
Chapter 9

Hua’s lemma and a first

expedition into the major arcs

We continue the proof of Theorem 8.1 regarding R(n), which denotes the number of

representations of a large positive integer n as a sum of 9 positive integer cubes. In

Chapter 8 we used the circle method to show that R(n) equals the sum of an integral

over the major arcs M and an integral over the minor arcs m. In addition, we started

proving (8.10) which states that the integral over the minor arcs has a rather small

value. In this chapter we finish the proof of (8.10) by using Hua’s lemma and begin

the proof of (8.9), which evaluates precisely the value of the integral over the major

arcs.

9.1 Hua’s lemma

Let again N := [n1/3] and f(α) =
∑N

m=1 e(αm3). To prove (8.10) we observe that

(9.1)
∣∣∣ ∫

m

f(α)9e(−αn)dα
∣∣∣ 6 ∫

m

|f(α)|9dα 6 sup
α∈m
|f(α)|

∫
m

|f(α)|8dα.

To bound the supremum above we will employ Weyl’s inequality (Theorem 8.3). This

requires that each α ∈ m can be approximated by a rational a
q

with denominator

not too large and not too small. Namely we need to find an integer in the range
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n
1

300 6 q 6 n1− 1
300 and an integer a such that

(9.2)
∣∣∣α− a

q

∣∣∣ 6 1

qn1− 1
300

.

To see this, let m := [n1− 1
300 ] and observe that the m real numbers

βq = αq − [αq], (q = 1, 2, . . . ,m),

are contained in the interval [0, 1). We split [0, 1) into m + 1 subintervals of equal

size,

Br :=
[ r − 1

m+ 1
,

r

m+ 1

)
, (r = 1, . . . ,m+ 1),

and now there are 2 cases to consider. Firstly, if there exists some βq in B1 or

Bm+1 then (9.2) holds with a = [αq] and a = 1 + [αq] respectively. If there is no

βq ∈ B1∪Bm+1 then, by the pigeonhole principle, there must be at least one box Br

that has 2 (or more) of the numbers βq; denote them as βq1 and βq2 , where q1 < q2.

We then obtain

1

m+ 1
>
∣∣∣βq1 − βq2∣∣∣ =

∣∣∣α(q2 − q1)− ([αq2]− [αq1])
∣∣∣,

hence (9.2) holds with q = q2 − q1 and a = [αq2] − [αq1]. We have therefore

proved (9.2); note that by writing a
q

in lowest terms the value of q cannot increase,

hence we can solve (9.2) with 1 6 q 6 n1− 1
300 and a coprime to q.

In order to apply Theorem 8.3 we need to know that q > n
1

300 ; we will show by

contradiction that this is a consequence of the fact that α ∈ m. Taking q, a = 1 in

(8.5) shows that[
1− 1

n1− 1
300

, 1 +
1

n1− 1
300

]
⊂M, hence m ⊂

(
1

n1− 1
300

, 1− 1

n
1

300

)
.

Therefore α must be in the last interval, hence (9.2) reveals that a 6 q.

Now if q 6 n
1

300 holds, then owing to the definition (8.6) (which states that

M(a, q) is a subset of M whenever q 6 n
1

300 ) we deduce that α must be in M. This

is a contradiction because we assume that α ∈ m, which was defined by (8.7) as the

complement of M. So we can apply Theorem 8.3 and obtain

sup
α∈m
|f(α)| � n

1
3
− 1

2000 .
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Combining this with (9.1) and the next lemma provides the bound∣∣∣ ∫
m

f(α)9e(−αn)dα
∣∣∣� n2− 1

4000 ,

which proves (8.10).

Lemma 9.1 (Hua’s lemma). We have∫ 1

0

|f(α)|8dα� n
5
3 .

Proof. Recall that we have defined N := [n
1
3 ] and f(α) =

∑N
m=1 e(αm3). First let

us observe that ∫ 1

0

|f(α)|2dα =
∑

16m1,m26N

∫ 1

0

e(α(m3
1 −m3

2))dα,

which equals N since the inner integral vanishes whenever m1 6= m2. In the notation

of §8.2 we also have

(9.3) |f(α)|2 =
∑
|h|<N

∑
m2∈Ih

e(α(h(h2 + 3hm2 + 3m2
2))),

where

Ih := N ∩ [1, N ] ∩ [1− h,N − h].

The contribution of the term with h = 0 is bounded by the cardinality of Ih, which

is 6 N , therefore

|f(α)|2 6 N +
∑

0<|h|<N

∑
m2∈Ih

e(α(h(h2 + 3hm2 + 3m2
2))).

Multiplying this with |f(α)|2 and integrating over the interval [0, 1) we obtain∫ 1

0

|f(α)|4dα 6 N2+
∑

16x1,x26N

∑
0<|h|<N

∑
m2∈Ih

∫ 1

0

e(α(x31−x32+h(h2+3hm2+3m2
2)))dα.

We see that the last integral equals the number of solutions of

x31 − x32 + h(h2 + 3hm2 + 3m2
2) = 0
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with x1, x2 ∈ N ∩ [1, N ] and 0 < |h| < N,m2 ∈ Ih. The number of possibilities for

x1, x2 is 6 N2. If x1 = x2 then for each h there are at most 2 solutions for m2 in

h2 + 3hm2 + 3m2
2 > 0; this contribution is � N2. In any other case, h must divide

x31 − x32, for which there are

6 τ(x31 − x32)�ε |x31 − x32|ε �ε N
ε

possibilities for h, where ε is any positive real. For each such value for x1, x2, h there

are at most 2 values of m2 satisfying the equation above. This shows that for any

ε > 0 we have ∫ 1

0

|f(α)|4dα�ε N
2+ε.

The rest of the proof proceeds in a similar manner; one proves bounds for∫ 1

0
|f(α)|8dα from the last bound for

∫ 1

0
|f(α)|4dα in the same way that we obtained

the bound for
∫ 1

0
|f(α)|4dα from the one regarding

∫ 1

0
|f(α)|2dα. This is explained

in detail in pages 12 and 13 of Davenport’s book, Analytic methods for Diophantine

equations and Diophantine inequalities, Cambridge Mathematical Library, 2005.

9.2 Major arcs

We begin by establishing a lemma that relates the value of f(α) to that of f(a/q)

when α belongs to a major arc with centre a/q. For this we need to define

S(q, a) :=

q∑
m=1

e(am3/q), a, q ∈ N,

and

v(β) :=
1

3

n∑
m=1

e(βm)

m
2
3

, β ∈ R.

Lemma 9.2. Let a, q ∈ N be coprime with 1 6 a 6 q 6 n
1

300 . If α ∈M(a, q) then

f(α) =
S(q, a)

q
v(α− a/q) +O(n

2
300 ).
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Proof. For fixed a, q the function of m given by e(am3/q) is periodic with period q.

Therefore for all t > 1 we have∑
16m6t

e(am3/q) =

q∑
r=1

e(ar3/q)
∑

16m6t
m≡r(mod q)

1.

Splitting the interval [1, t] into the subintervals [1, q], [q+ 1, 2q], . . . , we see that the

inner sum equals t/q +O(1). Hence the sum over m is∑
16m6t

e(am3/q) =
t

q
S(q, a) +O(q).

The sum on the left-hand side can be rewritten as∑
16k6t3

∃m∈Z:k=m3

e(ak/q),

therefore writing 1(k) for the characteristic function of the positive integer cubes

(i.e., 1(k) := 1 if k is an integer cube and 0 otherwise) we have shown that

(9.4)
∑

16k6t3

1(k)e(ak/q) =
t

q
S(q, a) +O(q).

Observe that ∑
16k6t3

1

k
2
3

=

∫ t3

1

dt

t
2
3

+O(1) = 3t+O(1),

therefore ∑
16k6t3

1

3k
2
3

= t+O(1).

By (9.4) we obtain that∑
16k6t3

(
1(k)e(ak/q)− 1

3k
2
3

S(q, a)

q

)
= O(q).

Define ck := e(ak/q)− S(q, a)/(3qk2/3) when k is an integer cube and otherwise let

ck := −S(q, a)/(3qk2/3). Then the last inequality becomes∑
16k6t3

ck = O(q).
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Note that this inequality is valid for all t > 1, hence the same inequality holds if t3

is replaced by t. Now define for t ∈ R>1,

F (t) :=
∑

16m6t

cm,

a function which satisfies F (t) = O(q). Now assume that β ∈ R is such that

|β| 6 1/(n1− 1
300 ). Then by partial summation we get∑

16m6n

cme(βm) = F (n)e(βn)− 2πiβ

∫ n

1

F (t)e(βt)dt,

therefore

(9.5)
∣∣∣ ∑
16m6n

cme(βm)
∣∣∣� q + |β|q

∫ n

1

1dt� (1 + |β|n)q � n
2

300 .

Letting β = α− a/q we see that f(α) =
∑

16k6n
1
3

e(αk3) equals

∑
16m6n

cme (βm) +
S(q, a)

3q
v(β),

which concludes our proof.

Define

V (α, q, a) :=
S(q, a)

q
v(α− a/q).

The last lemma proves that for α ∈M(a, q) and a, q as in its statement we have

V (α, q, a)� |f(α)|+ n2/300 � n1/3.

Therefore

f(α)9 − V (α, q, a)9 � n8/3|f(α)− V (α, q, a)| � n8/3+2/300.

Define

R∗(n) :=
∑

q6n1/300

∑
16a6q

gcd(a,q)=1

∫
M(a,q)

V (α− a/q)9e(−αn)dα

=
∑

q6n1/300

1

q9

∑
16a6q

gcd(a,q)=1

S(q, a)9
∫
M(a,q)

v(α− a/q)9e(−αn)dα.
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Then

(9.6)

∫
M

f(α)9e(−αn)dα = R∗(n) +O(n2−δ),

for δ = 19
60

. This is because by comparing the left-hand side of (9.6) with R∗(n) we

make an error∑
q6n1/300

∑
16a6q

gcd(a,q)=1

∫
M(a,q)

(f(α)9 − V (α, q, a)9)e(−αn)dα

�
∑

16q6n
1

300

q∑
a=1

n8/3+2/300|M(a, q)| �
∑

16q6n
1

300

q∑
a=1

n8/3+2/300 · n−1+1/300

� n2/300 · n5/3+3/300 = n2−19/60.

The change of variables α 7→ β given by β = α− a/q shows that

∫
M(a,q)

v(α− a/q)9e(−αn)dα = e(−an/q)
∫ n−1+ 1

300

−n−1+ 1
300

v(β)9e(−βn)dβ,

therefore we can write

(9.7) R∗(n) = S∗(n)J∗(n),

where

(9.8) S∗(n) :=
∑

q6n1/300

1

q9

∑
16a6q

gcd(a,q)=1

S(q, a)9e(−an/q)

and

(9.9) J∗(n) :=

∫ n−1+ 1
300

−n−1+ 1
300

v(β)9e(−βn)dβ.
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