
Analytic Number Theory Fall 2016, Assignment 4

Deadline: Thursday January 12

The total number of points is 70. Grade=(number of points)/7.

17. In this exercise we will use a p-adic version of the material in §8.1 to study Waring’s

problem for squares in Z/pZ. Recall that ep(z) := e
2πiz
p for z ∈ R. You will need

some results from Sections 4.4 (Gauss sums) and 4.5 (Quadratic reciprocity) from

the lecture notes; only the results are needed and not the proofs.

For an odd prime p and any integer a coprime to p we define

S(p, a) :=
∑
y∈Z

16y6p

ep
(
ay2
)
.

5 a) For an odd prime p we denote by χp the quadratic Legendre symbol modulo p,

i.e., χp(x) = 1 if p does not divide x and y2 ≡ x (mod p is solvable, χp(x) = −1 if

y2 ≡ x (mod p is not solvable, and χp(x) = 0 if p divides x. You may use that this

is a primitive Dirichlet character modulo p.

Show that if gcd(p, a) = 1 then we have

S(p, a) = τ(a, χp),

where the notation τ(a, χp) was introduced in §4.4 of the lecture notes. Furthermore

show that

S(p, a) = χp(a)τ(1, χp).

Hint. Prove that for all fixed integers x the number of y(mod p) satisfying the

equation x ≡ y2(mod p) is 1 + χp(x). Then gather together all terms in S(p, a)

with a fixed value y2(mod p). For the last equality use Theorem 4.21.

5 b) For any integer n and any positive integer m prove that

#
{

(x1, . . . , xm) ∈ (Z ∩ [1, p])m :
m∑
i=1

x2i ≡ n(mod p)
}

1



2

equals

pm−1 +
τ(1, χp)

m

p

p−1∑
α=1

ep(−αn)χp(α)m.

Hint. Use the same idea as in the first lines of the proof of Lemma 11.4 with k = 1

and then the result of the previous exercise.

5 c) In case that m is even, prove that the sum over α in part (b) equals p−1 if p divides

n and equals −1 otherwise. In case that m is odd, prove that the sum over α in

part (b) equals 0 if p divides n and equals χp(−n)τ(1, χp) otherwise.

Hint. In case that m is even, prove and use that
∑

16α6p ep(−αn) = 0 when p - n.

5 d) Assume that m > 3 and let n be a fixed integer. Prove that the equation

y21 + y22 + · · ·+ y2m ≡ n(mod p)

always has a solution.

Hint. Use parts (b), (c), (d) to prove that the number of solutions, say N , satisfies∣∣∣N − pm−1∣∣∣ 6 |τ(1, χp)|m,

and then use Theorem 4.22.

5 e) For any odd prime p denote by f(p) the function

f(p) := #
{

(x1, x2, x3) ∈ (Z ∩ [1, p])3 :
3∑
i=1

x2i ≡ 1(mod p)
}
.

Prove that the function

f(p)− p2

p
, p odd prime,

changes sign infinitely often if p runs through the primes.

Hint. Use part (c) and Theorem 4.23 to find a simple expression for f(p).

18. Let n and d be positive integers and define for all coprime integers a,m the sums

Sd(m, a) :=
∑

x∈Z∩[1,m]

em
(
axd
)

and

Td(m) :=
∑

16a6m
gcd(a,m)=1

Sd(m, a)n.
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10 a) Assume that q1, q2 are coprime integers. Let q := q1q2 and for any a1, a2 ∈ Z define

a := a1q2 + a2q1.

Prove that

Sd(q1, a1)Sd(q2, a2) = Sd(q, a).

Hint. Follow the proof of Lemma 11.2.

10 b) For any fixed positive integer d prove that the function Td(m) of m is multiplicative.

Hint. Follow the proof of Lemma 11.3.

19. Recall that if R(n) denotes the number of representation of a positive integer n as

a sum of 9 positive integer cubes then we have shown that

lim
n→+∞

R(n)

n2
=

1

2
Γ(4/3)9S(n),

where

S(n) :=
∞∑
q=1

Sn(q)

q9

and

Sn(q) :=
∑
16a6q

gcd(a,q)=1

eq(−an)S(q, a)9, S(q, a) :=

q∑
x=1

eq(ax
3).

The function S(n) essentially contains information for the number of representa-

tions of n as a sum of 9 cubes in residue class rings Z/pkZ for prime powers pk. The

object of this exercise is to show that S(n) has average 1. Define for each x > 1,

Ex(S) :=
1

x

∑
16n6x

S(n).

5 a) Prove that for all ε > 0 we have

S(n) =
∑

16q6x1/2

Sn(q)

q9
+Oε(x

−(1/8)+ε)

and as a result that

Ex(S) =
1

x

∑
16q6x1/2

q−9
∑

16n6x

Sn(q) +Oε(x
−(1/8)+ε).
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Hint. Use Lemma 10.1 to prove that q−9|Sn(q)| �ε q
−1−(1/4)+ε. Then prove the

estimate ∑
q>T

q−1−(1/4)+ε �
∫ ∞
T

u−1−(1/4)+εdu� T−(1/4)+ε.

5 b) For any integer m in the range 1 6 m 6 q prove that whenever n ∈ Z satisfies

n ≡ m(mod q) then

Sn(q) = Sm(q).

As a consequence show that∑
16n6x

Sn(q) =
∑

16m6q

Sm(q)
∑

16n6x
n≡m(mod q)

1.

5 c) Recall that by splitting the interval [1, x] in consecutive intervals of length q one

can prove that ∑
16n6x

n≡m(mod q)

1 =
x

q
+O(1),

with an absolute implied constant. Prove that for all ε > 0,

1

x

∑
16m6q

Sm(q)
∑

16n6x
n≡m(mod q)

1 =
1

q

∑
16m6q

Sm(q) +Oε

(
1

x
q9−1/4+ε

)
.

Hint. Use q−9|Sm(q)| �ε q
−1− 1

4
+ε.

5 d) Combining all parts of this exercise show that

Ex(S) = 1 +
∑

26q6x1/2

q−10
∑

16m6q

Sm(q) +Oε(x
−(1/8)+ε).

Hint. Use q−9|Sm(q)| �ε q
−1− 1

4
+ε.

5 e) Prove that if q > 1 then ∑
16m6q

Sm(q) = 0

and conclude that Ex(S) = 1 +Oε(x
−(1/8)+ε) for all ε > 0.

Remark. In part (e) you have proved that the singular series S(n) is 1 on average

and the error in this approximation converges quickly to zero, namely

Ex(S) = 1 +Oε(x
− 1

8
+ε).
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Therefore, on average over all integers n, the value of R(n) should be thought of as

being very close to 1
2
Γ(4/3)9n2.


