Analytic Number Theory Fall 2016, Assignment 4
 Deadline: Thursday January 12

The total number of points is 70 . Grade=(number of points) $/ 7$.
17. In this exercise we will use a p-adic version of the material in $\S 8.1$ to study Waring's problem for squares in $\mathbb{Z} / p \mathbb{Z}$. Recall that $\mathrm{e}_{p}(z):=\mathrm{e}^{\frac{2 \pi i z}{p}}$ for $z \in \mathbb{R}$. You will need some results from Sections 4.4 (Gauss sums) and 4.5 (Quadratic reciprocity) from the lecture notes; only the results are needed and not the proofs.

For an odd prime p and any integer a coprime to p we define

$$
S(p, a):=\sum_{\substack{y \in \mathbb{Z} \\ 1 \leqslant y \leqslant p}} \mathrm{e}_{p}\left(a y^{2}\right) .
$$

a) For an odd prime p we denote by χ_{p} the quadratic Legendre symbol modulo p, i.e., $\chi_{p}(x)=1$ if p does not divide x and $y^{2} \equiv x\left(\bmod p\right.$ is solvable, $\chi_{p}(x)=-1$ if $y^{2} \equiv x\left(\bmod p\right.$ is not solvable, and $\chi_{p}(x)=0$ if p divides x. You may use that this is a primitive Dirichlet character modulo p.

Show that if $\operatorname{gcd}(p, a)=1$ then we have

$$
S(p, a)=\tau\left(a, \chi_{p}\right),
$$

where the notation $\tau\left(a, \chi_{p}\right)$ was introduced in $\S 4.4$ of the lecture notes. Furthermore show that

$$
S(p, a)=\chi_{p}(a) \tau\left(1, \chi_{p}\right) .
$$

Hint. Prove that for all fixed integers x the number of $y(\bmod p)$ satisfying the equation $x \equiv y^{2}(\bmod p)$ is $1+\chi_{p}(x)$. Then gather together all terms in $S(p, a)$ with a fixed value $y^{2}(\bmod p)$. For the last equality use Theorem 4.21.
b) For any integer n and any positive integer m prove that

$$
\#\left\{\left(x_{1}, \ldots, x_{m}\right) \in(\mathbb{Z} \cap[1, p])^{m}: \sum_{i=1}^{m} x_{i}^{2} \equiv n(\bmod p)\right\}
$$

equals

$$
p^{m-1}+\frac{\tau\left(1, \chi_{p}\right)^{m}}{p} \sum_{\alpha=1}^{p-1} \mathrm{e}_{p}(-\alpha n) \chi_{p}(\alpha)^{m} .
$$

Hint. Use the same idea as in the first lines of the proof of Lemma 11.4 with $k=1$ and then the result of the previous exercise.
c) In case that m is even, prove that the sum over α in part (b) equals $p-1$ if p divides n and equals -1 otherwise. In case that m is odd, prove that the sum over α in part (b) equals 0 if p divides n and equals $\chi_{p}(-n) \tau\left(1, \chi_{p}\right)$ otherwise.
Hint. In case that m is even, prove and use that $\sum_{1 \leqslant \alpha \leqslant p} \mathrm{e}_{p}(-\alpha n)=0$ when $p \nmid n$.
d) Assume that $m \geqslant 3$ and let n be a fixed integer. Prove that the equation

$$
y_{1}^{2}+y_{2}^{2}+\cdots+y_{m}^{2} \equiv n(\bmod p)
$$

always has a solution.
Hint. Use parts $(b),(c),(d)$ to prove that the number of solutions, say N, satisfies

$$
\left|N-p^{m-1}\right| \leqslant\left|\tau\left(1, \chi_{p}\right)\right|^{m}
$$

and then use Theorem 4.22.
$e)$ For any odd prime p denote by $f(p)$ the function

$$
f(p):=\#\left\{\left(x_{1}, x_{2}, x_{3}\right) \in(\mathbb{Z} \cap[1, p])^{3}: \sum_{i=1}^{3} x_{i}^{2} \equiv 1(\bmod p)\right\} .
$$

Prove that the function

$$
\frac{f(p)-p^{2}}{p}, p \text { odd prime }
$$

changes sign infinitely often if p runs through the primes.
Hint. Use part (c) and Theorem 4.23 to find a simple expression for $f(p)$.
18. Let n and d be positive integers and define for all coprime integers a, m the sums

$$
S_{d}(m, a):=\sum_{x \in \mathbb{Z} \cap[1, m]} \mathrm{e}_{m}\left(a x^{d}\right)
$$

and

$$
T_{d}(m):=\sum_{\substack{1 \leq a \leq m \\ \operatorname{gcd}(a, m)=1}} S_{d}(m, a)^{n} .
$$

10 a) Assume that q_{1}, q_{2} are coprime integers. Let $q:=q_{1} q_{2}$ and for any $a_{1}, a_{2} \in \mathbb{Z}$ define

$$
a:=a_{1} q_{2}+a_{2} q_{1} .
$$

Prove that

$$
S_{d}\left(q_{1}, a_{1}\right) S_{d}\left(q_{2}, a_{2}\right)=S_{d}(q, a)
$$

Hint. Follow the proof of Lemma 11.2.
10 b) For any fixed positive integer d prove that the function $T_{d}(m)$ of m is multiplicative. Hint. Follow the proof of Lemma 11.3.
19. Recall that if $R(n)$ denotes the number of representation of a positive integer n as a sum of 9 positive integer cubes then we have shown that

$$
\lim _{n \rightarrow+\infty} \frac{R(n)}{n^{2}}=\frac{1}{2} \Gamma(4 / 3)^{9} \mathfrak{S}(n)
$$

where

$$
\mathfrak{S}(n):=\sum_{q=1}^{\infty} \frac{S_{n}(q)}{q^{9}}
$$

and

$$
S_{n}(q):=\sum_{\substack{1 \leqslant a \leq q \\ \operatorname{gcd}(a, q)=1}} \mathrm{e}_{q}(-a n) S(q, a)^{9}, \quad S(q, a):=\sum_{x=1}^{q} \mathrm{e}_{q}\left(a x^{3}\right) .
$$

The function $\mathfrak{S}(n)$ essentially contains information for the number of representations of n as a sum of 9 cubes in residue class rings $\mathbb{Z} / p^{k} \mathbb{Z}$ for prime powers p^{k}. The object of this exercise is to show that $\mathfrak{S}(n)$ has average 1 . Define for each $x \geqslant 1$,

$$
\mathbb{E}_{x}(\mathfrak{S}):=\frac{1}{x} \sum_{1 \leqslant n \leqslant x} \mathfrak{S}(n)
$$

a) Prove that for all $\epsilon>0$ we have

$$
\mathfrak{S}(n)=\sum_{1 \leqslant q \leqslant x^{1 / 2}} \frac{S_{n}(q)}{q^{9}}+O_{\epsilon}\left(x^{-(1 / 8)+\epsilon}\right)
$$

and as a result that

$$
\mathbb{E}_{x}(\mathfrak{S})=\frac{1}{x} \sum_{1 \leqslant q \leqslant x^{1 / 2}} q^{-9} \sum_{1 \leqslant n \leqslant x} S_{n}(q)+O_{\epsilon}\left(x^{-(1 / 8)+\epsilon}\right)
$$

Hint. Use Lemma 10.1 to prove that $q^{-9}\left|S_{n}(q)\right| \ll_{\epsilon} q^{-1-(1 / 4)+\epsilon}$. Then prove the estimate

$$
\sum_{q>T} q^{-1-(1 / 4)+\epsilon} \ll \int_{T}^{\infty} u^{-1-(1 / 4)+\epsilon} \mathrm{d} u \ll T^{-(1 / 4)+\epsilon}
$$

b) For any integer m in the range $1 \leqslant m \leqslant q$ prove that whenever $n \in \mathbb{Z}$ satisfies $n \equiv m(\bmod q)$ then

$$
S_{n}(q)=S_{m}(q)
$$

As a consequence show that

$$
\sum_{1 \leqslant n \leqslant x} S_{n}(q)=\sum_{1 \leqslant m \leqslant q} S_{m}(q) \sum_{\substack{1 \leqslant n \leqslant x \\ n \equiv m(\bmod q)}} 1 .
$$

c) Recall that by splitting the interval $[1, x]$ in consecutive intervals of length q one can prove that

$$
\sum_{\substack{1 \leqslant n \leqslant x \\ n \equiv m(\bmod q)}} 1=\frac{x}{q}+O(1),
$$

with an absolute implied constant. Prove that for all $\epsilon>0$,

$$
\frac{1}{x} \sum_{1 \leqslant m \leqslant q} S_{m}(q) \sum_{\substack{1 \leqslant n \leqslant x \\ n \equiv m(\bmod q)}} 1=\frac{1}{q} \sum_{1 \leqslant m \leqslant q} S_{m}(q)+O_{\epsilon}\left(\frac{1}{x} q^{9-1 / 4+\epsilon}\right) .
$$

Hint. Use $q^{-9}\left|S_{m}(q)\right| \lll q^{-1-\frac{1}{4}+\epsilon}$.
d) Combining all parts of this exercise show that

$$
\mathbb{E}_{x}(\mathfrak{S})=1+\sum_{2 \leqslant q \leqslant x^{1 / 2}} q^{-10} \sum_{1 \leqslant m \leqslant q} S_{m}(q)+O_{\epsilon}\left(x^{-(1 / 8)+\epsilon}\right)
$$

Hint. Use $q^{-9}\left|S_{m}(q)\right| \ll{ }_{\epsilon} q^{-1-\frac{1}{4}+\epsilon}$.
e) Prove that if $q>1$ then

$$
\sum_{1 \leqslant m \leqslant q} S_{m}(q)=0
$$

and conclude that $\mathbb{E}_{x}(\mathfrak{S})=1+O_{\epsilon}\left(x^{-(1 / 8)+\epsilon}\right)$ for all $\epsilon>0$.
Remark. In part (e) you have proved that the singular series $\mathfrak{S}(n)$ is 1 on average and the error in this approximation converges quickly to zero, namely

$$
\mathbb{E}_{x}(\mathfrak{S})=1+O_{\epsilon}\left(x^{-\frac{1}{8}+\epsilon}\right)
$$

Therefore, on average over all integers n, the value of $R(n)$ should be thought of as being very close to $\frac{1}{2} \Gamma(4 / 3)^{9} n^{2}$.

