Analytic Number Theory Fall 2016, Assignment 3 Deadline: Monday December 12

The total number of points is 60 . Grade=(number of points) $/ 6$.
12. We define the arithmetic function

$$
\omega(n):=\text { number of distinct primes dividing } n \text {. }
$$

a) Prove that $\omega(n)=O\left(\frac{\log n}{\log \log n}\right)$ as $n \rightarrow \infty$.

Hint. Let $t=\omega(n)$. Show that $t!\leqslant n$. You may use without proof that $t!\geqslant$ $(t / e)^{t}=e^{t \log t-t}$ for $t \geqslant 1$ (the proof is by induction on t, using that $\left(1+t^{-1}\right)^{t} \leqslant e$ for $t \geqslant 1$).
Remark. More precisely we have Stirling's formula $t!=(t / e)^{t} \sqrt{2 \pi t} \cdot e^{\lambda(t)}$ with $\frac{1}{12 t+1}<\lambda(t)<\frac{1}{12 t}$, see 'Stirling's approximation' on Wikipedia.
b) Prove that there are a constant $c>0$ and infinitely many integers n such that $\omega(n) \geqslant c \frac{\log n}{\log \log n}$.
Hint. Consider the integers $n_{x}:=\prod_{p \leqslant x} p$ for $x \in \mathbb{Z}_{>0}$. Use the results from Chapter 1 and a previous exercise.

Remark. The above exercise shows that $\omega(n)$ is of order of magnitude at most $\log n / \log \log n$ and that there are infinitely many integers n for which $\omega(n)$ has order of magnitude precisely $\log n / \log \log n$. On the other hand, in 1917, Hardy and Ramanujan proved that for most integers n, the number $\omega(n)$ is close to $\log \log n$. More precisely, they showed that for every increasing function $\psi(n)$ of n, one has

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \#\{n \leqslant x:|\omega(n)-\log \log n| \geqslant \psi(n) \sqrt{\log \log n}\}=0
$$

In 1940, Erdős and Kac proved the following much more precise result, which more or less states that $(\omega(n)-\log \log n) / \sqrt{\log \log n}$ behaves like a normally distributed random variable, more precisely, for every $a, b \in \mathbb{R}$ with $a<b$ we have

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n \leqslant x: a \leqslant \frac{\omega(n)-\log \log n}{\sqrt{\log \log n}} \leqslant b\right\}=\frac{1}{\sqrt{2 \pi}} \int_{a}^{b} e^{-t^{2} / 2} d t
$$

See for more information the Wikipedia page on the Erdős-Kac Theorem or search on google for the Erdős-Kac Theorem.
13. In exercises a-e below you have to apply Theorem 6.3.
a) Let k be an integer with $k \geqslant 2$. A positive integer n is called k-th power free if there is no prime number p such that p^{k} divides n. Define $a_{k}(n)=1$ if n is k-th power-free and $a_{k}(n)=0$ if n is not k-th power free. Prove that

$$
\sum_{n=1}^{\infty} a_{k}(n) n^{-s}=\frac{\zeta(s)}{\zeta(k s)} \quad \text { if } \operatorname{Re} s>1
$$

Hint. Write the left-hand side as a product over the primes $\prod_{p}(\cdots)$ like in Theorem 4.12.
b) Compute $\lim _{x \rightarrow \infty} \frac{A_{k}(x)}{x}$ where $A_{k}(x)$ is the number of k-th power free integers up to x.
c) Compute $\lim _{x \rightarrow \infty} \frac{1}{x^{2}} \sum_{n \leqslant x} \varphi(n)$ where $\varphi(n)$ is the number of integers a with $1 \leqslant a \leqslant n$ such that $\operatorname{gcd}(a, n)=1$.
d) Prove that $\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leqslant x} \mu(n)=0$.

Hint. Consider $\zeta(s)^{-1}+\zeta(s)$.
e) Let $L_{f}(s)=\sum_{n=1}^{\infty} f(n) n^{-s}$ be a Dirichlet series with the following properties:
(i) there are reals $C_{1}, C_{2}>0$ such that $f(n) \in \mathbb{R}$ and $f(n) \geqslant-C_{1}$ for all n and $\left|\sum_{n \leqslant x} f(n)\right| \leqslant C_{2} x$ for all x;
(ii) $L_{f}(s)$ can be continued to a function $g(s)$ analytic on an open set containing $\{s \in \mathbb{C}: \operatorname{Re} s \geqslant 1\} \backslash\{1\}$, with $\lim _{s \rightarrow 1}(s-1) g(s)=\alpha$.
Prove that $\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leqslant x} f(n)=\alpha$.

In the exercise below, the following is needed:
Definition. $f(x)=g(x)+O\left(x^{a+\varepsilon}\right)$ as $x \rightarrow \infty$ for every $\varepsilon>0$ means the following: for every $\varepsilon>0$ there exist numbers C, x_{0}, that may depend on ε, such that $|f(x)-g(x)| \leqslant C \cdot x^{a+\varepsilon}$ for every $x \geqslant x_{0}$.
14. In general, one obtains a version of the Prime Number Theorem with error term, i.e., $\pi(x)=\operatorname{Li}(x)+O(E(x))$ as $x \rightarrow \infty$ with some explicit function $E(x)$, from a zero-free region of $\zeta(s)$. Here, $\operatorname{Li}(x)=\int_{2}^{x} d t / \log t$.
In this section you are asked to prove the converse:
Suppose that for all $\varepsilon>0$ we have $\pi(x)=\operatorname{Li}(x)+O\left(x^{\frac{1}{2}+\varepsilon}\right)$ as $x \rightarrow \infty$. Then $\zeta(s) \neq 0$ for all $s \in \mathbb{C}$ with $\frac{1}{2}<\operatorname{Re} s<1$.

From the functional equation that relates $\zeta(s)$ to $\zeta(1-s)$, it follows then also that $\zeta(s) \neq 0$ for $s \in \mathbb{C}$ with $0<\operatorname{Re} s<\frac{1}{2}$. That is, the Riemann Hypothesis holds.

To prove the above, perform the following steps.
a) For $x \geqslant 2$, prove that

$$
\begin{aligned}
\theta(x) & =\pi(x) \log x-\int_{2}^{x}(\pi(t) / t) d t \\
x-2 & =\operatorname{Li}(x) \log x-\int_{2}^{x}(\operatorname{Li}(t) / t) d t
\end{aligned}
$$

b) Assume that for every $\varepsilon>0$ we have $\pi(x)=\operatorname{Li}(x)+O\left(x^{\frac{1}{2}+\varepsilon}\right)$ as $x \rightarrow \infty$. Prove that for every $\varepsilon>0$ we have

$$
\theta(x)=x+O\left(x^{\frac{1}{2}+\varepsilon}\right) \text { as } x \rightarrow \infty, \quad \psi(x)=x+O\left(x^{\frac{1}{2}+\varepsilon}\right) \text { as } x \rightarrow \infty .
$$

c) Using Exercise 7, prove that for every $\varepsilon>0, \zeta(s)+\left(\zeta^{\prime}(s) / \zeta(s)\right)$ can be continued to a function analytic on $\left\{s \in \mathbb{C}: \operatorname{Re} s>\frac{1}{2}+\varepsilon\right\}$, and then that $\zeta(s) \neq 0$ for all $s \in \mathbb{C}$ with $\frac{1}{2}<\operatorname{Re} s<1$.

10 15.a) Prove that $\sum_{p \leqslant x} \frac{\log p}{p}=\log x+E_{1}(x)$ where $\lim _{x \rightarrow \infty} E_{1}(x)$ exists and is finite.
Work out the following steps:
Prove that $\int_{1}^{\infty} \frac{\psi(x)-x}{x^{2}} d x$ converges.
Prove that $\int_{1}^{\infty} \frac{\theta(x)-x}{x^{2}} d x$ converges.
Prove that $\sum_{p \leqslant x} \frac{\log p}{p}=\frac{\theta(x)}{x}+\int_{1}^{x} \frac{\theta(t)}{t^{2}} d t$.
16. a) Let q, a be integers with $q \geqslant 2$ and $\operatorname{gcd}(a, q)=1$. Prove that

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{\substack{n \leq x \\ n \equiv a(\bmod q)}} \mu(n)=0 .
$$

10
b) What if $\operatorname{gcd}(a, q)>1$? (for a bonus; this is difficult).

