
Chapter 8

Sums of nine positive cubes via

the circle method

The object of the next 4 lectures is to prove that each large enough positive integer

n is the sum of 9 positive integer cubes. The number of all possible representations

will be denoted by

(8.1) R(n) := #{(x1, . . . , x9) ∈ N9 : x31 + · · ·+ x39 = n},

where N = {1, 2, . . .}. We need to show that there exists n0 ∈ N such that

n > n0 ⇒ R(n) > 0.

The exact value of n0 shall not concern us, since a finite computation can provide a

list of all integers 9 6 n < n0 such that R(n) = 0. It is important to note that we

will prove the following much stronger statement.

Theorem 8.1. There exists a positive real constant c such that

lim
n→+∞

R(n)

n2
= c.

The constant c has an explicit value which will be given later in this course. Note

that the fact that c > 0 guarantees that R(n) remains positive for n large enough.
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8.0.1 Heuristics behind Theorem 8.1

Before we embark on the details of the proof let us give some heuristics on why the

growth of the number of representations should behave like n2. Let

(8.2) N := [n
1
3 ].

Each integer xi in (8.1) satisfies x3i 6 n, hence it lies in the interval [1, N ], which has

approximately n
1
3 integers. Therefore there are approximately (n

1
3 )9 = n3 choices

for the integers x1, . . . , x9 in (8.1). For those choices the polynomial

x31 + · · ·+ x39

takes values between 1 and n. If it were true that each such value can be taken

with equal probability then the probability that it takes the value n would be 1
n
.

Therefore the number of representations R(n) should be approximately the product

of all available values (that is n3) multiplied by this probability (that is 1
n
). This

explains why R(n) grows to infinity at a rate of cn2, for some positive constant c.

The method of proof will therefore have to convert the heuristics about the random

behavior of the integer values of x31 + · · · + x39 into a legitimate argument. This

method was discovered almost a century ago by Hardy, Ramanujan and Littlewood.

It is known as the circle method. It can be used for a large variety of problems and

is of central importance in modern research; we choose to apply it for proving only

Theorem 8.1 for matters of illustration.

Literature:

Davenport, H. : Analytic methods for Diophantine equations and Diophantine inequalities,

Cambridge Mathematical Library, 2005.

Vaughan, R. C. : The Hardy-Littlewood method, Cambridge University Press, 1997.

8.1 Setting up the circle method

We will use the notation

e(z) := e2πiz, z ∈ R,

throughout our lectures. The fact that e2πi = 1 shows that this function is periodic

with period 1, meaning that e(z+ 1) = e(z). Furthermore, for a non-zero real h the
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expression ∫ 1

0

e(αh)dα

vanishes, because the anti-derivative of e(αh) is e(αh)
h

. Hence the integral equals 1 if

h = 0 and is otherwise equal to 0. Using this with h = x31 + · · ·+ x39 − n shows that

R(n) equals

∑
x1,...,x9∈N
16xi6N

∫ 1

0

e
(
α
(
x31 + · · ·+ x39 − n

))
dα =

∫ 1

0

9∏
i=1

 ∑
xi∈N

16xi6N

e(αx3i )

 e(−αn)dα.

Letting for any α ∈ R,

(8.3) f(α) := e(α · 13) + e(α · 23) + · · ·+ e(αN3) =
N∑
m=1

e(αm3)

where as always N = [n1/3], we have proved that

R(n) =

∫ 1

0

f(α)9e(−αn)dα.

Note that the function f(α) also has period 1, therefore we could replace the interval

of integration [0, 1] by any interval U of length 1. It will be convenient to use the

interval

U :=

[
1

n1− 1
300

, 1 +
1

n1− 1
300

]
,

thus leading to

(8.4) R(n) =

∫
U
f(α)9e(−αn)dα.

This identity is the starting point of the circle method. Its name comes from the

fact that the function of n given by e(−αn), α ∈ [0, 1], takes values in the unit circle

of the complex numbers.

8.1.1 Major and minor arcs

One way to think of f(α) is to consider what happens if one had the simpler function

f1(α) := e(α · 1) + e(α · 2) + · · ·+ e(αN) =
N∑
m=1

e(αm).
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If α is an integer then this function equals N and otherwise it has the value

e(α)
e(αN)− 1

e(α)− 1
=

e(α(N + 1))− e(α)

e(α)− 1
.

Observe that the denominator is a continuous function, hence it becomes almost

zero when α is almost an integer. This means that f1 takes larger values when α

is close to being an integer. A similar phenomenon persists for the slightly more

complicated function f(α), only this time the function f(α) takes larger values when

α is close to a rational with small denominator, e.g. 1
1
, 1

2
, 1

3
, 2
3
, 1

4
, 3
4
, etc. This fact

is not obvious but it will become clear in the next lectures. With this in mind we

observe that the main contribution in the definite integral (8.4) will come when α is

close to some a
q

for coprime positive integers a and q. We denote one such interval

as follows,

(8.5) M(a, q) :=
{
α ∈ U :

∣∣∣α− a

q

∣∣∣ 6 1

n1− 1
300

}
, a, q ∈ N : gcd(a, q) = 1.

These intervals are usually called major arcs ; when α ∈ M(a, q) the function e(α)

takes values in an arc of the unit circle of the complex plane. We can now introduce

the union of all major arcs around rationals with small denominator,

(8.6) M :=
⋃

16q6n1/300

⋃
16a6q−1
gcd(a,q)=1

M(a, q).

What remains of the interval U will be called minor arcs and will be denoted by

(8.7) m := U \M.

Observe that two different major arcs in (8.6) have empty intersection. Indeed, for

a/q 6= a′/q′ the integer aq′ − a′q is not zero, hence |aq′ − a′q| > 1. This means that∣∣∣a
q
− a′

q′

∣∣∣ =
|aq′ − a′q|

qq′
>

1

qq′
>

1

n
2

300

>
4

n1− 1
300

,

where in the last inequality we used that n is sufficiently large. Hence the distance

of the centres of the intervals M(a, q) and M(a′, q′) is greater than the sum of their

lengths, therefore they are disjoint.

By (8.4) we have therefore proved the important identity

(8.8) R(n) =

∫
M

f(α)9e(−αn)dα +

∫
m

f(α)9e(−αn)dα.
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We will show that the integral over the major arcs M will make a contribution of

size n2, while the contribution from the minor arcs m will be significantly smaller.

Therefore the integral over the major arcs should be thought of as a main term and

the integral over the minor arcs as the error term. Specifically, we shall prove in the

next lectures that there exists a positive constant c > 0 such that

(8.9) lim
n→+∞

∫
M
f(α)9e(−αn)dα

n2
= c

and

(8.10) lim
n→+∞

∫
m
f(α)9e(−αn)dα

n2
= 0.

These two limit statements are clearly sufficient for the validity of Theorem 8.1.

8.2 Weyl’s inequality

Note that for each β ∈ R we have |e(β)| = 1 and hence for all α ∈ R we see that

the triangle inequality yields

|f(α)| =
∣∣ N∑
m=1

e(αm3)
∣∣ 6 N∑

m=1

|e(αm3)| = N 6 n
1
3 .

This is the trivial bound for |f(α)| and in order to prove (8.10) we will need to

find a better bound whenever α is not close to a rational number. For such α the

function e(αm3) oscillates around the unit circle quite often, therefore we expect

some cancellation among the values e(αm3) for m = 1, . . . , N .

Before stating the precise lemma, due to Weyl, let us prepare its proof. For any

α ∈ R we have

|f(α)|2 = f(α)f(α) =

(
N∑

m1=1

e(αm3
1)

)(
N∑

m2=1

e(αm3
2)

)
=

N∑
m2=1

(
N∑

m1=1

e(α(m3
1 −m3

2))

)
.

In the inner sum we make the change of variables m1 7→ h1 given by m1 = h1 +m2.

The condition 1 6 m1 6 N is equivalent to 1 −m2 6 h1 6 N −m2, therefore we

arrive at the expression

N∑
m2=1

N−m2∑
h1=1−m2

e(α((h1 +m2)
3 −m3

2)).
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Note that the variable h1 takes values in the interval [1−N,N − 1] and that

(h1 +m2)
3 −m3

2 = h31 + 3h1(h1m2 +m2
2).

Inverting the order of summation in the last sum we produce the equality

|f(α)|2 =
∑
|h1|<N

e(αh31)
∑

m2∈[1,N ]∩[1−h1,N−h1]

e(α3h1(h1m2 +m2
2))

and the triangle inequality shows that

|f(α)|2 6
∑
|h1|<N

|Sh1 |,

where we define

(8.11) Sh :=
∑

m2∈[1,N ]∩[1−h,N−h]

e(3αh(hm2 +m2
2)).

Therefore we have |f(α)|4 6 (
∑
|h1|<N |Sh1|)

2 and we can combine this with the

following special form of Cauchy’s inequality 1 ∑
|h1|<N

|Sh1|

2

=

 ∑
|h1|<N

1 · |Sh1|

2

6

 ∑
|h1|<N

12

 ∑
|h1|<N

|Sh1|2
6 2N

 ∑
|h1|<N

|Sh1 |2


to obtain

(8.12) |f(α)|4 6 2N
∑
|h1|<N

|Sh1|2.

This is called a differencing process owing to the fact that the sum f(α) involves the

cubic polynomial x31 but the sum Sh1 involves the quadratic polynomial m2
2 + h1m2.

We perform this process once more to obtain linear polynomials, which are easier

to handle. We have

|Sh1|2 =
∑

m2,m3∈[1,N ]∩[1−h1,N−h1]

e(3αh1(h1m2 +m2
2 − h1m3 −m2

3))

1The general Cauchy’s inequality is
( k∑
i=1

xiyi
)2

6
( k∑
i=1

x2
i

)( k∑
i=1

y2i
)
for xi, yi ∈ R.
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and the change of variables m2 7→ h2, where m2 = m3 +h2 makes the last sum equal

to ∑
|h2|<N

e(3αh21h2 + 3αh1h
2
2)
∑
m3∈I

e(6αh1h2m3),

where I ⊂ [1, N ] is the intersection of 4 intervals, namely,

I := [1, N ] ∩ [1− h1, N − h1] ∩ [1− h2, N − h2] ∩ [1− h1 − h2, N − h1 − h2].

By the triangle inequality we get

|Sh1|2 6
∑
|h2|<N

∣∣∣ ∑
m3∈I

e(6αh1h2m3)
∣∣∣,

which, when combined with (8.12), yields

|f(α)|4 6 2N
∑
|h1|<N

∑
|h2|<N

∣∣∣ ∑
m3∈I

e(6αh1h2m3)
∣∣∣.

If h1 = 0 then each term in the sum equals 1 and the fact that I ⊂ [1, N ] shows that

the contribution to |f(α)|4 is 6 (2N)2N , while the same holds for the contribution

of h2 with h2 = 0. We have thus obtained

|f(α)|4 6 8N3 + 2N
∑

0<|h1|<N

∑
0<|h2|<N

∣∣∣ ∑
m3∈I

e(6αh1h2m3)
∣∣∣.

For each h1, h2 in the last sum, the integer h = 6|h1h2| satisfies 0 6 h 6 6N2

and furthermore there are at most 4τ(h
6
) 6 4τ(h) such decompositions, where τ(k)

denotes the number of positive divisors of k. This leads to the bound

|f(α)|4 6 8N3 + 8N
∑

0<|h|<6N2

τ(h)
∣∣∣∑
m∈I

e(hmα)
∣∣∣.

We will prove in the exercises that for each ε > 0 one has τ(h) = Oε(h
ε), hence

(8.13) |f(α)|4 �ε N
3 +N1+ε

∑
0<h<6N2

∣∣∣∑
m∈I

e(hmα)
∣∣∣,

where we used that the sum over m is of the same modulus when h is replaced by

−h.
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Lemma 8.2. For a real number θ let ‖θ‖ denote the distance to the nearest integer.

Then for each θ ∈ R we have∣∣∣∑
m∈I

e(θm)
∣∣∣� min

{
N,

1

‖θ‖

}
.

Proof. The periodicity of e(z) allows us to assume that θ is a real number in (−1
2
, 1
2
],

hence ‖θ‖ = |θ|. Observe that the set I ⊂ [1, N ] is the intersection of 4 closed

intervals contained in [1, N ], hence it is a closed interval, say [a, b], contained in

[1, N ]. Therefore it is sufficient to prove the bound in our lemma for any sum∑
m∈[a,b] e(θm) where a, b are integers with 1 6 a 6 b 6 N . If θ = 0 then∣∣∣ ∑

m∈[a,b]

e(θm)
∣∣∣ 6 N

and our bound is valid. If θ is not an integer then∣∣∣ ∑
m∈[a,b]

e(θm)
∣∣∣ =

∣∣∣e(aθ)
∑

m∈[0,b−a]

e(θm)
∣∣∣ =

∣∣∣e(θ(b− a+ 1))− 1

e(θ)− 1

∣∣∣ 6 2

|e(θ)− 1|

and the inequality

|e(θ)− 1| = |e(θ/2)||e(θ/2)− e(−θ/2)| = 2| sin(πθ)| � |θ|,

valid in the interval |θ| < 1
2
, concludes our proof.

Combining this lemma with (8.13) provides the bound

(8.14) |f(α)|4 �ε N
3 +N1+ε

∑
0<h<6N2

min
{
N,

1

‖αh‖

}
.

Theorem 8.3 (Weyl’s inequality). Assume that there are coprime positive integers

a, q with n
1

300 6 q 6 n1− 1
300 such that the real number α satisfies∣∣∣α− a

q

∣∣∣ 6 1

q2
.

Then we have ∣∣f(α)
∣∣�ε n

1
3
− 1

2000 .
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Let us comment that if q is closer to 1 than in the statement above then α is

relatively closer to an integer, thus each term e(αm3) in the definition (8.3) of f(α)

may be close to 1. This means that f(α) could take a value close to N � n
1
3 and

then the conclusion of the lemma would not be valid.

Proof. In light of (8.2) and (8.14) it is sufficient to prove that

(8.15)
∑

0<h<6N2

min
{
N,

1

‖αh‖

}
� n1− 1

400 .

We may now partition the sum over h into blocks of q consecutive integers; the

number of such blocks is at most

6N2

q
+ 1.

The sum over any of these blocks will be

q−1∑
m=0

min
{
N,

1

‖α(h1 +m)‖

}
,

where h1 is the least integer of the block. The inequality m 6 q shows that

α(h1 +m) = αh1 +
am

q
+O

(
m

q2

)
= αh1 +

am

q
+O

(
1

q

)
.

The coprimality of a and q guarantees that as m ranges through the interval [0, q−1]

the integer am will assume each value (mod q) once. We can make the substitution

r ≡ am(mod q) to bound the last sum by

q−1∑
r=0

min
{
N,

1

‖(r + b)/q +O(1/q)‖

}
,

where b is the integer closest to αqh1, i.e. is independent of r. If the least residue

of r + b (mod q), which we call s, satisfies s = O(1) then∥∥∥s
q

+O

(
1

q

)∥∥∥ = O

(
1

q

)
,

in which case we bound the minimum by N . In all other cases we will have∥∥∥s
q

+O

(
1

q

)∥∥∥� s

q
.
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Therefore the sum over m is

� N +

q−1∑
s=1

q

s
� N + q log q,

where we have used

q−1∑
s=1

1

s
6 1 + log q. Recalling the number of blocks we can bound

the sum in (8.14) by

�
(
N2

q
+ 1

)
(N + q log q)� N3

q
+N2 log q +N + q log q.

The inequalities N 6 n
1
3 and n

1
300 6 q 6 n1− 1

300 allow us to bound this by

� n1− 1
300 log n,

which proves (8.15).
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