Analytic Number Theory Fall 2016, Assignment 4

Deadline: Thursday January 12

The total number of points is 70. Grade=(number of points)/7.

17. In this exercise we will use a p-adic version of the material in §8.1 to study Waring's problem for squares in $\mathbb{Z}/p\mathbb{Z}$. Recall that $e_p(z) := e^{\frac{2\pi i z}{p}}$ for $z \in \mathbb{R}$. You will need some results from Sections 4.4 (Gauss sums) and 4.5 (Quadratic reciprocity) from the lecture notes; only the results are needed and not the proofs.

For an odd prime p and any integer a coprime to p we define

$$S(p,a) := \sum_{\substack{y \in \mathbb{Z} \\ 1 \le y \le p}} e_p(ay^2).$$

5 a) For an odd prime p we denote by χ_p the quadratic Legendre symbol modulo p, i.e., $\chi_p(x) = 1$ if p does not divide x and $y^2 \equiv x \pmod{p}$ is solvable, $\chi_p(x) = -1$ if $y^2 \equiv x \pmod{p}$ is not solvable, and $\chi_p(x) = 0$ if p divides x. You may use that this is a primitive Dirichlet character modulo p.

Show that if gcd(p, a) = 1 then we have

$$S(p, a) = \tau(a, \chi_p),$$

where the notation $\tau(a, \chi_p)$ was introduced in §4.4 of the lecture notes. Furthermore show that

$$S(p, a) = \chi_p(a)\tau(1, \chi_p).$$

Hint. Prove that for all fixed integers x the number of $y \pmod{p}$ satisfying the equation $x \equiv y^2 \pmod{p}$ is $1 + \chi_p(x)$. Then gather together all terms in S(p, a) with a fixed value $y^2 \pmod{p}$. For the last equality use Theorem 4.21.

b) For any integer n and any positive integer m prove that

5

$$\#\{(x_1,\ldots,x_m)\in (\mathbb{Z}\cap[1,p])^m: \sum_{i=1}^m x_i^2 \equiv n \pmod{p}\}$$

5

5

5

equals

$$p^{m-1} + \frac{\tau(1,\chi_p)^m}{p} \sum_{\alpha=1}^{p-1} e_p(-\alpha n) \chi_p(\alpha)^m.$$

Hint. Use the same idea as in the first lines of the proof of Lemma 11.4 with k = 1 and then the result of the previous exercise.

c) In case that m is even, prove that the sum over α in part (b) equals p-1 if p divides n and equals -1 otherwise. In case that m is odd, prove that the sum over α in part (b) equals 0 if p divides n and equals $\chi_p(-n)\tau(1,\chi_p)$ otherwise.

Hint. In case that m is even, prove and use that $\sum_{1 \leq \alpha \leq p} e_p(-\alpha n) = 0$ when $p \nmid n$.

d) Assume that $m \ge 3$ and let n be a fixed integer. Prove that the equation

$$y_1^2 + y_2^2 + \dots + y_m^2 \equiv n \pmod{p}$$

always has a solution.

Hint. Use parts (b), (c), (d) to prove that the number of solutions, say N, satisfies

$$\left| N - p^{m-1} \right| \leqslant |\tau(1, \chi_p)|^m,$$

and then use Theorem 4.22.

e) For any odd prime p denote by f(p) the function

$$f(p) := \# \Big\{ (x_1, x_2, x_3) \in (\mathbb{Z} \cap [1, p])^3 : \sum_{i=1}^3 x_i^2 \equiv 1 \pmod{p} \Big\}.$$

Prove that the function

$$\frac{f(p)-p^2}{p}$$
, p odd prime,

changes sign infinitely often if p runs through the primes.

Hint. Use part (c) and Theorem 4.23 to find a simple expression for f(p).

18. Let n and d be positive integers and define for all coprime integers a, m the sums

$$S_d(m,a) := \sum_{x \in \mathbb{Z} \cap [1,m]} e_m (ax^d)$$

and

$$T_d(m) := \sum_{\substack{1 \leqslant a \leqslant m \\ \gcd(a,m)=1}} S_d(m,a)^n.$$

10 a) Assume that q_1, q_2 are coprime integers. Let $q := q_1q_2$ and for any $a_1, a_2 \in \mathbb{Z}$ define

$$a := a_1 q_2 + a_2 q_1.$$

Prove that

$$S_d(q_1, a_1)S_d(q_2, a_2) = S_d(q, a).$$

Hint. Follow the proof of Lemma 11.2.

- 10 b) For any fixed positive integer d prove that the function $T_d(m)$ of m is multiplicative. **Hint.** Follow the proof of Lemma 11.3.
 - 19. Recall that if R(n) denotes the number of representation of a positive integer n as a sum of 9 positive integer cubes then we have shown that

$$\lim_{n \to +\infty} \frac{R(n)}{n^2} = \frac{1}{2} \Gamma(4/3)^9 \mathfrak{S}(n),$$

where

$$\mathfrak{S}(n) := \sum_{q=1}^{\infty} \frac{S_n(q)}{q^9}$$

and

$$S_n(q) := \sum_{\substack{1 \le a \le q \\ \gcd(a, a) = 1}} e_q(-an)S(q, a)^9, \quad S(q, a) := \sum_{x=1}^q e_q(ax^3).$$

The function $\mathfrak{S}(n)$ essentially contains information for the number of representations of n as a sum of 9 cubes in residue class rings $\mathbb{Z}/p^k\mathbb{Z}$ for prime powers p^k . The object of this exercise is to show that $\mathfrak{S}(n)$ has average 1. Define for each $x \geq 1$,

$$\mathbb{E}_x(\mathfrak{S}) := \frac{1}{x} \sum_{1 \le n \le x} \mathfrak{S}(n).$$

5 a) Prove that for all $\epsilon > 0$ we have

$$\mathfrak{S}(n) = \sum_{1 \leq q \leq x^{1/2}} \frac{S_n(q)}{q^9} + O_{\epsilon}(x^{-(1/8)+\epsilon})$$

and as a result that

$$\mathbb{E}_x(\mathfrak{S}) = \frac{1}{x} \sum_{1 \leqslant q \leqslant x^{1/2}} q^{-9} \sum_{1 \leqslant n \leqslant x} S_n(q) + O_{\epsilon}(x^{-(1/8) + \epsilon}).$$

5

Hint. Use Lemma 10.1 to prove that $q^{-9}|S_n(q)| \ll_{\epsilon} q^{-1-(1/4)+\epsilon}$. Then prove the estimate

$$\sum_{q > T} q^{-1 - (1/4) + \epsilon} \ll \int_{T}^{\infty} u^{-1 - (1/4) + \epsilon} du \ll T^{-(1/4) + \epsilon}.$$

5 b) For any integer m in the range $1 \leq m \leq q$ prove that whenever $n \in \mathbb{Z}$ satisfies $n \equiv m \pmod{q}$ then

$$S_n(q) = S_m(q).$$

As a consequence show that

$$\sum_{1 \leqslant n \leqslant x} S_n(q) = \sum_{1 \leqslant m \leqslant q} S_m(q) \sum_{\substack{1 \leqslant n \leqslant x \\ n \equiv m \pmod{q}}} 1.$$

5 c) Recall that by splitting the interval [1, x] in consecutive intervals of length q one can prove that

$$\sum_{\substack{1 \le n \le x \\ n \equiv m \pmod{q}}} 1 = \frac{x}{q} + O(1),$$

with an absolute implied constant. Prove that for all $\epsilon > 0$,

$$\frac{1}{x} \sum_{1 \leqslant m \leqslant q} S_m(q) \sum_{\substack{1 \leqslant n \leqslant x \\ n \equiv m \pmod{q}}} 1 = \frac{1}{q} \sum_{1 \leqslant m \leqslant q} S_m(q) + O_{\epsilon} \left(\frac{1}{x} q^{9-1/4+\epsilon}\right).$$

Hint. Use $q^{-9}|S_m(q)| \ll_{\epsilon} q^{-1-\frac{1}{4}+\epsilon}$.

d) Combining all parts of this exercise show that

$$\mathbb{E}_x(\mathfrak{S}) = 1 + \sum_{2 \le q \le x^{1/2}} q^{-10} \sum_{1 \le m \le q} S_m(q) + O_{\epsilon}(x^{-(1/8) + \epsilon}).$$

Hint. Use $q^{-9}|S_m(q)| \ll_{\epsilon} q^{-1-\frac{1}{4}+\epsilon}$.

5 e) Prove that if q > 1 then

$$\sum_{1 \leqslant m \leqslant q} S_m(q) = 0$$

and conclude that $\mathbb{E}_x(\mathfrak{S}) = 1 + O_{\epsilon}(x^{-(1/8)+\epsilon})$ for all $\epsilon > 0$.

Remark. In part (e) you have proved that the singular series $\mathfrak{S}(n)$ is 1 on average and the error in this approximation converges quickly to zero, namely

$$\mathbb{E}_x(\mathfrak{S}) = 1 + O_{\epsilon}(x^{-\frac{1}{8} + \epsilon}).$$

Therefore, on average over all integers n, the value of R(n) should be thought of as being very close to $\frac{1}{2}\Gamma(4/3)^9n^2$.