Analytic Number Theory Fall 2016, Assignment 3
Deadline: Monday December 12

The total number of points is 60. Grade=(number of points)/6.

12. We define the arithmetic function

w(n) := number of distinct primes dividing n.

logn

a) Prove that w(n) = O [ —=—— ) as n — oc.
log logn

Hint. Let ¢ = w(n). Show that t! < n. You may use without proof that ¢!
(t/e)t = etlos!=t for t > 1 (the proof is by induction on ¢, using that (1 +¢1)! <
fort > 1).

Remark. More precisely we have Stirling’s formula t! = (t/e)'v/2nrt - e)® with

= < At) < &

THTaS] 197, see 'Stirling’s approximation” on Wikipedia.

b) Prove that there are a constant ¢ > 0 and infinitely many integers n such that

1
w(n) = c—28"
loglogn

Hint. Consider the integers n, = []
Chapter 1 and a previous exercise.

p<zT

p for x € Z-y. Use the results from

Remark. The above exercise shows that w(n) is of order of magnitude at most

logn/loglogn and that there are infinitely many integers n for which w(n) has

order of magnitude precisely log n/loglogn. On the other hand, in 1917, Hardy and

Ramanujan proved that for most integers n, the number w(n) is close to loglogn.

More precisely, they showed that for every increasing function 1 (n) of n, one has

1
lim —# {n < x: |w(n) —loglogn| = ¥(n)y/log logn} = 0.

rT—00 U

In 1940, Erdés and Kac proved the following much more precise result, which more
or less states that (w(n) —loglogn)/+/loglogn behaves like a normally distributed

random variable, more precisely, for every a,b € R with a < b we have

.1 w(n) — loglogn 1 /b 2
lim — <wz:a< <hp=—= [2dt.
e x#{n vea Vl1oglogn V21 Ja ‘

1




See for more information the Wikipedia page on the Erdés-Kac Theorem or search
on google for the Erdos-Kac Theorem.

13. In exercises a—e below you have to apply Theorem 6.3.

a) Let k be an integer with k£ > 2. A positive integer n is called k-th power free if
there is no prime number p such that p* divides n. Define ay(n) = 1 if n is k-th
power-free and ax(n) = 0 if n is not k-th power free. Prove that

Z ap(n)n™* = CC((I:S)) if Res > 1.

Hint. Write the left-hand side as a product over the primes [] (- - -) like in Theorem
4.12.

b) Compute lim Aulz)

where Ag(x) is the number of k-th power free integers up to
T—r00 X

x.

1
c¢) Compute lim — E ¢(n) where p(n) is the number of integers a with 1 < a < n
rT—00 I
n<x

such that ged(a,n) = 1.

1
d) P that lim — = 0.
) Prove tha Jim — ;,u(n)

Hint. Consider ((s)™! + ((s).

e) Let Lg(s) =", f(n)n~® be a Dirichlet series with the following properties:
(i) there are reals Cy,Cy > 0 such that f(n) € R and f(n) > —C} for all n and
\Zn@ f(n)| < Coyx for all x;

(ii) L(s) can be continued to a function g(s) analytic on an open set containing
{s € C: Res >1}\ {1}, with lirr%(s —1)g(s) = a.

s—
Prove that lim, o = >, ., f(n) = o



In the exercise below, the following is needed:

Definition. f(z) = g(z)+ O(x**¢) as © — oo for every € > 0 means the following:
for every € > 0 there exist numbers C, zy, that may depend on ¢, such that
|f(z) — g(z)| < C - 2% for every x > xy.

14. In general, one obtains a version of the Prime Number Theorem with error term,
i.e.,, m(z) = Li(z) + O(E(z)) as © — oo with some explicit function E(z), from a
zero-free region of ((s). Here, Li(z) = [ dt/logt.

In this section you are asked to prove the converse:

Suppose that for all ¢ > 0 we have 7(z) = Li(z) + O(z2%%) as # — oo. Then
((s) # 0 for all s € C with 1 <Res < 1.

From the functional equation that relates {(s) to {(1 — s), it follows then also that
((s) # 0 for s € C with 0 < Res < 1. That is, the Riemann Hypothesis holds.

To prove the above, perform the following steps.

a) For x > 2, prove that
O(x) = w(x)logx — / (w(t)/t)dt,
2

r—2 = Li(z)logz /2 “(Li(t) /t)dt.

b) Assume that for every ¢ > 0 we have m(z) = Li(z) + O(22%%) as  — co. Prove
that for every € > 0 we have

O(x) =z + O(x2%%) as & — 00, () =z + O(x3*%) as © — oo.
¢) Using Exercise 7, prove that for every £ > 0, ¢(s) + (¢'(s)/¢(s)) can be continued

to a function analytic on {s € C: Res > 1 + ¢}, and then that ((s) # 0 for all
s € Cwith 1 <Res < 1.
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1
10 15.a) Prove that Z 08P logz + Fy(x) where lim Fj(x) exists and is finite.

T—r00
p<T

Work out the following steps:
Prove that / M;xdx converges.
1 x

o0 9 _
Prove that (x)—Qxd:c converges.
1 x
1 0 Ot
Prove that Y ~2F — blz) +/ th.
p z 1t
psT
1
5 b) Prove that Z — =loglogz + Es(x), where lim Fs(x) exists and is finite.

Tr—r00
p<zT

Hint. Write Zp@% =5 lep _1

p<T p .logp'

10 16.a) Let g, a be integers with ¢ > 2 and ged(a, g) = 1. Prove that

lim e Z pu(n) =0.

T—00 I
n<x
n=a (mod gq)

10 b) What if ged(a,q) > 17 (for a bonus; this is difficult).



