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Notation

� lim sup
n→∞

xn or limn→∞xn

For a sequence of reals {xn} we define lim supn→∞ xn := limn→∞
(

supm>n xm
)
.

We have lim supn→∞ xn =∞ if and only if the sequence {xn} is not bounded

from above, i.e., if for every A > 0 there is n with xn > A.

In case that the sequence {xn} is bounded from above, we have lim supn→∞ xn =

α where α is the largest limit point (’limes superior’) of the sequence {xn}, in

other words, for every ε > 0 there are infinitely many n such that xn > α− ε,
while there are only finitely many n such that xn > α + ε.

� lim inf
n→∞

xn or limn→∞xn

For a sequence of reals {xn} we define lim infn→∞ xn := limn→∞
(

infm>n xm
)
.

We have lim infn→∞ xn = −∞ if the sequence {xn} is not bounded from below,

and the smallest limit point (’limes inferior’) of the sequence {xn} otherwise.

� f(x) = g(x)+o(e(x)) as x→∞ (for functions f, g : S → C with S any subset

of R containing arbitrary large reals and e : S → R>0)

lim
x→∞

f(x)− g(x)

e(x)
= 0, i.e., f(x) − g(x) is of smaller order of magnitude than

e(x).

Examples: f(x) = g(x)+o(1) as x→∞means that limx→∞(f(x)−g(x)) = 0;

log x = o(xε) as x → ∞ for every ε > 0 since limx→∞(log x)/xε = 0 for every

ε > 0.

� f(x) = g(x) +O(e(x)) as x→∞ (with f, g, e as above)

There are constants x0 > 0, C > 0 such that |f(x) − g(x)| 6 Ce(x) for all

x > x0, i.e., f(x)− g(x) is of order of magnitude at most e(x).

We call g(x) +O(e(x)) as x→∞ an asymptotic formula for f(x), with main

term g(x) and error term O(e(x)). Of course, such an asymptotic formula is
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interesting only if the error term is of smaller order of magnitude than the main

term, i.e., e(x) = o(|g(x)|) as x→∞. If g(x) is of order of magnitude at most

e(x), i.e., g(x) = O(e(x)) as x→∞, we can just as well write f(x) = O(e(x))

as x→∞.

Likewise, if f(x) = g(x) + o(e(x)) as x→∞, we call g(x) the main term and

o(e(x)) the error term.

Examples:

f(x) = g(x) +O(1) as x→∞ means that |f(x)− g(x)| is bounded;

log(1 + x−1) = x−1 + O(x−2) as x → ∞ (from the expansion log(1 + x−1) =∑∞
n=1(−1)n−1x−n/n for |x| > 1);

(1+x−1)α = 1+αx−1 +O(x−2) as x→∞ for every α ∈ R (from the expansion

(1 + x−1)α =
∑∞

n=0

(
α
n

)
x−n for |x| > 1, where

(
α
n

)
=

α(α−1)···(α−n+1)
n! );

e1/x = 1 + x−1 +O(x−2) as x→∞ (from the expansion e1/x =
∑∞

n=0 x
−n/n!).

� f(x) ∼ g(x) as x→∞ (with f, g as above)

lim
x→∞

f(x)

g(x)
= 1

� f(x)� g(x), g(x)� f(x) as x→∞ (with f, g as above)

(Vinogradov symbols; used only if g(x) > 0 for all sufficiently large x, i.e.,

there is x0 such that g(x) > 0 for all x > x0).

f(x) = O(g(x)) as x → ∞, that is, there are constants x0 > 0, C > 0 such

that |f(x)| 6 Cg(x) for all x > x0.

� f(x) � g(x) as x→∞ (with f, g as above, used only if f(x) > 0, g(x) > 0 for

all sufficiently large x)

there are constants x0, C1, C2 > 0 such that C1f(x) 6 g(x) 6 C2f(x) for all

x > x0.
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� f(x) = Ω(g(x)) as x → ∞ (with f, g as above, defined only if g(x) > 0 for

x > x0 for some x0 > 0)

lim sup
x→∞

|f(x)|
g(x)

> 0, that is, there is a sequence {xn} with xn → ∞ as n → ∞

such that lim
n→∞

|f(xn)|
g(xn)

> 0 (possibly ∞).

� f(x) = Ω±(g(x)) as x → ∞ (with f, g as above, defined only if g(x) > 0 for

x > x0 for some x0 > 0)

lim sup
x→∞

f(x)

g(x)
> 0, lim inf

x→∞

f(x)

g(x)
< 0, that is, there are sequences {xn} and {yn}

with xn →∞, yn →∞ as n→∞ such that lim
n→∞

f(xn)

g(xn)
> 0 (possibly∞) and

lim
n→∞

f(yn)

g(yn)
< 0 (possibly −∞)

� f(x) = g(x) +O(e(x)) for functions f, g : S → C (with S any infinite set, not

necessarily contained in the reals and e : S → R>0; we drop here x→∞)

There is C > 0 such that |f(x)− g(x)| 6 Ce(x) for all x ∈ S.

� γ (Euler-Mascheroni constant)

lim
N→∞

(
1 + 1

2 + · · ·+ 1
N − logN

)
= 0.5772156649...

� |A|

Cardinality of a set A.

�
∑
n6x

...,
∑
p6x

...,
∑
d|n

...,
∑
p|n

...

Summations over all positive integers 6 x, all primes 6 x, all positive divisors

of n (including n itself), all primes dividing n; there is a similar notation for

products
∏

.... In general, in summations or products, n will be used to denote

a positive integer, p to denote a prime, and d to denote a positive divisor of a
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given integer.

�
∑
p

...,
∏
p

...

Infinite sum, infinite product over all primes.

� π(x)

Number of primes 6 x.

� θ(x), ψ(x)∑
p6x log p,

∑
pk6x log p, where the summations are over all primes 6 x, re-

spectively all prime powers 6 x.

� π(x; q, a)

Number of primes p with p ≡ a (mod q) and p 6 x; here q is any integer > 2

and a is any integer coprime with q.

� θ(x; q, a), ψ(x; q, a)∑
p6x,p≡a (mod q) log p,

∑
pk6x,pk≡a (mod q) log p, where the summations are over

all primes 6 x that are congruent to a modulo q, respectively all prime powers

6 x that are congruent to a modulo q.

� Li(x)

Li(x) =

∫ x

2

dt

log t
; this is a good approximation for π(x).
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� Λ(n)

Von Mangoldt function; it is given by Λ(n) = log p if n = pk for some prime

p and exponent k > 1, and Λ(n) = 0 if n = 1 or n is not a prime power; it

should be verified that ψ(x) =
∑

n6x Λ(n), where the summation is over all

positive integers n 6 x.

� ϕ(n)

Euler’s totient function, given by

ϕ(n) := |{a ∈ Z : 1 6 a < n, gcd(a, n) = 1}|.

� µ(n)

Möbius function, given by µ(1) = 1, µ(n) = (−1)t if n is a product p1 · · · pt of

distinct primes, and µ(n) = 0 if n is not square-free, i.e., divisible by p2 for

some prime number p.

� ω(n), Ω(n)

number of primes dividing n, number of prime powers dividing n, i.e., if

n = pk11 · · · pktt with p1, . . . , pt distinct primes and k1, . . . , kt positive integers,

then ω(n) = t and Ω(n) = k1 + · · ·+ kt; in particular, ω(1) = Ω(1) = 0.

� E(n)

E(n) = 1 for every positive integer n.

� e(n)

e(1) = 1 and e(n) = 0 for all integers n > 1.

� τ(n) (or σ0(n))

number of positive divisors of n, including n itself, i.e.,
∑

d|n 1, for instance

τ(6) = 4, since 1, 2, 3, 6 are the divisors of 6.
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� σ(n) (or σ1(n))

sum of the positive divisors of n including n itself, i.e.,
∑

d|n d, for instance

σ(6) = 1 + 2 + 3 + 6 = 12.

� σα(n)∑
d|n d

α
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Chapter 0

Prerequisites

We have collected some facts from algebra and analysis which we will not discuss

during our course, which will not be a subject of the examination, but which will be

used frequently in the course and the exercises. Students are expected to be familiar

with the definitions and results in these prerequisites so that we can use them in

our course without much explanation.

We need only a little bit of algebra, basically elementary group theory. As for

analysis, most of the facts we mention are covered by standard courses on analysis,

Lebesgue integration and complex analysis, with the exception maybe of subsections

0.2.1, 0.2.2, 0.6.6, 0.6.7.

In some cases we have provided proofs, either since they may help to gain some

confidence with the material, or since we couldn’t find a good reference for them.

These proofs will not be used in our course, nor will they be examined.

Apart from what is mentioned in these prerequisites, nothing else from Lebesgue

integration theory or complex analysis is used, so also students who did not follow

courses on these topics should be able to follow our course after having read these

prerequisites.
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0.1 Groups

Literature:

P. Stevenhagen: Collegedictaat Algebra 1 (Dutch), Universiteit Leiden.

S. Lang: Algebra, 2nd ed., Addison-Wesley, 1984.

0.1.1 Definition

A group is a set G, together with an operation · : G×G→ G satisfying the following

axioms:

� (g1 · g2) · g3 = g1 · (g2 · g3) for all g1, g2, g3 ∈ G;

� there is eG ∈ G such that g · eG = eG · g = g for all g ∈ G;

� for all g ∈ G there is h ∈ G with g · h = h · g = eG.

From these axioms it follows that the unit element eG is uniquely determined, and

that the inverse h defined by the last axiom is uniquely determined; henceforth we

write g−1 for this h.

If moreover, g1 · g2 = g2 · g1 for all g1, g2 ∈ G, we say that the group G is abelian

or commutative.

Remark. For n ∈ Z>0, g ∈ G we write gn for g multiplied with itself n times. Fur-

ther, g0 := eG and gn := (g−1)|n| for n ∈ Z<0. This is well-defined by the associative

axiom, and we have (gm)(gn) = gm+n, (gm)n = gmn for m,n ∈ Z.

0.1.2 Subgroups

Let G be a group with group operation ·. A subgroup of G is a subset H of G

that is a group with the group operation of G. This means that g1 · g2 ∈ H for

all g1, g2 ∈ H; eG ∈ H; and g−1 ∈ H for all g ∈ H. It is easy to see that H is a
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subgroup of G if and only if g1 · g−1
2 ∈ H for all g1, g2 ∈ H. We write H 6 G if H is

a subgroup of G.

0.1.3 Cosets, order, index

Let G be a group and H a subgroup of G. The left cosets of G with respect to H

are the sets gH = {g · h : h ∈ H}. Two left cosets g1H, g2H are equal if and only

if g−1
1 g2 ∈ H and otherwise disjoint.

The right cosets of G with respect to H are the sets Hg = {h · g : h ∈ H}. Two

right cosets Hg1, Hg2 are equal if and only if g2g
−1
1 ∈ H and otherwise disjoint.

There is a one-to-one correspondence between the left cosets and right cosets of

G with respect to H, given by gH ↔ Hg−1. Thus, the collection of left cosets has

the same cardinality as the collection of right cosets. This cardinality is called the

index of H in G, notation (G : H).

The order of a group G is its cardinality, notation |G|. Assume that |G| is finite.

Let again H be a subgroup of G. Since the left cosets w.r.t. H are pairwise disjoint

and have the same number of elements as H, and likewise for right cosets, we have

(G : H) =
|G|
|H|

.

An important consequence of this is, that |H| divides |G|.

0.1.4 Normal subgroup, factor group

Let G be a group, and H a subgroup of G. We call H a normal subgroup of G if

gH = Hg, that is, if gHg−1 = H for every g ∈ G.

Let H be a normal subgroup of G. Then the cosets of G with respect to H

form a group with group operation (g1H) · (g2H) = (g1g2) · H. This operation is

well-defined. We denote this group by G/H; it is called the factor group of G with

respect to H. Notice that the unit element of G/H is eGH = H. If G is finite, we

have |G/H| = (G : H) = |G|/|H|.
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0.1.5 Order of an element

Let G be a group, and g ∈ G. The order of g, notation ord(g), is the smallest

positive integer n such that gn = eG; if such an integer n does not exist we say that

g has infinite order.

We recall some properties of orders of group elements. Suppose that g ∈ G has

finite order n.

� ga = gb ⇐⇒ a ≡ b (modn).

� Let k ∈ Z. Then ord(gk) = n/gcd(k, n).

� {eG, g, g2, . . . , gn−1} is a subgroup of G of cardinality n = ord(g). Hence if G

is finite, then ord(g) divides |G|. Consequently, g|G| = eG.

Example. Let q be a positive integer. A prime residue class modulo q is a residue

class of the type amod q, where gcd(a, q) = 1. The prime residue classes form

a group under multiplication, which is denoted by (Z/qZ)∗. The unit element of

this group is 1 mod q, and the order of this group is ϕ(q), that is the number of

positive integers 6 q that are coprime with q. It follows that if gcd(a, q) = 1, then

aϕ(q) ≡ 1 (mod q).

0.1.6 Cyclic groups

The cyclic group generated by g, denoted by 〈g〉, is given by {gk : k ∈ Z}. In case

that G = 〈g〉 is finite, say of order n > 2, we have

〈g〉 = {eG = g0, g, g2, . . . , gn−1}, gn = eG.

So g has order n.

Example 1. µn = {ρ ∈ C∗ : ρn = 1}, that is the group of roots of unity of order n

is a cyclic group of order n. For a generator of µn one may take any primitive root

of unity of order n, i.e., e2πik/n with k ∈ Z, gcd(k, n) = 1.

Example 2. Let p be a prime number, and (Z/pZ)∗ = {amod p, gcd(a, p) = 1} the

group of prime residue classes modulo p with multiplication. This is a cyclic group

of order p− 1.
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Let G = 〈g〉 be a cyclic group and H a subgroup of G. Let k be the smallest

positive integer such that gk ∈ H. Using, e.g., division with remainder, one shows

that gr ∈ H if and only if r ≡ 0 (mod k). Hence H = 〈gk〉 and (G : H) = k.

0.1.7 Homomorphisms and isomorphisms

Let G1, G2 be two groups. A homomorphism from G1 to G2 is a map f : G1 → G2

such that f(g1g2) = f(g1)f(g2) for all g1, g2 ∈ G and f(eG1) = eG2 . This implies

that f(g−1) = f(g)−1 for g ∈ G1.

Let f : G1 → G2 be a homomorphism. The kernel and image of f are given by

Ker(f) := {g ∈ G1 : f(g) = eG2}, f(G1) = {f(g) : g ∈ G1},

respectively. Notice that Ker(f) is a normal subgroup of G1. It is easy to check that

f is injective if and only if Ker(f) = {eG1}.

Let G be a group and H a normal subgroup of G. Then

f : G→ G/H : g 7→ gH

is a surjective homomorphism from G to G/H, the canonical homomorphism from

G to G/H. Notice that the kernel of this homomorphism is H. Thus, every normal

subgroup of G occurs as the kernel of some homomorphism.

A homomorphism f : G1 → G2 which is bijective is called an isomorphism from

G1 to G2. In case that there is an isomorphism from G1 to G2 we say that G1, G2

are isomorphic, notation G1
∼= G2. Notice that a homomorphism f : G1 → G2 is an

isomorphism if and only if Ker(f) = {eG1} and f(G1) = G2. Further, in this case

the inverse map f−1 : G2 → G1 is also an isomorphism.

Let f : G1 → G2 be a homomorphism of groups and H = Ker(f). This yields

an isomorphism

f : G1/H → f(G1) : f(gH) = f(g).

Proposition 0.1.1. Let C be a cyclic group. If C is infinite, then it is isomorphic

to Z+ (the additive group of Z). If C has finite order n, then it is isomorphic to

(Z/nZ)+ (the additive group of residue classes modulo n).
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Proof. Let C = 〈g〉. Define f : Z+ → C by x 7→ gx. This is a surjective homomor-

phism; let H denote its kernel. Thus, Z+/H ∼= C. We have H = {0} if C is infinite,

and H = nZ+ if C has order n. This implies the proposition.

0.1.8 Direct products

Let G1, . . . , Gr be groups. Denote by eGi the unit element of Gi. The (external)

direct product G1 × · · · × Gr is the set of tuples (g1, . . . , gr) with gi ∈ Gi for i =

1, . . . , r, endowed with the group operation

(g1, . . . , gr) · (h1, . . . , hr) = (g1h1, . . . , grhr).

This is obviously a group, with unit element (eG1 , . . . , eGr) and inverse (g1, . . . , gr)
−1 =

(g−1
1 , . . . , g−1

r ).

Let G be a group and G1, . . . , Gr subgroups of G. We say that G is the internal

direct product of G1, . . . , Gr if:

(a) G = G1 · · ·Gr, i.e., every element of G can be expressed as g1 · · · gr with gi ∈ Gi

for i = 1, . . . , r;

(b) G1, . . . , Gr commute, that is, for all i, j = 1, . . . , r and all gi ∈ Gi, gj ∈ Gj we

have gigj = gjgi;

(c) G1, . . . , Gr are independent, i.e., if gi ∈ Gi (i = 1, . . . , r) are any elements such

that g1 · · · gr = eG, then gi = eG for i = 1, . . . , r.

A consequence of (a), (b), (c) is that every element of G can be expressed uniquely

as a product g1 · · · gr with gi ∈ Gi for i = 1, . . . , r.

Proposition 0.1.2. Let G, G1, . . . , Gr be groups.

(i) Suppose G is the internal direct product of G1, . . . , Gr. Then G ∼= G1× · · ·×Gr.

(ii) Suppose G ∼= G1 × · · · × Gr. Then there are subgroups H1, . . . , Hr of G such

that Hi
∼= Gi for i = 1, . . . , r and G is the internal direct product of H1, . . . , Hr.

Proof. (i) The map G1 × · · · ×Gr → G : (g1, . . . , gr) 7→ g1 · · · gr is easily seen to be

an isomorphism.

(ii) Let G′ := G1 × · · · ×Gr and for i = 1, . . . , r, define the group

G′i := {(eG1 , . . . , gi, . . . , eGr) : gi ∈ Gi}
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where the i-th coordinate is gi and the other components are the unit elements of

the respective groups. Clearly, G′ is the internal direct product of G′1, . . . , G
′
r, and

G′i
∼= Gi for i = 1, . . . , r. Let f : G → G1 × · · · × Gr be an isomorphism. Then G

is the internal direct product of Hi := f−1(G′i) (i = 1, . . . , r), and Hi
∼= G′i

∼= Gi for

i = 1, . . . , r.

We will sometimes be sloppy and write G = G1 × · · · × Gr if G is the internal

direct product of subgroups G1, . . . , Gr.

0.1.9 Abelian groups

The group operation of an abelian group is often denoted by +, but in this course

we stick to the multiplicative notation. The unit element of an abelian group A

is denoted by 1 or 1A. It is obvious that every subgroup of an abelian group is

a normal subgroup. In Proposition 0.1.2, the condition that H1, . . . , Hr commute

holds automatically so it can be dropped.

The following important theorem, which we state without proof, implies that the

finite cyclic groups are the building blocks of the finite abelian groups.

Theorem 0.1.3. Every finite abelian group is isomorphic to a direct product of

finite cyclic groups.

Proof. See S. Lang, Algebra, 2nd ed. Addison-Wesley, 1984, Ch.1, §10.

Let A be a finite, multiplicatively written abelian group of order > 2 with unit

element 1. Theorem 0.1.3 implies that A is the internal direct product of cyclic

subgroups, say C1, . . . , Cr. Assume that Ci has order ni > 2; then Ci = 〈hi〉, where

hi ∈ A is an element of order ni. We call {h1, . . . , hr} a basis for A.

Every element of A can be expressed uniquely as g1 · · · gr, where gi ∈ Ci for

i = 1, . . . , r. Further, every element of Ci can be expressed as a power hki , and

hki = 1 if and only if k ≡ 0 (modni). Together with Proposition 0.1.2 this implies

the following characterization of a basis for A:

(0.1.1)


A = {hk11 · · ·hkrr : ki ∈ Z for i = 1, . . . , r},

there are integers n1, . . . , nr > 2 such that

hk11 · · ·hkrr = 1⇐⇒ ki ≡ 0 (modni) for i = 1, . . . , r.
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0.2 Basic concepts from analysis

0.2.1 Asymptotic formulas

In analytic number theory texts there is a frequent occurrence of asymptotic for-

mulas, in which a complicated, not well understood function is approximated by a

simple, well understood function, and an estimate for the order of magnitude for the

error is given. In this section we recall some notation and some basic facts. Most of

this is first year calculus, formulated in a somewhat different manner.

Let S be an unbounded subset of R (for instance, the positive reals, the positive

integers or the primes), let f (the complicated function) and g (the simple function)

be functions from S to C and e (the estimate for the error) a function from S to

R>0. We write

(0.2.1) f(x) = g(x) +O(e(x)) as |x| → ∞

if there are C, x0 > 0 such that |f(x)−g(x)| 6 C ·e(x) for all x ∈ S with |x| > x0. We

call C a constant implied by the O-symbol, or a constant implicit in the O-symbol.

Further, we write

(0.2.2) f(x) = g(x) + o(e(x)) as |x| → ∞

if limx∈S,|x|→∞(f(x)− g(x))/e(x) = 0.

The interpretation of (0.2.1) is that f(x) can be approximated by g(x) with error

of order of magnitude at most e(x), and the interpretation of (0.2.2) is that f(x) can

be approximated by g(x) with error of order of magnitude smaller than e(x). We

call (0.2.1) and (0.2.2) asymptotic formulas, with main term g(x) and error term

O(e(x)), respectively o(e(x)).

In addition to the above, the notation f(x) = g(x)+O(e(x)) (without x→∞) is

used. This is defined for functions f, g : S → C for any infinite set S, not necessarily

contained in the reals, and e : S → R>0. It means that there is C > 0 such that

|f(x)− g(x)| 6 C · e(x) for all x ∈ S.

We should mention here that in case f, g, e are defined on a subset S of R and

f, g, 1/e are bounded on bounded subsets of S, then f(x) = g(x)+O(e(x)) as x→∞
and f(x) = g(x) + O(e(x)) (without x → ∞) have the same meaning. Indeed,
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suppose that f(x) = g(x) + O(e(x)) as x → ∞. Then there are x0 > 0, C > 0

such that |f(x) − g(x)| 6 C · e(x) for all x ∈ S with |x| > x0. However, by

assumption on f, g, e, there is C ′ > 0 such that |(f(x) − g(x))/e(x)| 6 C ′ for all

x ∈ S with |x| 6 x0. Consequently, |f(x) − g(x)| 6 max(C,C ′)e(x) for all x ∈ S,

i.e., f(x) = g(x) +O(e(x)).

We introduce some further notation:

• f(x)� e(x) or e(x)� f(x) as |x| → ∞ has the same meaning as f(x) = O(e(x))

as |x| → ∞, i.e., there are C, x0 > 0 such that |f(x)| 6 C · e(x) for all x ∈ S with

|x| > x0; we call C a constant implied by � or �.

• f(x) � g(x) as |x| → ∞ (defined for functions f, g : S → R>0) means that there

are C1, C2, x0 > 0 such that C1g(x) 6 f(x) 6 C2g(x) for all x ∈ S with |x| > x0.

In other words, f(x) � g(x) as |x| → ∞ means that both f(x)� g(x) as |x| → ∞
and g(x)� f(x) as |x| → ∞.

• f(x) ∼ g(x) as |x| → ∞ (defined for functions f, g : S → R) means that

limx∈S,|x|→∞ f(x)/g(x) = 1.

Of course, asymptotic formulas such as (0.2.1) or (0.2.2) are of interest only if

the error term is of smaller order of magnitude than the main term. Thus, in (0.2.1)

we require that limx∈S,|x|→∞ e(x)/|g(x)| = 0, i.e., e(x) = o(|g(x)|) as |x| → ∞, while

in (0.2.2) we require that there are x0 and C such that e(x) 6 C|g(x)| for x ∈ S
with |x| > x0, that is, e(x) = O(|g(x)|) as |x| → ∞.

We mention some basic facts.

Lemma 0.2.1. (i) Let fi, gi (i = 1, 2) be functions from S to R and e a function

from S to R>0 such that f1(x) = g1(x)+O(e(x)), f2(x) = g2(x)+O(e(x)) as |x| → ∞
and let a, b be reals. Then

(0.2.3) af1(x) + bf2(x) = ag1(x) + bg2(x) +O(e(x)) as |x| → ∞.

(ii) Let fi, gi (i = 1, 2) be functions from S to R and e a function from S to R>0

such that e(x) = o(1) as |x| → ∞, that is, limx∈S,|x|→∞ e(x) = 0. Further, let a1, a2

be reals such that f1(x) = a1 +O(e(x)), f2(x) = a2 +O(e(x)) as |x| → ∞. Then

(0.2.4) f1(x)f2(x) = a1a2 +O(e(x)) as |x| → ∞.

(iii) Let g be a function from S to R with g(x) = o(1) as |x| → ∞ and a a real.

Further, let ϕ be a function defined on a neighbourhood of a that is n + 1 times

9



continuously differentiable. Then

(0.2.5)

ϕ(a+ g(x)) = ϕ(a) + ϕ′(a)g(x) + · · ·+ ϕ(n)(a)

n!
· g(x)n +O(|g(x)|n+1) as |x| → ∞.

Proof. (i) and (ii) are obvious, while (iii) follows from the Taylor-Lagrange formula

ϕ(a+ t) = ϕ(a) + ϕ′(a)t+ · · ·+ ϕ(n)(a)

n!
· tn +

ϕ(n+1)(a+ θ)

(n+ 1)!
· tn+1

where |t| is small enough such that a+ t falls within the domain of definition of ϕ,

and θ lies between 0 and t. Suppose ϕ is defined on (a− ε, a+ ε) and let x0 be such

that |g(x)| < 1
2
ε for all x ∈ S with |x| > x0. Since ϕ(n+1) is continuous, there is C

such that |ϕ(n+1)(a + t)| 6 C for all t with |t| 6 1
2
ε. Now by substituting t = g(x),

formula (0.2.5) follows.

Examples.

1

a+ g(x)
= a− a−2g(x) + 1

2
a−3g(x)2 +O(|g(x)|3) as |x| → ∞,

log(1 + g(x)) = g(x)− 1
2
g(x)2 + 1

3
g(x)3 +O(|g(x)|4) as |x| → ∞,

eg(x) = 1 + g(x) + 1
2
g(x)2 + 1

3!
g(x)3 +O(|g(x)|4) as |x| → ∞.

Next, we derive asymptotic formulas for sums
∑

a6n6x f(n), where the sum is

taken over all positive integers n with a 6 n 6 x (with a an integer and x a

real), and where f is a continuous, monotone decreasing function on [a,∞) with

limx→∞ f(x) = 0. We start with a lemma.

Lemma 0.2.2. Let a be an integer and let f : [a,∞)→ R be a continuous, monotone

decreasing function with limx→∞ f(x) = 0. Then there is γf > 0 such that for every

integer N > a,

(0.2.6)
N∑
n=a

f(n) =

∫ N

a

f(t)dt+ γf + rf (N), where 0 6 rf (N) 6 f(N).

Remark. This formula is valid irrespective of whether
∑∞

n=a f(n) converges or not.
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Proof. Since f is monotone decreasing, we have f(n + 1) 6
∫ n+1

n
f(t)dt 6 f(n),

hence

(0.2.7) 0 6 bn := f(n)−
∫ n+1

n

f(t)dt 6 f(n)− f(n+ 1) for n > a.

The series
∑∞

n=a(f(n)− f(n+ 1)) = f(a) converges, so

γf :=
∞∑
n=a

bn = lim
N→∞

N−1∑
n=a

bn = lim
N→∞

(N−1∑
n=a

f(n)−
∫ N

a

f(t)dt
)

converges as well and is > 0. Further

N∑
n=a

f(n)−
∫ N

a

f(t)dt = f(N) +
N−1∑
n=a

bn = γf + f(N)−
∞∑
n=N

bn = γf + rf (N),

where by (0.2.7) we have

f(N) > rf (N) > f(N)−
∞∑
n=N

(f(n)− f(n+ 1)) = 0.

Corollary 0.2.3. Let a be an integer and let f : [a,∞)→ R be a continuous, mono-

tone decreasing function with limx→∞ f(x) = 0. Assume that
∑∞

n=a f(n) converges.

Then for every integer N > a,

(0.2.8)
N∑
n=a

f(n) =
∞∑
n=a

f(n)−
∫ ∞
a

f(t)dt+ rf (N) where 0 6 rf (N) 6 f(N).

Proof. Letting N →∞ in (0.2.6), we get γf =
∑∞

n=a f(n)−
∫∞
a
f(t)dt. Substituting

this into (0.2.6) we immediately get (0.2.8).

Corollary 0.2.4. Let a be an integer and let f : [a,∞) → R be a continuous,

monotone decreasing function with limx→∞ f(x) = 0. Assume in addition that the

quotient f(x− 1)/f(x) is bounded as x→∞. Then for every real x > a,∑
a6n6x

f(n) =

∫ x

a

f(t)dt+ γf +O(f(x)) as x→∞.

Further, if
∑∞

n=a f(n) converges, we have∑
a6n6x

f(n) =
∞∑
n=a

f(n)−
∫ ∞
x

f(t)dt+O(f(x)) as x→∞.
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Proof. We prove only the first asymptotic formula. The proof of the second is very

similar. Let N = [x] be the largest integer 6 x. Then

∑
a6n6x

f(n) =
N∑
n=a

f(n) =

∫ N

a

f(t)dt+ γf + rf (N)

=

∫ x

a

f(t)dt+ γf −
∫ x

N

f(t)dt+ rf (N).

Note that f(N)/f(x) 6 f(x− 1)/f(x) is bounded as x→∞. So

0 6
∫ x

N

f(t)dt 6 f(N) = O(f(x)), 0 6 rf (N) 6 f(N) = O(f(x)) as x→∞,

implying
∑

a6n6x f(n) =
∫ x
a
f(t)dt+ γf +O(f(x)) as x→∞.

Examples.

a) By applying Corollary 0.2.4 with f(x) = x−1 we get∑
n6x

1
n = log x+ γ +O( 1x) as x→∞,

where γ = γx−1 is the Euler-Mascheroni constant.

b) By applying Corollary 0.2.4 with f(x) = x−2 and using Euler’s formula
∑∞

n=1
1
n2 =

π2

6 we get ∑
n6x

1
n2 = π2

6 −
1
x +O( 1

x2 ) as x→∞.

0.2.2 Infinite products

We say that a sequence {an}∞n=1 of complex numbers converges if there is ` ∈ C
such that limn→∞ an = `, i.e., limn→∞ |an − `| = 0. By the completeness of C,

this is equivalent to limm,n→∞ |am − an| = 0. For a sequence of complex numbers

{an}∞n=1 we say that limn→∞ an exists if either the sequence converges or the limit is

±∞. A limit can be ±∞ only if an ∈ R for all sufficiently large n. So for instance

limn→∞(−1)n does not exist.

We define a series of complex numbers
∑∞

n=1An by limN→∞
∑N

n=1An, provided

the limit exists; if the limit exists and is not ±∞, we say that the series converges.
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If
∑∞

n=1 |An| converges, we say that
∑∞

n=1An converges absolutely. Absolute con-

vergence of a series implies convergence. Just as for series of real numbers, a series

of complex numbers
∑∞

n=1An is absolutely convergent if and only if it is uncon-

ditionally convergent, i.e., after any rearrangement of its terms, the series remains

convergent and its value remains the same.

In what follows, we consider infinite products. Let {An}∞n=1 be a sequence of

complex numbers. We define

∞∏
n=1

An := lim
N→∞

N∏
n=1

An

provided the limit exists (so if it is finite or ±∞).

Clearly,
∏∞

n=1An = 0 if An = 0 for some n. But if An 6= 0 for all n then

it may still happen that
∏∞

n=1An = 0, for instance
∏∞

n=1

(
1 − 1

n+1

)
= 0. (It is

common practice to say that
∏∞

n=1 An converges if there is non-zero ` ∈ C such that

limN→∞
∏N

n=1An = `. We will not use this notion of convergence and say instead

that
∏∞

n=1An exists and is 6= 0,±∞).

Define the principal complex logarithm of z ∈ C\{0} by Log z := log |z|+iArg z,

where Arg z is the principal argument of z, i.e., the argument in (−π, π]. Then we

have

∞∏
n=1

An exists and is 6= 0,±∞ ⇐⇒ An 6= 0 for all n and
∞∑
n=1

LogAn converges.

The following criterion is more useful for our purposes.

Proposition 0.2.5. Assume that
∑∞

n=1 |An − 1| <∞. Then the following hold:

(i)
∏∞

n=1 An exists and is 6= ±∞, and
∏∞

n=1 An 6= 0 if An 6= 0 for all n.

(ii)
∏∞

n=1An is invariant under rearrangements of the An, i.e., if σ is any bijection

of Z>0, then
∏∞

n=1 Aσ(n) exists and is equal to
∏∞

n=1An.

Proof. (i) Let an := |An−1| for n = 1, 2, . . .. Let M,N be integers with N > M > 0.

Then, using |1 + z| 6 e|z| for z ∈ C and

∣∣∣ r∏
i=1

(1 + zi)− 1
∣∣∣ 6 r∏

i=1

(1 + |zi|)− 1 6 exp
( r∑
i=1

|zi|
)
− 1 for z1, . . . , zr ∈ C,
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we get ∣∣∣∣∣
N∏
n=1

An −
M∏
n=1

An

∣∣∣∣∣ =
M∏
n=1

|An| ·

∣∣∣∣∣
N∏

n=M+1

An − 1

∣∣∣∣∣(0.2.9)

6 exp
( M∑
n=1

an

)
·

(
exp

( N∑
n=M+1

an

)
− 1

)

which tends to 0 as M,N → ∞. Hence
∏∞

n=1 An = limN→∞
∏N

n=1An exists and is

finite.

Assume that An 6= 0 for all n. Since
∑∞

n=1 an converges, there exists M such

that
∑∞

n=M an <
1
2
. Then noting that |An| > 1− an > e−an we get for all N > M ,

∣∣∣ N∏
n=1

An

∣∣∣ =
M∏
n=1

|An| ·
N∏

n=M+1

|An|

>
( M∏
n=1

|An|
)
· e−

∑N
n=M+1 an > e−1/2

M∏
n=1

|An| =: C > 0,

and then, letting N →∞,
∣∣∣∏∞n=1An

∣∣∣ > C > 0. This proves (i).

(ii) Let M,N be positive integers such that N > M and {σ(1), . . . , σ(N)} con-

tains {1, . . . ,M}. Similarly to (0.2.9) we get∣∣∣∣∣
N∏
n=1

Aσ(n) −
M∏
n=1

An

∣∣∣∣∣ 6 exp
( M∑
n=1

an

)
·

exp
( ∑
n6N,σ(n)>M

aσ(n)

)
− 1

 .

If for fixed M we let first N →∞ and then let M →∞, the right-hand side tends

to 0. Hence
∏∞

n=1Aσ(n) =
∏∞

n=1An.

0.2.3 Uniform convergence

We consider functions f : D → C where D can be any set. We can express each

such function as g + ih where g, h are functions from D to R. We write g = Re f

and h = Im f .

We recall that if D is a topological space (in this course mostly a subset of Rn

with the usual topology, i.e., the open subsets of D are the unions of open balls

14



in Rn intersected with D) then f is continuous if and only if Re f and Im f are

continuous.

In case that D ⊆ R, we say that f is differentiable if and only if Re f and Im f

are differentiable; then we define the derivative of f by f ′ := (Re f)′ + i(Im f)′.

In what follows, let D be any set and {Fn} = {Fn}∞n=1 a sequence of functions

from D to C.

Definition. We say that {Fn} converges pointwise on D if for every z ∈ D there is

F (z) ∈ C such that limn→∞ Fn(z) = F (z). In this case, we write Fn → F pointwise.

We say that {Fn} converges uniformly on D if moreover,

lim
n→∞

(
sup
z∈D
|Fn(z)− F (z)|

)
= 0.

In this case, we write Fn → F uniformly.

Facts:

� {Fn} converges uniformly onD if and only if lim
M,N→∞

(
sup
z∈D
|FM(z)− FN(z)|

)
= 0.

� Let D be a topological space, assume that all functions Fn are continuous

on D, and that {Fn} converges to a function F uniformly on D. Then F is

continuous on D.

Let again D be any set and {Fn}∞n=1 a sequence of functions from D to C.

We say that the series
∑∞

n=1 Fn converges pointwise/uniformly on D if the partial

sums
∑N

n=1 Fn converge pointwise/uniformly on D. Further, we say that
∑∞

n=1 Fn
is pointwise absolutely convergent on D if

∑∞
n=1 |Fn(z)| converges for every z ∈ D.

Proposition 0.2.6 (Weierstrass criterion for series). Assume that there are finite

real numbers Mn such that

|Fn(z)| 6Mn for z ∈ D, n > 1,
∞∑
n=1

Mn converges.

Then
∑∞

n=1 Fn is both uniformly convergent, and pointwise absolutely convergent on

D.
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Proof. We have for N > M > 1,

sup
z∈D
|
N∑
n=1

Fn(z)−
M∑
n=1

Fn(z)| = sup
z∈D
|

N∑
n=M+1

Fn(z)|

6 sup
z∈D

N∑
n=M+1

|Fn(z)| 6
N∑

n=M+1

Mn → 0 as M,N →∞.

We need a similar result for infinite products of functions. Let again D be any

set and {Fn : D → C}∞n=1 a sequence of functions. We define the limit function∏∞
n=1 Fn by

∞∏
n=1

Fn(z) := lim
N→∞

N∏
n=1

Fn(z) (z ∈ D),

provided that for every z ∈ D the limit exists.

We say that
∏∞

n=1 Fn converges uniformly on D if the limit function F :=∏∞
n=1 Fn exists and is 6= ±∞ on D, and

lim
N→∞

(
sup
z∈D

∣∣∣F (z)−
N∏
n=1

Fn(z)
∣∣∣) = 0.

Proposition 0.2.7 (Weierstrass criterion for infinite products). Assume that there

are finite real numbers Mn such that

|Fn(z)− 1| 6Mn for z ∈ D, n > 1,
∞∑
n=1

Mn converges.

Then F :=
∏∞

n=1 Fn is uniformly convergent on D and moreover, if z ∈ D is such

that Fn(z) 6= 0 for all n, then also F (z) 6= 0.

Proof. Applying (0.2.9) with An = Fn(z) and using |Fn(z)− 1| 6Mn for z ∈ D, we

obtain that for any two integers M,N with N > M > 0, and all z ∈ D,∣∣∣∣∣
N∏
n=1

Fn(z)−
M∏
n=1

Fn(z)

∣∣∣∣∣ 6 exp
( M∑
n=1

Mn

)
·

(
exp

( N∑
n=M+1

Mn

)
− 1

)
.

Since the right-hand side is independent of z and tends to 0 as M,N → ∞, the

uniform convergence follows. Further, if Fn(z) 6= 0 for all n then
∏∞

n=1 Fn(z) 6= 0 by

Proposition 0.2.5.
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0.3 Integration

In this course, all integrals will be Lebesgue integrals of real or complex measurable

functions on Rn (always with respect to the Lebesgue measure on Rn). Lebesgue

integrals coincide with the Riemann integrals from first year calculus whenever the

latter are defined, but Riemann integrals can be defined only for a much smaller class

of functions. It is not really necessary to know the precise definitions of Lebesgue

measure, measurable functions and Lebesgue integrals, and you will be perfectly

able to follow this course without any knowledge of Lebesgue theory. But we will

frequently have to deal with infinite integrals of infinite series of functions, and to

handle these, Lebesgue theory is much more convenient than the theory of Riemann

integrals. In particular, in Lebesgue theory there are some very powerful convergence

theorems for sequences of functions, theorems on interchanging multiple integrals,

etc., which we will frequently apply. If you are willing to take for granted that

all functions appearing in this course are measurable, there will be no problem to

understand or apply these theorems.

We have collected a few useful facts, which are amply sufficient for our course.

0.3.1 Measurable sets

The length of a bounded interval I = [a, b], [a, b), (a, b] or (a, b), where a, b ∈ R, a < b,

is given by l(I) := b − a. Let n ∈ Z>1. An interval in Rn is a cartesian product of

bounded intervals I =
∏n

i=1 Ii. We define the volume of I by l(I) :=
∏n

i=1 l(Ii).

Let A be an arbitrary subset of Rn. We define the outer measure of A by

λ∗(A) := inf
∞∑
i=1

l(Ii),

where the infimum is taken over all countable unions of intervals
⋃∞
i=1 Ii ⊃ A. We

say that a set A is measurable if

λ∗(S) = λ∗(S ∩ A) + λ∗(S ∩ Ac) for every S ⊆ Rn,

where Ac = Rn \ A is the complement of A. In this case we define the (Lebesgue)

measure of A by λ(A) := λ∗(A). This measure may be finite or infinite. It can be

shown that intervals are measurable, and that λ(I) = l(I) for any interval I in Rn.
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Facts:

� A countable union
⋃∞
i=1Ai of measurable sets Ai is measurable. Further, the

complement of a measurable set is measurable. Hence a countable intersection

of measurable sets is measurable.

� All open and closed subsets of Rn are measurable.

� Let A = ∪∞i=1Ai be a countable union of pairwise disjoint measurable sets.

Then λ(A) =
∑∞

i=1 λ(Ai), where we agree that λ(A) = 0 if λ(Ai) = 0 for all i.

� Under the assumption of the axiom of choice, one can construct non-measurable

subsets of Rn.

Let A be a measurable subset of Rn. We say that a particular condition holds for

almost all x ∈ A, it if holds for all x ∈ A with the exception of a subset of Lebesgue

measure 0. If the condition holds for almost all x ∈ Rn, we say that it holds almost

everywhere.

An important subcollection of the collection of measurable subsets of Rn is the

collection of Borel sets: it is the smallest collection of subsets of Rn which contains all

open sets, and which is closed under taking complements and under taking countable

unions.

All sets occurring in this course will be Borel sets, hence measurable; we will

never bother about the verification in individual cases.

0.3.2 Measurable functions

A function f : Rn → R is called measurable if for every a ∈ R, the set

{x ∈ Rn : f(x) > a} is measurable.

A function f : Rn → C is measurable if both Re f and Im f are measurable.

Facts:

� If A ⊂ Rn is measurable then its characteristic function, given by IA(x) = 1 if

x ∈ A, IA(x) = 0 otherwise is measurable.
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� Every continuous function f : Rn → C is measurable. More generally, f is

measurable if its set of discontinuities has Lebesgue measure 0.

� If f, g : Rn → C are measurable then f + g and fg are measurable. Further,

the function given by x 7→ f(x)/g(x) if g(x) 6= 0 and x 7→ 0 if g(x) = 0 is

measurable.

� If f, g : Rn → R are measurable, then so are max(f, g) and min(f, g).

� If {fk : Rn → C} is a sequence of measurable functions and fk → f pointwise

on Rn, then f is measurable.

A function f : Rn → R is called a Borel function if {x ∈ Rn : f(x) > a} is a

Borel set for every a ∈ R. A function f : Rn → C is called a Borel function if Re f

and Im f are both Borel functions. All functions occurring in our course can be

proved to be Borel, hence measurable. We will always omit the nasty verifications

in individual cases.

0.3.3 Lebesgue integrals

The Lebesgue integral is defined in various steps.

1) An elementary function on Rn is a function of the type f =
∑r

i=1 ciIDi , where

D1, . . . , Dr are pairwise disjoint measurable subsets of Rn, and c1, . . . , cr positive

reals. Then we define
∫
fdx :=

∑r
i=1 ciλ(Di).

2) Let f : Rn → R be measurable and f > 0 on Rn. Then we define
∫
fdx :=

sup
∫
gdx where the supremum is taken over all elementary functions g 6 f . Thus,∫

fdx is defined and > 0 but it may be infinite.

3) Let f : Rn → R be an arbitrary measurable function. Then we define∫
fdx :=

∫
max(f, 0)dx−

∫
max(−f, 0)dx,

provided that at least one of the integrals is finite. If both integrals are finite, we

say that f is integrable or summable.

4) Let f : Rn → C be measurable. We say that f is integrable or summable if both
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Re f and Im f are integrable, and in that case we define∫
fdx :=

∫
(Re f)dx+ i

∫
(Im f)dx.

5) Let D be a measurable subset of Rn. Let f be a complex function defined on a

set containing D. We define f · ID by defining it to be equal to f on D and equal

to 0 outside D. We say that f is measurable on D if f · ID is measurable. Further,

we say that f is integrable over D if f · ID is integrable, and in that case we define∫
D
fdx :=

∫
f · IDdx.

Facts:

� Let D be a measurable subset of Rn and f : D → C a measurable function.

Then f is integrable over D if and only if
∫
D
|f |dx < ∞ and in that case,

|
∫
D
fdx| 6

∫
D
|f |dx.

� Let again D be a measurable subset of Rn and f : D → C, g : D → R>0

measurable functions, such that
∫
D
gdx < ∞ and |f | 6 g on D. Then f is

integrable over D, and |
∫
D
fdx| 6

∫
D
gdx.

� Let D be a closed interval in Rn and f : D → C a bounded function which

is Riemann integrable over D. Then f is Lebesgue integrable over D and the

Lebesgue integral
∫
D
fdx is equal to the Riemann integral

∫
D
f(x)dx.

� Let f : [0,∞)→ C be such that the improper Riemann integral
∫∞

0
|f(x)|dx :=

limT→∞
∫ T

0
|f(x)|dx converges. Then the improper Riemann integral

∫∞
0
f(x)dx

:= limT→∞
∫ T

0
f(x)dx converges as well, and it is equal to the Lebesgue inte-

gral
∫

[0,∞)
fdx. However, an improper Riemann integral

∫∞
0
f(x)dx which

itself is convergent, but for which
∫∞

0
|f(x)|dx =∞ can not be interpreted as

a Lebesgue integral. The same applies to the other types of improper Riemann

integrals, e.g.,
∫ b
a
f(x)dx where f is unbounded on (a, b).

� An absolutely convergent series of complex terms
∑∞

n=0 an may be interpreted

as a Lebesgue integral. Define the function A by A(x) := an for x ∈ R with

n 6 x < n+ 1 and A(x) := 0 for x < 0. Then A is measurable and integrable,

and
∑∞

n=0 an =
∫
Adx.
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0.3.4 Important theorems

Theorem 0.3.1 (Dominated Convergence Theorem). Let D ⊆ Rn be a measurable

set and {fk : D → C}k>0 a sequence of functions that are all integrable over D,

and such that fk → f pointwise on D. Assume that there is an integrable function

g : D → R>0 such that |fk(x)| 6 g(x) for all x ∈ D, k > 0. Then f is integrable

over D, and
∫
D
fkdx→

∫
D
fdx.

Corollary 0.3.2. let D ⊂ Rn be a measurable set of finite measure and {fk : D →
C}k>0 a sequence of functions that are all integrable over D, and such that fk → f

uniformly on D. Then f is integrable over D, and
∫
D
fkdx→

∫
D
fdx.

Proof. Let ε > 0. There is k0 such that |f(x) − fk(x)| < ε for all x ∈ D, k > k0.

The constant function x 7→ ε is integrable over D since D has finite measure. Hence

for k > k0, f − fk is integrable over D, and so f is integrable over D. Consequently,

|f | is integrable over D. Now |fk| < ε + |f | for k > k0. So by the Dominated

Convergence Theorem,
∫
D
fkdx→

∫
D
fdx.

In the theorem below, we write points of Rm+n as (x, y) with x ∈ Rm, y ∈
Rn. Further, dx, dy, d(x, y) denote the Lebesgue measures on Rm, Rn, Rm+n,

respectively.

Theorem 0.3.3 (Fubini-Tonelli). Let D1, D2 be measurable subsets of Rm,Rn, re-

spectively, and f : D1 ×D2 → C a measurable function. Assume that at least one

of the integrals∫
D1×D2

|f(x, y)|d(x, y),

∫
D1

(∫
D2

|f(x, y)|dy
)
dx,

∫
D2

(∫
D1

|f(x, y)|dx
)
dy

is finite. Then they are all finite and equal.

Further, f is integrable over D1 ×D2, x 7→ f(x, y) is integrable over D1 for almost

all y ∈ D2, y 7→ f(x, y) is integrable over D2 for almost all x ∈ D1, and∫
D1×D2

f(x, y)d(x, y) =

∫
D1

(∫
D2

f(x, y)dy

)
dx =

∫
D2

(∫
D1

f(x, y)dx

)
dy.

Corollary 0.3.4. Let D be a measurable subset of Rm and {fk : D → C}k>0 a

sequence of functions that are all integrable over D and such that
∑∞

k=0 |fk| converges
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pointwise on D. Assume that at least one of the quantities

∞∑
k=0

∫
D

|fk(x)|dx,
∫
D

( ∞∑
k=0

|fk(x)|
)
dx

is finite. Then
∑∞

k=0 fk is integrable over D and

∞∑
k=0

∫
D

fk(x)dx =

∫
D

( ∞∑
k=0

fk(x)
)
dx.

Proof. Apply the Theorem of Fubini-Tonelli with n = 1, D1 = D, D2 = [0,∞),

F (x, y) = fk(x) where k is the integer with k 6 y < k + 1.

Corollary 0.3.5. Let {akl}∞k,l=0 be a double sequence of complex numbers such that

at least one of
∞∑
k=0

( ∞∑
l=0

|akl|
)
,

∞∑
l=0

( ∞∑
k=0

|akl|
)

converges. Then both
∞∑
k=0

( ∞∑
l=0

akl

)
,

∞∑
l=0

( ∞∑
k=0

akl

)
converge and are equal.

Proof. Apply the Theorem of Fubini-Tonelli with m = n = 1, D1 = D2 = [0,∞),

F (x, y) = akl where k, l are the integers with k 6 x < k + 1, l 6 y < l + 1.

0.3.5 Useful inequalities

We have collected some inequalities, stated without proof, which frequently show

up in analytic number theory. The proofs belong to a course in measure theory or

functional analysis.

Proposition 0.3.6. Let D be a measurable subset of Rn and f, g : D → C mea-

surable functions. Let p, q be reals > 1 with 1
p + 1

q = 1. Then if all integrals are

defined,∣∣∣ ∫
D

fg · dx
∣∣∣ 6 (∫

D

|f |pdx
)1/p

·
(∫

D

|g|qdx
)1/q

(Hölder’s Inequality).
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In particular,∣∣∣ ∫
D

fgdx
∣∣∣ 6 (∫

D

|f |2dx
)1/2

·
(∫

D

|g|2dx
)1/2

(Cauchy-Schwarz’ Inequality).

Corollary 0.3.7. Let a1, . . . , ar, b1, . . . , br be complex numbers and p, q reals > 1

with 1
p + 1

q = 1. Then∣∣∣ r∑
n=1

anbn

∣∣∣ 6 ( r∑
n=1

|an|p
)1/p

·
( r∑
n=1

|bn|q
)1/q

(Hölder).

In particular,∣∣∣ r∑
n=1

anbn

∣∣∣ 6 ( r∑
n=1

|an|2
)1/2

·
( r∑
n=1

|bn|2
)1/2

(Cauchy-Schwarz).

This follows from Proposition 0.3.6 by taking D = [0, r), f(x) = an, g(x) = bn for

n− 1 6 x < n, n = 1, . . . , r.

A function ϕ from an interval I ⊆ R to R is called convex if ϕ((1− t)x+ ty) 6
(1− t)ϕ(x) + tϕ(y) holds for all x, y ∈ I and all t ∈ [0, 1]. In particular, ϕ is convex

on I if ϕ is differentiable twice and ϕ′′ > 0 on I.

Proposition 0.3.8. Let D be a measurable subset of Rn with 0 < λ(D) < ∞, let

f : D → R>0 be a Lebesgue integrable function and let ϕ : R>0 → R be a convex

function. Then

ϕ
(

1
λ(D)

∫
D

f · dx
)
6 1

λ(D)

∫
D

(ϕ ◦ f)dx (Jensen’s Inequality).

Corollary 0.3.9. Let a1, . . . , ar be positive reals, and let ϕ : R>0 → R be a convex

function. Then

ϕ
(
1
r

r∑
n=1

an

)
6 1

r

r∑
n=1

ϕ(an).

In particular,

1
r

r∑
n=1

an > r
√
a1 · · · an (arithmetic mean > geometric mean).

The first assertion follows by applying Proposition 0.3.8 with D = [0, r) and f(x) =

an for x ∈ [n − 1, n). The second assertion follows by applying the first with

ϕ(x) = − log x.
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0.4 Contour integrals

0.4.1 Paths in C

We consider continuous functions g : [a, b] → C, where a, b ∈ R and a < b. Two

continuous functions g1 : [a, b] → C, g2 : [c, d] → C are called equivalent if there is

a continuous monotone increasing function ϕ : [a, b] → [c, d] such that g1 = g2 ◦ ϕ.

The equivalence classes of this relation are called paths (in C), and a function g :

[a, b] → C representing a path is called a parametrization of the path. Roughly

speaking, a path is a curve in C, together with a direction in which it is traversed.

A smooth path is a path represented by a function g : [a, b] → C such that g

is continuously differentiable on [a, b] (here ’differentiable’ means differentiable on

(a, b), right differentiable in a and left differentiable in b).

Let γ be a path. Choose a parametrization g : [a, b]→ C of γ. We call g(a) the

start point and g(b) the end point of γ. Further, g([a, b]) is called the support of γ.

By saying that a function is continuous on γ, or that γ is contained in a particular

set, etc., we mean the support of γ.

Let γ be a path and F : γ → C a continuous function on (the support of) γ.

Then F (γ) is the path such that if g : [a, b] → C is a parametrization of γ then

F ◦ g : [a, b]→ C is a parametrization of F (γ).

The path γ is said to be closed if its end point is equal to its start point, i.e., if

g(a) = g(b). The path γ is called simple if it has no self-intersections, other than its

start point and end point if γ is closed. Finally, a closed, simple path is said to be

positively oriented if it is traversed counterclockwise (we will not give the cumber-

some formal definition of this intuitively obvious notion).
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closed, not simple contour closed, simple contour

Let γ1, γ2 be paths, such that the end point of γ1 is equal to the start point of

γ2. We define γ1 + γ2 to be the path obtained by first traversing γ1 and then γ2.

For instance, if g1 : [a, b] → C is a parametrization of γ1 then we may choose a

parametrization g2 : [b, c] → C of γ2; then g : [a, c] → C defined by g(t) := g1(t) if

a 6 t 6 b, g(t) := g2(t) if b 6 t 6 c is a parametrization of γ1 + γ2.

This is easily extended to γ1 + · · ·+ γr, where first γ1 is traversed, then γ2, etc.,

and the end point of γi coincides with the start point of γi+1, for i = 1, . . . , r − 1.

Given a path γ, we define −γ to be the path traversed in the opposite direction,

i.e., the start point of −γ is the end point of γ and conversely.
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0.4.2 Definition of the contour integral

A contour is a piecewise smooth path, i.e., a path of the shape γ1 + · · ·+ γr where

γ1, . . . , γr are smooth paths, such that the end point of γi coincides with the start

point of γi+1, for i = 1, . . . , r − 1. We define integrals along contours.

All paths occurring in our course will be built up from circle segments and line

segments, hence are contours.

First, let γ be a smooth path, and f : γ → C a continuous function. Choose a

continuously differentiable parametrization g : [a, b]→ C of γ. Then we define∫
γ

f(z)dz :=

∫ b

a

f(g(t))g′(t)dt.

Further, we define the length of γ by

L(γ) :=

∫ b

a

|g′(t)|dt.

These notions do not depend on the choice of g.

If γ = γ1 + · · ·+ γr is a contour with smooth pieces γ1, . . . , γr, and f : γ → C is

continuous, then we define ∫
γ

f(z)dz :=
r∑
i=1

∫
γi

f(z)dz

and

L(γ) :=
r∑
i=1

L(γi).

In case that γ is closed, we write
∮
γ
f(z)dz. It can be shown that the value of this

integral is independent of the choice of the common start point and end point of γ.

We mention here that we can define more generally line integrals
∫
γ
f(z)dz for

paths γ that are not necessarily contours, i.e., not piecewise continuously differen-

tiable. For contours, this new definition coincides with the one given above.

Let γ be any path and choose a parametrization g : [a, b]→ C of γ. A partition

of [a, b] is a tuple P = (t0, . . . , ts) where a = t0 < t1 < · · · < ts = b. We define the

length of γ by

L(γ) := sup
P

s∑
i=1

|g(ti)− g(ti−1)|,
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where the supremum is taken over all partitions P of [a, b]. This does not depend on

the choice of g. We call γ rectifiable if L(γ) < ∞ (in another language, this means

that the function g is of bounded variation).

Let γ be a rectifiable path, and g : [a, b] → C a parametrization of γ. Given a

partition P = (t0, . . . , ts) of [a, b], we define the mesh of P by

δ(P ) := max
16i6s

|ti − ti−1|.

A sequence of intermediate points of P is a tuple W = (w1, . . . , ws) such that

t0 < w1 < t1 < w2 < t2 < · · · < ts.

Let f : γ → C be a continuous function. For a partition P of [a, b] and a tuple

of intermediate points W of P we define

S(f, g, P,W ) :=
s∑
i=1

f(g(wi))(g(ti)− g(ti−1)).

One can show that there is a finite number, denoted
∫
γ
f(z)dz, such that for any

choice of parametrization g : [a, b] → C of γ and any sequence (Pn,Wn)n>0 of

partitions Pn of [a, b] and sequences of intermediate points Wn of Pn with δ(Pn)→ 0,∫
γ

f(z)dz = lim
n→∞

S(f, g, Pn,Wn).

In another language,
∫
γ
f(z)dz is equal to the Riemann-Stieltjes integral

∫ b
a
f(g(t))dg(t).

0.4.3 Properties of contour integrals

� Let γ be a contour, and f : γ → C continuous. Then∣∣∣∣∫
γ

f(z)dz

∣∣∣∣ 6 L(γ) · sup
z∈γ
|f(z)|.

� Let γ1, γ2 be two contours such that the end point of γ1 and the start point of

γ2 coincide. Let f : γ1 + γ2 → C continuous. Then∫
γ1+γ2

f(z)dz =

∫
γ1

f(z)dz +

∫
γ2

f(z)dz.
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� Let γ be a contour and f : γ → C be continuous. Then∫
−γ
f(z)dz = −

∫
γ

f(z)dz.

� Let γ be a contour and {fn : γ → C}∞n=1 a sequence of continuous functions.

Suppose that fn → f uniformly on γ, i.e., supz∈γ |fn(z)−f(z)| → 0 as n→∞.

Then f is continuous on γ, and
∫
γ
fn(z)dz →

∫
γ
f(z)dz as n→∞.

� Call a function F : U → C on an open subset U of C analytic if for every

z ∈ U the limit

F ′(z) = lim
h∈C, h→0

F (z + h)− F (z)

h

exists and is finite (much more on this later). Let γ be a contour with start

point z0 and end point z1, and let F be an analytic function defined on an

open set U ⊂ C that contains γ. Then∫
γ

F ′(z)dz = F (z1)− F (z0).

� Let γ be a contour and F an analytic function defined on some open set

containing γ. Further, let f : F (γ)→ C be continuous. Then∫
F (γ)

f(w)dw =

∫
γ

f(F (z))F ′(z)dz.

We mention that all properties mentioned above can be generalized to line integrals

along rectifiable paths, but in textbooks they are never proved in this generality.

Examples. 1. Let γa,r denote the circle with center a and radius r, traversed

counterclockwise. For γa,r we may choose a parametrization t 7→ a+re2πit, t ∈ [0, 1].

Let n ∈ Z. Then∮
γa,r

(z − a)ndz =

∫ 1

0

rne2nπit · 2πi · re2πitdt

= 2πirn+1

∫ 1

0

e2(n+1)πitdt =

{
2πi if n = −1;

0 if n 6= −1.
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2. For z0, z1 ∈ C, denote by [z0, z1] the line segment from z0 to z1. For [z0, z1] we

may choose a parametrization t 7→ z0 + t(z1 − z0), t ∈ [0, 1]. Let f : [z0, z1]→ C be

continuous. Then∫
[z0,z1]

f(z)d(z) =

∫ 1

0

f(z0 + t(z1 − z0))(z1 − z0)dt.
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0.5 Topology

We recall some facts about the topology of C.

0.5.1 Basic facts

Let a ∈ C, r ∈ R>0. We define the open disk and closed disk with center a and

radius r,

D(a, r) := {z ∈ C : |z − a| < r}, D(a, r) := {z ∈ C : |z − a| 6 r}.

Recall that a subset U of C is called open if either U = ∅, or for every a ∈ U there is

δ > 0 with D(a, δ) ⊂ U . A subset U of C is called closed if its complement U c = C\U
is open. It is easy to verify that the union of any possibly infinite collection of open

subsets of C is open. Further, the intersection of finitely many open subsets is open.

Consequently, the intersection of any possibly infinite collection of closed sets is

closed, and the union of finitely many closed subsets is closed.

A subset S of C is called compact, if for every collection {Uα}α∈I of open subsets

of C with S ⊂
⋃
α∈I Uα there is a finite subset F of I such that S ⊂

⋃
α∈F Uα, in

other words, every open cover of S has a finite subcover.

By the Heine-Borel Theorem, a subset of C is compact if and only if it is closed

and bounded.

Let U be a non-empty subset of C. A point z0 ∈ C is called a limit point of U if

there is a sequence {zn} in U such that all zn are distinct and zn → z0 as n → ∞.

Recall that a non-empty subset U of C is closed if and only if each of its limit points

belongs to U .

Let U be a non-empty open subset of C, and S ⊂ U . Then S is called discrete in

U if it has no limit points in U . Recall that by the Bolzano-Weierstrass Theorem,

every infinite subset of a compact subset K of C has a limit point in K. This implies

that S is discrete in U if and only if for every compact subset K of C with K ⊂ U ,

the intersection K ∩ S is finite.

Let U be a non-empty, open subset of C. We say that U is connected if there are

no non-empty open sets U1, U2 with U = U1∪U2 and U1∩U2 = ∅. We say that U is

pathwise connected if for every z0, z1 ∈ U there is a path γ ⊂ U with start point z0
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and end point z1. A fact (typical for the topological space C) is that a non-empty

open subset U of C is connected if and only if it is pathwise connected.

Let U be any, non-empty open subset of C. We can express U as a disjoint union⋃
α∈I Uα, with I some index set, such that two points of U belong to the same set Uα

if and only if they are connected by a path contained in U . The sets Uα are open,

connected, and pairwise disjoint. We call these sets Uα the connected components

of U .

0.5.2 Homotopy

Let U ⊆ C and γ1, γ2 two paths in U

with start point z0 and end point z1.

Then γ1, γ2 are homotopic in U if one can

be continuously deformed into the other

within U . More precisely this means the

following: there are parametrizations f :

[0, 1] → C of γ1, g : [0, 1] → C of γ2 and

a continuous map H : [0, 1] × [0, 1] → U

with the following properties:

H(0, t) = f(t), H(1, t) = g(t) for 0 6 t 6 1;

H(s, 0) = z0, H(s, 1) = z1 for 0 6 s 6 1.

Let U ⊆ C be open and non-empty. We

call U simply connected (’without holes’)

if it is connected and if every closed path

in U can be contracted to a point in U ,

that is, if z0 is any point in U and γ is any

closed path in U containing z0, then γ is

homotopic in U to z0.
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A map f : D1 → D2, where D1, D2 are subsets of C, is called a homeomorphism

if f is a bijection, and both f and f−1 are continuous. Homeomorphisms preserve

topological properties of sets such as openness, closedness, compactness, (simple)

connectedness, etc.

Theorem 0.5.1 (Schoenflies Theorem for curves). Let γ be a closed, simple path in

C. Then there is a homeomorphism f : C→ C such that f(γ0,1) = γ, where γ0,1 is

the unit circle with center 0 and radius 1, traversed counterclockwise.

Corollary 0.5.2 (Jordan Curve Theorem). Let γ be a closed, simple path in C.

Then C\γ has two connected components, U1 and U2. The component U1 is bounded

and simply connected, while U2 is unbounded.

The component U1 is called the interior

of γ, notation int(γ), and U2 the exterior

of γ, notation ext(γ).
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0.6 Complex analysis

We give an overview of the complex analysis that will be used during the course.

We will need only the theorems and corollaries and the like, but not the proofs.

For readers who have followed a course on complex analysis, most of this will be

familiar. We hope that readers who did not follow such a course will gain sufficient

confidence with complex analysis from reading these notes.

0.6.1 Basics

In what follows, U is a non-empty open subset of C and f : U → C a function. We

say that f is holomorphic or analytic in z0 ∈ U if

lim
z→z0

f(z)− f(z0)

z − z0

exists and is finite.

In this case, the limit is denoted by f ′(z0). We say that f is analytic on U if f is

analytic in every z ∈ U ; in this case, the derivative f ′(z) is defined for every z ∈ U .

We say that f is analytic around z0 if it is analytic on some open disk D(z0, δ) for

some δ > 0. Finally, given a not necessarily open subset A of C and a function

f : A→ C, we say that f is analytic on A if there is an open set U ⊇ A such that

f is defined on U and analytic on U . An everywhere analytic function f : C → C
is called entire.

For any two analytic functions f, g on some open set U ⊆ C,we have the usual

rules for differentiation (f±g)′ = f ′±g′, (fg)′ = f ′g+fg′ and (f/g)′ = (gf ′−fg′)/g2

(the latter is defined for any z with g(z) 6= 0). Further, given a non-empty set U ⊆ C,

and analytic functions f : U → C, g : f(U)→ C, the composition g ◦ f is analytic

on U and (g ◦ f)′ = (g′ ◦ f) · f ′.

Recall that a power series around z0 ∈ C is an infinite sum

f(z) =
∞∑
n=0

an(z − z0)n

with an ∈ C for all n ∈ Z>0. The results on convergence/divergence and differ-

entiation of power series over the complex numbers are completely similar to the

corresponding results for real power series treated in a basic calculus course and the
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proofs are also the same. Thus, the radius of convergence of the power series f(z)

above is

R = Rf =

(
lim sup
n→∞

n
√
|an|
)−1

,

and the series converges if |z − z0| < Rf and diverges if |z − z0| > Rf . Further, we

have the following:

Theorem 0.6.1. Let z0 ∈ C and f(z) =
∑∞

n=0 an(z − z0)n a power series around

z0 ∈ C with radius of convergence R > 0. Then f defines a function on D(z0, R)

which is analytic infinitely often. For k > 0 the k-th derivative f (k) of f has a power

series expansion with radius of convergence R given by

f (k)(z) =
∞∑
n=k

n(n− 1) · · · (n− k + 1)an(z − z0)n−k.

In particular, ak = f (k)(z0)/k!.

In each of the examples below, R denotes the radius of convergence of the given

power series.

ez =
∞∑
n=0

zn

n!
, R =∞, (ez)′ = ez.

cos z = 1
2
(eiz + e−iz) =

∞∑
n=0

(−1)n
z2n

(2n)!
, R =∞, cos ′z = − sin z.

sin z = 1
2i

(eiz − e−iz) =
∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
, R =∞, sin ′z = cos z.

(1 + z)α =
∞∑
n=0

(
α
n

)
zn, R = 1, ((1 + z)α)′ = α(1 + z)α−1

where α ∈ C,
(
α
n

)
=

α(α−1)···(α−n+1)
n! .

log(1 + z) =
∞∑
n=1

(−1)n−1

n
· zn, R = 1, log ′(1 + z) = (1 + z)−1.

0.6.2 Cauchy’s Theorem and some applications

Recall that for a contour γ, say γ = γ1 + · · · + γr where γ1, . . . , γr are smooth

paths with continuously differentiable parametrizations gi : [ai, bi] → C, and for a

continuous function f : γ → C we have
∫
γ
f(z)dz =

∑r
i=1

∫ bi
ai
f(gi(t))g

′
i(t)dt.
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Theorem 0.6.2 (Cauchy). Let U ⊆ C be a non-empty open set and f : U → C an

analytic function. Further, let γ1, γ2 be two contours in U with the same start point

and end point that are homotopic in U . Then∫
γ1

f(z)dz =

∫
γ2

f(z)dz.

Proof. Any textbook on complex analysis.

Corollary 0.6.3. Let U ⊆ C be a non-empty, open, simply connected set, and

f : U → C an analytic function. Then for any closed contour γ in U ,∮
γ

f(z)dz = 0.

Proof. The path γ is homotopic in U to a point, and a contour integral along a point

is 0.

Corollary 0.6.4. Let γ1, γ2 be two closed, simple, positively oriented contours, such

that γ2 is contained in the interior of γ1. Let U ⊂ C be an open set which contains

γ1, γ2 and the region between γ1 and γ2. Further, let f : U → C be an analytic

function. Then ∮
γ1

f(z)dz =

∮
γ2

f(z)dz.

Proof.

Let z0, z1 be points on γ1, γ2 respectively,

and let α be a path from z0 to z1 lying in-

side the region between γ1 and γ2 without

self-intersections.

Then γ1 is homotopic in U to the contour α+γ2−α, which consists of first traversing

α, then γ2, and then α in the opposite direction. Hence
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∮
γ1

f(z)dz =

(∫
α

+

∮
γ2

−
∫
α

)
f(z)dz =

∮
γ2

f(z)dz.

Corollary 0.6.5 (Cauchy’s Integral Formula). Let γ be a closed, simple, positively

oriented contour in C, U ⊂ C an open set containing γ and its interior, z0 a point

in the interior of γ, and f : U → C an analytic function. Then

1

2πi

∮
γ

f(z)

z − z0

· dz = f(z0).

Proof.

Let γz0,δ be the circle with center z0

and radius δ, traversed counterclockwise.

Then by Corollary 0.6.4 we have for any

sufficiently small δ > 0,

1

2πi

∮
γ

f(z)

z − z0

· dz =
1

2πi

∮
γz0,δ

f(z)

z − z0

· dz.

Now, since f(z) is continuous, hence uniformly continuous on any sufficiently small

compact set containing z0,∣∣∣∣ 1

2πi

∮
γ

f(z)

z − z0

· dz − f(z0)

∣∣∣∣ =

∣∣∣∣∣ 1

2πi

∮
γz0,δ

f(z)

z − z0

· dz − f(z0)

∣∣∣∣∣
=

∣∣∣∣∫ 1

0

f(z0 + δe2πit)

δe2πit
· δe2πitdt − f(z0)

∣∣∣∣
=

∣∣∣∣∫ 1

0

{
f(z0 + δe2πit)− f(z0)

}
dt

∣∣∣∣ 6 sup
06t61

|f(z0 + δe2πit)− f(z0)|

→ 0 as δ ↓ 0.
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This completes our proof.

We now show that every analytic function f on a simply connected set has an

anti-derivative. We first prove a simple lemma.

Lemma 0.6.6. Let U ⊆ C be a non-empty, open, connected set, and let f : U → C
be an analytic function such that f ′ = 0 on U . Then f is constant on U .

Proof. Fix a point z0 ∈ U and let z ∈ U be arbitrary. Take a contour γz in U from

z0 to z which exists since U is (pathwise) connected. Then

f(z)− f(z0) =

∫
γz

f ′(w)dw = 0.

Corollary 0.6.7. Let U ⊂ C be a non-empty, open, simply connected set, and

f : U → C an analytic function. Then there exists an analytic function F : U → C
with F ′ = f . Further, F is determined uniquely up to addition with a constant.

Proof (sketch). If F1, F2 are any two analytic functions on U with F ′1 = F ′2 = f , then

F ′1 − F ′2 is constant on U since U is connected. This shows that an anti-derivative

of f is determined uniquely up to addition with a constant. It thus suffices to prove

the existence of an analytic function F on U with F ′ = f .

Fix z0 ∈ U . Given z ∈ U , we define F (z)

by

F (z) :=

∫
γz

f(w)dw,

where γz is any contour in U from z0 to

z. This does not depend on the choice of

γz. For let γ1, γ2 be any two contours in

U from z0 to z. Then γ1−γ2 (the contour

consisting of first traversing γ1 and then

γ2 in the opposite direction) is homotopic to z0 since U is simply connected, hence∫
γ1

f(z)dz −
∫
γ2

f(z)dz =

∮
γ1−γ2

f(z)dz = 0.
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To prove that limh→0
F (z+h)−F (z)

h = f(z), take a contour γz from z0 to z and then

the line segment [z, z + h] from z to z + h. Then since f is uniformly continuous on

any sufficiently small compact set around z,

F (z + h)− F (z) =
(∫

γz+[z,z+h]

−
∫
γz

)
f(w)dw =

∫
[z,z+h]

f(w)dw

=

∫ 1

0

f(z + th)hdt = h

(
f(z) +

∫ 1

0

(f(z + th)− f(z))dt

)
.

So ∣∣∣∣F (z + h)− F (z)

h
− f(z)

∣∣∣∣ =

∣∣∣∣∫ 1

0

(f(z + th)− f(z))dt

∣∣∣∣
6 sup

06t61
|f(z + th)− f(z)| → 0 as h→ 0.

This completes our proof.

Example. Let U ⊂ C be a non-empty, open, simply connected subset of C with

0 6∈ U . Then 1/z has an anti-derivative on U .

For instance, if U = C \ {z ∈ C : Re z 6 0} we may take as anti-derivative of

1/z,

(0.6.1) Log z := log |z|+ iArg z,

where Arg z is the argument of z in the interval (−π, π) (this is called the principal

value of the logarithm).

On {z ∈ C : |z − 1| < 1} we may take as anti-derivative of 1/z the power series

(0.6.2)
∞∑
n=1

(−1)n−1 (z − 1)n

n
.

On {z ∈ C : |z − 1| < 1} the functions given by (0.6.1) and (0.6.2) are equal since

they are both anti-derivatives of 1/z and assume the value 0 at z = 1.

0.6.3 Taylor series

Theorem 0.6.8. Let U ⊆ C be a non-empty, open set and f : U → C an analytic

function. Further, let z0 ∈ U and R > 0 be such that D(z0, R) ⊆ U . Then f has a
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unique Taylor series expansion

f(z) =
∞∑
n=0

an(z − z0)n converging for z ∈ D(z0, R).

Further, we have for n ∈ Z>0, an = f (n)(z0)/n! and

(0.6.3) an =
1

2πi

∮
γz0,r

f(z)

(z − z0)n+1
· dz for any r with 0 < r < R.

Proof. If f(z) =
∑∞

n=0 an(z − z0)n for z ∈ D(z0, R), then according to Theorem

0.6.1, ak = f (k)(z0)/k! for k > 0. This shows that the coefficients ak are determined

by f . So if f has a Taylor expansion on D(z0, R), it is unique. We now show that

such an expansion exists.

We fix z ∈ D(z0, R) and use w to indicate a complex variable. Choose r with

|z − z0| < r < R. By Cauchy’s integral formula,

f(z) =
1

2πi

∮
γz0,r

f(w)

w − z
· dw.

We rewrite the integrand. We have

f(w)

w − z
=

f(w)

(w − z0)− (z − z0)
=

f(w)

w − z0

·
(

1− z − z0

w − z0

)−1

=
f(w)

w − z0

·
∞∑
n=0

(
z − z0

w − z0

)n
=
∞∑
n=0

f(w)

(w − z0)n+1
· (z − z0)n.

The latter series converges uniformly on γz0,r. For let M := supw∈γz0,r |f(w)|. Then

sup
w∈γz0,r

∣∣∣∣ f(w)

(w − z0)n+1
· (z − z0)n

∣∣∣∣ 6 M

r

(
|z − z0|

r

)n
=: Mn

and
∑∞

n=0Mn converges since |z − z0| < r. Consequently,

f(z) =
1

2πi

∮
γz0,r

f(w)

w − z
· dw

=
1

2πi

∮
γz0,r

∞∑
n=0

(
f(w)

(w − z0)n+1
· (z − z0)n

)
dw

=
∞∑
n=0

(z − z0)n

{
1

2πi

∮
γz0,r

f(w)

(w − z0)n+1
· dw

}
.
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Now Theorem 0.6.8 follows since by Corollary 0.6.4 the integral in (0.6.3) is inde-

pendent of r.

Corollary 0.6.9. Let U ⊆ C be a non-empty, open set, and f : U → C an analytic

function. Then f is analytic on U infinitely often, that is, for every k > 0 the k-the

derivative f (k) exists, and is analytic on U .

Proof. Pick z ∈ U . Choose δ > 0 such that D(z, δ) ⊂ U . Then for w ∈ D(z, δ) we

have

f(w) =
∞∑
n=0

an(w − z)n with an =
1

2πi

∮
γz,r

f(w)

(w − z)n+1
· dw for 0 < r < δ.

Now for every k > 0, the k-th derivative f (k)(z) exists and is equal to k!ak.

Corollary 0.6.10. Let γ be a closed, simple, positively oriented contour in C, and

U an open subset of C containing γ and its interior. Further, let f : U → C be an

analytic function. Then for every z in the interior of γ and every k > 0 we have

f (k)(z) =
k!

2πi

∮
γ

f(w)

(w − z)k+1
· dw.

Proof. Choose δ > 0 such that γz,δ lies in the interior of γ. By Corollary 0.6.4,

1

2πi

∮
γ

f(w)

(w − z)k+1
· dw =

1

2πi

∮
γz,δ

f(w)

(w − z)k+1
· dw.

By the argument in Corollary 0.6.9, this is equal to f (k)(z)/k!.

We prove a generalization of Cauchy’s integral formula.

Corollary 0.6.11. Let γ1, γ2 be two closed, simple, positively oriented contours such

that γ1 is lying in the interior of γ2. Let U ⊂ C be an open set which contains γ1, γ2

and the region between γ1, γ2. Further, let f : U → C be an analytic function. Then

for any z0 in the region between γ1 and γ2 we have

f(z0) =
1

2πi

∮
γ2

f(z)

z − z0

dz − 1

2πi

∮
γ1

f(z)

z − z0

dz.
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Proof. We have seen that around z0 the function f has a Taylor expansion f(z) =∑∞
n=0 an(z − z0)n. Define the function on U ,

g(z) :=
f(z)− a0

z − z0

(z 6= z0); g(z0) := a1.

The function g is clearly analytic on U \ {z0}. Further, for z close to z0 we have

g(z)− g(z0)

z − z0

=
∞∑
n=2

an(z − z0)n−2 → a2 as z → z0.

Hence g is also analytic at z = z0. In particular, g is analytic in the region between

γ1 and γ2. So by Corollary 0.6.4,∮
γ1

g(z)dz =

∮
γ2

g(z)dz.

Together with Corollaries 0.6.5, 0.6.4 this implies

f(z0) = a0 =
1

2πi

∮
γ2

a0

z − z0

· dz − 1

2πi

∮
γ1

a0

z − z0

· dz

=
1

2πi

∮
γ2

f(z)

z − z0

· dz − 1

2πi

∮
γ1

f(z)

z − z0

· dz.

0.6.4 Isolated singularities, Laurent series, meromorphic func-

tions

We define the punctured disk with center z0 ∈ C and radius r > 0 by

D0(z0, r) := {z ∈ C : 0 < |z − z0| < r}.

If f is an analytic function defined on D0(z0, r) for some r > 0, we call z0 an

isolated singularity of f . In case that there exists an analytic function g on the

non-punctured disk D(z0, r) such that g(z) = f(z) for z ∈ D0(z0, r), we call z0 a

removable singularity of f . In this case, we also say that f is analytic at z0.
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Theorem 0.6.12. Let U ⊆ C be a non-empty, open set and f : U → C an analytic

function. Further, let z0 ∈ C and R > 0 be such that D0(z0, R) ⊆ U . Then f has a

unique Laurent series expansion

f(z) =
∞∑

n=−∞

an(z − z0)n converging for z ∈ D0(z0, R).

Further, we have for n ∈ Z,

(0.6.4) an =
1

2πi

∮
γz0,r

f(z)

(z − z0)n+1
· dz for any r with 0 < r < R.

Proof. We first show that if f(z) has a Laurent series expansion as above onD0(z0, R),

then its coefficients an satisfy (0.6.4), and thus are uniquely determined by f . After

that, we prove the existence of a Laurent series expansion.

Thus, suppose that f(z) =
∑∞

n=−∞ an(z − z0)n on D0(z0, R). By definition of

convergence of a doubly infinite series, this means that both
∑∞

n=0 an(z − z0)n and∑−1
n=−∞ an(z − z0)n converge on D0(z0, R). Let 0 < r < R. We show that the series

converges uniformly to f(z) on γz0,r. Choose r1, r2 with 0 < r1 < r < r2 < R.

The series
∑∞

n=0 an(z − z0)n converges if |z − z0| = r2, so |an| · rn2 → 0 as n → ∞.

Likewise,
∑−1

n=∞ an(z − z0)n converges if |z − z0| = r1, so |an| · rn1 → 0 as n→ −∞.

Hence there is M > 0 such that |an| · rn2 6M for n > 0 and |an| · rn1 6M for n < 0.

Now for z ∈ γz0,r we have

|an(z−z0)n| 6M(r/r2)n =: Mn if n > 0, |an(z−z0)n| 6M(r/r1)n =: Mn if n < 0.

Now since
∑∞

n=−∞Mn converges, we know from Proposition 0.2.6 that the series∑∞
n=−∞ an(z − z0)n converges uniformly to f(z). This implies for k ∈ Z,

1

2πi

∮
γz0,r

f(z)

(z − z0)k+1
dz =

1

2πi

∮
γz0,r

lim
M,N→∞

N∑
n=−M

an(z − z0)n−k−1dz

=
1

2πi
lim

M,N→∞

N∑
n=−M

an

∮
γz0,r

(z − z0)n−k−1dz = ak,

where we have used that
∮
γz0,r

(z − z0)n−k−1dz = 2πi if n = k and 0 otherwise.

We now prove the existence of the Laurent series expansion. We fix z ∈ D0(z0, R)

and use w to denote a complex variable. Choose r1, r2 with 0 < r1 < |z− z0| < r2 <
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R. By Corollary 0.6.11 we have

(0.6.5) f(z) =
1

2πi

∮
γz0,r2

f(w)

w − z
· dw − 1

2πi

∮
γz0,r1

f(w)

w − z
· dw =: I1 − I2,

say. Completely similarly to Theorem 0.6.8, one shows that

I1 =
∞∑
n=0

an(z − z0)n with an =
1

2πi

∮
γz0,r2

f(w)

(w − z0)n+1
· dw.

Notice that for w on the inner circle γz0,r1 we have

f(w)

w − z
=

f(w)

(w − z0)− (z − z0)
= − f(w)

z − z0

·
(

1− w − z0

z − z0

)−1

= −
∞∑
m=0

f(w)(z − z0)−m−1(w − z0)m.

Similarly as above, one shows that the latter series converges uniformly to f(w)/(w−
z) on γz0,r1 . After a substitution n = −m− 1, it follows that

I2 =
−1

2πi

∮
γz0,r2

(
∞∑
m=0

f(w)(w − w0)m(z − z0)−m−1

)
· dw

= −
−1∑

n=−∞

an(z − z0)n, with an =
1

2πi

∮
γz0,r1

f(w)

(w − z0)n+1
· dw.

By substituting the expressions for I1, I2 obtained above into (0.6.5), we obtain

f(z) = I1 − I2 =
∞∑

n=−∞

an(z − z0)n.

This completes our proof.

We say that a function f has Laurent expansion
∑∞

n=−∞ an(z − z0)n (or Taylor

expansion if an = 0 for n < 0) around z0 if there is r > 0 such that f(z) is equal to

this Laurent series on D0(z0, r).

Let z0 ∈ C and suppose f has a Laurent series expansion

f(z) =
∞∑

n=−∞

an(z − z0)n
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around z0. Notice that z0 is a removable singularity of f if an = 0 for all n < 0. We

define the order of f at z0 by

ordz0(f) := infimum of all k ∈ Z such that ak 6= 0,

so that in particular ordz0(f) =∞ if f ≡ 0.

Clearly, f is analytic at z0 if and only if ordz0(f) > 0. In case that ordz0(f) is

finite, it is precisely the integer k such that g(z) := (z−z0)−kf(z) defines a function

that is analytic and non-zero in z0.

The point z0 is called

- an essential singularity of f if ordz0(f) = −∞;

- a pole of order k of f if k > 0 and ordz0(f) = −k; a simple pole is one of order 1;

- a zero of order k of f if k > 0 and ordz0(f) = k; a simple zero is one of order 1.

Notice that z0 is a zero of order k of f if and only if f (j)(z0) = 0 for j =

0, . . . , k − 1, and f (k)(z0) 6= 0.

We say that a complex function f is meromorphic around z0 if f is analytic

on D0(z0, r) for some r > 0 , and z0 is a pole or a removable singularity of f . The

meromorphic functions around z0 contain as a subclass the functions analytic around

z0, i.e., those that are analytic in z0 or for which z0 is a removable singularity.

If f is meromorphic around z0 and not identically 0, then so is 1/f . Indeed, there

is r > 0 such that f(z) =
∑∞

n=k an(z − z0)n on D0(z0, r) with ak 6= 0. We can write

f(z) = (z − z0)kh(z) with h analytic on D(z0, r) and h(z0) = ak 6= 0. By making r

smaller we can achieve that h(z) 6= 0 on D(z0, r). We thus get 1
f(z) = (z− z0)−k 1

h(z)

with 1/h analytic and non-zero on D(z0, r), and so 1/f is meromorphic around z0

and moreover ordz0(1/f) = −ordz0(f).

It is obvious that if f, g are functions that are meromorphic around z0 then so

are f + g and fg. Hence the functions meromorphic around z0 form a field.

Lemma 0.6.13. Let z0 ∈ C and let f, g be two functions meromorphic around z0.

Then

ordz0(f + g) > min
(
ordz0(f), ordz0(g)

)
;

ordz0(fg) = ordz0(f) + ordz0(g);

ordz0(f/g) = ordz0(f)− ordz0(g) if g 6≡ 0.
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Proof. Exercise.

For instance, if f, g are meromorphic functions around z0, f has a pole of order

k at z0, g ha a zero of order l at z0 and l > k, then fg is analytic around z0, and fg

has a zero of order l − k at z0.

Lemma 0.6.13 shows that the function ordz0 defines a discrete valuation on the

field of functions meromorphic around z0. In general, a discrete valuation on a field

K is a surjective map v : K → Z ∪ {∞} such that v(0) = ∞; v(x) ∈ Z for x ∈ K,

x 6= 0; v(xy) = v(x)+v(y) for x, y ∈ K; and v(x+y) > min(v(x), v(y)) for x, y ∈ K.

Other examples of discrete valuations are ordp (p prime number) on Q, given

by ordp(0) := ∞ and ordp(α) := k if α = pka/b, where k is an integer and a, b are

integers not divisible by p.

Let U be a non-empty, open subset of C. A meromorphic function on U is a

complex function f with the following properties:

(i) there is a set S discrete in U such that f is defined and analytic on U \ S;

(ii) all elements of S are poles of f .

It is easy to verify that if f, g are meromorphic functions on U then so are f + g

and f · g. It can be shown as well (less trivial) that if U is connected and g is a

non-zero meromorphic function on U , then the set of zeros of g is discrete in U .

The zeros of g are poles of 1/g, and the poles of g are zeros of 1/g. Hence 1/g is

meromorphic on U . Consequently, if U is an open, connected subset of C, then the

functions meromorphic on U form a field.
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0.6.5 Residues, logarithmic derivatives

Let z0 ∈ C, R > 0 and let f : D0(z0, R) → C be an analytic function. Then f has

a unique Laurent series expansion converging on D0(z0, R):

f(z) =
∞∑

n=−∞

an(z − z0)n.

We define the residue of f at z0 by

res(z0, f) := a−1.

In particular, if f is analytic or has a removable singularity at z0 then res(z0, f) = 0.

By Theorem 0.6.12 we have

res(z0, f) =
1

2πi

∮
γz0,r

f(z)dz

for any r with 0 < r < R.

Theorem 0.6.14 (Residue Theorem). let γ be a closed, simple, positively oriented

contour in C and let z1, . . . , zq be points in the interior of γ. Further, let f be a

complex function that is analytic on an open set containing γ and the interior of γ

minus {z1, . . . , zq}. Then

1

2πi

∮
γ

f(z)dz =

q∑
i=1

res(zi, f).

Proof. We proceed by induction on q. First let q = 1. Choose r > 0 such that γz1,r
lies in the interior of γ. Then by Corollary 0.6.4,

1

2πi

∮
γ

f(z)dz =
1

2πi

∮
γz1,r

f(z)dz = res(z1, f).
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Now let q > 1 and assume the Residue

Theorem is true for fewer than q points.

We cut γ into two pieces, the piece γ1 from

a point w0 to w1 and the piece γ2 from w1

to w0 so that γ = γ1 + γ2. Then we take a

path γ3 from w1 to w0 inside the interior

of γ without self-intersections; this gives

two contours γ1 + γ3 and −γ3 + γ2.

We choose γ3 in such a way that it does not hit any of the points z1, . . . , zq and both

the interiors of these contours contain points from z1, . . . , zq. Without loss of gener-

ality, we assume that the interior of γ1+γ3 contains z1, . . . , zm with 0 < m < q, while

the interior of −γ3 + γ2 contains zm+1, . . . , zq. Then by the induction hypothesis,

1

2πi

∮
γ

f(z)dz =
1

2πi

∮
γ1

f(z)dz +
1

2πi

∮
γ2

f(z)dz

=
1

2πi

∮
γ1+γ3

f(z)dz +
1

2πi

∮
−γ3+γ2

f(z)dz

=
m∑
i=1

res(zi, f) +

q∑
i=m+1

res(zi, f) =

q∑
i=1

res(zi, f),

completing our proof.

The next lemma gives some useful facts about residues. Both f, g are analytic

functions on D0(z0, r) for some r > 0.

Lemma 0.6.15. (i) f has a pole of order 1 or removable singularity at z0 with

residue α

⇐⇒ f(z)− α

z − z0

is analytic around z0 ⇐⇒ lim
z→z0

(z − z0)f(z) = α.

(ii) Suppose that f is analytic at z0. Let k be a positive integer. Then f/(z − z0)k

has a pole of order at most k at z = z0, and

res(z0, f/(z − z0)k) =
f (k−1)(z0)

(k − 1)!
.
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(iii) Suppose f has a pole of order 1 at z0 and g is analytic and non-zero at z0.

Then fg has a pole of order 1 at z0 and

res(z0, fg) = g(z0)res(z0, f).

(iv) Suppose that f is analytic and non-zero at z0 and g has a zero of order 1 at z0.

Then f/g has a pole of order 1 at z0, and

res(z0, f/g) = f(z0)/g′(z0).

Proof. (i) Assume that f has a simple pole or removable singularity at z = z0 with

residue α. Then f(z) = α
z−z0 +

∑∞
n=0 an(z − z0)n on D0(z0, r) and the two other

assertions easily follow.

Conversely, suppose that limz→z0(z−z0)f(z) = α. Recall that f(z) has a Laurent

series expansion f(z) =
∑∞

n=−∞ an(z−z0)n on D0(z0, r). Let h(z) := (z−z0)f(z)−α;

then h(z) =
∑∞

n=−∞ bn(z − z0)n on D0(z0, r), where bn = an−1 if n 6= 0 and b0 =

a−1 − α. By Theorem 0.6.12, we can express the bn as

bn =
1

2πi

∮
γz0,δ

h(z)

(z − z0)n+1
dz for n ∈ Z, 0 < δ < r.

Let h(0) := 0. Then h(z) is continuous on D(z0, r), hence uniformly continuous

on every compact subset of D(z0, r). Therefore, limδ↓0 supz∈γz0,δ
|h(z)| = 0. Conse-

quently, we have for n 6 0, 0 < δ < r,

|bn| 6
1

2π
· 2πδ · sup

z∈γz0,δ

|h(z)|
|z − z0|n+1

6 δ|n| sup
z∈γz0,δ

|h(z)| → 0 as δ ↓ 0.

This implies bn = 0 for n 6 0, hence a−1 = α and an = 0 for n 6 −2. As a

consequence, f(z)− α
z−z0 is analytic around z = z0, and so f either has a removable

singularity (if α = 0) or a simple pole with residue α at z = z0.

(ii) f(z) =
∑∞

n=0

f (n)(z0)
n! (z − z0)n around z0. Divide by (z − z0)k.

(iii) We have lim
z→z0

(z − z0)f(z)g(z) = g(z0) lim
z→z0

(z − z0)f(z). Apply (i).

(iv) We have

lim
z→z0

(z − z0)f(z)

g(z)
=
f(z0)

g′(z0)

and by (i) this implies that f(z)/g(z) has a simple pole at z = z0 and res(z0, f/g) =

f(z0)/g′(z0).
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Example. We compute the residues of f(z) =
ez

(z − 1)3(z − 2)2
at z = 1, z = 2.

Let g1(z) =
ez

(z − 2)2
and g2(z) =

ez

(z − 1)3
. Then

g′′1(z) =
(z2 − 8z + 18)ez

(z − 2)4
, g′2(z) =

(z − 4)ez

(z − 1)4
,

and thus, by (ii), res(1, f) = g′′1(1)/2! = 11
2
e, res(2, f) = g′2(2) = −2e2.

We deduce a useful consequence for integrals of rational functions.

Theorem 0.6.16. Let p, q be two polynomials in C[X] such that deg q > deg p + 2

and q has no zeros on the real line. Let z1, . . . , zm be the distinct zeros of q in the

upper half plane. Then ∫ ∞
−∞

p(x)

q(x)
· dx = 2πi

m∑
j=1

res(zj, p/q).

Remark. We say that
∫∞
−∞ ... converges and define

∫∞
−∞ ... := limR1,R2→∞

∫ R2

−R1
...

provided the limit exists and is finite, where we let R1, R2 tend to ∞ independently

of each other. If
∫∞
−∞ ... converges then it is equal to limR→∞

∫ R
−R .... But con-

versely it may be that limR→∞
∫ R
−R ... exists and is finite while

∫∞
−∞ ... diverges, e.g.,

limR→∞
∫ R
−R xdx = 0, while

∫∞
−∞ xdx is clearly divergent.

Proof of Theorem 0.6.16. Let f(z) := p(z)/q(z). We first estimate |f(z)| from

above, for z ∈ C. If |z| is large, in p(z) and q(z) the highest powers of z domi-

nate, which implies that there are c1, c2 > 0 such that

|f(z)| 6 c1|z|deg p−deg q 6 c1|z|−2 for z ∈ C with |z| > c2.

This estimate implies that the integral under consideration converges absolutely,

hence converges, and so it is equal to

lim
R→∞

∫ R

−R
f(x)dx.

We compute the limit. For R > 0, let ΓR be the closed, simple, positively orientend

contour defined by first traversing from −R to R along the real line, and then
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traversing from R to −R along the upper semicircle with center 0 and radius R. For

R sufficiently large, the poles of f in the interior of ΓR are precisely z1, . . . , zm, so

by the Residue Theorem, ∮
ΓR

f(z)dz = 2πi
m∑
j=1

res(zj, f).

On the other hand, letting CR denote the upper semicircle with center 0 and radius

R, ∮
ΓR

f(z)dz =

∫ R

−R
f(x)dx+

∫
CR

f(z)dz

and, for R > c2,∣∣∣∣∫
CR

f(z)dz

∣∣∣∣ 6 L(CR) · sup
z∈CR

|f(z)| 6 πR · c1R
−2 → 0 as R→∞.

This implies our theorem.

Example. We compute

∫ ∞
−∞

dx

(x2 + 1)n
for any integer n > 1.

Notice that f(z) = (z2 + 1)−n has only one pole in the upper half plane, namely at

z = i. By the above theorem, the integral is equal to 2πi · res(i, f). To compute

the residue, observe that f(z) = g(z)/(z − i)n, where g(z) = (z + i)−n. Hence by

Lemma 0.6.15 (ii),

res(i, (z2 + 1)−n) =
g(n−1)(i)

(n− 1)!

=
(−n)(−n− 1) · · · (−n− n+ 2)

(n− 1)!
(z + i)−n−n+1|z=i

=

(
2n− 2

n− 1

)
(−1)n−1(2i)−2n+1 =

(
2n− 2

n− 1

)
2−2n+1i−1.

The value of the integral is 2πi times this quantity, that is,∫ ∞
−∞

dx

(x2 + 1)n
=

(
2n− 2

n− 1

)
2−2n+2π.

Let U be a non-empty, open subset of C and f a meromorphic function on U

which is not identically zero. We define the logarithmic derivative of f by

f ′/f.
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Suppose that U is simply connected and f is analytic and has no zeros on U . Then

f ′/f has an anti-derivative h : U → C. One easily verifies that (eh/f)′ = 0. Hence

eh/f is constant on U . By adding a suitable constant to h we can achieve that

eh = f . That is, we may view h as the logarithm of f , and f ′/f as the derivative of

this logarithm. But we will refer to f ′/f as the logarithmic derivative of f also if U

is not simply connected and/or f does have zeros or poles on U , although in that

case it need not be the derivative of some function.

The following facts are easy to prove: if f, g are two meromorphic functions on

U that are not identically zero, then

(fg)′

fg
=
f ′

f
+
g′

g
,

(f/g)′

f/g
=
f ′

f
− g′

g
.

Further, if U is connected, then

f ′

f
=

g′

g
⇐⇒ f = cg for some constant c.

Lemma 0.6.17. Let z0 ∈ C, r > 0 and let f : D0(z0, r) → C be analytic. Assume

that z0 is either a removable singularity or a pole of f . Then z0 is a simple pole or

(if z0 is neither a zero nor a pole of f) a removable singularity of f ′/f , and

res(z0, f
′/f) = ordz0(f).

Proof. Let ordz0(f) = k. This means that f(z) = (z − z0)kg(z) with g analytic

around z0 and g(z0) 6= 0. Consequently,

f ′

f
= k

(z − z0)′

z − z0

+
g′

g
=

k

z − z0

+
g′

g
.

The function g′/g is analytic around z0 since g(z0) 6= 0. So by Lemma 0.6.15,

res(z0, f
′/f) = k.

Corollary 0.6.18. Let γ be a closed, simple, positively oriented contour in C, U

an open subset of C containing γ and its interior, and f a meromorphic function

on U . Assume that f has no zeros or poles on γ and let z1, . . . , zq be the zeros and

poles of f inside γ. Then

1

2πi

∮
γ

f ′(z)

f(z)
· dz =

q∑
i=1

ordzi(f) = Z − P,

where Z, P denote the number of zeros and poles of f inside γ, counted with their

multiplicities.
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Proof. By Theorem 0.6.14 and Lemma 0.6.17 we have

1

2πi

∮
γ

f ′(z)

f(z)
· dz =

q∑
i=1

res(zi, f
′/f) =

q∑
i=1

ordzi(f) = Z − P.

0.6.6 Unicity of analytic functions

In this section we show that two analytic functions f, g defined on a connected open

set U are equal on the whole set U , if they are equal on a sufficiently large subset

of U .

We start with the following result.

Theorem 0.6.19. Let U be a non-empty, open, connected subset of C, and f : U →
C an analytic function. Assume that f = 0 on an infinite subset of U having a limit

point in U . Then f = 0 on U .

Proof. Our assumption that U is connected means, that any non-empty subset S of

U that is both open and closed in U , must be equal to U .

Let Z be the set of z ∈ U with f(z) = 0. Let S be the set of z ∈ U such that z is

a limit point of Z. By assumption, S is non-empty. Since f is continuous, we have

S ⊆ Z. Any limit point in U of S is therefore a limit point of Z and so it belongs to

S. Hence S is closed in U . We show that S is also open; then it follows that S = U

and we are done.

Pick z0 ∈ S. We have to show that there is δ > 0 such that D(z0, δ) ⊂ S. There

is δ > 0 such that f has a Taylor expansion

f(z) =
∞∑
n=0

an(z − z0)n

converging on D(z0, δ). Assume that f is not identically 0 on D(z0, δ). Then not

all coefficients an are 0. Assume that am 6= 0 and an = 0 for n < m, say. Then

f(z) = (z − z0)mh(z) with h(z) =
∑∞

n=m an(z − z0)n−m. Since h(z0) = am 6= 0 and

h is continuous, there is δ1 > 0 such that h(z) 6= 0 for all z ∈ D(z0, δ1). But then

f(z) 6= 0 for all z with 0 < |z − z0| < δ1, contradicting that z0 ∈ S.
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Hence f is identically 0 on D(z0, δ). Clearly, every point of D(z0, δ) is a limit

point of D(z0, δ), hence of Z. So D(z0, δ) ⊂ S. This shows that indeed, S is

open.

Corollary 0.6.20. Let U be a non-empty, open, connected subset of C, and let

f : U → C be an analytic function that is not identically 0 on U . Then the set

of zeros of f in U is discrete in U , i.e., every compact subset of U contains only

finitely many zeros of f .

Proof. Suppose that some compact subset of U contains infinitely many zeros of f .

Then by the Bolzano-Weierstrass Theorem, the set of these zeros would have a limit

point in this compact set, implying that f = 0 on U .

Corollary 0.6.21. Let U be a non-empty, open, connected subset of C, and f, g :

U → C two analytic functions. Assume that f = g on an infinite subset of U having

a limit point in U . Then f = g on U .

Proof. Apply Theorem 0.6.19 to f − g.

Let U, V be open subsets of C with U ⊂ V . Let f : U → C be an analytic

function. An analytic continuation of f to V is an analytic function g : V → C
such that g(z) = f(z) for z ∈ U .

Examples. 1. The function f(z) =
∑∞

n=0 z
n is analytic on {z ∈ C : |z| < 1}. It

has an analytic continuation 1
1−z to C \ {1}.

2. The function f(z) =
∑∞

n=1

(−1)n−1

n (z − 1)n is analytic on {z ∈ C : |z − 1| < 1}.
It has an analytic continuation Log z := log |z|+ iArg z to C \R60. More generally,

if V is any simply connected subset of C containing {z ∈ C : |z − 1| < 1} but with

0 6∈ V then it has an analytic continuation to V , namely the anti-derivative F of

1/z on V with F (1) = 0.

It is often a difficult problem to figure out whether an analytic continuation of

U to a larger connected set V exists, and there is no general procedure to decide

this. The next corollary shows that if such an analytic continuation exists, then it

is unique.

Corollary 0.6.22 (Unicity of analytic continuations). Let U, V be non-empty, open

subsets of C, such that U ⊂ V and V is connected. Let f : U → C be an analytic

function. Then f has at most one analytic continuation to V .
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Proof. Let g1, g2 be two analytic continuations of f to V . Then g1(z) = g2(z) = f(z)

for z ∈ U . Since U is open, every point in U is a limit point of U , hence of V .

Therefore, g1(z) = g2(z) for z ∈ V .

The next corollary states that under certain circumstances, analytic continua-

tions of a function f to different sets can be glued together to a single continuation

to the union of these sets.

Corollary 0.6.23. Let U be a non-empty open subset of C, and {Vi}i∈I with I any

index set a collection of connected open subsets of C each of which contains U , and

such that Vi ∩ Vj is connected for any two i, j ∈ I. Let f be an analytic function

on U , and gi an analytic continuation of f to Vi, for i ∈ I. Then gi = gj holds on

Vi ∩ Vj for any i, j ∈ I, and f has a unique analytic continuation to
⋃
i∈I Vi, which

coincides with gi on Vi, for i ∈ I.

Proof. If i, j are any two indices from I, then both gi, gj are analytic continuations

of f to Vi ∩ Vj, hence must be equal on Vi ∩ Vj, since Vi ∩ Vj is assumed to be

connected. Now define a function g on V :=
⋃
i∈I Vi by g(z) := gi(z) if z ∈ Vi. If

i, j are any two indices such that z ∈ Vi and z ∈ Vj, then gi(z) = gj(z), so this is

well-defined. Further, g clearly coincides with f on U , and is analytic on V .

Another consequence of Theorem 0.6.19 is the so-called Schwarz’ reflection prin-

ciple, which implies that analytic functions assuming real values on the real line

have nice symmetric properties.

Corollary 0.6.24 (Schwarz’ reflection principle).

Let U be an open, connected subset of C,

such that U ∩ R 6= ∅ and such that U is

symmetric about R, i.e., z ∈ U for every

z ∈ U . Further, let f : U → C be a non-

identically zero analytic function with the

property that

{z ∈ U ∩ R : f(z) ∈ R}

has a limit point in U .
Then f has the following properties:
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(i) f(z) ∈ R for z ∈ U ∩ R;

(ii) f(z) = f(z) for z ∈ U ;

(iii) If z0 and r > 0 are such that D0(z0, r) ⊂ U , then ordz0(f) = ordz0(f).

Proof. We first show that the function z 7→ f(z) is analytic on U . Indeed, for

z0 ∈ U , the limit

lim
z→z0

f(z)− f(z0)

z − z0

= lim
z→z0

(
f(z)− f(z0)

z − z0

)
= f ′(z0)

exists.

Notice that for every z ∈ U ∩ R with f(z) ∈ R, we have f(z) = f(z). So by our

assumption on f , the set of z ∈ U with f(z) = f(z) has a limit point in U . Now

Corollary 0.6.21 implies that f(z) = f(z) for z ∈ U . This implies (i) and (ii).

We finish with proving (iii). Our assumption implies that f has a Laurent series

expansion

f(z) =
∞∑

n=−∞

an(z − z0)n

converging on D0(z0, r). Then for z ∈ D0(z0, r) we have z ∈ D0(z0, r) and

f(z) = f(z) =

(
∞∑

n=−∞

an(z − z0)n

)
=

∞∑
n=−∞

an(z − z0)n,

which clearly implies (iii).

0.6.7 Analytic functions defined by integrals

In analytic number theory, one often has to deal with complex functions that are

defined by infinite series, infinite products, infinite integrals, or even worse, infinite

integrals of infinite series. In this section we have collected some useful results that

allow us to verify in a not too difficult manner that such complicated functions

are analytic. Although all results we mention are well-known, we could not find

a convenient reference for them, therefore we have included their not too exciting

proofs.

We start with a general theorem on analytic functions defined by an integral,

which will be frequently used in our course. In practical applications, condition (i)
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will always be taken for granted (in fact, in all our applications, f will be a Borel

function, i.e., Re f and Im f will be Borel functions) and only (ii) and (iii) will be

verified.

Theorem 0.6.25. Let D be a measurable subset of Rm, U an open subset of C and

f : D × U → C a function with the following properties:

(i) f is measurable on D × U (with U viewed as subset of R2);

(ii) for every fixed x ∈ D, the function z 7→ f(x, z) is analytic on U ;

(iii) for every compact subset K of U there is a measurable function MK : D → R
such that

|f(x, z)| 6MK(x) for x ∈ D, z ∈ K,
∫
D

MK(x)dx <∞.

Then the function F given by

F (z) :=

∫
D

f(x, z)dx

is analytic on U , and for every k > 1,

F (k)(z) =

∫
D

f (k)(x, z)dx,

where f (k)(x, z) denotes the k-th derivative with respect to z of the analytic function

z 7→ f(x, z).

Proof. Fix z ∈ U . Choose r > 0 such that D(z, r) ⊂ U , and let 0 < δ < 1
2
r.

We show that F can be expanded into a Taylor series around z on D(z, δ); then

it follows that F is analytic on D(z, δ) and so in particular in z. By assumption,

there is a measurable function M : D → R such that |f(x,w)| 6 M(x) for x ∈ D,

w ∈ D(z, r) and
∫
D
M(x)dx <∞.

Let w ∈ D(z, δ). Then by Cauchy’s integral formula (i.e., Corollary 0.6.5),

F (w) =

∫
D

f(x,w)dx =

∫
D

{
1

2πi

∮
γz,2δ

f(x, ζ)

ζ − w
· dζ

}
dx.

By inserting

f(x, ζ)

ζ − w
=

f(x, ζ)

(ζ − z)− (w − z)
=
f(x, ζ)

ζ − z

(
1− w − z

ζ − z

)−1

=
∞∑
n=0

f(x, ζ)

(ζ − z)n+1
· (w − z)n
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we obtain

F (w) =

∫
D

{
1

2πi

∮
γz,2δ

(
∞∑
n=0

f(x, ζ)

(ζ − z)n+1
(w − z)n

)
dζ

}
dx

=

∫
D

{∫ 1

0

(
∞∑
n=0

f(x, z + 2δe2πit)

(2δe2πit)n
(w − z)n

)
dt

}
dx.

We want to interchange the summation with the two integrations, and require the

Fubini-Tonelli Theorem to show that this is possible. We have to check that the

conditions of that theorem are satisfied, i.e., that in the above expression for F (w)

we have absolute convergence. Note that since |w − z| < δ we have∫
D

{∫ 1

0

(
∞∑
n=0

∣∣∣∣f(x, z + 2δe2πit)

(2δe2πit)n
(w − z)n

∣∣∣∣
)
dt

}
dx

6
∫
D

{∫ 1

0

(
∞∑
n=0

M(x)2−n

)
dt

}
dx 6

∫
D

2M(x)dx <∞,

which shows that indeed, the conditions of the Fubini-Tonelli Theorem are satis-

fied. So in the expression for F (w) derived above we can indeed interchange the

summation and the two integrations and thus obtain

F (w) =
∞∑
n=0

(w − z)n
(∫

D

{∫ 1

0

f(x, z + 2δe2πit)

(2δe2πit)n
dt

}
dx

)

=
∞∑
n=0

(w − z)n

(∫
D

{
1

2πi

∮
γz,2δ

f(x, ζ)

(ζ − z)n+1
· dζ

}
dx

)

=
∞∑
n=0

(w − z)n
(∫

D

f (n)(x, z)

n!
· dx
)
,

where in the last step we have applied Corollary 0.6.10. This shows that indeed,

F has a Taylor expansion around z converging on D(z, δ). So in particular, F is

analytic in z. Further, F (k)(z) is equal to k! times the coefficient of (w − z)k, that

is,
∫
D
f (k)(x, z)dx. This proves our Theorem.

We deduce a result, which states that under certain conditions, the pointwise

limit of a sequence of analytic functions is again analytic.
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Theorem 0.6.26. Let U ⊂ C be a non-empty open set, and {fn : U → C}∞n=0 a

sequence of analytic functions, converging pointwise to a function f on U . Assume

that for every compact subset K of U there is a constant CK <∞ such that

|fn(z)| 6 CK for all z ∈ K, n > 0.

Then f is analytic on U , and f
(k)
n → f (k) pointwise on U for all k > 1.

Proof. The set U can be covered by disks D(z0, δ) with z0 ∈ U , δ > 0, such that the

closed disk with center z0 and radius 2δ, D(z0, 2δ) is contained in U . We fix such a

disk D(z0, δ) and prove that f is analytic on D(z0, δ) and f
(k)
n → f (k) pointwise on

D(z0, δ) for k > 1. This clearly suffices.

Let z ∈ D(z0, δ), k > 0. Then by Corollary 0.6.10, we have

f (k)
n (z) =

k!

2πi

∮
γz0,2δ

fn(ζ)

(ζ − z)k+1
· dζ

=

∫ 1

0

k! · fn(z0 + 2δe2πit)2δe2πit

(z0 + 2δe2πit − z)k+1
· dt =

∫ 1

0

gn,k(t, z)dt,

say. By assumption, there is C <∞ such that |fn(w)| 6 C for w ∈ D(z0, 2δ), n > 0.

Further, for t ∈ [0, 1] we have |z0 + 2δe2πit − z| > δ. Hence

(0.6.6) |gn,k(t, z)| 6 C · k! · 2δ/δk+1 = 2C · k!δ−k for n, k > 0.

Notice that for k > 0, t ∈ [0, 1], z ∈ D(z0, δ) we have

lim
n→∞

gn,k(t, z) = k! · f(z0 + 2δe2πit)2δe2πit

(z0 + 2δe2πit − z)k+1
= g(k)(t, z),

where

g(t, z) :=
f(z0 + 2δe2πit)2δe2πit

z0 + 2δe2πit − z

and g(k)(t, z) is the k-th derivative of the analytic function in z, z 7→ g(t, z).

Thanks to (0.6.6) we can apply the dominated convergence theorem, and obtain

lim
n→∞

f (k)
n (z) =

∫ 1

0

g(k)(t, z)dt for z ∈ D(z0, δ), k > 0.
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Applying this with k = 0 and using fn → f pointwise, we obtain

f(z) =

∫ 1

0

g(t, z)dt for z ∈ D(z0, δ).

It follows from Theorem 0.6.25 that the right-hand side, and hence f , is analytic on

D(z0, δ), and moreover,

f (k)(z) =

∫ 1

0

g(k)(t, z)dt for z ∈ D(z0, δ), k > 1.

Indeed, g(t, z) is measurable on [0, 1] ×D(z0, δ) and for every fixed t, the function

z 7→ g(t, z) is analytic on D(z0, δ). Further, by (0.6.6) and since gn,0(t, z)→ g(t, z),

we have |g(t, z)| 6 2C for t ∈ [0, 1], z ∈ D(z0, δ). So all conditions of Theorem

0.6.25 are satisfied.

Now it follows that

lim
n→∞

f (k)
n (z) =

∫ 1

0

g(k)(t, z)dt = f (k)(z) for z ∈ D(z0, δ), k > 1,

which is what we wanted to prove.

Corollary 0.6.27. Let U ⊂ C be a non-empty open set, and {fn : U → C}∞n=0

a sequence of analytic functions, converging to a function f pointwise on U , and

uniformly on every compact subset of U .

Then f is analytic on U and f
(k)
n → f (k) pointwise on U for every k > 1.

Proof. Take a compact subset K of U . Let ε > 0. Then there is N such that

|fn(z)− fm(z)| < ε for all z ∈ K, m,n > N . Choose m > N . Then there is C > 0

such that |fm(z)| 6 C for z ∈ K since fm is continuous. Hence |fn(z)| 6 C + ε for

z ∈ K, n > N . Now our Corollary follows at once from Theorem 0.6.26.

Corollary 0.6.28. let U ⊂ C be a non-empty open set, and {fn : U → C}∞n=0

a sequence of analytic functions, converging to a function f pointwise on U and

uniformly on every compact subset of U . Then

lim
n→∞

f ′n(z)

fn(z)
=
f ′(z)

f(z)

for all z ∈ U with f(z) 6= 0, where the limit is taken over those n for which fn(z) 6= 0.
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Proof. Obvious.

Corollary 0.6.29. Let U ⊂ C be a non-empty open set and {fn : U → C}∞n=0 a

sequence of analytic functions. Assume that for every compact subset K of U there

are reals Mn,K such that |fn(z)| 6Mn,K for z ∈ K and
∑∞

n=0Mn,K converges. Then

(i)
∑∞

n=0 fn is analytic on U , and
(∑∞

n=0 fn

)(k)

=
∑∞

n=0 f
(k)
n for k > 0,

(ii)
∏∞

n=0(1 + fn) is analytic on U .

Proof. Our assumption on the functions fn implies that both the series
∑∞

n=0 fn and

the infinite product
∏∞

n=0(1 + fn) converge uniformly on every compact subset of U

(see Propositions 0.2.6 and 0.2.7). Now apply Corollary 0.6.27.

Corollary 0.6.30. Let U , {fn}∞n=0 be as in Corollary 0.6.29 and assume in addition

that fn 6= −1 on U for every n > 0. Then for the function F =
∏∞

n=0(1 + fn) we

have
F ′

F
=
∞∑
n=0

f ′n
1 + fn

.

Proof. Let Fm :=
∏m

n=0(1 + fn). Then Fm → F uniformly on every compact subset

of U . Hence by Corollary 0.6.28,

F ′

F
= lim

m→∞

F ′m
Fm

= lim
m→∞

m∑
n=0

f ′n
1 + fn

which clearly implies Corollary 0.6.30.
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