=1

Hence E * A = log, where log denotes the arithmetic function n — logn. So
A = p xlog.
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Lemma 3.15. For s € C with Res > 1, the series y .~ A(n)n™* converges abso-
lutely, and

Y A = —((s)/¢(s)-

Proof. We apply Theorem 3.12. First recall that L,(s) converges absolutely if Re s >
1. Further, by Theorem 3.4, we have ¢'(s) = Y " (—logn)n* for Res > 1. Hence

[e.e] o0

S log(n)n | = 3 (lognn ™% =~ (Res)

n=1 n=1

converges if Res > 1. That is, Lis(s) converges absolutely if Res > 1. It follows
that

L(s) = Lu(s) Liog(s) = —((s)7'¢(s)
and L (s) converges absolutely if Res > 1. O
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