
Chapter 6

Tauberian theorems

6.1 Introduction

In 1826, Abel proved the following result for real power series. Let f(x) =
∑∞

n=0 anx
n

be a power series with coefficients an ∈ R that converges on the real interval (−1, 1).

Assume that
∑∞

n=0 an converges. Then

lim
x↑1

f(x) =
∞∑
n=0

an.

In general, the converse is not true, i.e., if limx↑1 f(x) exists one can not conclude

that
∑∞

n=0 an converges. For instance, if f(x) = (1 + x)−1 =
∑∞

n=0(−1)nxn, then

limx↑1 f(x) = 1
2
, but

∑∞
n=0(−1)n diverges.

In 1897, Tauber proved a converse to Abel’s Theorem, but under an additional

hypothesis. Let again f(x) =
∑∞

n=0 anx
n be a power series with real coefficients

converging on (−1, 1). Assume that

(6.1) lim
x↑1

f(x) =: α exists,

and moreover,

(6.2) lim
n→∞

nan = 0.

Then

(6.3)
∞∑
n=0

an converges and is equal to α.
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Tauber’s result led to various other “Tauberian theorems,” which are are all of the

following shape:

- suppose one knows something about the behaviour of f(x) as x ↑ 1 (such as (6.1));

- further suppose one knows something about the growth of an as n→∞ (such as

(6.2));

- then one can conclude something about the convergence of
∑∞

n=0 an (such as (6.3)).

There is now a very general “Tauberian theory,” which is about Tauberian the-

orems for functions defined by integrals. These include as special cases Tauberian

theorems for power series and Dirichlet series.

We will prove a Tauberian theorem for Laplace transforms

G(z) :=

∫ ∞
0

F (t)e−ztdt,

where F : [0,∞) → C is a ‘decent’ function and z is a complex variable. This

Tauberian theorem has the following shape.

- Assume that the integral converges for Re z > 0;

- assume that one knows something about the limiting behaviour of G(z) as Re z ↓ 0;

- assume that one knows something about the growth order of F ;

- then one can conclude something about the convergence of
∫∞
0
F (t)dt.

With some modifications, we may view power series as special cases of Laplace

transforms. Let g(x) =
∑∞

n=0 anx
n be a power series converging for |x| < 1. Define

the function F (t) on [0,∞) by

F (t) := an if n 6 t < n+ 1 (n ∈ Z>0).

Then if Re z > 0,∫ ∞
0

F (t)e−ztdt =
∞∑
n=0

∫ n+1

n

F (t)e−ztdt =
∞∑
n=0

an

∫ n+1

n

e−ztdt

=
∞∑
n=0

an
1

z

(
e−nz − e−(n+1)z

)
=

1− e−z

z

∞∑
n=0

ane
−nz.

Hence

g(e−z) =
z

1− e−z

∫ ∞
0

F (t)e−ztdt if Re z > 0.
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Later, we show how a Dirichlet series can be expressed in terms of a Laplace trans-

form.

Around 1930, Wiener developed a general Tauberian theory, which is now part

of functional analysis. From this, in 1931, Ikehara deduced a Tauberian theorem

for Dirichlet series (now known as the Wiener-Ikehara Theorem), with which one

can give simple proofs of the Prime Number Theorem and various generalizations

thereof. In 1980, Newman published a new method to derive Tauberian theorems,

based on a clever contour integration and avoiding any functional analysis. This

was developed further by Korevaar.

Using the ideas of Newman and Korevaar, we prove a Tauberian theorem for

Laplace transforms, and deduce from this a weaker version of the Wiener-Ikehara

theorem. This weaker version suffices for a proof of the Prime Number Theorem for

arithmetic progressions.
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6.2 A Tauberian theorem for Laplace transforms

Lemma 6.1. Let F : [0,∞)→ C be a measurable function. Further, assume there

is a constant M such that

|F (t)| 6M for t > 1.

Then

G(z) :=

∫ ∞
0

F (t)e−ztdt

converges, and defines an analytic function on {z ∈ C : Re z > 0}.

Proof. We apply Theorem 2.6. We check that the conditions of that theorem are

satisfied. Let U := {z ∈ C : Re z > 0}. First, F (t)e−zt is measurable on [0,∞)×U .

Second, for every fixed t ∈ [0,∞), the function z 7→ F (t)e−tz is analytic on U .

125



Third, let K be a compact subset of U . Then there is δ > 0 such that Re z > δ for

z ∈ K, and thus,

|F (t)e−zt| 6Me−δt for z ∈ K.

The integral
∫∞
0
M · e−δtdt converges. So indeed, all conditions of Theorem 2.6 are

satisfied and thus, by that Theorem, G(z) is analytic on U .

We are now ready to state our Tauberian theorem.

Theorem 6.2. Let F : [0,∞)→ C be a function with the following properties:

(i) F is measurable;

(ii) there is M > 0 such that |F (t)| 6M for all t > 0;

(iii) there is a function G(z), which is analytic on an open set containing

{z ∈ C : Re z > 0}, such that∫ ∞
0

F (t)e−ztdt = G(z) for Re z > 0.

Then
∫∞
0
F (t)dt converges and is equal to G(0).

Remark. Theorem 6.2 may be rephrased as

lim
z→0,Re z>0

∫ ∞
0

F (t)e−ztdt =

∫ ∞
0

lim
z→0,Re z>0

F (t)e−ztdt.

Although this seems plausible it is highly non-trivial. Indeed, it will imply the Prime

Number Theorem!

Proof. The proof consists of several steps.

Step 1. Reduction to the case G(0) = 0.

We assume that Theorem 6.2 has been proved in the special case G(0) = 0 and

deduce from this the general case.

Assume that G(0) 6= 0. Define new functions

F̃ (t) := F (t)−G(0)e−t, G̃(z) := G(z)− G(0)

z + 1
.

Then F̃ satisfies (i),(ii), the function G̃ is analytic on an open set containing

{z ∈ C : Re z > 0}, we have G̃(0) = 0, and for Re z > 0 we have∫ ∞
0

F̃ (t)e−ztdt =

∫ ∞
0

F (t)e−ztdt−G(0)

∫ ∞
0

e−(z+1)tdt = G(z)− G(0)

z + 1
= G̃(z).
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Hence F̃ satisfies (iii). Now if we have proved that
∫∞
0
F̃ (t)dt = G̃(0) = 0, then it

follows that ∫ ∞
0

F (t)dt = G(0)

∫ ∞
0

e−tdt = G(0).

Henceforth we assume, in addition to the conditions (i)–(iii), that G(0) = 0.

Step 2. The function GT .

For T > 0, define

GT (z) :=

∫ T

0

F (t)e−ztdt.

We show that GT is analytic on C. We apply again Theorem 2.6 and verify the

conditions of that theorem. First, F (t)e−zt is measurable on [0, T ]×C. Second, for

every fixed t ∈ [0, T ], z 7→ F (t)e−zt is analytic on C. To verify the third property, let

K be a compact subset of C. Then for z ∈ K, there is A > 0 such that Re z > −A
for z ∈ K. Hence

|F (t)e−zt| 6MeAt for 0 6 t 6 T, z ∈ K

and clearly,
∫ T
0
M · eAtdt < ∞ since we integrate over a bounded interval. So by

Theorem 2.6, GT is indeed analytic on C.

We clearly have

GT (0) =

∫ T

0

F (t)dt.

So we have to prove:

(6.4) lim
T→∞

GT (0) = G(0) = 0.
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Step 3. An integral expression for GT (0).

We fix a parameter R > 0. It will be important

in the proof that R can be chosen arbitrarily.

Let:

C+ the semi-circle {z ∈ C : |z| = R, Re z > 0},
traversed counterclockwise;

C− the semi-circle {z ∈ C : |z| = R, Re z 6 0},
traversed counterclockwise;

L the line segment from −iR to iR, traversed

upwards.

Define the auxiliary function (invented by Newman):

JR,T (z) := eTz
(

1 +
z2

R2

)
· 1

z
.

The function GT (z) · JR,T (z) is analytic for z 6= 0, and at z = 0 it has a simple pole

with residue GT (0) (or a removable singularity if GT (0) = 0). So by the Residue

Theorem,

(A)
1

2πi

∫
C++C−

GT (z)JR,T (z)dz = GT (0).

The function G(z) is analytic on an open set containing {Re z > 0}. Further,

G(z)JR,T (z) is analytic on this open set. For it is clearly analytic if z 6= 0, and at

z = 0 the simple pole of JR,T (z) is cancelled by the zero of G(z) at z = 0, thanks to

our assumption G(0) = 0. So by Cauchy’s Theorem,

(B)
1

2πi

∫
C++(−L)

G(z)JR,T (z)dz = 0.
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We subtract (B) from (A). This gives for GT (0) the expression

GT (0) =
1

2πi

∫
C+

GT (z)JR,T (z)dz +
1

2πi

∫
C−

GT (z)JR,T (z)dz

− 1

2πi

∫
C+

G(z)JR,T (z)dz +
1

2πi

∫
L

G(z)JR,T (z)dz

=
1

2πi

∫
C+

(GT (z)−G(z))JR,T (z)dz +
1

2πi

∫
C−

GT (z)JR,T (z)dz

+
1

2πi

∫
L

G(z)JR,T (z)dz

=: I1 + I2 + I3,

where I1, I2, I3 denote the three integrals. To show that GT (0)→ 0 as T →∞, we

have to estimate |I1|, |I2|, |I3|. Here we use
∣∣∣∫γ f(z)dz

∣∣∣ 6 length(γ) · supz∈γ |f(z)|.

Step 4. Estimation of |I1|.

We first estimate |(GT (z)−G(z))JR,T (z)| for z ∈ C+. First assume that z ∈ C+,

Re z > 0. Using the condition |F (t)| 6M for t > 0, we obtain

|GT (z)−G(z)| =

∣∣∣∣∫ ∞
T

F (t)e−ztdt

∣∣∣∣ 6 ∫ ∞
T

|F (t)| · e−tRe zdt

6
∫ ∞
T

M · e−tRe zdt =
M

Re z
· e−TRe z.

Further, for z ∈ C+, we have z · z = |z|2 = R2. Hence

|JR,T (z)| = eTRe z

∣∣∣∣(1 +
z2

z · z

)1

z

∣∣∣∣ = eTRe z

∣∣∣∣z + z

z · z

∣∣∣∣ = 2eTRe z · Re z

R2
.

Hence for z ∈ C+, Re z > 0,

|(GT (z)−G(z))JR,T (z)| 6 M

Re z
· e−TRe z · 2eTRe z · Re z

R2
6

2M

R2
.

By continuity, this is true also if Re z = 0. Hence

|I1| 6
1

2π
length(C+) · sup

z∈C+

|(GT (z)−G(z))JR,T (z)| 6 1

2π
· πR · 2M

R2
,
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i.e.,

|I1| 6
M

R
.

Step 5. Estimation of |I2|.

The argument is similar to the estimation of |I1|. We start with estimating

|GT (z)JR,T (z)| for z ∈ C−. First assume that z ∈ C−, Re z < 0. Then, using again

|F (t)| 6M for t > 0,

|GT (z)| =

∣∣∣∣∫ T

0

F (t)e−ztdt

∣∣∣∣ 6 ∫ T

0

|F (t)| · e−tRe zdt

6
∫ T

0

M · e−tRe zdt =
M

|Re z|
(
eT |Re z| − 1

)
6

M

|Re z|
· eT |Re z|

while also

|JR,T (z)| = eTRe z ·
∣∣∣∣z + z

z · z

∣∣∣∣ = 2e−T |Re z| · |Re z|
R2

.

Hence for z ∈ C− with Re z < 0,

|GT (z)JR,T (z)| 6 2M

R2
.

Again this holds true also if Re z = 0. So

|I2| 6
1

2π
length(C−) · sup

z∈C−
|GT (sz)JR,T (z)| 6 1

2π
· πR · 2M

R2
,

leading to

|I2| 6
M

R
.

Step 6. Estimation of |I3|.

We choose for L the parametrization z = iy, −R 6 y 6 R. Thus,

I3 =
1

2πi

∫ R

−R
G(iy)JR,T (iy)d(iy) =

1

2π

∫ R

−R
HR(y)eiTydt,

where

HR(y) := G(iy)
(

1− y2

R2

) 1

iy
.
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Since by assumption, G(0) = 0, the function G(z)/z is analytic on an open set

containing {z ∈ C : Re z > 0}. Hence HR(y) is continuously differentiable on

[−R,R]. Since HR is independent of T , there is a constant A(R) independent of T

such that

|HR(y)| 6 A(R), |H ′R(y)| 6 A(R) for y ∈ [−R,R].

Using integration by parts, we get∫ R

−R
HR(y)eiTydy =

1

iT

∫ R

−R
HR(y)deiTy

=
1

iT

(
HR(R)eiTR −HR(−R)e−iTR −

∫ R

−R
H ′R(y)eiTydy

)
.

Since |eiTy| = 1, we obtain∣∣∣∣∫ R

−R
HR(y)eiTydy

∣∣∣∣ 6
1

T

(
A(R) + A(R) +

∫ R

−R
|H ′R(y)|dy

)
6

2A(R) + 2RA(R)

T
.

Hence

|I3| 6
C(R)

T
,

where C(R) depends on R, but is independent of T .

Step 7. Conclusion of the proof.

We have to prove that limT→∞GT (0) = G(0) = 0, in other words, for every ε > 0

there is T0 such that |GT (0)| < ε for all T > T0. Combining steps 3–6, we get, for

every choice of R, T ,

|GT (0)| 6 |I1|+ |I2|+ |I3| 6
2M

R
+
C(R)

T
.

Let ε > 0. Then choose R such that 2M/R < ε/2, and subsequently T0 with

C(R)/T0 < ε/2. For these choices, it follows that for T > T0,

|GT (0)| < 1
2
ε+ 1

2
ε = ε.

This completes our proof.
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6.3 A Tauberian theorem for Dirichlet series

Let Lf (s) =
∑∞

n=1 f(n)n−s be a Dirichlet series. Put

A(x) :=
∑
n6x

f(n).

We prove the following Tauberian theorem.

Theorem 6.3. Suppose Lf (s) satisfies the following conditions:

(i) f(n) > 0 for all n;

(ii) there are C > 0, σ > 0 such that |A(x)| 6 Cxσ for all x > 1;

(iii) Lf (s) converges for s ∈ C with Re s > σ;

(iv) there is an open subset U of C containing {s ∈ C : Re s > σ} such that

Lf (s) can be continued to a function that is analytic on U \ {σ} and for which

lims→σ(s− σ)Lf (s) = α.

Then

lim
x→∞

A(x)

xσ
=
α

σ
.

Remarks. 1) Condition (iii) follows from (ii) (see homework). Further, (iii) implies

that Lf (s) is analytic for Re s > σ.

2) Condition (iv) means that Lf (s) has a simple pole with residue α at s = σ if

α 6= 0, and a removable singularity at s = σ if α = 0.

3) The Wiener-Ikehara Theorem is the same as Theorem 6.3, except that only

conditions (i),(iii),(iv) are required and (ii) can be dropped.

We start with some preparations. Notice that condition (iv) of Theorem 6.3

implies that there is an analytic function g(s) on an open set containing {s ∈ C :

Re s > σ} such that

(6.5) Lf (s) =
α

s− σ
+ g(s) for s ∈ C with Re s > σ.

Further, we need some lemmas.

Lemma 6.4. For s ∈ C with Re s > σ we have

Lf (s) = s

∫ ∞
1

A(x)x−s−1dx.
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Proof. Let Re s > σ. Then by partial summation we have for every integer N > 1,

N∑
n=1

f(n)n−s = A(N)N−s + s

∫ N

1

A(x)x−s−1dx.

Since |A(N)| 6
∑N

n=1 f(n) 6 CNσ, we have A(N)N−s 6 CNσ · N−Re s → 0 as

N →∞. By letting N →∞, the lemma follows.

Lemma 6.5.

∫ ∞
1

A(x)− (α/σ)xσ

xσ+1
· dx = σ−1g(σ)− σ−2α converges.

Proof. By substituting x = et, we see that the identity to be proved is equivalent to

(6.6)

∫ ∞
0

(
e−σtA(et)− α/σ

)
dt = σ−1g(σ)− σ−2α.

We apply Theorem 6.2 to F (t) := e−σtA(et) − α/σ. We check that this F satisfies

conditions (i),(ii),(iii) of Theorem 6.2.

First, F (t) is measurable (e.g., it has only countably many discontinuities). Sec-

ond, by condition (ii) of Theorem 6.3,

|F (t)| 6 C + |α/σ| for t > 0.

Hence conditions (i),(ii) of Theorem 6.2 are satisfied. As for condition (iii), notice

that by (6.6), (6.5) we have for Re z > 0, on substituting back x = et,∫ ∞
0

F (t)e−ztdt =

∫ ∞
0

(
e−σtA(et)− α/σ

)
e−ztdt

=

∫ ∞
1

A(x)x−z−σ−1dx − (α/σ)

∫ ∞
1

x−z−1dx

=
1

z + σ
Lf (z + σ)− α

σz
=

1

z + σ

(α
z

+ g(z + σ)
)
− α

σz
,

implying

(6.7)

∫ ∞
0

F (t)e−ztdt =
1

z + σ

(
g(z + σ)− α/σ) if Re z > 0.

The right-hand side is analytic on an open set containing {z ∈ C : Re z > 0}, hence

(iii) is satisfied as well. So by Theorem 6.2, identity (6.7) extends to z = 0, and this

gives precisely (6.6).

133



By condition (i), we have f(n) > 0 for all n. Hence the function A(t) is non-

decreasing. Now Theorem 6.3 follows by combining Lemma 6.5 with the lemma

below.

Lemma 6.6. Let B : [1,∞) → R be a non-decreasing function and let β ∈ R,

σ > 0. Assume that ∫ ∞
1

B(x)− βxσ

xσ+1
· dx converges.

Then

lim
x→∞

B(x)

xσ
= β.

Proof. We may assume without loss of generality that β > 0. Indeed, assume that

β 6 0. Choose γ > 0 such that β̃ := β + γ > 0, and replace B(x) by B̃(x) :=

B(x) + γxσ. Then B̃ is non-decreasing and
∫∞
1

(B̃(x) − β̃xσ)dx/xσ+1 converges. If

we are able to prove that limx→∞ B̃(x)/xσ = β̃, then limx→∞B(x)/xσ = β follows.

So assume that β > 0. Assume that limx→∞B(x)/xσ does not exist or is not

equal to β. Then there are two possibilities:

(a) there are ε > 0 and an increasing sequence {xn}∞n=1 with xn → ∞ such that

B(xn)/xσn > β(1 + ε) for all n;

(b) there are ε > 0 and an increasing sequence {xn}∞n=1 with xn → ∞ such that

B(xn)/xσn 6 β(1− ε) for all n.

We consider only case (a); case (b) can be dealt with in the same manner. So

assume (a). Then since
∫∞
1

(B(x)− βxσ)dx/xσ+1 converges, we have

(6.8) lim
y1,y2→∞

∫ y2

y1

B(x)− βxσ

xσ+1
· dx = lim

y2→∞

∫ y2

1

− lim
y1→∞

∫ y1

1

= 0.

We choose y1, y2 appropriately and derive a contradiction. Notice that for x > xn
we have, since B is non-decreasing,

B(x)− βxσ

xσ+1
>
B(xn)− βxσ

xσ+1
> β · (1 + ε)xσn − xσ

xσ+1
.

This is > 0 for xn 6 x 6 (1 + ε)1/σxn, so there is some hope that with the choice

y1 = xn, y2 = (1 + ε)1/σxn the integral in (6.8) becomes strictly positive and does
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not converge to 0 as n→∞. Indeed we have∫ (1+ε)1/σxn

xn

B(x)− βxσ

xσ+1
· dx > β

∫ (1+ε)1/σxn

xn

(1 + ε)xσn − xσ

xσ+1
· dx

= β

∫ (1+ε)1/σ

1

(1 + ε)− uσ

uσ+1
· du (u = x/xn)

= β
[
− (1 + ε)σ−1u−σ − log u

](1+ε)1/σ
1

=
β

σ

(
ε− log(1 + ε)

)
.

This last number is independent of n and strictly positive, since β > 0, σ > 0 and

log(1 + ε) < ε. This contradicts (6.8). Hence case (a) is impossible.
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