
Chapter 7

The Prime number theorem for

arithmetic progressions

7.1 The Prime number theorem

We denote by π(x) the number of primes 6 x. We prove the Prime Number Theo-

rem.

Theorem 7.1. We have π(x) ∼ x

log x
as x→∞.

Before giving the detailed proof, we outline our strategy. Define the functions

θ(x) :=
∑
p6x

log p, ψ(x) :=
∑

k,p: pk6x

log p =
∑
n6x

Λ(n),

where Λ is the von Mangoldt function, given by Λ(n) = log p if n = pk for some

prime p and some k > 1, and Λ(n) = 0 otherwise.

• By Lemma 3.14 from Chapter 3 we have

∞∑
n=1

Λ(n)n−s = −ζ
′(s)

ζ(s)
for Re s > 1.

By applying Theorem 6.3 (the Tauberian theorem for Dirichlet series) to the latter

we obtain
ψ(x)

x
=

1

x

∑
n6x

Λ(n)→ 1 as x→∞.
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• We prove that ψ(x)− θ(x) is small. This gives θ(x)/x→ 1 as x→∞.

• Using partial summation, we deduce π(x) log x/x→ 1 as x→∞.

We first verify the conditions of the Tauberian theorem.

Lemma 7.2. there is an open set U containing {s ∈ C : Re s > 1} such that∑∞
n=1 Λ(n)n−s can be extended to a function analytic on U \ {1}, with a simple pole

with residue 1 at s = 1.

Proof. Recall that
∑∞

n=1 Λ(n)n−s = −ζ ′(s)/ζ(s) for s ∈ C with Re s > 1 (see

Lemma 3.15). By Theorem 5.2, ζ(s) is analytic on {s ∈ C : Re s > 0} \ {1}, with

a simple pole at s = 1. Further, by Corollary 5.4 and Theorem 5.5, ζ(s) is non-zero

on A := {s ∈ C : Re s > 1}, and hence also non-zero on an open set U containing

A. So by Lemma 0.29, ζ ′(s)/ζ(s) is analytic on U \ {1}, with a simple pole with

residue −1 at s = 1. This proves Lemma 7.2.

Lemma 7.3. (i) θ(x) = O(x) as x→∞.

(ii) ψ(x) = θ(x) +O(
√
x) as x→∞.

(iii) ψ(x) = O(x) as x→∞.

Proof. (i) By homework exercise 3a, we have
∏

p6x p 6 4x for x > 2. This implies

θ(x) =
∑
p6x

log p 6 x log 4 = O(x) as x→∞.

(ii) We have

ψ(x) =
∑

p,k: pk6x

log p =
∑
p6x

log p+
∑
p26x

log p+
∑
p36x

log p+ · · ·

= θ(x) + θ(x1/2) + θ(x1/3) + · · ·

Notice that θ(t) = 0 if t < 2. So θ(x1/k) = 0 if x1/k < 2, that is, if k > log x/ log 2.

Hence

ψ(x)− θ(x) =

[log x/ log 2]∑
k=2

θ(x1/k) 6 θ(
√
x) +

[log x/ log 2]∑
k=3

θ( 3
√
x)

6 θ(
√
x) +

( log x

log 2
− 3
)
θ( 3
√
x) = O

(√
x+ 3
√
x · log x

)
= O(

√
x) as x→∞.

(iii) Combine (i) and (ii).
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Proof of Theorem 7.1. Lemmas 7.2 and 7.3 (iii) imply that LΛ(s) =
∑∞

n=1 Λ(n)n−s

satisfies all conditions of Theorem 6.3, with σ = 1, α = 1. Hence

ψ(x)

x
=

1

x

∑
n6x

Λ(n)→ 1 as x→∞.

From Lemma 7.3 (ii) we infer

θ(x)

x
=
ψ(x) +O(

√
x)

x
=
ψ(x)

x
+O(x−1/2)→ 1 as x→∞.

We now apply partial summation to obtain our result for π(x). Thus,

π(x) =
∑
p6x

1 =
∑
p6x

log p · 1

log p
= θ(x)

1

log x
−
∫ x

2

θ(t) ·
( 1

log t

)′
dt

=
θ(x)

log x
+

∫ x

2

θ(t)

t log2 t
dt.

By Lemma 7.3 (i) there is a constant C > 0 such that θ(t) 6 Ct for all t > 2.

Together with homework exercise 1, this implies∫ x

2

θ(t)

t log2 t
· dt 6 C ·

∫ x

2

dt

log2 t
= O

( x

log2 x

)
as x→∞.

Hence

π(x) log x

x
=

θ(x)

x
+O

( log x

x
· x

log2 x

)
=

θ(x)

x
+O

( 1

log x

)
→ 1 as x→∞.

7.2 The Prime number theorem for arithmetic

progressions

Let q, a be integers with q > 2, gcd(a, q) = 1. Define

π(x; q, a) := number of primes p 6 x with p ≡ a (mod q).
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Theorem 7.4. We have π(x; q, a) ∼ 1

ϕ(q)
· x

log x
as x→∞.

The proof is very similar to that of the Prime number theorem. Define the

quantities

θ(x; q, a) :=
∑

p6x, p≡a (mod q)

log p,

ψ(x; q, a) :=
∑

p,k, pk6x, pk≡a (mod q)

log p =
∑

n6x, n≡a (mod q)

Λ(n).

Let f(n) := Λ(n) if n ≡ a (mod q), f(n) = 0 otherwise. Then

Lf (s) =
∞∑

n=1, n≡a (mod q)

Λ(n)n−s.

Let G(q) be the group of characters modulo q.

Lemma 7.5. For s ∈ C with Re s > 1 we have

Lf (s) = − 1

ϕ(q)
·
∑
χ∈G(q)

χ(a) · L
′(s, χ)

L(s, χ)
.

Proof. By homework exercise 6a we have for χ ∈ G(q) and for s ∈ C with Re s > 1,

since χ ∈ G(q) is a strongly multiplicative arithmetic function and L(s, χ) converges

absolutely,
L′(s, χ)

L(s, χ)
= −

∞∑
n=1

χ(n)Λ(n)n−s.

Using Theorem 4.11 (ii) (one of the orthogonality relations for characters) we obtain

for s ∈ C with Re s > 1,

∑
χ∈G(q)

χ(a) · L
′(s, χ)

L(s, χ)
= −

∑
χ∈G(q)

χ(a)
∞∑
n=1

χ(n)Λ(n)n−s

= −
∞∑
n=1

 ∑
χ∈G(q)

χ(a)χ(n)

Λ(n)n−s = −ϕ(q) ·
∞∑

n=1, n≡a (mod q)

Λ(n)n−s.
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Lemma 7.6. There is an open set U containing {s ∈ C : Re s > 1} such that Lf (s)

can be continued to a function analytic on an open set containing U \ {1}, with a

simple pole with residue ϕ(q)−1 at s = 1.

Proof. By Theorem 5.3 (iii), L(s, χ
(q)
0 ) is analytic on {s ∈ C : Re s > 0} \ {1}, with

a simple pole at s = 1. Further, by Corollary 5.4 and Theorem 5.5, L(s, χ
(q)
0 ) is

non-zero on A := {s ∈ C : Re s > 1}, and hence also non-zero on an open set U

containing A. Therefore, L′(s, χ
(q)
0 )/L(s, χ

(q)
0 ) is analytic on U \ {1}. Further, by

Lemma 0.29, it has a simple pole with residue −1 at s = 1.

Let χ be a character mod q with χ 6= χ
(q)
0 . By Theorem 5.3 (ii), L(s, χ) is

analytic on an open set containing A, and by Corollary 5.4 and Theorems 5.5, 5.7,

it is non-zero on A, hence on an open set containing A for which we may take U by

shrinking U if necessary.. Therefore, L′(s, χ)/L(s, χ) is analytic on U .

Now by Lemma 7.5, Lf (s) is analytic on U \{1}, with a simple pole with residue

χ
(q)
0 (a)/ϕ(q) = ϕ(q)−1 at s = 1.

Lemma 7.7. (i) θ(x; q, a) = O(x) as x→∞.

(ii) ψ(x; q, a)− θ(x; q, a) = O(
√
x) as x→∞.

(iii) ψ(x; q, a) = O(x) as x→∞.

Proof. (i) We have θ(x; q, a) 6 θ(x) = O(x) as x→∞.

(ii) We have

ψ(x; q, a)− θ(x; q, a) =
∑

k,p, k>2,pk6x, pk≡a (mod q)

log p

6
∑

k,p, k>2,pk6x

log p = ψ(x)− θ(x) = O(
√
x) as x→∞.

(iii) Obvious.

Proof of Theorem 7.4. Lemmas 7.7 (iii) and 7.6 imply that f(n), Lf (s) satisfy the

conditions of Theorem 6.3, with σ = 1, α = ϕ(q)−1. Hence

ψ(x; q, a)

x
→ 1

ϕ(q)
as x→∞,
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and then by Lemma 7.7 (ii),

θ(x; q, a)

x
=
ψ(x; q, a) +O(

√
x)

x
→ 1

ϕ(q)
as x→∞.

By partial summation we have

π(x; q, a) =
∑

26p6x, p≡a (mod q)

log p · 1

log p
=
θ(x; q, a)

log x
+

∫ x

2

θ(t; q, a)

t log2 t
· dt.

Now

0 6
∫ x

2

θ(t; q, a)

t log2 t
· dt 6

∫ x

2

θ(t)

t log2 t
· dt = O

( x

log2 x

)
as x→∞,

using the estimate from the proof of Theorem 7.1. So

π(x; q, a) log x

x
=
θ(x; q, a)

x
+O

( 1

log x

)
→ 1

ϕ(q)
as x→∞.

This completes our proof.

7.3 Related results

Riemann sketched a proof, and von Mangoldt gave the complete proof, of the fol-

lowing result, that relates the distribution of primes to the distribution of the zeros

of the Riemann zeta function. Define

ψ0(x) :=

{
ψ(x) =

∑
n6x Λ(n) if x is not a prime power,

ψ(x)− 1
2
Λ(x) if x is a prime power.

Theorem 7.8. We have for x > 1,

ψ0(x) = x− lim
T→∞

∑
|Im ρ|<T

xρ

ρ
− log 2π − 1

2
log(1− x−2),

where the sum is over all zeros ρ of ζ(s) with 0 < Re ρ < 1 and |Im ρ| < T .

For a proof of this theorem, see Chapter 17 and some previous preparatory

chapters in ’Multiplicative Number Theory’ of H. Davenport.

Knowing that an arithmetic progression contains infinitely many primes, one

would like to know when the first prime in such a progression occurs, i.e., the

smallest x such that π(x; q, a) > 0. The following estimate is due to Linnik (1944).
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Theorem 7.9. Denote by P (q, a) the smallest prime number p with p ≡ a (mod q).

There are absolute constants c, L such that for every integer q > 2 and every integer

a with gcd(a, q) = 1 we have P (q, a) 6 cqL.

The exponent L is known as ’Linnik’s constant.’ Since the appearance of Linnik’s

paper, various people have tried to estimate it. The present record is L = 5.18, due

to Xylouris (2011).

Using information about the distribution of the zeros of ζ(s), such as knowledge

of a zero-free region, one can obtain a good estimate for |ψ(x) − x| and from that,

using partial summation techniques similar to those discussed above, for |π(x) −
Li(x)|. This leads to the sharp versions of the Prime Number Theorem with error

term, mentioned in Chapter 1.

There are similar refinenents of the Prime number theorem for arithmetic pro-

gressions with an estimate for the error |π(x; q, a)− Li(x)/ϕ(q)|. The simplest case

is when we fix q and let x → ∞, but for applications it is important to have also

versions where q is allowed to move in some range when we let x→∞.

The following result was proved by Walfisz in 1936, with important preliminary

work by Landau and Siegel.

Theorem 7.10. For every A > 0 there is a constant C(A) > 0 such that for every

real x > 3, every integer q > 2 and every integer a with gcd(q, a) = 1, we have∣∣∣∣π(x; q, a)− 1

ϕ(q)
Li(x)

∣∣∣∣ 6 C(A)
x

(log x)A
.

The constant C(A) is ineffective, this means that by going through the proof of the

theorem one cannot compute the constant, but only show that it exists.

Note that if ϕ(q) > (log x)A then Theorem 7.10 is trivial because then π(x; q, a)

and 1
ϕ(q)

Li(x) are of order of magnitude lower than x/ϕ(q) < x/(log x)A.

As we mentioned in Chapter 1, there is an intricate connection between the

zero-free region of ζ(s) and estimates for |π(x)− Li(x)|, where Li(x) =
∫ x

2
dt/ log t.

Similarly, there is a connection between zero-free regions of L-functions and es-

timates for |π(x; q, a) − Li(x)/ϕ(q)|. We recall the following, rather complicated,

result of Landau (1921) on the zero-free region of L-functions.
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Theorem 7.11. There is an absolute constant c > 0 such that for every integer

q > 2 the following holds. Among all characters χ modulo q, there is at most one

such that L(s, χ) has a zero in the region

R(q) :=

{
s ∈ C : Re s > 1− c

log(q(1 + |Im s|))

}
.

If such a character χ exists, it has not more than one zero in R(q) and moreover,

χ 6= χ
(q)
0 , χ is a real character and the zero is real.

Any character χ modulo q having a zero in R(q) is called an exceptional character

mod q, and the zero of L(s, χ) in R(q) is called an exceptional zero. The Generalized

Riemann Hypothesis (GRH) asserts that if χ is a Dirichlet character modulo an

integer q > 2, then the zeros of L(s, χ) in the critical strip 0 < Re s < 1 lie in fact

on the line Re s = 1
2
. A consequence of GRH is that exceptional characters do not

exist.

In order to obtain Theorem 7.10, one needs an estimate for the real part of a

possible exceptional zero of an L-function. The following result was proved by Siegel

(1935).

Theorem 7.12. For every ε > 0 there is a number c(ε) > 0 such that for every

integer q > 2 the following holds: if χ is an exceptional character modulo q and β

an exceptional zero of L(s, χ), then Re β < 1− c(ε)q−ε.

Theorems 7.11 and 7.12 imply (after a lot of work) Theorem 7.10. Proofs of

Theorems 7.10–7.12 may be found in H. Davenport, Multiplicative Number Theory,

Graduate texts in mathematics 74, Springer Verlag, 2nd ed., 1980.

Under assumption of GRH, one can show, similar to von Koch’s result mentioned

in Chapter 1, that

(7.1)

∣∣∣∣π(x; q, a)− 1

ϕ(q)
Li(x)

∣∣∣∣ 6 Cx1/2(log x)2,

where C is an absolute constant, i.e., not depending on anything (see Davenport’s

book, Chapter 20). This result is trivial if q > x1/2 since then both π(x; q, a) and
1

ϕ(q)
Li(x) are of order of magnitude lower than x1/2(log x)2.

There has been considerable interest in sums∑
q6Q

max
16a<q, gcd(a,q)=1

∣∣∣∣π(x; q, a)− 1

ϕ(q)
Li(x)

∣∣∣∣ ,
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and the aim is to obtain good estimates for such sums, for as large as possible Q.

From (7.1), that is, assuming GRH, one can trivially deduce that this sum is at most

(7.2) CQx1/2(log x)1/2.

Surprisingly, such a result can also be proved without assuming GRH, provided that

Q is not too large.

Theorem 7.13 (Bombieri, Vinogradov, 1965). For every reals θ, A with 0 < θ < 1
2
,

A > 0 and for every x > 3 we have∑
q6xθ

max
16a<q, gcd(a,q)=1

∣∣∣∣π(x; q, a)− 1

ϕ(q)
Li(x)

∣∣∣∣ 6 C(A, θ)x/(log x)A,

where C(A, θ) depends only on θ and A.

Notice that for Q = xθ with θ < 1
2

this gives an estimate similar to (7.2). A

proof of a related result can be found in the book of Iwaniec and Kowalski, Chapter

17. The result of Walfisz mentioned above is an important ingredient in its proof.

The Elliott-Halberstam conjecture asserts that Theorem 7.13 should hold for all θ

with 0 < θ < 1.

Results such as the Bombieri-Vinogradov theorem are used in studies on gaps

between consecutive primes. Let p1 < p2 < p3 < · · · be the sequence of consecutive

primes. The twin prime conjecture asserts that there are infinitely many n with

pn+1−pn = 2. In 2014, Yitai Zhang made a breakthrough by showing that there are

infinitely many n with pn+1 − pn 6 7× 107, that is, there are infinitely many pairs

of consecutive primes that are not further than 7 × 107 apart. Recently, Maynard

(2015) improved this to 600. The Bombieri-Vinogradov Theorem is an important

ingredient in his proof. Several mathematicians have been working collectively to

further improve Maynard’s bound. Today’s record is 246, see the polymath wiki,

http://michaelnielsen.org/polymath1 → polymath8
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