Analytic Number Theory Fall 2016, Assignment 3

Deadline: Monday December 12

The total number of points is 60. Grade=(number of points)/6.

12. We define the arithmetic function

5

 $\omega(n) := \text{number of distinct primes dividing } n.$

5 a) Prove that
$$\omega(n) = O\left(\frac{\log n}{\log \log n}\right)$$
 as $n \to \infty$.

Hint. Let $t = \omega(n)$. Show that $t! \leq n$. You may use without proof that $t! \geq (t/e)^t = e^{t \log t - t}$ for $t \geq 1$ (the proof is by induction on t, using that $(1 + t^{-1})^t \leq e$ for $t \geq 1$).

Remark. More precisely we have Stirling's formula $t! = (t/e)^t \sqrt{2\pi t} \cdot e^{\lambda(t)}$ with $\frac{1}{12t+1} < \lambda(t) < \frac{1}{12t}$, see 'Stirling's approximation' on Wikipedia.

b) Prove that there are a constant c > 0 and infinitely many integers n such that $\omega(n) \ge c \frac{\log n}{\log \log n}$.

Hint. Consider the integers $n_x := \prod_{p \leq x} p$ for $x \in \mathbb{Z}_{>0}$. Use the results from Chapter 1 and a previous exercise.

Remark. The above exercise shows that $\omega(n)$ is of order of magnitude at most $\log n/\log\log n$ and that there are infinitely many integers n for which $\omega(n)$ has order of magnitude precisely $\log n/\log\log n$. On the other hand, in 1917, Hardy and Ramanujan proved that for most integers n, the number $\omega(n)$ is close to $\log\log n$. More precisely, they showed that for every increasing function $\psi(n)$ of n, one has

$$\lim_{x \to \infty} \frac{1}{x} \# \left\{ n \leqslant x : |\omega(n) - \log \log n| \geqslant \psi(n) \sqrt{\log \log n} \right\} = 0.$$

In 1940, Erdős and Kac proved the following much more precise result, which more or less states that $(\omega(n) - \log \log n) / \sqrt{\log \log n}$ behaves like a normally distributed random variable, more precisely, for every $a, b \in \mathbb{R}$ with a < b we have

$$\lim_{x \to \infty} \frac{1}{x} \# \left\{ n \leqslant x : a \leqslant \frac{\omega(n) - \log \log n}{\sqrt{\log \log n}} \leqslant b \right\} = \frac{1}{\sqrt{2\pi}} \int_a^b e^{-t^2/2} dt.$$

See for more information the Wikipedia page on the Erdős-Kac Theorem or search on google for the Erdős-Kac Theorem.

- **13.** In exercises a—e below you have to apply Theorem 6.3.
- 3 a) Let k be an integer with $k \ge 2$. A positive integer n is called k-th power free if there is no prime number p such that p^k divides n. Define $a_k(n) = 1$ if n is k-th power-free and $a_k(n) = 0$ if n is not k-th power free. Prove that

$$\sum_{n=1}^{\infty} a_k(n) n^{-s} = \frac{\zeta(s)}{\zeta(ks)} \quad \text{if } \operatorname{Re} s > 1.$$

Hint. Write the left-hand side as a product over the primes $\prod_{p}(\cdots)$ like in Theorem 4.12.

- 3 b) Compute $\lim_{x\to\infty} \frac{A_k(x)}{x}$ where $A_k(x)$ is the number of k-th power free integers up to x.
- 3 c) Compute $\lim_{x\to\infty} \frac{1}{x^2} \sum_{n\leqslant x} \varphi(n)$ where $\varphi(n)$ is the number of integers a with $1\leqslant a\leqslant n$ such that $\gcd(a,n)=1$.
- 3 d) Prove that $\lim_{x \to \infty} \frac{1}{x} \sum_{n \leqslant x} \mu(n) = 0$. **Hint.** Consider $\zeta(s)^{-1} + \zeta(s)$.
- 3 e) Let $L_f(s) = \sum_{n=1}^{\infty} f(n) n^{-s}$ be a Dirichlet series with the following properties: (i) there are reals $C_1, C_2 > 0$ such that $f(n) \in \mathbb{R}$ and $f(n) \geqslant -C_1$ for all n and $|\sum_{n \leqslant x} f(n)| \leqslant C_2 x$ for all x;
 - (ii) $L_f(s)$ can be continued to a function g(s) analytic on an open set containing $\{s \in \mathbb{C} : \operatorname{Re} s \geq 1\} \setminus \{1\}$, with $\lim_{s \to 1} (s-1)g(s) = \alpha$.

Prove that $\lim_{x\to\infty} \frac{1}{x} \sum_{n\leqslant x} f(n) = \alpha$.

In the exercise below, the following is needed:

Definition. $f(x) = g(x) + O(x^{a+\varepsilon})$ as $x \to \infty$ for every $\varepsilon > 0$ means the following: for every $\varepsilon > 0$ there exist numbers C, x_0 , that may depend on ε , such that $|f(x) - g(x)| \leq C \cdot x^{a+\varepsilon}$ for every $x \geq x_0$.

14. In general, one obtains a version of the Prime Number Theorem with error term, i.e., $\pi(x) = \text{Li}(x) + O(E(x))$ as $x \to \infty$ with some explicit function E(x), from a zero-free region of $\zeta(s)$. Here, $\text{Li}(x) = \int_2^x dt/\log t$.

In this section you are asked to prove the converse:

Suppose that for all $\varepsilon > 0$ we have $\pi(x) = \operatorname{Li}(x) + O(x^{\frac{1}{2} + \varepsilon})$ as $x \to \infty$. Then $\zeta(s) \neq 0$ for all $s \in \mathbb{C}$ with $\frac{1}{2} < \operatorname{Re} s < 1$.

From the functional equation that relates $\zeta(s)$ to $\zeta(1-s)$, it follows then also that $\zeta(s) \neq 0$ for $s \in \mathbb{C}$ with $0 < \operatorname{Re} s < \frac{1}{2}$. That is, the Riemann Hypothesis holds. To prove the above, perform the following steps.

3 a) For $x \ge 2$, prove that

$$\theta(x) = \pi(x) \log x - \int_2^x (\pi(t)/t) dt,$$

$$x - 2 = \operatorname{Li}(x) \log x - \int_2^x (\operatorname{Li}(t)/t) dt.$$

3 b) Assume that for every $\varepsilon > 0$ we have $\pi(x) = \text{Li}(x) + O(x^{\frac{1}{2} + \varepsilon})$ as $x \to \infty$. Prove that for every $\varepsilon > 0$ we have

$$\theta(x) = x + O(x^{\frac{1}{2} + \varepsilon}) \text{ as } x \to \infty, \quad \psi(x) = x + O(x^{\frac{1}{2} + \varepsilon}) \text{ as } x \to \infty.$$

4 c) Using Exercise 7, prove that for every $\varepsilon > 0$, $\zeta(s) + (\zeta'(s)/\zeta(s))$ can be continued to a function analytic on $\{s \in \mathbb{C} : \operatorname{Re} s > \frac{1}{2} + \varepsilon\}$, and then that $\zeta(s) \neq 0$ for all $s \in \mathbb{C}$ with $\frac{1}{2} < \operatorname{Re} s < 1$.

10 **15.**a) Prove that
$$\sum_{p \le x} \frac{\log p}{p} = \log x + E_1(x)$$
 where $\lim_{x \to \infty} E_1(x)$ exists and is finite.

Work out the following steps:
Prove that
$$\int_{1}^{\infty} \frac{\psi(x) - x}{x^2} dx$$
 converges.

Prove that
$$\int_{1}^{1} \frac{\theta(x) - x}{x^2} dx$$
 converges.

Prove that
$$\sum_{p \leqslant x} \frac{1}{p} = \frac{\theta(x)}{x} + \int_{1}^{x} \frac{\theta(t)}{t^{2}} dt.$$

5 b) Prove that
$$\sum_{p \leq x} \frac{1}{p} = \log \log x + E_2(x)$$
, where $\lim_{x \to \infty} E_2(x)$ exists and is finite.

Hint. Write
$$\sum_{p \leqslant x} \frac{1}{p} = \sum_{p \leqslant x} \frac{\log p}{p} \cdot \frac{1}{\log p}$$
.

10 **16.**a) Let
$$q, a$$
 be integers with $q \ge 2$ and $gcd(a, q) = 1$. Prove that

$$\lim_{x \to \infty} \frac{1}{x} \sum_{\substack{n \leqslant x \\ n \equiv a \pmod{q}}} \mu(n) = 0.$$

10 b) What if
$$gcd(a, q) > 1$$
? (for a bonus; this is difficult).