
Analytic Number Theory Fall 2016, Assignment 3

Deadline: Monday December 12

The total number of points is 60. Grade=(number of points)/6.

12. We define the arithmetic function

ω(n) := number of distinct primes dividing n.

5 a) Prove that ω(n) = O

(
log n

log log n

)
as n→∞.

Hint. Let t = ω(n). Show that t! 6 n. You may use without proof that t! >

(t/e)t = et log t−t for t > 1 (the proof is by induction on t, using that (1 + t−1)t 6 e

for t > 1).

Remark. More precisely we have Stirling’s formula t! = (t/e)t
√

2πt · eλ(t) with
1

12t+1
< λ(t) < 1

12t
, see ’Stirling’s approximation’ on Wikipedia.

5 b) Prove that there are a constant c > 0 and infinitely many integers n such that

ω(n) > c
log n

log log n
.

Hint. Consider the integers nx :=
∏

p6x p for x ∈ Z>0. Use the results from

Chapter 1 and a previous exercise.

Remark. The above exercise shows that ω(n) is of order of magnitude at most

log n/ log log n and that there are infinitely many integers n for which ω(n) has

order of magnitude precisely log n/ log log n. On the other hand, in 1917, Hardy and

Ramanujan proved that for most integers n, the number ω(n) is close to log log n.

More precisely, they showed that for every increasing function ψ(n) of n, one has

lim
x→∞

1

x
#
{
n 6 x : |ω(n)− log log n| > ψ(n)

√
log log n

}
= 0.

In 1940, Erdős and Kac proved the following much more precise result, which more

or less states that (ω(n)− log log n)/
√

log log n behaves like a normally distributed

random variable, more precisely, for every a, b ∈ R with a < b we have

lim
x→∞

1

x
#
{
n 6 x : a 6

ω(n)− log log n√
log log n

6 b

}
=

1√
2π

∫ b

a

e−t
2/2dt.

1



2

See for more information the Wikipedia page on the Erdős-Kac Theorem or search

on google for the Erdős-Kac Theorem.

13. In exercises a–e below you have to apply Theorem 6.3.

3 a) Let k be an integer with k > 2. A positive integer n is called k-th power free if

there is no prime number p such that pk divides n. Define ak(n) = 1 if n is k-th

power-free and ak(n) = 0 if n is not k-th power free. Prove that
∞∑
n=1

ak(n)n−s =
ζ(s)

ζ(ks)
if Re s > 1.

Hint. Write the left-hand side as a product over the primes
∏

p(· · · ) like in Theorem

4.12.

3 b) Compute lim
x→∞

Ak(x)

x
where Ak(x) is the number of k-th power free integers up to

x.

3 c) Compute lim
x→∞

1

x2

∑
n6x

ϕ(n) where ϕ(n) is the number of integers a with 1 6 a 6 n

such that gcd(a, n) = 1.

3 d) Prove that lim
x→∞

1

x

∑
n6x

µ(n) = 0.

Hint. Consider ζ(s)−1 + ζ(s).

3 e) Let Lf (s) =
∑∞

n=1 f(n)n−s be a Dirichlet series with the following properties:

(i) there are reals C1, C2 > 0 such that f(n) ∈ R and f(n) > −C1 for all n and

|
∑

n6x f(n)| 6 C2x for all x;

(ii) Lf (s) can be continued to a function g(s) analytic on an open set containing

{s ∈ C : Re s > 1} \ {1}, with lim
s→1

(s− 1)g(s) = α.

Prove that limx→∞
1
x

∑
n6x f(n) = α.
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In the exercise below, the following is needed:

Definition. f(x) = g(x) +O(xa+ε) as x→∞ for every ε > 0 means the following:

for every ε > 0 there exist numbers C, x0, that may depend on ε, such that

|f(x)− g(x)| 6 C · xa+ε for every x > x0.

14. In general, one obtains a version of the Prime Number Theorem with error term,

i.e., π(x) = Li(x) + O(E(x)) as x → ∞ with some explicit function E(x), from a

zero-free region of ζ(s). Here, Li(x) =
∫ x
2
dt/ log t.

In this section you are asked to prove the converse:

Suppose that for all ε > 0 we have π(x) = Li(x) + O(x
1
2
+ε) as x → ∞. Then

ζ(s) 6= 0 for all s ∈ C with 1
2
< Re s < 1.

From the functional equation that relates ζ(s) to ζ(1− s), it follows then also that

ζ(s) 6= 0 for s ∈ C with 0 < Re s < 1
2
. That is, the Riemann Hypothesis holds.

To prove the above, perform the following steps.

3 a) For x > 2, prove that

θ(x) = π(x) log x−
∫ x

2

(π(t)/t)dt,

x− 2 = Li(x) log x−
∫ x

2

(Li(t)/t)dt.

3 b) Assume that for every ε > 0 we have π(x) = Li(x) + O(x
1
2
+ε) as x → ∞. Prove

that for every ε > 0 we have

θ(x) = x+O(x
1
2
+ε) as x→∞, ψ(x) = x+O(x

1
2
+ε) as x→∞.

4 c) Using Exercise 7, prove that for every ε > 0, ζ(s) +
(
ζ ′(s)/ζ(s)

)
can be continued

to a function analytic on {s ∈ C : Re s > 1
2

+ ε}, and then that ζ(s) 6= 0 for all

s ∈ C with 1
2
< Re s < 1.
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10 15.a) Prove that
∑
p6x

log p

p
= log x+ E1(x) where lim

x→∞
E1(x) exists and is finite.

Work out the following steps:

Prove that

∫ ∞
1

ψ(x)− x
x2

dx converges.

Prove that

∫ ∞
1

θ(x)− x
x2

dx converges.

Prove that
∑
p6x

log p

p
=
θ(x)

x
+

∫ x

1

θ(t)

t2
dt.

5 b) Prove that
∑
p6x

1

p
= log log x+ E2(x), where lim

x→∞
E2(x) exists and is finite.

Hint. Write
∑

p6x
1
p

=
∑

p6x
log p
p
· 1
log p

.

10 16.a) Let q, a be integers with q > 2 and gcd(a, q) = 1. Prove that

lim
x→∞

1

x

∑
n6x

n≡a (mod q)

µ(n) = 0.

10 b) What if gcd(a, q) > 1? (for a bonus; this is difficult).


