
Chapter 4

Characters and Gauss sums

4.1 Characters on finite abelian groups

In what follows, abelian groups are multiplicatively written, and the unit element

of an abelian group A is denoted by 1. We denote the order (number of elements)

of A by |A|.

Let A be a finite abelian group. A character on A is a group homomorphism

χ : A→ C∗ (i.e., C \ {0} with multiplication).

If |A| = n then an = 1, hence χ(a)n = 1 for each a ∈ A and each character χ on

A. Therefore, a character on A maps A to the roots of unity.

The product χ1χ2 of two characters χ1, χ2 on A is defined by (χ1χ2)(a) =

χ1(a)χ2(a) for a ∈ A. With this product, the characters on A form an abelian

group, the so-called character group of A, which we denote by Â (or Hom(A,C∗)).
The unit element of Â is the trivial character χ

(A)
0 that maps A to 1. Since any

character on A maps A to the roots of unity, the inverse χ−1 : a 7→ χ(a)−1 of a

character χ is equal to its complex conjugate χ : a 7→ χ(a).

It would have been possible to develop the theory of characters using the fact

that every finite abelian groups is the direct sum of cyclic groups, but we prefer to

start from scratch.

Let B be a subgroup of A and χ a character on B. By an extension of χ to A

we mean a character χ′ on A such that χ′|B = χ, i.e., χ′(b) = χ(b) for b ∈ B.
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Lemma 4.1. Let A be a finite abelian group, B a subgroup of A such that A/B is

cyclic, and χ a character on B. Then χ has precisely |A|/|B| extensions to A.

Proof. The order of A/B is precisely t := |A|/|B|. Let g ∈ A be such that g := gB

is a generator of A/B. Then h := gt ∈ B. If χ′ is an extension of χ to A, then

necessarily χ′(g)t = χ(h). We show that conversely, for each of the t roots ρ of

ρt = χ(h) there is a unique extension χρ of χ to A such that χρ(g) = ρ; this clearly

implies our lemma.

Notice that A = {bgk : b ∈ B, k ∈ Z}. The character χρ, if it exists, necessarily

has to satisfy χρ(bg
k) = χ(b)ρk, for b ∈ B, k ∈ Z. We now define χρ in this way

and show that it is well-defined, i.e., independent of the choice of b and k. Indeed,

suppose that b1g
k1 = b2g

k2 , with b1, b2 ∈ B and k1, k2 ∈ Z, i.e. gk1−k2 = b−11 b2. Then

gk1−k2 = 1, so q := (k2−k1)/t ∈ Z, hence hq = b−11 b2. This implies ρk1−k2 = χ(h)q =

χ(b1)
−1χ(b2), hence χ(b2)ρ

k2 = χ(b1)ρ
k1 . This shows that indeed χρ is well-defined.

It is easily shown to be a character.

Proposition 4.2. Let A be a finite abelian group, B a subgroup of A, and χ a

character on B. Then χ has precisely |A|/|B| extensions to A.

Proof. We proceed by induction on |A|/|B|. If |A|/|B| = 1 we are done. Assume

that |A|/|B| > 1. Choose g ∈ A \ B and define B′ := B〈g〉. Then B′/B is cyclic,

so by Lemma 4.1, the character χ has precisely |B′|/|B| extensions to B′. Since

|B′| > |B|, we can apply the induction hypothesis and infer that each of these

extensions to B′ has precisely |A|/|B′| extensions to A. Thus it follows that χ has

precisely |A|/|B| extensions to A.

Corollary 4.3. Let A be a finite abelian group. Then |Â| = |A|.

Proof. Apply Proposition 4.2 with B = {1}.

Corollary 4.4. Let A be a finite abelian group, and g ∈ A with g 6= 1. Then there

is a character χ on A with χ(g) 6= 1.

Proof. Assume g has order r > 1. A character on 〈g〉 is uniquely determined by

its value in g, so there is precisely one character χ0 on 〈g〉 with χ0(g) = 1. By

Proposition 4.2, this character has precisely |A|/|〈g〉| = |A|/r extensions to A. Hence

there are characters χ on A that do not extend χ0, i.e., for which χ(g) 6= 1.
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For a finite abelian group A, let
̂̂
A denote the character group of Â. Each element

a ∈ A gives rise to a character â on Â, given by â(χ) := χ(a).

Theorem 4.5 (Duality). Let A be a finite abelian group. Then the map a 7→ â

defines an isomorphism from A to
̂̂
A.

Proof. The map ϕ : a 7→ â obviously defines a group homomorphism from A to
̂̂
A.

We show that it is injective. Let a ∈ Ker(ϕ); then â(χ) = 1 for all χ ∈ Â, i.e.,

χ(a) = 1 for all χ ∈ Â, which by Corollary 4.4 implies that a = 1. So indeed, ϕ is

injective. But then ϕ is surjective as well, since by Corollary 4.3, | ̂̂A| = |Â| = |A|.
Hence ϕ is an isomorphism.

Theorem 4.6 (Orthogonality relations for characters). Let A be a finite abelian

group.

(i) For any two characters χ1, χ2 on A we have∑
a∈A

χ1(a)χ2(a) =

{
|A| if χ1 = χ2,

0 if χ1 6= χ2.

(ii) For any two elements a, b of A we have∑
χ∈Â

χ(a)χ(b) =

{
|A| if a = b,

0 if a 6= b.

Proof. Part (ii) follows by applying part (i) with Â instead of A, and using The-

orem 4.5 and Corollary 4.3. So we prove only (i). Let χ1, χ2 ∈ Â and put

S :=
∑

a∈A χ1(a)χ2(a). Let χ := χ1χ2 = χ1χ
−1
2 . Then S =

∑
a∈A χ(a). Clearly, if

χ1 = χ2 then χ = χ
(A)
0 , hence S = |A|. Let χ1 6= χ2. Then χ 6= χ

(A)
0 , hence there is

g ∈ A with χ(g) 6= 1. Further,

χ(g)S =
∑
a∈A

χ(ga) = S,

since ga runs through the elements of A. Hence S = 0.

This will not be needed later, but for completeness we show that there is also an

isomorphism from a finite abelian group A to its character group Â. But unlike the

isomorphism in Theorem 4.5 this is not canonical, since it will depend on a choice

of generators for A.
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Lemma 4.7. Let A be a cyclic group of order n. Then Â is also a cyclic group of

order n.

Proof. Let A = 〈g〉. Then A = {1, g, . . . , gn−1} and gn = 1. A character χ on A is

determined by χ(g). Let ρ1 be a primitive n-th root of unity. It is easy to see that

there is a character χ1 on A with χ1(g) = ρ1, that χ
(A)
0 , χ1, . . . , χ

n−1
1 are distinct,

and χn1 = χ
(A)
0 . Further, if χ is any character on A, then χ(g)n = 1, which implies

that χ is a power of χ1. So Â = 〈χ1〉 is a cyclic group of order n.

Lemma 4.8. Let A = A1 × · · · × Ar be the direct product of finite abelian groups

A1, . . . , Ar. Then Â is isomorphic to Â1 × · · · × Âr.

Proof. It suffices to prove this for r = 2; then the proof of the lemma can be

completed by induction on r. Denote by 1 the unit element of A. Let A = A1×A2 =

{g1g2 : g1 ∈ A1, g2 ∈ A2} where g1g2 = 1 if and only if g1 = g2 = 1. Define a map

ϕ : Â1 × Â2 → Â : (χ1, χ2) 7→ χ1χ2,

where χ1χ2(g1g2) := χ1(g1)χ2(g2) for g1 ∈ A1, g2 ∈ A2. It is easy to see that ϕ is a

group homomorphism. Substituting g1 = 1, respectively g2 = 1, we see that χ2, χ1

are uniquely determined by χ1χ2. Hence ϕ is injective. Since Â1 × Â2 and Â have

the same cardinality, it follows also that ϕ is surjective.

Proposition 4.9. Every finite abelian group is a direct product of cyclic groups.

Proof. See S. Lang, Algebra, Chap.1, §10.

Theorem 4.10. Let A be a finite abelian group. Then there exists an isomorphism

from A to Â.

Proof. By Proposition 4.9, A is a direct product C1×· · ·×Cr of finite cyclic groups.

By Lemmas 4.8, 4.7, Â is isomorphic to Ĉ1 × · · · × Ĉr, where Ĉi is a cyclic group

of the same order as Ci, for i = 1, . . . , r. Now the isomorphism from A to Â can be

established by mapping a generator of Ci to one of Ĉi, for i = 1, . . . , r.

Remark. The isomorphism constructed above depends on choices for generators of

Ci, Ĉi, for i = 1, . . . , r. So it is not canonical.
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4.2 Dirichlet characters

Let q ∈ Z>2. Denote the residue class of a mod q by a. Recall that the prime

residue classes mod q, (Z/qZ)∗ = {a : gcd(a, q) = 1} form a group of order ϕ(q)

under multiplication of residue classes. We can lift any character χ̃ on (Z/qZ)∗ to a

map χ : Z→ C by setting

χ(a) :=

{
χ̃(a) if gcd(a, q) = 1;

0 if gcd(a, q) > 1.

Notice that χ has the following properties:

(i) χ(1) = 1;

(ii) χ(ab) = χ(a)χ(b) for a, b ∈ Z;

(iii) χ(a) = χ(b) if a ≡ b (mod q);

(iv) χ(a) = 0 if gcd(a, q) > 1.

Any map χ : Z→ C with properties (i)–(iv) is called a (Dirichlet) character modulo

q. Conversely, from a character χ mod q one easily obtains a character χ̃ on (Z/qZ)∗

by setting χ̃(a) := χ(a) for a ∈ Z with gcd(a, q) = 1.

Let G(q) be the set of characters modulo q. We define the product χ1χ2 of

χ1, χ2 ∈ G(q) by (χ1χ2)(a) = χ1(a)χ2(a) for a ∈ Z. With this operation, G(q)

becomes a group, with unit element the principal character modulo q given by

χ
(q)
0 (a) =

{
1 if gcd(a, q) = 1;

0 if gcd(a, q) > 1.

The inverse of χ ∈ G(q) is its complex conjugate

χ : a 7→ χ(a).

It is clear, that this makes G(q) into a group that is isomorphic to the character

group of (Z/qZ)∗.

One of the advantages of viewing characters as maps from Z to C is that this

allows to multiply characters of different moduli: if χ1 is a character mod q1 and χ2

a character mod q2, then their product χ1χ2 is a character mod lcm(q1, q2).

We can easily translate the orthogonality relations for characters of (Z/qZ)∗ into

orthogonality relations for Dirichlet characters modulo q. Recall that a complete
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residue system modulo q is a set, consisting of precisely one integer from every

residue class modulo q, e.g., {3, 5, 11, 22, 104} is a complete residue system modulo

5.

Theorem 4.11. Let q ∈ Z>2, and let Sq be a complete residue system modulo q.

(i) Let χ1, χ2 ∈ G(q). Then

∑
a∈Sq

χ1(a)χ2(a) =

{
ϕ(q) if χ1 = χ2;

0 if χ1 6= χ2.

(ii) Let a, b ∈ Z. Then

∑
χ∈G(q)

χ(a)χ(b) =


ϕ(q) if gcd(ab, q) = 1, a ≡ b (mod q);

0 if gcd(ab, q) = 1, a 6≡ b (mod q);

0 if gcd(ab, q) > 1.

Proof. Exercise.

Let χ be a character mod q and d a positive divisor of q.

We say that q is induced by a character χ′ mod d if χ(a) = χ′(a) for every a ∈ Z
with gcd(a, q) = 1. Here we define the principal character mod 1 by χ

(1)
0 (a) = 1

for a ∈ Z. For instance, χ
(q)
0 is induced by χ

(1)
0 . Notice that if gcd(a, d) = 1 and

gcd(a, q) > 1, then χ′(a) 6= 0 but χ(a) = 0.

The character χ is called primitive if there is no divisor d < q of q such that χ

is induced by a character mod d.

Theorem 4.12. Let q ∈ Z>2 and χ a character mod q. Then there are a unique

divisor f of q, and a unique primitive character χ0 mod f , such that χ is induced

by χ0.

The integer f from Theorem 4.12 is called the conductor of χ.

To prove this, we need some lemmas.

Lemma 4.13. Let a be an integer with gcd(a, d) = 1. Then there is b ∈ Z with

a ≡ b (mod d), gcd(b, q) = 1.
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Proof. Write q = q1q2, where q1 is composed of the primes occurring in the factor-

ization of d, and where q2 is composed of primes not dividing d. By the Chinese

Remainder Theorem, there is b ∈ Z with

b ≡ a (mod d), b ≡ 1 (mod q2).

This integer b is coprime with d, hence with q1, and also coprime with q2, so it is

coprime with q.

Lemma 4.14. Let d be a divisor of q. Then there is at most one character mod d

that induces χ.

Proof. Suppose that χ is induced by the character χ1 mod d. Let a ∈ Z with

gcd(a, d) = 1 and choose b with a ≡ b (mod d) and gcd(b, q) = 1. Then χ1(a) =

χ1(b) = χ(b). Hence χ1 is uniquely determined by χ.

The next lemma gives a method to verify if a character χ is induced by a character

mod d.

Lemma 4.15. Let χ be a character mod q, and d a divisor of q. Then the following

assertions are equivalent:

(i) χ is induced by a character mod d;

(ii) χ(a) = χ(b) for all a, b ∈ Z with a ≡ b (mod d) and gcd(ab, q) = 1;

(iii) χ(a) = 1 for all a ∈ Z with a ≡ 1 (mod d) and gcd(a, q) = 1.

Proof. The implications (i)⇒(ii)⇒(iii) are trivial.

(iii)⇒ (ii). Let a, b ∈ Z with a ≡ b (mod d) and gcd(ab, q) = 1. There is c ∈ Z
with gcd(c, q) = 1 such that a ≡ bc (mod q). For this c we have c ≡ 1 (mod d). Now

by (iii) we have χ(a) = χ(b)χ(c) = χ(b).

(ii)⇒ (i). We define a character χ′ mod d as follows. For a ∈ Z with gcd(a, d) >

1 put χ′(a) := 0. For a ∈ Z with gcd(a, d) = 1, choose b ∈ Z such that a ≡ b (mod d)

and gcd(b, q) = 1 (which is possible by Lemma 4.13), and put χ′(a) := χ(b). By (ii)

this gives a well-defined character mod d that clearly induces χ.

Lemma 4.16. Let χ be a character mod q. Assume that χ is induced by characters

χ1 mod d1, χ2 mod d2, where d1, d2 are divisors of q. Then χ is induced by a

character mod gcd(d1, d2) which in turn induces χ1, χ2.
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Proof. Let d = gcd(d1, d2), d0 := lcm(d1, d2). We first show that χ1 is induced by a

character mod d. We apply criterion (iii) of the previous lemma. That is, we have to

show that if a is an integer with gcd(a, d1) = 1 and a ≡ 1 (mod d), then χ1(a) = 1.

Take such a. Then a = 1+ td with t ∈ Z. There are x, y ∈ Z with xd1 +yd2 = d.

Hence a = 1 + txd1 + tyd2. The number c := 1 + tyd2 is coprime with d1 since a is

coprime with d1, and also coprime with d2, hence it is coprime with d0. By Lemma

4.13, there is b with b ≡ c (mod d0) and gcd(b, q) = 1. We have b ≡ a (mod d1),

b ≡ 1 (mod d2), hence χ1(a) = χ(b) = χ2(1) = 1.

It follows that χ1 is induced by a character, say χ3 mod d. Similarly, χ2 is induced

by a character χ′3 mod d. Both χ3, χ
′
3 induce χ. So by Lemma 4.14, χ3 = χ′3.

Proof of Theorem 4.12. Let f be the smallest divisor of q such that χ is induced by

a character mod f . This character, say χ0, is necessarily primitive. Assume there is

another primitive character χ′0 mod f ′ that induces χ. By the previous lemma, χ is

induced by a character χ′′0 mod gcd(f, f ′) that in turn induces χ0 and χ′0. But this

is possible only if f = f ′. By Lemma 4.14 it follows that also χ0 = χ′0.

4.3 Computation of G(q)

We give a method to compute the character group modulo q. We first make a

reduction to prime powers.

Theorem 4.17. Let q = pk11 · · · qktt , where p1, . . . , pt are distinct primes and k1, . . . , kt
positive integers. Then the map

G(pk11 )× · · · ×G(pktt )→ G(q) : (χ1, . . . , χt) 7→ χ1 · · ·χt

is a group isomorphism.

Proof. Let f denote the map under consideration. Then f is a homomorphism. We

show that it is injective. Let χi ∈ G(pkii ) (i = 1, . . . , t) be such that χ1 · · ·χt = χ
(q)
0 .

Let i ∈ {1, . . . , t} and choose a ∈ Z with gcd(a, pi) = 1. By the Chinese Remainder

Theorem, there is b ∈ Z such that

b ≡ a (mod pkii ), b ≡ 1 (mod p
kj
j ) for j 6= i.
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Then with this b we have

χi(a) =
t∏

j=1

χj(b) = χ
(q)
0 (b) = 1.

Hence χi = χ
(p

ki
i )

0 . This holds for i = 1, . . . , t, so f is injective.

Now since G(pk11 )× · · · ×G(pktt ) and G(q) have the same order ϕ(q), the map f

is also surjective.

To compute G(pk) for a prime power pk, we need some information about the

structure of (Z/pkZ)∗. This is provided by the following theorem.

Theorem 4.18. (i) Let p be a prime > 3. Then the group (Z/pkZ)∗ is cyclic of

order pk−1(p− 1).

(ii) (Z/4Z)∗ is cyclic of order 2.

Further, if k > 3 then (Z/2kZ)∗ =< −1 > × < 5 > is the direct product of a cyclic

group of order 2 and a cyclic group of order 2k−2.

We skip the proof of k = 1 of (i), which belongs to a basic algebra course. For

the proof of the remaining parts, we need a lemma.

For a prime number p, and for a ∈ Z \ {0}, we denote by ordp(a) the largest

integer k such that pk divides a.

Lemma 4.19. Let p be a prime number and a an integer such that ordp(a− 1) > 1

if p > 3 and ordp(a− 1) > 2 if p = 2. Then

ordp(a
pk − 1) = ordp(a− 1) + k.

Proof. We prove the assertion only for k = 1; then the general statement follows

easily by induction on k. Our assumption on a implies that a = 1 +ptb, where t > 1

if p > 3, t > 2 if p = 2, and where b is an integer not divisible by p. Now by the

binomial formula,

ap − 1 =

p∑
j=1

(
p

j

)
(ptb)j = pt+1bj + pt+2(· · · ).

Here we have used that all binomial coefficients
(
p
j

)
are divisible by p except the

last. But the last term (ptb)p is divisible by ppt, and the exponent pt is larger than
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t + 1 (the assumption t > 2 for p = 2 is needed to ensure this). This shows that

ordp(a
p − 1) = t+ 1.

Proof of Theorem 4.18. (i). We take for granted that (Z/pZ)∗ is cyclic of order p−1,

and assume that k > 2. We construct a generator for (Z/pkZ)∗. Let g be an integer

such that g (mod p) is a generator of (Z/pZ)∗. We show that we can choose g such

that ordp(g
p−1 − 1) = 1. Indeed, assume that ordp(g

p−1 − 1) > 2 and take g + p.

Then

(g + p)p−1 − 1 =

p−1∑
j=1

(
p− 1

j

)
gp−1−jpj = (p− 1)gp−2p+ p2(· · · )

= −gp−2p+ p2(· · · )

hence ordp((g+p)p−1− 1) = 1. So, replacing g by g+p if need be, we get an integer

g such that g (mod p) generates (Z/pZ)∗ and ordp(g
p−1 − 1) = 1.

We show that g := g (mod pk) generates (Z/pkZ)∗. Let n be the order of g in

(Z/pkZ)∗; that is, n is the smallest positive integer with gn ≡ 1 (mod pk). On the

one hand, gn ≡ 1 (mod p), hence p− 1 divides n. On the other hand, n divides the

order of (Z/pkZ)∗, that is, pk−1(p− 1). So n = ps(p− 1) with s 6 k− 1. By Lemma

4.19 we have

ordp(g
n − 1) = ordp(g

p−1 − 1) + s = s+ 1.

This has to be equal to k, so s = k− 1. Hence n = pk−1(p− 1) is equal to the order

of (Z/pkZ)∗. It follows that (Z/pkZ)∗ = 〈g〉.

(ii). Assume that k > 3. Define the subgroup of index 2,

H := {a ∈ (Z/2kZ)∗ : a ≡ 1 (mod 4)}.

Then

(Z/2kZ)∗ = H ∪ (−H) = {(−1)ka : k ∈ {0, 1}, a ∈ H}

and (−1)ka = 1 if and only if k = 0 and a = 1. Hence (Z/2kZ)∗ =< −1 > ×H.

Similarly as above, one shows that H is cyclic of order 2k−2, and that H = 〈5〉.

Corollary 4.20. Let p be a prime and k > 1.

(i) If p = 2, k = 1, 2 or p > 2 then G(pk) is cyclic of order pk−1(p− 1).

(ii) If p = 2, k > 3, then G(pk) is the direct product of a cyclic group of order 2 and

a cyclic group of order 2k−2.
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Proof. Immediate consequence of Theorem 4.18 and Lemmas 4.7 and 4.8.

Following the proofs of Lemmas 4.7, 4.8, we can give an explicit description for

the groups G(pk).

Clearly, G(2) = {χ(2)
0 } and G(4) = {χ(4)

0 , χ4}, where χ4(a) = 1 if a ≡ 1 (mod 4),

χ4(a) = −1 if a ≡ 3 (mod 4), χ4(a) = 0 if a is even.

If p > 2, choose g ∈ Z such that g (mod pk) generates (Z/pkZ)∗, and choose a

primitive pk−1(p−1)-th root of unity ρ. Then G(pk) = 〈χ1〉 where χ1 is the Dirichlet

character determined by χ1(g) = ρ.

As for 2k with k > 3, choose a primitive 2k−2-th root of unity ρ. Then G(2k) =

〈χ1〉 × 〈χ2〉, where χ1, χ2 are given by

χ1(−1) = −1, χ1(5) = 1; χ2(−1) = 1, χ2(5) = ρ.

4.4 Gauss sums

Let q ∈ Z>2. For a character χ mod q and for b ∈ Z, we define the Gauss sum

τ(b, χ) :=
∑
x∈Sq

χ(x)e2πibx/q,

where Sq is a full system of representatives modulo q. This does not depend on the

choice of Sq. The Gauss sum τ(1, χ) occurs for instance in the functional equation

for the L-function L(s, χ) =
∑∞

n=1 χ(n)n−s (later).

We prove some basic properties of Gauss sums.

Theorem 4.21. Let q ∈ Z>2 and let χ be a character mod q. Further, let b ∈ Z.

(i) If gcd(b, q) = 1, then τ(b, χ) = χ(b) · τ(1, χ).

(ii) If gcd(b, q) > 1 and χ is primitive, then τ(b, χ) = χ(b) · τ(1, χ) = 0.

Proof. (i) Suppose gcd(b, q) = 1. If x runs through a complete residue system Sq
mod q, then bx runs to another complete residue system S ′q mod q. Write y = bx.

Then χ(y) = χ(b)χ(x), hence χ(x) = χ(b)χ(y). Therefore,

τ(b, χ) =
∑
x∈Sq

χ(x)e2πibx/q =
∑
y∈S′

q

χ(b)χ(y)e2πiy/q

= χ(b)τ(1, χ).
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(ii) We use the following observation: if q1 is any divisor of q with 1 6 q1 6 q,

then there is c ∈ Z such that c ≡ 1 (mod q1), gcd(c, q) = 1, and χ(c) 6= 1. Indeed,

this is obvious if q1 = q. If q1 < q, then Lemma 4.15 implies that if there is no such

integer c then χ is induced by a character mod q1, contrary to our assumption that

χ is primitive.

Now let d := gcd(b, q), put b1 := b/d, q1 := q/d, and choose c according to the

observation. Then

χ(c)τ(b, χ) =
∑
x∈Sq

χ(cx)e2πibx/q.

If x runs through a complete residue system Sq mod q, then y := cx runs through

another complete residue system S ′q mod q. Further, since c ≡ 1 (mod q1) we have

e2πixb/q = e2πixb1/q1 = e2πicxb1/q1 = e2πiyb/q.

Hence

χ(c)τ(b, χ) =
∑
y∈Sq

χ(y)e2πiby/q = τ(b, χ).

Since χ(c) 6= 1 this implies that τ(b, χ) = 0.

Theorem 4.22. Let q ∈ Z>2 and let χ be a primitive character mod q. Then

|τ(1, χ)| = √q.

Proof. We have by Theorem 4.21,

|τ(1, χ)|2 = τ(1, χ) · τ(1, χ) =

q−1∑
x=0

χ(x)e−2πix/qτ(1, χ)

=

q−1∑
x=0

e−2πix/qτ(x, χ) =

q−1∑
x=0

e−2πix/q

(
q−1∑
y=0

χ(y)e2πixy/q

)

=

q−1∑
x=0

(
q−1∑
y=0

χ(y)e2πix(y−1)/q

)

=

q−1∑
y=0

χ(y)

(
q−1∑
x=0

e2πix(y−1)/q

)
=

q−1∑
y=0

χ(y)S(y), say.
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If y = 1, then S(y) =
∑q−1

x=0 1 = q, while if y 6= 1, then

S(y) =
e2πi(y−1) − 1

e2πi(y−1)/q − 1
= 0.

Hence |τ(1, χ)|2 = χ(1)q = q.

For later purposes we need the following variation on this result. A real character

mod q is one which assumes only real values. This implies that χ(a) ∈ {±1} if

gcd(a, q) = 1.

Theorem 4.23. Let χ be a primitive real character mod q. Then τ(1, χ)2 = χ(−1)q.

Proof. Similarly as in the proof of Theorem 4.22 we have

τ(1, χ)2 =

q−1∑
x=0

χ(x)e2πix/qτ(1, χ)

and by following the same reasoning,

τ(1, χ)2 =

q−1∑
y=0

χ(y)

(
q−1∑
x=0

e2πix(y+1)/q

)
=

q−1∑
y=0

χ(y)T (y),

say. As is easily seen, T (q−1) = q, while T (y) = 0 for y = 0, . . . , q−2. This implies

Theorem 4.23.

Remark. Theorem 4.22 implies that εχ := τ(1, χ)/
√
q lies on the unit circle. Gauss

gave an explicit expression for εχ in the case that εχ is a primitive real character

mod q. There is no general method known to compute εχ for non-real characters χ

modulo large values of q.

4.5 Quadratic reciprocity

We give a proof of Gauss’ Quadratic Reciprocity Theorem using Gauss sums. This

section requires a little bit more algebraic background.

Let p > 2 be a prime number. An integer a is called a quadratic residue modulo p

if x2 ≡ a (mod p) is solvable in x ∈ Z and p - a, and a quadratic non-residue modulo
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p if x2 ≡ a (mod p) is not solvable in x ∈ Z. Further, a quadratic (non-)residue class

modulo p is a residue class modulo p represented by a quadratic (non-)residue.

We define the Legendre symbol

(a
p

)
:=


1 if a is a quadratic residue modulo p;

−1 if a is a quadratic non-residue modulo p;

0 if p|a.

Lemma 4.24. Let p be a prime > 2.

(i)

(
·
p

)
is a primitive character mod p.

(ii) There are precisely 1
2
(p − 1) quadratic residue classes, and precisely 1

2
(p − 1)

quadratic non-residue classes modulo p.

(iii)
(a
p

)
≡ a(p−1)/2 (mod p) for a ∈ Z.

Proof. (i) The group (Z/pZ)∗ is cyclic of order p− 1. Let g(mod p) be a generator

of this group. Take a ∈ Z with gcd(a, p) = 1. Then there is t ∈ Z such that

a ≡ gt (mod p). Now clearly, x2 ≡ a (mod p) is solvable in x ∈ Z if and only if t is

even. Hence

(
a
p

)
= (−1)t. This shows that

(
·
p

)
is a character mod p.

(ii) The group (Z/pZ)∗ consists of gt (mod p) (t = 0, . . . , p − 1). Clearly, the

quadratic residue classes are those with t even, and the quadratic non-residue classes

those with t odd. This implies (ii). This shows also that

(
·
p

)
is not the principal

character mod p, and so, since p is a prime, it must be primitive.

(iii) The assertion is clearly true if p|a. Assume that p - a. Then there is t ∈ Z
with a ≡ gt (mod p). Note that (g(p−1)/2)2 ≡ 1 (mod p), hence g(p−1)/2 ≡ ±1 (mod p).

But g(p−1)/2 6≡ 1 (mod p) since g (mod p) is a generator of (Z/pZ)∗. Hence g(p−1)/2 ≡
−1 (mod p). As a consequence,

a(p−1)/2 ≡ (−1)t ≡
(a
p

)
(mod p).

The following is immediate:

Corollary 4.25. Let p be a prime > 2. Then(−1

p

)
= (−1)(p−1)/2 =

{
1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4).
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Gauss’ Quadratic Reciprocity Theorem is as follows:

Theorem 4.26. Let p, q be distinct primes > 2. Then(p
q

)(q
p

)
= (−1)(p−1)(q−1)/4 =

{
−1 if p ≡ q ≡ 3 (mod 4),

1 otherwise.

Furthermore, as a supplement we have:

Theorem 4.27. Let p be a prime > 2. Then(2

p

)
= (−1)(p

2−1)/8 =

{
1 if p ≡ ±1 (mod 8),

−1 if p ≡ ±3 (mod 8).

Example. Check if x2 ≡ 33 (mod 97) is solvable.(33

97

)
=

( 3

97

)
·
(11

97

)
=
(97

3

)
·
(97

11

)
=

(1

3

)
·
(−2

11

)
=
(1

3

)
·
(−1

11

)
·
( 2

11

)
= 1 · (−1) · (−1) = 1.

We prove only Theorem 4.26 and leave Theorem 4.27 as an exercise. We first

make some preparations and then prove some lemmas.

Let Q[X] denote the ring of polynomials with coefficients in Q. A number α ∈ C
is called algebraic if there is a non-zero polynomial f ∈ Q[X] such that f(α) = 0.

Among all non-zero polynomials from Q[X] having α as a zero, we choose one of

minimal degree. By multiplying such a polynomial with a suitable constant, we

obtain one which is monic, i.e., of which the coefficient of the highest power of X

is 1. There is only one monic polynomial in Q[X] of minimal degree having α as

a zero, for if there were two, their difference would give a non-zero polynomial in

Q[X] of smaller degree having α as a zero. This unique monic polynomial in Q[X]

of minimal degree having α as a zero is called the minimal polynomial of α, denoted

by fα.

We observe that fα must be irreducible in Q[X], that is, not a product of two

non-constant polynomials from Q[X]. For otherwise, α would be a zero of one of

these polynomials, which has degree smaller than that of fα.
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Let q be a prime number > 2. We write ζq := e2πi/q. Define

Rq := Z[ζq] =

{
r∑
i=0

aiζ
i
q : ai ∈ Z, r > 0

}
.

This set is closed under addition and multiplication, hence it is a ring.

Lemma 4.28. Rq ∩Q = Z.

Proof. We use without proof, that the minimal polynomial of ζq is (Xq−1)/(X−1) =

Xq−1 + · · ·+X + 1. Hence ζq−1q = −
∑q−2

j=0 ζ
j
q . By repeatedly substituting this into

an expression
∑r

i=0 aiζ
i
q with ai ∈ Z, we eventually get an expression

∑q−2
j=0 bjζ

j
q with

bj ∈ Z for all j. Hence all elements of Rq can be expressed in this form. Now if

α ∈ Rq ∩Q, we get

α =

q−2∑
j=0

bjζ
j
q

with α ∈ Q and bj ∈ Z for all j. This implies that ζq is a zero of the polynomial

bq−2X
q−2 + · · · + b0 − α. Since the minimal polynomial of ζq has degree q − 1, this

is possible only if b0 = α and b1 = · · · = bq−2 = 0. Hence α ∈ Z.

Given α, β ∈ Rq and n ∈ Z>0, we write α ≡ β (modn) in Rq if (α − β)/n ∈ Rq.

Further, we write α ≡ β (modn) in Z if (α − β)/n ∈ Z. By the Lemma we just

proved, for α, β ∈ Z we have that α ≡ β (modn) in Rq if and only if α ≡ β (modn)

in Z.

Lemma 4.29. Let p be any prime number. Then for α1, . . . , αr ∈ Rq we have

(α1 + · · ·+ αr)
p ≡ αp1 + · · ·+ αpr (mod p) in Rq.

Proof. By the multinomial theorem,

(α1 + · · ·+ αr)
p =

∑
i1+···+ir=p

p!

i1! · · · ir!
αi11 · · ·αirr .

All multinomial coefficients are divisible by p, except those where one index ij = p

and the others are 0.
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Proof of Theorem 4.26. We use Gauss sums. For notational convenience we write

χq for
(
·
q

)
. We work in the ring Rq.

Notice that by Theorem 4.23 and Corollary 4.25,

(4.1) τ(1, χq)
2 = χq(−1)q = (−1)(q−1)/2q.

Further, by Lemma 4.29 and Theorem 4.21,

τ(1, χq)
p ≡

q−1∑
x=0

χq(x)pζpxq ≡
q−1∑
x=0

χq(x)ζpxq ≡ τ(p, χq) ≡
(p
q

)
τ(1, χq) (mod p) in Rq.

On multiplying with τ(1, χq) and applying (4.1), we obtain

τ(1, χq)
p+1 ≡ (−1)(q−1)/2q ·

(p
q

)
(mod p) in Rq.

On the other hand, by (4.1) and Lemma 4.28,

τ(1, χq)
p+1 = (−1)(q−1)(p+1)/4q(p+1)/2 = (−1)(q−1)/2q · (−1)(q−1)(p−1)/4q(p−1)/2

≡ (−1)(q−1)/2q · (−1)(p−1)(q−1)/4
(q
p

)
(mod p) in Rq.

As a consequence,

(−1)(q−1)/2q ·
(p
q

)
≡ (−1)(q−1)/2q · (−1)(q−1)(p−1)/4

(q
p

)
(mod p) in Z.

Since q is coprime with p, this gives(p
q

)
≡ (−1)(p−1)(q−1)/4

(q
p

)
(mod p) in Z.

Since integers equal to ±1 can be congruent modulo p only if they are equal, this

implies Theorem 4.26.

Exercise 4.1. Prove Theorem 4.27.

Hint. You have to follow the proof of Theorem 4.26, but instead of Rq, χq, you have

to use the ring R8 = Z[ζ8] where ζ8 = e2πi/8, and the character χ8 mod 8, given by

χ8(a) =


1 if a ≡ ±1 (mod 8),

−1 if a ≡ ±3 (mod 8),

0 if a ≡ 0 (mod 2).

Use that ζ8 has minimal polynomial X4 + 1.
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