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Notation

e limsupz, or lim,_,,x,
n—oo

For a sequence of reals {z, } we define limsup,,_,. x, := lim,_, (supm% xm)
We have limsup,,_, ., x, = oo if and only if the sequence {z,} is not bounded
from above, i.e., if for every A > 0 there is n with x,, > A.

In case that the sequence {z,} is bounded from above, we have lim sup,, ,. z, =
a where « is the largest limit point ('limes superior’) of the sequence {z,}, in
other words, for every £ > 0 there are infinitely many n such that x,, > a — ¢,
while there are only finitely many n such that x, > o + €.

e liminfx, or lim, ,_ x,
n—o0

For a sequence of reals {z,} we define liminf, . =, := lim, (infm>n xm)
We have liminf,,_, x,, = —o0 if the sequence {z,} is not bounded from below,
and the smallest limit point ('limes inferior’) of the sequence {z,} otherwise.

o f(z) =g(x)+o(e(x)) as x — oo (for functions f,g: S — C with S any subset
of R containing arbitrary large reals and e : § — R>¢)
)~ ()
oo e(@)
e(x).
Examples: f(z) = g(x)+o(1) as x — oo means that lim,_,..(f(z)—g(x)) = 0;
logz = o(x) as © — oo for every € > 0 since lim,_,(logz)/x® = 0 for every
e > 0.

=0, i.e., f(z) — g(x) is of smaller order of magnitude than

o f(z)=g(x)+ Oe(x)) as x — oo (with f,g,e as above)

There are constants xy > 0,C > 0 such that |f(x) — g(z)| < Ce(z) for all
x = xg, 1.e., f(z) — g(x) is of order of magnitude at most e(x).

We call g(x) + O(e(z)) as * — oo an asymptotic formula for f(z), with main
term g(z) and error term O(e(z)). Of course, such an asymptotic formula is
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interesting only if the error term is of smaller order of magnitude than the main
term, i.e., e(x) = o(|g(x)|) as © — oo. If g(z) is of order of magnitude at most
e(x), i.e., g(x) = O(e(x)) as x — oo, we can just as well write f(z) = O(e(z))
as r — 00.

Likewise, if f(z) = g(x) + o(e(x)) as x — oo, we call g(z) the main term and
o(e(x)) the error term.

Examples:
f(z) = g(x) + O(1) as * — oo means that |f(z) — g(x)| is bounded;

log(1+ 271 =27'+O(x7?) as * — oo (from the expansion log(1 + z71) =
S (1)t /n for |z| > 1);

n=1
(1+2 ) =1+az ' +O0(22) as * — oo for every a € R (from the expansion
(1+ahHe=>"> (a)x_” for |z| > 1, where (z) = O4(0[_1)'“(0[_n+1));

n=0 \n n!

el/* =1+27'+O0(x72) as & — oo (from the expansion e'/* = Y">° x="/nl).

f(z) ~ g(x) as © — oo (with f, g as above)

im 1) _
g

f(z) < g(z), g(z) > f(x) as ¢ — oo (with f, g as above)
(Vinogradov symbols; used only if g(x) > 0 for all sufficiently large x, i.e.,
there is z such that g(z) > 0 for all z > x).

f(z) = O(g(x)) as © — oo, that is, there are constants zo > 0,C' > 0 such
that | f(z)| < Cg(x) for all z > x.

f(z) < g(x) as * — oo (with f, g as above, used only if f(x) > 0, g(z) > 0 for
all sufficiently large x)

there are constants xg, Cy,Cy > 0 such that C)f(x) < g(z) < Cyof (z) for all
T = To.
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o f(z) = Qg(x)) as * — oo (with f,g as above, defined only if g(x) > 0 for
x = xq for some zy > 0)

|/ ()]

limsup ~———— > 0, that is, there is a sequence {x,} with z,, — co as n — oo

r—o0 (1)
|f ()]

such that lim
n—oo g(xn)

> (0 (possibly 00).

o f(z) = QF(g(x)) as x — oo (with f, g as above, defined only if g(z) > 0 for
x = 1z for some xg > 0)

f(x) (@)

limsup —— > 0, liminf ——= < 0, that is, there are sequences {z,} and {y,}

zoo 9(T) a0 g(x)
with z,, — 00, y, — 00 as n — oo such that lim f(@n)

f(yn) gt
. Yn
I, 9(Yn)

> 0 (possibly co) and

< 0 (possibly —o0)

o f(z) =g(x)+ O(e(x)) for functions f,g: S — C (with S any infinite set, not
necessarily contained in the reals and e : § — R>; we drop here z — 00)

There is C' > 0 such that |f(z) — g(z)| < Ce(z) for all x € S.

e 7 (Euler-Mascheroni constant)

lim (1434 + % —log N) = 0.5772156649...

N—oo

o Al
Cardinality of a set A.

I S S S

n<T p<T dn p|n

Summations over all positive integers < x, all primes < z, all positive divisors
of n (including n itself), all primes dividing n; there is a similar notation for
products [[ . In general, in summations or products, n will be used to denote
a positive integer, p to denote a prime, and d to denote a positive divisor of a



given integer.

Infinite sum, infinite product over all primes.

()

Number of primes < x.

0(z), ()
Zpgx log p, Zpk <2 10g p, where the summations are over all primes < z, re-
spectively all prime powers < x.

(x;q,a)
Number of primes p with p = a (mod g) and p < z; here ¢ is any integer > 2
and a is any integer coprime with q.

0(z;q,a), ¥(z;q,a)

meza (mod ) log p, Zpkgx,pkza (mod ) log p, where the summations are over
all primes < x that are congruent to a modulo ¢, respectively all prime powers

< z that are congruent to a modulo q.

Li(zx)

Todt
Li(z) = / ——; this is a good approximation for 7(z).
5 logt
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A(n)

Von Mangoldt function; it is given by A(n) = logp if n = p* for some prime
p and exponent k > 1, and A(n) = 0 if n = 1 or n is not a prime power; it
should be verified that 1 (x) = > . A(n), where the summation is over all
positive integers n < .

p(n)
Euler’s totient function, given by
on):={ae€Z:1<a<n,ged(a,n)=1}.

p(n)

Mébius function, given by u(1) =1, u(n) = (—=1)" if n is a product p; - - - p; of
distinct primes, and u(n) = 0 if n is not square-free, i.e., divisible by p* for
some prime number p.

w(n),  Qn)

number of primes dividing n, number of prime powers dividing n, i.e., if
n = p’fl x ~pft with pq,...,p; distinct primes and kq, ..., k; positive integers,
then w(n) =t and Q(n) = k1 + - - - + k¢; in particular, w(1) = Q(1) = 0.

E(n) =1 for every positive integer n.

e(n)

e(1) =1 and e(n) = 0 for all integers n > 1.

7(n) (or op(n))

number of positive divisors of n, including n itself, i.e., > din 1> for instance
7(6) = 4, since 1,2, 3,6 are the divisors of 6.
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e o(n) (or o1(n))

sum of the positive divisors of n including n itself, i.e., > dn d, for instance
o(6)=1+24+3+6=12.

* 04(n)

Zd\n -

Viil



Chapter 0O

Prerequisites

We have collected some facts from algebra and analysis which we will not discuss
during our course, which will not be a subject of the examination, but which will be
used frequently in the course and the exercises. Students are expected to be familiar
with the definitions and results in these prerequisites so that we can use them in
our course without much explanation.

We need only a little bit of algebra, basically elementary group theory. As for
analysis, most of the facts we mention are covered by standard courses on analysis,
Lebesgue integration and complex analysis, with the exception maybe of subsections
0.2.1, 0.2.2, 0.6.6, 0.6.7.

In some cases we have provided proofs, either since they may help to gain some
confidence with the material, or since we couldn’t find a good reference for them.
These proofs will not be used in our course, nor will they be examined.

Apart from what is mentioned in these prerequisites, nothing else from Lebesgue
integration theory or complex analysis is used, so also students who did not follow
courses on these topics should be able to follow our course after having read these
prerequisites.



0.1 Groups

Literature:
P. Stevenhagen: Collegedictaat Algebra 1 (Dutch), Universiteit Leiden.
S. Lang: Algebra, 2nd ed., Addison-Wesley, 1984.

0.1.1 Definition

A group is a set GG, together with an operation - : G xG — G satisfying the following
axioms:

® (91-92) 93 =91 (g2 g3) for all g1, 90,93 € G
e there is e¢ € G such that g-eq =eq - g =g for all g € G;

e forall g € G thereishe G withg-h=h-g=eg.

From these axioms it follows that the unit element eg is uniquely determined, and
that the inverse h defined by the last axiom is uniquely determined; henceforth we
write ¢! for this h.

If moreover, g, - go = go - g1 for all g1, go € G, we say that the group G is abelian

or commutative.

Remark. For n € Z-q, g € G we write ¢" for ¢ multiplied with itself n times. Fur-
ther, ¢° := eq and g" := (¢")" for n € Zy. This is well-defined by the associative
axiom, and we have (¢™)(¢") = ¢™*", (¢"™)" = g™ for m,n € Z.

0.1.2 Subgroups

Let G be a group with group operation -. A subgroup of G is a subset H of GG
that is a group with the group operation of G. This means that g, - go € H for
all g1,9o € H; e € H; and ¢g7' € H for all ¢ € H. Tt is easy to see that H is a
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subgroup of G if and only if g, - g, ' € H for all g1, g, € H. We write H < G if H is
a subgroup of G.

0.1.3 Cosets, order, index

Let G be a group and H a subgroup of GG. The left cosets of G with respect to H
are the sets gH = {g-h: h € H}. Two left cosets g1 H, goH are equal if and only
if g 'gs € H and otherwise disjoint.

The right cosets of G with respect to H are the sets Hg ={h-g: h € H}. Two
right cosets Hgi, Hgy are equal if and only if gog; ' € H and otherwise disjoint.

There is a one-to-one correspondence between the left cosets and right cosets of
G with respect to H, given by gH <+ Hg~!. Thus, the collection of left cosets has
the same cardinality as the collection of right cosets. This cardinality is called the
indez of H in G, notation (G : H).

The order of a group G is its cardinality, notation |G|. Assume that |G| is finite.
Let again H be a subgroup of GG. Since the left cosets w.r.t. H are pairwise disjoint
and have the same number of elements as H, and likewise for right cosets, we have

- IGl
(G H) = [

An important consequence of this is, that |H| divides |G]|.

0.1.4 Normal subgroup, factor group

Let G be a group, and H a subgroup of G. We call H a normal subgroup of G if
gH = Hg, that is, if gHg™! = H for every g € G.

Let H be a normal subgroup of GG. Then the cosets of G with respect to H
form a group with group operation (g1 H) - (92H) = (g192) - H. This operation is
well-defined. We denote this group by G/H; it is called the factor group of G with
respect to H. Notice that the unit element of G/H is e¢H = H. If G is finite, we
have |G/H|= (G: H) = |G|/|H].



0.1.5 Order of an element

Let G be a group, and g € G. The order of g, notation ord(g), is the smallest
positive integer n such that g™ = eg; if such an integer n does not exist we say that
¢ has infinite order.

We recall some properties of orders of group elements. Suppose that g € G has
finite order n.

e ¢"=g" < a=b(modn).
e Let k € Z. Then ord(g*) = n/ged(k,n).

e {ec,9,9% ...,9" 1} is a subgroup of G of cardinality n = ord(g). Hence if G
is finite, then ord(g) divides |G|. Consequently, ¢/¢l = eg.

Example. Let ¢ be a positive integer. A prime residue class modulo ¢ is a residue
class of the type amodgq, where ged(a,q) = 1. The prime residue classes form
a group under multiplication, which is denoted by (Z/qZ)*. The unit element of
this group is 1mod ¢, and the order of this group is ¢(g), that is the number of
positive integers < ¢ that are coprime with ¢. It follows that if ged(a,q) = 1, then
a?@ =1 (mod q).

0.1.6 Cyclic groups

The cyclic group generated by g, denoted by {(g), is given by {¢* : k € Z}. In case
that G = (g) is finite, say of order n > 2, we have

<g> = {eG = 90797927 cee ’gn—l}, gn = €G-

So g has order n.

Example 1. u, = {p € C*: p"* = 1}, that is the group of roots of unity of order n
is a cyclic group of order n. For a generator of i, one may take any primitive root
of unity of order n, i.e., €2™*/" with k € Z, ged(k,n) = 1.

Example 2. Let p be a prime number, and (Z/pZ)* = {amod p, ged(a,p) = 1} the
group of prime residue classes modulo p with multiplication. This is a cyclic group
of order p — 1.



Let G = (g) be a cyclic group and H a subgroup of G. Let k be the smallest
positive integer such that ¢* € H. Using, e.g., division with remainder, one shows
that ¢" € H if and only if » = 0 (mod k). Hence H = (¢*) and (G : H) = k.

0.1.7 Homomorphisms and isomorphisms

Let G1, G5 be two groups. A homomorphism from G; to Gy isamap f: G; = G,
such that f(g192) = f(g1)f(g2) for all g1,92 € G and f(eq,) = eq,. This implies
that f(g~') = f(g)~" for g € G1.

Let f: Gy — G5 be a homomorphism. The kernel and image of f are given by

Ker(f) ={g9€Gi: f(g9) =ec,}, [f(G1)={f(g): g€ G},

respectively. Notice that Ker(f) is a normal subgroup of G. It is easy to check that
f is injective if and only if Ker(f) = {eq, }.

Let G be a group and H a normal subgroup of G. Then
f:G—G/H: g— gH

is a surjective homomorphism from G to G/H, the canonical homomorphism from
G to G/H. Notice that the kernel of this homomorphism is H. Thus, every normal
subgroup of G occurs as the kernel of some homomorphism.

A homomorphism f : G — G5 which is bijective is called an isomorphism from
G1 to G,. In case that there is an isomorphism from G; to G5 we say that Gy, G
are isomorphic, notation G; = GG5. Notice that a homomorphism f: G; — G5 is an
isomorphism if and only if Ker(f) = {eg,} and f(G1) = G>. Further, in this case
the inverse map f~!: Gy — G is also an isomorphism.

Let f: G; — G be a homomorphism of groups and H = Ker(f). This yields
an isomorphism

f:Gi/H — f(G1): f(gH) = f(g).

Proposition 0.1.1. Let C' be a cyclic group. If C' is infinite, then it is isomorphic
to Z* (the additive group of Z). If C' has finite order n, then it is isomorphic to
(Z/nZ)* (the additive group of residue classes modulo n).
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Proof. Let C' = (g). Define f : Z* — C by z — ¢*. This is a surjective homomor-
phism; let H denote its kernel. Thus, Z*/H = C. We have H = {0} if C' is infinite,
and H = nZ™" if C has order n. This implies the proposition. O

0.1.8 Direct products

Let Gy,...,G, be groups. Denote by eg, the unit element of G;. The (external)
direct product G1 x -+ x G, is the set of tuples (¢1,...,g,) with ¢g; € G; for i =

1,...,r, endowed with the group operation

(gl; ce 797‘) . (hl, ceey hr) = (glhly ce ,gThT).
This is obviously a group, with unit element (eq,, . . ., eg,) and inverse (g1, ..., g,) "' =
(gflv te 7gr_l>'

Let G be a group and G, ..., G, subgroups of G. We say that G is the internal
direct product of G4, ..., G, if:

(a) G =Gq---G,, ie., every element of G can be expressed as ¢; - - - g, with ¢; € G;
fori=1,...,r;

(b) Gi,...,G, commute, that is, for all 7,7 = 1,...,r and all g; € G;, g; € G; we
have g;g; = 9,9:;

(¢) Gy,...,G, are independent, i.e., if g; € G; (i = 1,...,r) are any elements such
that g, --- g, = eq, then g, = eg fori=1,...,r.

A consequence of (a), (b), (c) is that every element of G can be expressed uniquely
as a product g1 --- g, with g; € G, fori =1,...,r.

Proposition 0.1.2. Let G, G1,...,G, be groups.

(i) Suppose G is the internal direct product of G1,...,G,. Then G = Gy X -+ x G,.
(ii) Suppose G = Gy X -+ x G,.. Then there are subgroups Hy, ..., H, of G such
that H; =2 G; fori=1,...,r and G is the internal direct product of Hy, ..., H,.

Proof. (i) The map Gy X -+ x G, = G : (g1,...,9r) = ¢1 - g is easily seen to be
an isomorphism.

(i) Let G' := Gy X -+- X G, and for i = 1,...,r, define the group
G ={(egyy--+Gir---s€q,): g € Gi}
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where the ¢-th coordinate is g; and the other components are the unit elements of
the respective groups. Clearly, G’ is the internal direct product of G, ..., G, and
G, =G, fori=1,...,r. Let f: G — Gy x --- x G, be an isomorphism. Then G
is the internal direct product of H; := f~Y(G}) (i=1,...,r), and H; & G} = G, for
i=1,...,7. ]

We will sometimes be sloppy and write G = G X --- x G, if G is the internal
direct product of subgroups Gy, ..., G,.

0.1.9 Abelian groups

The group operation of an abelian group is often denoted by +, but in this course
we stick to the multiplicative notation. The unit element of an abelian group A
is denoted by 1 or 14. It is obvious that every subgroup of an abelian group is
a normal subgroup. In Proposition 0.1.2, the condition that Hi,..., H, commute
holds automatically so it can be dropped.

The following important theorem, which we state without proof, implies that the
finite cyclic groups are the building blocks of the finite abelian groups.

Theorem 0.1.3. FEvery finite abelian group is isomorphic to a direct product of
finite cyclic groups.

Proof. See S. Lang, Algebra, 2nd ed. Addison-Wesley, 1984, Ch.1, §10. O]

Let A be a finite, multiplicatively written abelian group of order > 2 with unit
element 1. Theorem 0.1.3 implies that A is the internal direct product of cyclic
subgroups, say C1,...,C,. Assume that C; has order n; > 2; then C; = (h;), where
h; € A is an element of order n;. We call {hq,...,h,.} a basis for A.

Every element of A can be expressed uniquely as g¢; ---g., where g; € C; for
i = 1,...,r. Further, every element of C; can be expressed as a power h¥, and
h¥ = 1 if and only if k£ = 0 (modn;). Together with Proposition 0.1.2 this implies
the following characterization of a basis for A:

A={nbr- bk EeZfori=1,...,r},

(0.1.1) there are integers nq,...,n, > 2 such that
R hFr =1 <= k; =0 (modn;) for i =1,...,r.



0.2 Basic concepts from analysis

0.2.1 Asymptotic formulas

In analytic number theory texts there is a frequent occurrence of asymptotic for-
mulas, in which a complicated, not well understood function is approximated by a
simple, well understood function, and an estimate for the order of magnitude for the
error is given. In this section we recall some notation and some basic facts. Most of
this is first year calculus, formulated in a somewhat different manner.

Let S be an unbounded subset of R (for instance, the positive reals, the positive
integers or the primes), let f (the complicated function) and g (the simple function)
be functions from S to C and e (the estimate for the error) a function from S to
R-y. We write

(0.2.1) f(z) =g(x) + O(e(z)) as || — oo

if there are C, xp > 0 such that |f(z)—g(z)| < C-e(x) for allz € S with |z| > xo. We
call C' a constant implied by the O-symbol, or a constant implicit in the O-symbol.
Further, we write

(0.2.2) f(z) = g(x) + o(e(x)) as |x] = o

if limges o) oo (f(2) — g(x))/e(x) = 0.

The interpretation of (0.2.1) is that f(z) can be approximated by g(x) with error
of order of magnitude at most e(z), and the interpretation of (0.2.2) is that f(x) can
be approximated by g(x) with error of order of magnitude smaller than e(x). We
call (0.2.1) and (0.2.2) asymptotic formulas, with main term g(z) and error term
O(e(x)), respectively o(e(z)).

In addition to the above, the notation f(z) = g(z)+O(e(z)) (without z — o0) is
used. This is defined for functions f,g : & — C for any infinite set S, not necessarily
contained in the reals, and e : & — Ry(. It means that there is C' > 0 such that
|f(z) —g(x)] < C-e(z) for all z € S.

We should mention here that in case f, g, e are defined on a subset § of R and
f,g,1/e are bounded on bounded subsets of S, then f(z) = g(z)+0(e(z)) as x — oo
and f(x) = g(z) + O(e(x)) (without x — oo) have the same meaning. Indeed,
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suppose that f(z) = g(z) + O(e(z)) as © — oo. Then there are xy > 0,C > 0
such that |f(z) — g(z)] < C -e(x) for all x € S with |z| > z,. However, by
assumption on f, g, e, there is C' > 0 such that |(f(z) — g(x))/e(x)] < C’ for all
x € § with |z| < zg. Consequently, |f(z) — g(z)| < max(C,C")e(z) for all x € S,
ie., f(z) =g(x)+ O(e(x)).

We introduce some further notation:

o f(z) < e(x)or e(x) > f(x) as |x| — oo has the same meaning as f(z) = O(e(z))
as || — oo, i.e., there are C,zg > 0 such that |f(z)| < C - e(x) for all z € S with
|z| > xo; we call C' a constant implied by < or >>.

e f(x) < g(x) as |x| — oo (defined for functions f,g: S — Rso) means that there
are Cp, Cy, kg > 0 such that Cig(x) < f(z) < Cyg(x) for all x € S with |z| > .
In other words, f(z) = g(z) as |z| — oo means that both f(x) < g(z) as |z| — oo
and g(z) < f(x) as |z| = oo.

o f(z) ~ g(x) as |z|] — oo (defined for functions f,g : & — R) means that
limgses z00 f(2)/g(x) = 1.

Of course, asymptotic formulas such as (0.2.1) or (0.2.2) are of interest only if
the error term is of smaller order of magnitude than the main term. Thus, in (0.2.1)
we require that limgegs joj—00 €(2)/|g(2)] = 0, i.e., e(z) = o(|g(x)|) as |x| — oo, while
in (0.2.2) we require that there are xy and C such that e(z) < Clg(z)| for x € S
with |z| > xo, that is, e(z) = O(|g(z)]) as |z| — oo.

We mention some basic facts.

Lemma 0.2.1. (i) Let f;,g; (i = 1,2) be functions from S to R and e a function
from S to Rsq such that fi(x) = g1(z)+0(e(x)), fo(x) = go(x)+0(e(x)) as x| — oo
and let a,b be reals. Then

(0.2.3) afi(z) + bfs(z) = agi(x) + bga(z) + O(e(z)) as |x| — oo.

(ii) Let fi,g; (i = 1,2) be functions from S to R and e a function from S to Ry
such that e(x) = o(1) as |x| — oo, that is, limycs |z|—o0 €(x) = 0. Further, let ay, as
be reals such that fi(z) = ay + O(e(x)), fo(z) = as + O(e(x)) as |z| — oco. Then

(0.2.4) fi(x) fo(z) = aras + O(e(x)) as |x| — oo.

(iii) Let g be a function from S to R with g(x) = o(1) as |x| — oo and a a real.
Further, let ¢ be a function defined on a neighbourhood of a that is n + 1 times

9



continuously differentiable. Then

(0.2.5)

™ (g
ola+g(x)) = ¢(a) + ga'(a)g(x) NN ©'"™(a)

n!

- g(x)" 4+ O(lg(x)|"™") as |z| — oo.

Proof. (i) and (ii) are obvious, while (iii) follows from the Taylor-Lagrange formula

Sp(n) (a) tn SO(HJFI) (Cl + 0) . tn—i—l

pla+t)=pla)+ ¢ (a)t+-+ . n+ 1)

where [¢| is small enough such that a + ¢ falls within the domain of definition of ¢,
and 0 lies between 0 and ¢. Suppose ¢ is defined on (a — €, a + €) and let 2 be such
that [g(z)| < 1e for all z € S with |z| > xo. Since "™ is continuous, there is C
such that | (a +t)| < C for all ¢ with |¢t| < Le. Now by substituting ¢ = g(z),
formula (0.2.5) follows. O

Examples.

1
a+ g(z)
log(1+g(z)) = g(z) — 39(x)> + 39(x)> + O(lg(2)[*") as |z] — oo,

= a—ag(x)+3077g(2)" + O(lg(x)”) as |z — oo,

I = 14 g(x) + 39(2)* + 39(2)° + O(lg(2)[") as |z = oo.

Next, we derive asymptotic formulas for sums ) _ . f(n), where the sum is
taken over all positive integers n with a < n < x (with ¢ an integer and x a
real), and where f is a continuous, monotone decreasing function on [a,o0) with
lim, o f(z) = 0. We start with a lemma.

Lemma 0.2.2. Let a be an integer and let f : [a,00) — R be a continuous, monotone
decreasing function with lim, .., f(z) = 0. Then there is vy > 0 such that for every
integer N > a,

(0.2.6) Zf(n) = / f@)dt +~v¢+1rp(N), where 0 <rp(N) < f(N).

Remark. This formula is valid irrespective of whether " >°  f(n) converges or not.
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Proof. Since f is monotone decreasing, we have f(n + 1) < f:Hf(t)dt < f(n),

hence
n+1
(0.2.7) 0<b,:=f(n)— / f)dt < f(n) — f(n+1) forn > a.
The series Y~ (f(n) — f(n+1)) = f(a) converges, so
00 N-1 N-1 N
v Yot = i St =t (Y s [ )

converges as well and is > 0. Further

S s = [ 50 = FN)+ 3 b =25+ SN = D b =g+ 15N,
where by (0.2.7) we have
FIN) = rp(N) = f(N) =Y (f(n) = f(n+1)) = 0.

[]

Corollary 0.2.3. Let a be an integer and let f : [a,00) — R be a continuous, mono-
tone decreasing function with lim,_ .. f(z) = 0. Assume that Y~ f(n) converges.
Then for every integer N = a,

(0.2.8) Zf(n) = Zf(n) — /00 f)dt +7r¢(N) where 0 < rp(N) < f(N).

Proof. Letting N — oo in (0.2.6), we get vy = Yo" f(n)— [° f(t)dt. Substituting

=a

this into (0.2.6) we immediately get (0.2.8). O

Corollary 0.2.4. Let a be an integer and let f : [a,00) — R be a continuous,
monotone decreasing function with lim, . f(x) = 0. Assume in addition that the
quotient f(x — 1)/ f(x) is bounded as x — oo. Then for every real x > a,

Z f(n) Z/ ft)dt+~r+O(f(x)) asz — .
Further, if Y2 f(n) converges, we have

> f(n):Zf(n)—/oof(t)dt+0(f(x)) as T — 0.

as<n<zr

11



Proof. We prove only the first asymptotic formula. The proof of the second is very
similar. Let N = [z] be the largest integer < x. Then

S ) = S fn) = / FO)dt + 5+ r5(N)

- /xf(t>dt+')/f_/]:f<t)dt+rf(N)'

Note that f(N)/f(x) < f(z —1)/f(x) is bounded as z — oco. So
0< [ Fd < FN) = 0D, 0 < ry(N) < FIN) = 0(f(w) w52,

implying Y., f(n) = [Zft)dt +~p + O(f(z)) as x — oo. ]

Examples.
a) By applying Corollary 0.2.4 with f(z) = 271 we get

Z%zlogx—l—*y—irO(%) as r — 00,

n<e

where v = ~,-1 is the Euler-Mascheroni constant.

b) By applying Corollary 0.2.4 with f(z) = 272 and using Euler’s formula > 7 L=

n=1 n2
2

6 we get

0.2.2 Infinite products

We say that a sequence {a,}5°; of complex numbers converges if there is £ € C
such that lim, ,, a, = ¢, ie., lim, ;o |a, — ¢|] = 0. By the completeness of C,
this is equivalent to limy, o0 |am — an| = 0. For a sequence of complex numbers
{a,}22, we say that lim,_,, a, exists if either the sequence converges or the limit is
+00. A limit can be o0 only if a,, € R for all sufficiently large n. So for instance
lim,, 00 (—1)"™ does not exist.

We define a series of complex numbers Y " | A, by limy_ ZnN:1 A, provided
the limit exists; if the limit exists and is not 00, we say that the series converges.

12



If Y, |An| converges, we say that >~ A, converges absolutely. Absolute con-
vergence of a series implies convergence. Just as for series of real numbers, a series
of complex numbers Y > | A, is absolutely convergent if and only if it is uncon-
ditionally convergent, i.e., after any rearrangement of its terms, the series remains
convergent and its value remains the same.

In what follows, we consider infinite products. Let {4,}5°, be a sequence of
complex numbers. We define

00 N
[]4.:= lim J] A
n=1

n=1
provided the limit exists (so if it is finite or +00).

Clearly, [~ A, = 0 if A, = 0 for some n. But if A, # 0 for all n then
it may still happen that [[>”, 4, = 0, for instance J] 7, (1 — nLH) =0. (Itis
common practice to say that [[)~ | A,, converges if there is non-zero ¢ € C such that
lim y o0 Hﬁ[:l A, = £. We will not use this notion of convergence and say instead
that [[)7, A, exists and is # 0, £00).

Define the principal complex logarithm of z € C\ {0} by Log z := log |z|+iArg z,
where Arg z is the principal argument of z, i.e., the argument in (—m, 7]. Then we
have

H A, exists and is # 0, £o0 <= A,, # 0 for all n and Z Log A,, converges.

n=1 n=1

The following criterion is more useful for our purposes.

Proposition 0.2.5. Assume that >~ |A, — 1| < co. Then the following hold:
(i) [1,2, A exists and is # too, and [[7_; A, # 0 if A, # 0 for all n.

(ii) T2, An is invariant under rearrangements of the A, i.e., if o is any bijection
of Zso, then T77 Aoy exists and is equal to [[,~; Ay.

Proof. (i) Let a,, :=|A,—1|forn =1,2,.... Let M, N be integers with N > M > 0.
Then, using |1 + z| < e/l for z € C and

‘H(l—i—zi)—l’ < H(1—|—|zi])—1 geXp<Z\z¢|> —1 for zy,...,2. € C,
=1 =1

i=1

13



we get

N M M N
(0.2.9) HAn — HAn = H |A,| - H A, —1
n=1 n=1 n=1 n=M+1

< on(X0) o 2 w) 1)

n=1 n=M+1

which tends to 0 as M, N — oo. Hence H;'Ozl A, = limy_ Hivzl A,, exists and is
finite.

Assume that A, # 0 for all n. Since ), a, converges, there exists M such
that > -\, a, < 3. Then noting that [4,] > 1 —a, > e we get for all N > M,

N M N
T4 = TIiAd- TT 14l
n=1 n=1 n=M+1
M M
> (TT1An) - e Zrmmen > 2T 4, = C >0,
n=1 n=1

and then, letting N — oo, ‘ I, A,

> C > 0. This proves (i).

(ii) Let M, N be positive integers such that N > M and {o(1),...,0(N)} con-
tains {1,..., M}. Similarly to (0.2.9) we get

N M M
H Ao(n) - H An < exp <Z an) - | eXp ( Z aa(n)) —1
n=1 n=1

n=1 n<N,o(n)>M
If for fixed M we let first N — oo and then let M — oo, the right-hand side tends
to 0. Hence [[77, Aoy = [ 111 An. O

0.2.3 Uniform convergence

We consider functions f : D — C where D can be any set. We can express each
such function as g + th where g, h are functions from D to R. We write ¢ = Re f
and h = Im f.

We recall that if D is a topological space (in this course mostly a subset of R”
with the usual topology, i.e., the open subsets of D are the unions of open balls
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in R" intersected with D) then f is continuous if and only if Re f and Im f are
continuous.

In case that D C R, we say that f is differentiable if and only if Re f and Im f
are differentiable; then we define the derivative of f by f’':= (Re f)’ + i(Im f)’.

In what follows, let D be any set and {F,} = {F,,}°2, a sequence of functions
from D to C.

Definition. We say that {F,,} converges pointwise on D if for every z € D there is
F(z) € C such that lim,, ,o, F,,(2) = F(z). In this case, we write F,, — F pointwise.
We say that {F,,} converges uniformly on D if moreover,

lim (sup 1F,(2) — F(z)|) ~0.

n—oo 2€D

In this case, we write F,, — F' uniformly.

Facts:

e {F,} converges uniformly on D if and only if lim (Sup |Fy(2) — FN(z)|) =0.
M,N*)OO zeD
e Let D be a topological space, assume that all functions F,, are continuous

on D, and that {F,} converges to a function F' uniformly on D. Then F is
continuous on D.

Let again D be any set and {F,}>2, a sequence of functions from D to C.
We say that the series >~ | F), converges pointwise/uniformly on D if the partial
sums ij:l F,, converge pointwise/uniformly on D. Further, we say that >~ | F,
is pointwise absolutely convergent on D if >  |F,(z)| converges for every z € D.

Proposition 0.2.6 (Weierstrass criterion for series). Assume that there are finite
real numbers M, such that

|F.(2)| < M, forz€ D, n>1, ZM” converges.

n=1

Then Y~ | F, is both uniformly convergent, and pointwise absolutely convergent on

D.
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Proof. We have for N > M > 1,

N M N
sup | ZFn(Z) - ZFn(2)| = sup | Z Fo(2)]
€D .o n—=1 €D v

N N
< sup Z |Fn(z)] < Z M, -0 as M,N — 0.
€D n=M+1

]

We need a similar result for infinite products of functions. Let again D be any
set and {F, : D — C}>2, a sequence of functions. We define the limit function

HZL F, by

[e's) N
[[Fn(z) = lim [[Fu(2) (z€ D),
n=1 N=oo n=1

provided that for every z € D the limit exists.

We say that [[’7, F,, converges uniformly on D if the limit function F :=
[12, F, exists and is # 400 on D, and

N
lim | sup |F(z) — Fnz’ =0.
N%O(ﬂg @11 <>)

Proposition 0.2.7 (Weierstrass criterion for infinite products). Assume that there
are finite real numbers M, such that

|Fo(z) = 1| < M, forze€ D, n>1, ZM" converges.

n=1
Then F :=[]._, F, is uniformly convergent on D and moreover, if z € D is such
that F,,(z) # 0 for all n, then also F(z) # 0.

Proof. Applying (0.2.9) with A,, = F,,(2) and using |F,,(z) — 1| < M, for z € D, we
obtain that for any two integers M, N with N > M > 0, and all z € D,

ﬁFn(Z) - ﬁFn(z) <exp (iMn> : (eXp( iv: Mn> — 1> .

n=M-+1
Since the right-hand side is independent of z and tends to 0 as M, N — oo, the
uniform convergence follows. Further, if F,,(z) # 0 for all n then [[2, F,(z) # 0 by
Proposition 0.2.5. [
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0.3 Integration

In this course, all integrals will be Lebesgue integrals of real or complex measurable
functions on R" (always with respect to the Lebesgue measure on R"). Lebesgue
integrals coincide with the Riemann integrals from first year calculus whenever the
latter are defined, but Riemann integrals can be defined only for a much smaller class
of functions. It is not really necessary to know the precise definitions of Lebesgue
measure, measurable functions and Lebesgue integrals, and you will be perfectly
able to follow this course without any knowledge of Lebesgue theory. But we will
frequently have to deal with infinite integrals of infinite series of functions, and to
handle these, Lebesgue theory is much more convenient than the theory of Riemann
integrals. In particular, in Lebesgue theory there are some very powerful convergence
theorems for sequences of functions, theorems on interchanging multiple integrals,
etc., which we will frequently apply. If you are willing to take for granted that
all functions appearing in this course are measurable, there will be no problem to
understand or apply these theorems.

We have collected a few useful facts, which are amply sufficient for our course.

0.3.1 Measurable sets

The length of a bounded interval I = [a, b], [a, b), (a, b] or (a,b), where a,b € R, a < b,
is given by I(I) := b — a. Let n € Z>1. An interval in R™ is a cartesian product of
bounded intervals I =[], I;. We define the volume of I by I(I) :=[];_, I(L;).

Let A be an arbitrary subset of R". We define the outer measure of A by
N(A) = inf Y " U(T),
i=1

where the infimum is taken over all countable unions of intervals | J;=, I; D A. We
say that a set A is measurable if

A(S) =N (SNA) + X (SN A®) for every S C R",

where A° = R™\ A is the complement of A. In this case we define the (Lebesgue)
measure of A by A(A) := A*(A). This measure may be finite or infinite. It can be
shown that intervals are measurable, and that A(I) = [({) for any interval I in R™.
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Facts:

e A countable union | J;°, 4; of measurable sets A; is measurable. Further, the
complement of a measurable set is measurable. Hence a countable intersection
of measurable sets is measurable.

e All open and closed subsets of R™ are measurable.

o Let A = UX,A; be a countable union of pairwise disjoint measurable sets.
Then A(A) = >"°, AM(A;), where we agree that A(A) = 0 if A(4;) = 0 for all ¢.

e Under the assumption of the axiom of choice, one can construct non-measurable
subsets of R".

Let A be a measurable subset of R". We say that a particular condition holds for
almost all x € A, it if holds for all € A with the exception of a subset of Lebesgue
measure 0. If the condition holds for almost all x € R", we say that it holds almost
everywhere.

An important subcollection of the collection of measurable subsets of R™ is the
collection of Borel sets: it is the smallest collection of subsets of R™ which contains all
open sets, and which is closed under taking complements and under taking countable
unions.

All sets occurring in this course will be Borel sets, hence measurable; we will
never bother about the verification in individual cases.
0.3.2 Measurable functions

A function f: R™ — R is called measurable if for every a € R, the set
{r € R": f(z) > a} is measurable.

A function f: R™ — C is measurable if both Re f and Im f are measurable.

Facts:

e If A C R" is measurable then its characteristic function, given by I4(z) =1 if
x € A, I4(x) = 0 otherwise is measurable.

18



e Every continuous function f : R™ — C is measurable. More generally, f is
measurable if its set of discontinuities has Lebesgue measure 0.

e If f g: R"™ — C are measurable then f + g and fg are measurable. Further,
the function given by = +— f(z)/g(z) if g(x) # 0 and = +— 0 if g(z) = 0 is
measurable.

e If f,g: R™ — R are measurable, then so are max(f, ¢g) and min(f, g).

o If {fr: R" — C} is a sequence of measurable functions and f, — f pointwise
on R™, then f is measurable.

A function f : R™ — R is called a Borel function if {x € R" : f(z) > a} is a
Borel set for every a € R. A function f: R™ — C is called a Borel function if Re f
and Im f are both Borel functions. All functions occurring in our course can be
proved to be Borel, hence measurable. We will always omit the nasty verifications
in individual cases.

0.3.3 Lebesgue integrals

The Lebesgue integral is defined in various steps.

1) An elementary function on R"™ is a function of the type f = >, ¢;Ip,, where
Dy, ..., D, are pairwise disjoint measurable subsets of R"”, and cy,...,c, positive

reals. Then we define [ fdz =", ¢;A\(D;).
2) Let f : R™ — R be measurable and f > 0 on R". Then we define [ fdz :=
sup [ gdx where the supremum is taken over all elementary functions g < f. Thus,

[ fdz is defined and > 0 but it may be infinite.

3) Let f: R™ — R be an arbitrary measurable function. Then we define

/ Fda = / max(f,0)dz — / max(—f,0)dz,

provided that at least one of the integrals is finite. If both integrals are finite, we
say that f is integrable or summable.

4) Let f: R™ — C be measurable. We say that f is integrable or summable if both
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Re f and Im f are integrable, and in that case we define

/fdx - /(Ref)deri/(Imf)d:c.

5) Let D be a measurable subset of R". Let f be a complex function defined on a
set containing D. We define f - Ip by defining it to be equal to f on D and equal
to 0 outside D. We say that f is measurable on D if f - Ip is measurable. Further,
we say that f is integrable over D if f - [p is integrable, and in that case we define

fodx = [ f- Ipdx.
Facts:

e Let D be a measurable subset of R and f : D — C a measurable function.
Then f is integrable over D if and only if [ |f|dz < oo and in that case,

| [, fdz| < [, | flda.

e Let again D be a measurable subset of R" and f: D - C, g : D — Ry
measurable functions, such that fD gdr < oo and |f| < g on D. Then f is
integrable over D, and | [, fdz| < [, gdx.

e Let D be a closed interval in R™ and f : D — C a bounded function which
is Riemann integrable over D. Then f is Lebesgue integrable over D and the
Lebesgue integral [, fdx is equal to the Riemann integral [, f(z)dz.

e Let f: [0,00) = Cbe such that the improper Riemann integral [ | f(z)|dx :=
limy o0 fOT | f(2)|dx converges. Then the improper Riemann integral [~ f(x)dx
= limy_, o fOT f(z)dz converges as well, and it is equal to the Lebesgue inte-
gral f[o,oo) fdx. However, an improper Riemann integral fooo f(x)dx which
itself is convergent, but for which [;|f(x)|dz = co can not be interpreted as
a Lebesgue integral. The same applies to the other types of improper Riemann
integrals, e.g., fabf(x)d:c where f is unbounded on (a, b).

o An absolutely convergent series of complex terms )~ a, may be interpreted
as a Lebesgue integral. Define the function A by A(z) := a, for z € R with
n<xz<n+1and A(z) ;=0 for x < 0. Then A is measurable and integrable,
and > a, = [ Adz.
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0.3.4 Important theorems

Theorem 0.3.1 (Dominated Convergence Theorem). Let D C R™ be a measurable
set and {fr : D — C}gso a sequence of functions that are all integrable over D,
and such that frp — f pointwise on D. Assume that there is an integrable function
g: D — Ry such that | fe(x)| < g(z) for all x € D, k > 0. Then f is integrable
over D, and fD frdx — fD fdx.

Corollary 0.3.2. let D C R™ be a measurable set of finite measure and {f, : D —
Cliso a sequence of functions that are all integrable over D, and such that fr, — f
uniformly on D. Then [ is integrable over D, and [, frdx — [, fdx.

Proof. Let € > 0. There is ko such that |f(z) — fr(z)| < e for all x € D, k > k.
The constant function x — € is integrable over D since D has finite measure. Hence
for k > ko, f — fr is integrable over D, and so f is integrable over D. Consequently,
|f| is integrable over D. Now |fx| < € + |f| for & > ko. So by the Dominated
Convergence Theorem, [, fydz — [ fdz. O

In the theorem below, we write points of R™™™ as (z,y) with x € R™, y €
R™.  Further, dx, dy, d(x,y) denote the Lebesgue measures on R™ R" R™"
respectively.

Theorem 0.3.3 (Fubini-Tonelli). Let Dy, Dy be measurable subsets of R™,R™, re-
spectively, and f : D1 X Dy — C a measurable function. Assume that at least one
of the integrals

[ ildea. [ ( A enliy) s, [ 2 ( A en)lde) dy

1s finite. Then they are all finite and equal.
Further, f is integrable over Dy X Da, x +— f(x,y) is integrable over Dy for almost
ally € Dy, y — f(x,y) is integrable over Dy for almost all x € Dy, and

/DIXDQf(x’W@’y) = /D( sz(x7y)dy) d:c:/DQ( N f(x,y)dx> dy.

Corollary 0.3.4. Let D be a measurable subset of R™ and {fi, : D — C}iso a
sequence of functions that are all integrable over D and such that ;- | fx| converges
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pointwise on D. Assume that at least one of the quantities

i/[)!fwv)!daz /D(ilfk(:v)\)dx

is finite. Then Y -, fi is integrable over D and

k=0 "D D k=0
Proof. Apply the Theorem of Fubini-Tonelli with n = 1, D; = D, Dy = [0, 00),
F(z,y) = fr(x) where k is the integer with k <y < k + 1. O

Corollary 0.3.5. Let {akl}?l:o be a double sequence of compler numbers such that
at least one of

S(Em) £

converges. Then both

converge and are equal.

Proof. Apply the Theorem of Fubini-Tonelli with m = n =1, D; = Dy = [0, 00),
F(z,y) = ay, where k,[ are the integers with k <z <k+1,I<y<l+1. O

0.3.5 Useful inequalities

We have collected some inequalities, stated without proof, which frequently show
up in analytic number theory. The proofs belong to a course in measure theory or
functional analysis.

Proposition 0.3.6. Let D be a measurable subset of R™ and f,g : D — C mea-

surable functions. Let p,q be reals > 1 with % + % = 1. Then if all integrals are
defined,

’/ng-das‘ < (/D|f|pd$>1/p- (/D|g|qd93>1/q (Hélder’s Inequality).
22



In particular,

1/2 1/2
‘/ fgdx‘ < (/ \f\%lx) (/ |g|2da:> (Cauchy-Schwarz’ Inequality).
D D D

Corollary 0.3.7. Let aq,...,a,, by,...,b. be complexr numbers and p,q reals > 1
with % + é =1. Then

) ZT: anbn
n=1

< (Z yanyp)l/p. (Z bu?) Y Hetder).
n=1 n=1

In particular,

‘ianbn < (zT: |an|2)1/2 : (i |bn|2>l/2 (Cauchy-Schwarz).
n=1 n=1 n=1

This follows from Proposition 0.3.6 by taking D = [0,r), f(z) = an, g(z) = b, for
n—1<zx<n,n=1,...,r.

A function ¢ from an interval I C R to R is called convex if o((1 — t)x + ty) <
(1 —t)p(x) +te(y) holds for all z,y € I and all ¢ € [0, 1]. In particular, ¢ is convex
on [ if ¢ is differentiable twice and ¢” > 0 on I.

Proposition 0.3.8. Let D be a measurable subset of R™ with 0 < A\(D) < oo, let
f D — Ryg be a Lebesgue integrable function and let ¢ : Ryg — R be a conver
function. Then

‘P(ﬁ/ f- dx) < ﬁ/(gpof)dx (Jensen’s Inequality).
D D

Corollary 0.3.9. Let ay,...,a, be positive reals, and let p : R.g — R be a convez
function. Then
1 1
(3 a) <13 elan).
n=1 n=1

In particular,

T

%Zan > v/ay---a, (arithmetic mean > geometric mean).

n=1

The first assertion follows by applying Proposition 0.3.8 with D = [0,7) and f(x) =
a, for x € [n — 1,n). The second assertion follows by applying the first with

p(x) = —logx.
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0.4 Contour integrals

0.4.1 Paths in C

We consider continuous functions ¢ : [a,b] — C, where a,b € R and a < b. Two
continuous functions ¢; : [a,b] — C, g5 : [¢,d] — C are called equivalent if there is
a continuous monotone increasing function ¢ : [a,b] — [c, d] such that g; = g2 0 .
The equivalence classes of this relation are called paths (in C), and a function g :
la,b] — C representing a path is called a parametrization of the path. Roughly
speaking, a path is a curve in C, together with a direction in which it is traversed.

A smooth path is a path represented by a function g : [a,b] — C such that ¢
is continuously differentiable on [a, b] (here ’differentiable’ means differentiable on
(a,b), right differentiable in a and left differentiable in b).

Let v be a path. Choose a parametrization ¢ : [a,b] — C of 7. We call g(a) the
start point and g(b) the end point of . Further, g([a,b]) is called the support of ~.
By saying that a function is continuous on 7, or that 7 is contained in a particular
set, etc., we mean the support of ~.

Let v be a path and F' : v — C a continuous function on (the support of) ~.
Then F(7) is the path such that if ¢ : [a,b] — C is a parametrization of v then
Fog:la,b — Cis a parametrization of F (7).

The path v is said to be closed if its end point is equal to its start point, i.e., if
g(a) = g(b). The path ~ is called simple if it has no self-intersections, other than its
start point and end point if v is closed. Finally, a closed, simple path is said to be
positively oriented if it is traversed counterclockwise (we will not give the cumber-
some formal definition of this intuitively obvious notion).
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2~
closed, not simple contour closed, simple contour

Let 71, 72 be paths, such that the end point of v is equal to the start point of
V2. We define v; + 75 to be the path obtained by first traversing v; and then .
For instance, if ¢g; : [a,b] — C is a parametrization of v, then we may choose a
parametrization g, : [b,¢] — C of v9; then g : [a,c] — C defined by g(t) := g1 (t) if
a<t<b g(t):=got) if b <t < cis a parametrization of vy, + 7s.

This is easily extended to 74 + - - - + ,, where first 7, is traversed, then 7,, etc.,
and the end point of 7; coincides with the start point of v;,1, fori=1,...,r — 1.

Given a path v, we define —v to be the path traversed in the opposite direction,
i.e., the start point of —v is the end point of v and conversely.
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0.4.2 Definition of the contour integral

A contour is a piecewise smooth path, i.e., a path of the shape vy, + - - - + 7, where
Y1, -..,% are smooth paths, such that the end point of v; coincides with the start
point of v;.1, for e =1,...,r — 1. We define integrals along contours.

All paths occurring in our course will be built up from circle segments and line
segments, hence are contours.

First, let v be a smooth path, and f : 7 — C a continuous function. Choose a
continuously differentiable parametrization ¢ : [a,b] — C of v. Then we define

/ff (2)dz = / bf (g(t))g (t)dt.

Further, we define the length of v by

b
L) = [ 19l
These notions do not depend on the choice of g.

Ify=m+---47 is a contour with smooth pieces v1,...,7., and f: v — Cis
continuous, then we define

/f(z)dz = Z .f(z)dz
and

L) = Y L)

In case that v is closed, we write fv f(2)dz. It can be shown that the value of this
integral is independent of the choice of the common start point and end point of ~.

We mention here that we can define more generally line integrals f7 f(2)dz for
paths ~ that are not necessarily contours, i.e., not piecewise continuously differen-
tiable. For contours, this new definition coincides with the one given above.

Let v be any path and choose a parametrization g : [a,b] — C of 7. A partition
of [a,b] is a tuple P = (to,...,ts) where a =ty <ty < --- <ty = b. We define the
length of v by

L(y) = sup Z lg(t:) — g(ti-1)],
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where the supremum is taken over all partitions P of [a, b]. This does not depend on
the choice of g. We call v rectifiable if L(y) < oo (in another language, this means
that the function g is of bounded variation).

Let v be a rectifiable path, and ¢ : [a,b] — C a parametrization of 7. Given a
partition P = (to,...,ts) of [a,b], we define the mesh of P by

6(P> = Imax |tz - ti71|-

1<i<s

A sequence of intermediate points of P is a tuple W = (wy,...,ws) such that
o <w <t <wy <tg < - <t

Let f: 7 — C be a continuous function. For a partition P of [a,b] and a tuple
of intermediate points W of P we define

S(f,g9,P,W) := Zf(g(wi))(g(ti) —g(ti1)).

One can show that there is a finite number, denoted f7 f(2)dz, such that for any
choice of parametrization g : [a,b] — C of v and any sequence (P,, W, )n>0 of
partitions P, of [a, b] and sequences of intermediate points W, of P, with §(P,) — 0,

[ )z = lim (7.9 P W),
i

In another language, [ f(2)dz is equal to the Riemann-Stieltjes integral fj f(g(t))dg(t).

0.4.3 Properties of contour integrals

e Let v be a contour, and f : v — C continuous. Then

/7 F(2)dz

e Let 71,72 be two contours such that the end point of 4; and the start point of

< L(y) -sup | f(2)].

zey

v9 coincide. Let f : v; 4+ v — C continuous. Then

/Yl-i-’yQ f(2)dz = /Vl f(2)dz + [yz,f(Z)dZ'
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e Let v be a contour and f : v — C be continuous. Then

ﬂf(z)dz = —/yf(z)dz.

e Let v be a contour and {f, : v — C}2, a sequence of continuous functions.
Suppose that f,, — f uniformly on v, i.e., sup,c. [fn(2) = f(2)| = 0 asn — oo.
Then f is continuous on v, and [ f,(2)dz — [ f(2)dz as n — oo.

e Call a function F' : U — C on an open subset U of C analytic if for every

z € U the limit
F(z+h)— F(z)

F'(z) = lim
heC, h—0

exists and is finite (much more on this later). Let v be a contour with start
point zg and end point z;, and let F' be an analytic function defined on an
open set U C C that contains . Then

/F’(z)dz = F(z) — F(20).

~

e Let v be a contour and F' an analytic function defined on some open set
containing 7. Further, let f : F(y) — C be continuous. Then

/me (w)dw = L fF(2)F'(2)dz.

We mention that all properties mentioned above can be generalized to line integrals
along rectifiable paths, but in textbooks they are never proved in this generality.

Examples. 1. Let 7,, denote the circle with center @ and radius r, traversed
counterclockwise. For 7, we may choose a parametrization ¢ — a+re*™ ¢ € [0, 1].
Let n € Z. Then

1
j{ (z—a)"dz = / rre? i o - re? ™ dt
Ya,r 0

1 e
= 2mir™t! / p2(nA1)mit gy 2me ?f n=—1;
0 0 ifn#-1
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2. For zp,z; € C, denote by [z, 21| the line segment from 2y to z;. For [z, 21] we
may choose a parametrization t — zo + t(z; — 20), t € [0,1]. Let f: [20,21] = C be
continuous. Then

z)d(z) = 20 21 — 20))(z1 — 20)dt.
/{ZO,Zﬂf()() [ CEEICEN
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0.5 Topology

We recall some facts about the topology of C.

0.5.1 Basic facts

Let a € C, r € R.g. We define the open disk and closed disk with center a and
radius 7,

D(a,r):={2€C: |z—a| <7}, D(a,r):={2z€C:|z—al <r}.

Recall that a subset U of C is called open if either U = (), or for every a € U there is
d > 0 with D(a,d) C U. A subset U of Cis called closed if its complement U¢ = C\U
is open. It is easy to verify that the union of any possibly infinite collection of open
subsets of C is open. Further, the intersection of finitely many open subsets is open.
Consequently, the intersection of any possibly infinite collection of closed sets is
closed, and the union of finitely many closed subsets is closed.

A subset S of C is called compact, if for every collection {U, }aer of open subsets
of C with S C U,¢; Ua there is a finite subset F' of I such that S C |J,cp Ua, in
other words, every open cover of S has a finite subcover.

By the Heine-Borel Theorem, a subset of C is compact if and only if it is closed
and bounded.

Let U be a non-empty subset of C. A point zg € C is called a limit point of U if
there is a sequence {z,} in U such that all z, are distinct and z, — 2y as n — oo.
Recall that a non-empty subset U of C is closed if and only if each of its limit points
belongs to U.

Let U be a non-empty open subset of C, and S C U. Then S is called discrete in
U if it has no limit points in U. Recall that by the Bolzano-Weierstrass Theorem,
every infinite subset of a compact subset K of C has a limit point in K. This implies
that S is discrete in U if and only if for every compact subset K of C with K C U,
the intersection K N S' is finite.

Let U be a non-empty, open subset of C. We say that U is connected if there are
no non-empty open sets Uy, Uy with U = U; UU, and U; NU, = (). We say that U is
pathwise connected if for every zy, z; € U there is a path v C U with start point z
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and end point z;. A fact (typical for the topological space C) is that a non-empty
open subset U of C is connected if and only if it is pathwise connected.

Let U be any, non-empty open subset of C. We can express U as a disjoint union
Uaer Ua, with I some index set, such that two points of U belong to the same set U,
if and only if they are connected by a path contained in U. The sets U, are open,
connected, and pairwise disjoint. We call these sets U, the connected components
of U.

0.5.2 Homotopy

Let U C C and 7,7 two paths in U
with start point z; and end point 2.
Then 71,7, are homotopic in U if one can
be continuously deformed into the other
within U. More precisely this means the
following: there are parametrizations f :
[0,1] = C of %, g : [0,1] — C of 75 and
a continuous map H : [0,1] x [0,1] — U
with the following properties:

H(0,t) = f(t), H(1,t)=g(t) for 0 <t <1,
H(s,0) =29, H(s,1)=2 for0<s<1.

Let U C C be open and non-empty. We
call U simply connected ('without holes’)
if it is connected and if every closed path
in U can be contracted to a point in U,
that is, if zy is any point in U and + is any
closed path in U containing z,, then 7 is

homotopic in U to z.
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A map f: Dy — Do, where Dy, Dy are subsets of C, is called a homeomorphism
if f is a bijection, and both f and f~! are continuous. Homeomorphisms preserve
topological properties of sets such as openness, closedness, compactness, (simple)
connectedness, etc.

Theorem 0.5.1 (Schoenflies Theorem for curves). Let v be a closed, simple path in
C. Then there is a homeomorphism f: C — C such that f(vo01) = 7y, where Yo is
the unit circle with center 0 and radius 1, traversed counterclockwise.

Corollary 0.5.2 (Jordan Curve Theorem). Let v be a closed, simple path in C.
Then C\ v has two connected components, Uy and Us. The component Uy is bounded
and simply connected, while Uy is unbounded.

¥
/’——\ (’é The component U, is called the interior
u‘ //‘l of 7, notation int(y), and U, the exterior

of v, notation ext(y).
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0.6 Complex analysis

We give an overview of the complex analysis that will be used during the course.
We will need only the theorems and corollaries and the like, but not the proofs.
For readers who have followed a course on complex analysis, most of this will be
familiar. We hope that readers who did not follow such a course will gain sufficient
confidence with complex analysis from reading these notes.

0.6.1 Basics

In what follows, U is a non-empty open subset of C and f: U — C a function. We
say that f is holomorphic or analytic in zy € U if

lim f(z) = f(20)

Z2—r20 Z — 20

exists and is finite.

In this case, the limit is denoted by f’(z9). We say that f is analytic on U if f is
analytic in every z € U; in this case, the derivative f'(z) is defined for every z € U.
We say that f is analytic around zj if it is analytic on some open disk D(zg,d) for
some § > 0. Finally, given a not necessarily open subset A of C and a function
f: A— C, we say that f is analytic on A if there is an open set U O A such that
f is defined on U and analytic on U. An everywhere analytic function f: C — C
is called entire.

For any two analytic functions f, g on some open set U C C,we have the usual
rules for differentiation (f+g)' = f'+¢', (fg)' = f'g+fg and (f/g)' = (9f'~f9)/ ¢’
(the latter is defined for any z with g(z) # 0). Further, given a non-empty set U C C,
and analytic functions f: U — C, g : f(U) — C, the composition g o f is analytic
on U and (go f)' = (g'o f)- [

Recall that a power series around zy € C is an infinite sum

F(2) = an(z = z)"

with a, € C for all n € Zy. The results on convergence/divergence and differ-
entiation of power series over the complex numbers are completely similar to the
corresponding results for real power series treated in a basic calculus course and the
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proofs are also the same. Thus, the radius of convergence of the power series f(z)
above is .
R=R;= (limsup m) :
n—oo
and the series converges if |z — zy| < Ry and diverges if |z — zy| > Ry. Further, we
have the following:

Theorem 0.6.1. Let zy € C and f(z) = Y " jan(z — 20)" a power series around
2o € C with radius of convergence R > 0. Then f defines a function on D(zy, R)
which is analytic infinitely often. For k > 0 the k-th derivative f*) of f has a power
series expansion with radius of convergence R given by

o0

f(k)(z) = Zn(n — 1) e (n —k+ 1)an(2 N Zg)n_k.

n=~k

In particular, a;, = f* () /k!.

In each of the examples below, R denotes the radius of convergence of the given
power series.

. d Z" z z
e:zga, R =00, (e*) =e¢e.
1/ iz —iz < n ZQn / :

cosz = 5(e” +e7 %) :Z(—l) 2n)l’ R =00, cos’z= —sinz.

) ) ngoO 22n+1

~ n=0 ’
(2= (7)=", R=1, ((1+2)) =a(l+z)°"

n=0
where a € C, (i) _ a(a—l);-l(!a—nJrl).

()t .

log(1 = —_— " R=1, log'(1 = (1 L
og(1 +2) ; L2, o dog(1+2) = (1+2)

0.6.2 Cauchy’s Theorem and some applications

Recall that for a contour v, say v = v + --- + 7, where 7,...,7 are smooth
paths with continuously differentiable parametrizations g¢; : [a;,b;] — C, and for a
continuous function f : v — C we have [ f(2)dz =7, fabl fgi(t))gi(t)dt.

34



Theorem 0.6.2 (Cauchy). Let U C C be a non-empty open set and f: U — C an
analytic function. Further, let v1,v2 be two contours in U with the same start point
and end point that are homotopic in U. Then

A/@@:Aﬁ@@

Proof. Any textbook on complex analysis. m

Corollary 0.6.3. Let U C C be a non-empty, open, simply connected set, and
f U — C an analytic function. Then for any closed contour v in U,

]{f(z)dz = 0.

Proof. The path ~ is homotopic in U to a point, and a contour integral along a point
is 0. O

Corollary 0.6.4. Let v, ys be two closed, simple, positively oriented contours, such
that vo 1s contained in the interior of v1. Let U C C be an open set which contains
v1,7v2 and the region between v, and . Further, let f : U — C be an analytic

ij@@:ij@w

function. Then

Proof.

Let zg, 21 be points on vy, 7o respectively,
and let o be a path from 2 to z; lying in-

b; side the region between v; and 7, without
self-intersections.

Then v, is homotopic in U to the contour a+ 5, —a, which consists of first traversing
a, then 75, and then « in the opposite direction. Hence
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7{1 f(z)dz = (/aﬂLji—/a) f(z)dz = éQf(Z)dz

Corollary 0.6.5 (Cauchy’s Integral Formula). Let v be a closed, simple, positively

[]

oriented contour in C, U C C an open set containing v and its interior, zo a point
in the interior of v, and f: U — C an analytic function. Then

S

27m 5 72— 20

~dz = f(z).

Proof.

Let 7.5 be the circle with center z
and radius 0, traversed counterclockwise.
Then by Corollary 0.6.4 we have for any
sufficiently small § > 0,

FON oy e

27m 52— 20 271 Yegs £ 20

Now, since f(z) is continuous, hence uniformly continuous on any sufficiently small
compact set containing z,

f(2)

2mi ),z — 2o

~dz — f(20)

f 20 +662ﬂ1t)

eth

S0 dt — f(z)

= / {f(zo + g™ty — f(Zo)} dt‘ < sup | f(z0 + 0e*™) — f(20)]
0

0<i<1

—0 asd 0.
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This completes our proof. O

We now show that every analytic function f on a simply connected set has an
anti-derivative. We first prove a simple lemma.

Lemma 0.6.6. Let U C C be a non-empty, open, connected set, and let f : U — C
be an analytic function such that f' =0 on U. Then f is constant on U.

Proof. Fix a point zp € U and let z € U be arbitrary. Take a contour 7, in U from
2o to z which exists since U is (pathwise) connected. Then

f(z) = f(20) = / f(w)dw = 0.

]

Corollary 0.6.7. Let U C C be a non-empty, open, simply connected set, and
f: U — C an analytic function. Then there exists an analytic function F': U — C
with F' = f. Further, F is determined uniquely up to addition with a constant.

Proof (sketch). 1f Fy, Fy are any two analytic functions on U with F] = Fj = f, then
F| — F} is constant on U since U is connected. This shows that an anti-derivative
of f is determined uniquely up to addition with a constant. It thus suffices to prove
the existence of an analytic function F on U with F' = f.

Fix zp € U. Given z € U, we define F(z)
by

— F(z) = / f(w)duw,
/ where 7, is any contour in U from z; to

z. This does not depend on the choice of
v,. For let 71,72 be any two contours in

U from zg to z. Then y; — v, (the contour
consisting of first traversing +; and then

72 in the opposite direction) is homotopic to zq since U is simply connected, hence

/71 f(z)dz — [YQ f(2)dz = ]i_w f(2)dz = 0.
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To prove that limy, o w = f(z), take a contour v, from z, to z and then

the line segment [z, z + h| from z to z+ h. Then since f is uniformly continuous on
any sufficiently small compact set around z,

Flz+h)—F(z) = ( /wzz%]— A ) Fw)dw = /[ . f(w)dw

z

_ /Olf(z+th)hdt iy (f(z) +/01(f(z+th) _ f(z))dt) |

So
h - 1
FEER=TE o) = | [ e - renar
0
< sup |f(z+th) — f(z)] =0 as h — 0.
0<t<1
This completes our proof. O

Example. Let U C C be a non-empty, open, simply connected subset of C with
0 ¢ U. Then 1/z has an anti-derivative on U.

For instance, if U = C\ {# € C: Rez < 0} we may take as anti-derivative of
1/z,
(0.6.1) Log z := log |z| + iArg z,

where Arg z is the argument of z in the interval (—m, 7) (this is called the principal
value of the logarithm).
On {z € C: |z — 1| < 1} we may take as anti-derivative of 1/z the power series

(0.6.2) S (-1t (2= 1"

n=1

On {z € C: |z — 1] < 1} the functions given by (0.6.1) and (0.6.2) are equal since
they are both anti-derivatives of 1/z and assume the value 0 at z = 1.

0.6.3 Taylor series

Theorem 0.6.8. Let U C C be a non-empty, open set and f: U — C an analytic
function. Further, let zo € U and R > 0 be such that D(zo, R) C U. Then f has a
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unique Taylor series expansion

o0

f(z)= Z an(z — 2z9)" converging for z € D(zy, R).

n=0
Further, we have for n € Zsg, a, = f™(z)/n! and
1
(0.6.3) anzz—m,j{ T%-dz for any r with 0 <r < R.
Proof. If f(z) = >, yan(z — 29)" for z € D(zp, R), then according to Theorem
0.6.1, ar = f%(2)/k! for k > 0. This shows that the coefficients a;, are determined

by f. Soif f has a Taylor expansion on D(zp, R), it is unique. We now show that
such an expansion exists.

We fix z € D(2, R) and use w to indicate a complex variable. Choose r with
|z — 29| < r < R. By Cauchy’s integral formula,

fz) = i]i 100 g,

271 wW— 2z
07

We rewrite the integrand. We have

fw) - _ f(w) __f@»_(l_z—%>1

w— 2 (W —2) — (z—2)  w— 2 w— 2
SN ey IS

The latter series converges uniformly on 7.,,. For let M := sup,¢,. |f(w)[. Then

f(w) <M (M)n —. M,

———— . —_— n
(w — zp)"t1 (z = =) T r

sup
WEYzg,r

and Y, M, converges since |z — z| < r. Consequently,

) = ¢ T

271 oy W= Z
20,7

RV S fw)
- Z( 0) {27”- jiw (w_zo)n-i-l d }

n=0
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Now Theorem 0.6.8 follows since by Corollary 0.6.4 the integral in (0.6.3) is inde-
pendent of r. O

Corollary 0.6.9. Let U C C be a non-empty, open set, and f : U — C an analytic
function. Then f is analytic on U infinitely often, that is, for every k > 0 the k-the
derivative f*) exists, and is analytic on U.

Proof. Pick z € U. Choose 0 > 0 such that D(z,0) C U. Then for w € D(z,0) we
have

f(w):Zan(w—z)” with a, = ! ﬂ-dwfor0<r<5.
n=0

T o o (w — z)n+l

Now for every k > 0, the k-th derivative f*)(2) exists and is equal to kla. O

Corollary 0.6.10. Let v be a closed, simple, positively oriented contour in C, and
U an open subset of C containing v and its interior. Further, let f: U — C be an
analytic function. Then for every z in the interior of v and every k > 0 we have

B (2) = k—‘}{(wf_(% - dw.

- omi

Proof. Choose § > 0 such that v, s lies in the interior of 7. By Corollary 0.6.4,

1 w 1 w
2mi J, (w— 2) 2rmi J,,, (w—2)
By the argument in Corollary 0.6.9, this is equal to f%*)(z)/k!. O

We prove a generalization of Cauchy’s integral formula.

Corollary 0.6.11. Let vy, 72 be two closed, simple, positively oriented contours such

that 1 is lying in the interior of 5. Let U C C be an open set which contains 1, Yo

and the region between v1,ys. Further, let f: U — C be an analytic function. Then
for any zy in the region between v, and o we have

1 z 1 Z

e L0, ()

2mi ), 2 — 20 2mi )., 2 — 20

dz.
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Proof. We have seen that around zy the function f has a Taylor expansion f(z) =
> gan(z — z)". Define the function on U,

_J¥ " do (z# 20);  g(20) :== ay.

The function g is clearly analytic on U \ {zo}. Further, for z close to zy we have

g( g Z%Z—Zo 2 5 a9 as z— 2.

Z— 20 -

Hence g is also analytic at z = zy. In particular, g is analytic in the region between
~v1 and 7,. So by Corollary 0.6.4,

7{1 g(2)dz = 7{ 9(2)dz.

Together with Corollaries 0.6.5, 0.6.4 this implies

1 1
f(z0)=ay = — o cdz — — %o -dz
27 ), 2 — 20 21 S\, 2 — 20
1 1
2mi )., 2 — 20 2mi J,, 2 — 20

0.6.4 Isolated singularities, Laurent series, meromorphic func-

tions
We define the punctured disk with center z; € C and radius » > 0 by
D%(zp,r) :={2€C:0<|z—z|<r}.

If f is an analytic function defined on D°(zg,r) for some r > 0, we call 2, an
1solated singularity of f. In case that there exists an analytic function g on the
non-punctured disk D(zg,7) such that g(z) = f(z) for z € D%z2,7), we call 2y a
removable singularity of f. In this case, we also say that f is analytic at z.
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Theorem 0.6.12. Let U C C be a non-empty, open set and f: U — C an analytic
function. Further, let zg € C and R > 0 be such that D'(zy, R) C U. Then f has a
unique Laurent series expansion

o0

f(:) =" anlz—z)" converging for = € D°(z, R).

n=—oo

Further, we have for n € Z,

1
(0.6.4) an = —7{ @L ~dz for any r with 0 < r < R.

211 - ZQ)nJrl

Proof. We first show that if f(z) has a Laurent series expansion as above on D°(zy, R),
then its coefficients a,, satisfy (0.6.4), and thus are uniquely determined by f. After
that, we prove the existence of a Laurent series expansion.

Thus, suppose that f(z) = >>°° _ a,(z — 20)" on D°(29, R). By definition of
convergence of a doubly infinite series, this means that both Y~  a,(z — 2)" and
S an(z — %)™ converge on D°(z, R). Let 0 < r < R. We show that the series
converges uniformly to f(z) on 7,,,. Choose 7,75 with 0 < r; < r < 13 < R.
The series >~ an(z — 29)" converges if |z — zg| = ra, 50 |a,| - 5 — 0 as n — oco.
Likewise, 3> 1 a,(z — 20)" converges if |2 — 2| = 71, 50 |an| - 7 — 0 as n — —o0.
Hence there is M > 0 such that |a,| -y < M for n > 0 and |a,|-r} < M for n < 0.
Now for 2z € ,,, we have

lan(z—20)"| < M(r/ry)" =: M, ifn >0, |a,(z—20)"| < M(r/r)" =: M, if n <O.

Now since >~ _ M, converges, we know from Proposition 0.2.6 that the series
> an(z — 2)™ converges uniformly to f(z). This implies for k € Z,

n=—oo

N

1 f(z) . 1 . n—k—1
o e M,%IEOO 2 le )"
20,7 Vzg,r =M
— n k—1

where we have used that § (2 — 2)" " 'dz = 27i if n = k and 0 otherwise.
zQ,T

We now prove the existence of the Laurent series expansion. We fix z € D%(z, R)
and use w to denote a complex variable. Choose ry, 7 with 0 < r; < |z — 2] <719 <
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R. By Corollary 0.6.11 we have

(0.6.5) f(2) = 2%}( Zf(i”l dw — 2% j@z dw =T, — I,

Yz0.71

say. Completely similarly to Theorem 0.6.8, one shows that

= 0o 1 f(w)
II :Z(ln(Z—ZO) with Ay = % g de
20,72

n=0

Notice that for w on the inner circle 7., ,, we have

fw) fw) fmw.(y_g;@)*

zZ— 20

w—z (w—2)—(z—2)  z—2
= — Z fw)(z — 20) ™ Hw — 20)™.

Similarly as above, one shows that the latter series converges uniformly to f(w)/(w—

Z) o Y- After a substitution n = —m — 1, it follows that
-1 b
L = — Z fw)(w —wo)™(z = 20)™™" 7 | - dw
2mi Yz9,r2 \m=0

-1
= — Z an(z — 2z0)", w1than:% m.dw'

n=—oo Yzg,r1
By substituting the expressions for Iy, [y obtained above into (0.6.5), we obtain

(e 9]

fe)=hL—-1,= Z an(z — 29)".

n=—oo

This completes our proof. ]

We say that a function f has Laurent expansion Y >~ a,(z — 29)" (or Taylor
expansion if a, = 0 for n < 0) around zq if there is r > 0 such that f(z) is equal to

this Laurent series on D°(zg, ).

Let zp € C and suppose f has a Laurent series expansion

o

[ = Y auz— )"

n=—oo
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around zy. Notice that z; is a removable singularity of f if a,, = 0 for all n < 0. We
define the order of f at zy by

ord,, (f) := infimum of all £ € Z such that a; # 0,

so that in particular ord,,(f) = oo if f =0.

Clearly, f is analytic at 2y if and only if ord,,(f) > 0. In case that ord,,(f) is
finite, it is precisely the integer k such that g(z) := (2 — 29) 7 f(2) defines a function
that is analytic and non-zero in z.

The point z; is called
- an essential singularity of f if ord,, (f) = —o0;
- a pole of order k of f if k > 0 and ord,, (f) = —k; a simple pole is one of order 1;

- a zero of order k of f if k > 0 and ord,,(f) = k; a simple zero is one of order 1.

Notice that zy is a zero of order k of f if and only if fU)(z) = 0 for j =
0,...,k—1,and f®(z) #0.

We say that a complex function f is meromorphic around z, if f is analytic
on D%(zg,7) for some r > 0 , and z; is a pole or a removable singularity of f. The
meromorphic functions around zy contain as a subclass the functions analytic around
20, 1.e., those that are analytic in zy or for which z, is a removable singularity.

If f is meromorphic around zy and not identically 0, then so is 1/f. Indeed, there
is 7 > 0 such that f(z) = > .27 an(z — 20)" on D°(z9,7) with aj, # 0. We can write
f(2) = (z — 20)*h(2) with h analytic on D(zg,r) and h(z) = a # 0. By making r
smaller we can achieve that h(z) # 0 on D(zp, 7). We thus get ﬁ =(z— zo)*kﬁ
with 1/h analytic and non-zero on D(zg,r), and so 1/f is meromorphic around z
and moreover ord,,(1/f) = —ord,, (f).

It is obvious that if f, g are functions that are meromorphic around zy then so
are f + g and fg. Hence the functions meromorphic around z, form a field.

Lemma 0.6.13. Let 2y € C and let f,g be two functions meromorphic around zg.
Then

OI'dZ0 (f + g) 2 min (Ordzo(f)u OrdZO (g))7
ord,, (fg) = ord,, (f) + ord.,(9):
ord,, (f/g) = ord,, (f) — ord,,(g9) if g #0.
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Proof. Exercise. O]

For instance, if f, g are meromorphic functions around zy, f has a pole of order
k at zg, g ha a zero of order [ at z5 and [ > k, then fg is analytic around zg, and fg
has a zero of order [ — k at z.

Lemma 0.6.13 shows that the function ord,, defines a discrete valuation on the
field of functions meromorphic around zy. In general, a discrete valuation on a field
K is a surjective map v : K — Z U {oo} such that v(0) = oco; v(z) € Z for z € K,
x # 0;v(zy) = v(z)+v(y) for x,y € K; and v(x+y) = min(v(z),v(y)) for z,y € K.

Other examples of discrete valuations are ord, (p prime number) on Q, given
by ord,(0) := oo and ord,(a) := k if & = pFa/b, where k is an integer and a, b are
integers not divisible by p.

Let U be a non-empty, open subset of C. A meromorphic function on U is a
complex function f with the following properties:
(i) there is a set S discrete in U such that f is defined and analytic on U \ S;
(ii) all elements of S are poles of f.

It is easy to verify that if f, g are meromorphic functions on U then so are f + g
and f-g. It can be shown as well (less trivial) that if U is connected and g is a
non-zero meromorphic function on U, then the set of zeros of g is discrete in U.
The zeros of g are poles of 1/g, and the poles of g are zeros of 1/g. Hence 1/g is
meromorphic on U. Consequently, if U is an open, connected subset of C, then the
functions meromorphic on U form a field.
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0.6.5 Residues, logarithmic derivatives

Let zo € C, R > 0 and let f: D%z, R) — C be an analytic function. Then f has
a unique Laurent series expansion converging on D%(zg, R):

= Z an(z — 29)"

n=—0oo

We define the residue of f at zg by

res(zo, f) == a_.

In particular, if f is analytic or has a removable singularity at zy then res(zo, f) = 0.
By Theorem 0.6.12 we have

res(zo, f =5 ]{ f(z

for any r with 0 < r < R.

Theorem 0.6.14 (Residue Theorem). let v be a closed, simple, positively oriented
contour in C and let zy,...,z, be points in the interior of v. Further, let f be a
complex function that is analytic on an open set containing v and the interior of v
minus {z1,...,2,}. Then

2qu{f dz— res(zl,f)

Proof. We proceed by induction on ¢. First let ¢ = 1. Choose r > 0 such that v, ,
lies in the interior of . Then by Corollary 0.6.4,

omi j{f % . f(2)dz = res(z1, f).
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Now let ¢ > 1 and assume the Residue
Theorem is true for fewer than ¢ points.
We cut v into two pieces, the piece v, from
a point wy to wy and the piece v, from w;
to wy so that v = 1 + 2. Then we take a
path 3 from w; to wy inside the interior
of v without self-intersections; this gives

two contours y; + 3 and —73 + ¥o.

We choose 73 in such a way that it does not hit any of the points z1, ..., z, and both
the interiors of these contours contain points from z1, ..., z,. Without loss of gener-
ality, we assume that the interior of v; +73 contains z1, ..., 2, with 0 < m < ¢, while
the interior of —v3 + 7, contains z,,41, ..., 2,. Then by the induction hypothesis,
=S FOLISIE Y SOy SIOL
— 2)dz = — z2)dz + — z)dz
2mi J, 2w )., 2mi ),
1 1
= — f(z)dz + — f(z)dz
2mi Y1+73 2mi —73+72
m q q
= Y ves(zi, )+ Y res(z, f) = ) res(z;, f),
i=1 i=m+1 i=1
completing our proof. O]

The next lemma gives some useful facts about residues. Both f, g are analytic
functions on D°(zg,r) for some r > 0.

Lemma 0.6.15. (i) f has a pole of order 1 or removable singularity at zy with
residue o

— f(2) -

is analytic around zy <= lim (z — z0) f(2) = a.
zZ— 20 zZ—20

(ii) Suppose that f is analytic at zy. Let k be a positive integer. Then f/(z — z)*
has a pole of order at most k at z = 2y, and

ky _ JE D ()
res(20, f/(2 — 20)") = ICE
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(#ii) Suppose f has a pole of order 1 at zy and g is analytic and non-zero at z.
Then fg has a pole of order 1 at zy and
res(zo, fg) = g(z0)res(zo, f).

(iv) Suppose that f is analytic and non-zero at zy and g has a zero of order 1 at z.
Then f/g has a pole of order 1 at zy, and

res(z0, f/9) = f(20)/9 (20)-

Proof. (i) Assume that f has a simple pole or removable singularity at z = zy with
residue . Then f(z) = —2= + > " ja,(z — 20)" on D°(29,7) and the two other

Z—20

assertions easily follow.

Conversely, suppose that lim,_,, (z—2¢) f(z) = a. Recall that f(z) has a Laurent
series expansion f(z) = > .00 __a,(z—29)" on D°(29,7). Let h(2) := (2—20) f(2) —;

n=—oo

then h(z) = >.07 ___bu(z — )™ on D%(zg,7), where b, = a,,_; if n # 0 and by =

n=—oo

a_1 — a. By Theorem 0.6.12, we can express the b, as

1 h
bn:—,% idz forneZ, 0<o<r.
2mi J. (2 — zo)" !
Let h(0) := 0. Then h(z) is continuous on D(zy,r), hence uniformly continuous
on every compact subset of D(z,r). Therefore, limgo SUDcr, |h(z)] = 0. Conse-
quently, we have for n < 0,0 < <,
1 A (2)]

b,| < — - 2wd - su <" sup |h(z)] = 0asd ] o0.
| n’ X o 26%10)’5 |Z _ Zo|n+1 = zE’m}j,al ( )| \l/

This implies b, = 0 for n < 0, hence a_; = o« and a,, = 0 for n < —2. As a

consequence, f(z)— Z_aZO

singularity (if & = 0) or a simple pole with residue « at z = z.

is analytic around z = 2, and so f either has a removable

(i) f(z2)=>7° m(z — 29)™ around zy. Divide by (z — 20)*.

(iii) We have Zlgl;l()(Z —20)f(2)g9(2) = g(=0) Zlgr;()(z — 20)f(2). Apply (i).

(iv) We have
co i) ()
= g(2) 9'(20)
and by (i) this implies that f(z)/g(z) has a simple pole at z = 2y and res(zo, f/g) =
f(20)/9'(20). O
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eZ

(: = 1)z — 22

Example. We compute the residues of f(z) = at z =1, z2=2.

z z

Let ¢1(2) = ﬁ and go(2) = (zi—l)?" Then
o) = S e = T

and thus, by (i), res(1, f) = ¢{(1)/2! = Ye, res(2, f) = g4(2) = —2¢2.

We deduce a useful consequence for integrals of rational functions.

Theorem 0.6.16. Let p,q be two polynomials in C[X| such that degq > degp + 2
and q has no zeros on the real line. Let z1,...,z, be the distinct zeros of q in the
upper half plane. Then

/_OO Iﬂ cdr = QWines(zj,p/q).

oo ()

Remark. We say that [*_ ... converges and define [* ... := limg, g,—oo ff;l
provided the limit exists and is finite, where we let Ry, Ry tend to oo independently
of each other. If ffooo ... converges then it is equal to limpg_, . f_RR.... But con-
versely it may be that limp_,o LRR .. exists and is finite while [~ ... diverges, e.g.,

limp_ o0 f_RR xdxr = 0, while ffooo xdx is clearly divergent.

Proof of Theorem 0.6.16. Let f(z) := p(z)/q(z). We first estimate |f(z)| from
above, for z € C. If |z| is large, in p(z) and ¢(z) the highest powers of z domi-
nate, which implies that there are ¢y, cy > 0 such that

1£(2)] < ea|z|98P7989 L ey]2|72 for 2 € C with |2] > c.

This estimate implies that the integral under consideration converges absolutely,
hence converges, and so it is equal to

lim /_i f(z)dz.

R—o0

We compute the limit. For R > 0, let I'g be the closed, simple, positively orientend
contour defined by first traversing from —R to R along the real line, and then
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traversing from R to —R along the upper semicircle with center 0 and radius R. For
R sufficiently large, the poles of f in the interior of I'g are precisely 21, ..., 2z, so
by the Residue Theorem,

m

4 f(z)dz = 2mi Zres(zj, f).

j=1

On the other hand, letting C'z denote the upper semicircle with center 0 and radius
R,

R
FOUE / St [ fes

and, for R > ¢,

f(2)dz

Cr

< L(CR) - sup |f(2)] < 7R-c;R™?2 = 0 as R — oc.
zeCR

This implies our theorem. [

< d
Example. We compute /_ N ﬁ
Notice that f(z) = (22 + 1)™" has only one pole in the upper half plane, namely at

for any integer n > 1.

z = i. By the above theorem, the integral is equal to 27i - res(i, f). To compute
the residue, observe that f(z) = g(z)/(z — )", where g(z) = (2 +4)~". Hence by
Lemma 0.6.15 (ii),

9" (i)
(n—1)!
(—n)(—n—1)---(—n—n+2)

— (n — 1>' (Z =+ ,L-)fnfn+1”z:i

_ (2n - 2) (1) (21)2n+1 <2n - 2) g2t

n—1 n—1

res(i, (22 +1)7")

The value of the integral is 27i times this quantity, that is,

/°° dx _(2n =2 o—2n+2
oo (@24 1) n—1

Let U be a non-empty, open subset of C and f a meromorphic function on U
which is not identically zero. We define the logarithmic derivative of f by

f'IT.
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Suppose that U is simply connected and f is analytic and has no zeros on U. Then
f'/f has an anti-derivative h : U — C. One easily verifies that (¢"/f)" = 0. Hence
eh/f is constant on U. By adding a suitable constant to h we can achieve that
el = f. That is, we may view h as the logarithm of f, and f’/f as the derivative of
this logarithm. But we will refer to f’/f as the logarithmic derivative of f also if U
is not simply connected and/or f does have zeros or poles on U, although in that
case it need not be the derivative of some function.

The following facts are easy to prove: if f, g are two meromorphic functions on
U that are not identically zero, then

N T
fo f 9 fla f g
Further, if U is connected, then
9

= = <= f = cg for some constant c.

f
Lemma 0.6.17. Let 2o € C, r > 0 and let f : D°(29,7) — C be analytic. Assume

that zy s either a removable singularity or a pole of f. Then zy is a simple pole or
(if zo is neither a zero nor a pole of f) a removable singularity of f'/f, and

res(z0, '/ f) = orde (f).

Proof. Let ord,,(f) = k. This means that f(z) = (2 — 20)*g(z) with g analytic
around zy and g(zp) # 0. Consequently,

frogb-=2) ¢k g

f Z =20 9 2=z g
The function ¢'/g is analytic around zy since g(zg) # 0. So by Lemma 0.6.15,
ves(z0, '/ ) = k. a

Corollary 0.6.18. Let v be a closed, simple, positively oriented contour in C, U
an open subset of C containing v and its interior, and f a meromorphic function
on U. Assume that f has no zeros or poles on v and let zy, ..., z, be the zeros and
poles of f inside v. Then

L [FrGE N _
5 o) -dZ—;ordzi(f)—Z P,

where Z, P denote the number of zeros and poles of f inside vy, counted with their

multiplicities.
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Proof. By Theorem 0.6.14 and Lemma 0.6.17 we have

YOG
37 o) -dz—lzlres (zi, ') f) = Zordzl =7 —P.

0.6.6 Unicity of analytic functions

In this section we show that two analytic functions f, g defined on a connected open

set U are equal on the whole set U, if they are equal on a sufficiently large subset
of U.

We start with the following result.

Theorem 0.6.19. Let U be a non-empty, open, connected subset of C, and f : U —
C an analytic function. Assume that f = 0 on an infinite subset of U having a limit
point in U. Then f =0 on U.

Proof. Our assumption that U is connected means, that any non-empty subset S of
U that is both open and closed in U, must be equal to U.

Let Z be the set of z € U with f(z) = 0. Let S be the set of z € U such that z is
a limit point of Z. By assumption, S is non-empty. Since f is continuous, we have
S C Z. Any limit point in U of S is therefore a limit point of Z and so it belongs to
S. Hence S is closed in U. We show that S is also open; then it follows that S = U
and we are done.

Pick zy € S. We have to show that there is 6 > 0 such that D(zy,) C S. There
is 0 > 0 such that f has a Taylor expansion

(e.)
g an(z — z)"

n=0

converging on D(zg,0). Assume that f is not identically 0 on D(z,d). Then not
all coefficients a,, are 0. Assume that a,, # 0 and a,, = 0 for n < m, say. Then
f(z) = (2 — 20)™h(z) with h(z) = "7 an(z — 2)"~™. Since h(z) = an, # 0 and
h is continuous, there is ; > 0 such that h(z) # 0 for all z € D(2g,0;). But then
f(z) # 0 for all z with 0 < |z — 2| < 01, contradicting that zy € S.
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Hence f is identically 0 on D(zp,d). Clearly, every point of D(zg,0) is a limit
point of D(zp,d), hence of Z. So D(zp,0) C S. This shows that indeed, S is
open. ]

Corollary 0.6.20. Let U be a non-empty, open, connected subset of C, and let
f U — C be an analytic function that is not identically 0 on U. Then the set
of zeros of f in U is discrete in U, i.e., every compact subset of U contains only
finitely many zeros of f.

Proof. Suppose that some compact subset of U contains infinitely many zeros of f.
Then by the Bolzano-Weierstrass Theorem, the set of these zeros would have a limit
point in this compact set, implying that f =0 on U. O

Corollary 0.6.21. Let U be a non-empty, open, connected subset of C, and f, g :
U — C two analytic functions. Assume that f = g on an infinite subset of U having
a limit point in U. Then f =g on U.

Proof. Apply Theorem 0.6.19 to f — g. m

Let U,V be open subsets of C with U C V. Let f : U — C be an analytic
function. An analytic continuation of f to V is an analytic function g : V — C
such that g(z) = f(z) for z € U.

Examples. 1. The function f(z) = Y 2 2" is analytic on {z € C: |z] < 1}. It

. o 1
has an analytic continuation = to C\ {1}.

2. The function f(z) = > > (=p~*

n=1 n

(z —1)" is analyticon {z € C: |z — 1] < 1}.
It has an analytic continuation Log z := log |z| + iArg z to C \ R¢y. More generally,
if V' is any simply connected subset of C containing {z € C: |z — 1| < 1} but with
0 ¢ V then it has an analytic continuation to V', namely the anti-derivative F' of
1/z on V with F(1) = 0.

It is often a difficult problem to figure out whether an analytic continuation of
U to a larger connected set V' exists, and there is no general procedure to decide

this. The next corollary shows that if such an analytic continuation exists, then it
is unique.

Corollary 0.6.22 (Unicity of analytic continuations). Let U, V' be non-empty, open
subsets of C, such that U C V' and V is connected. Let f : U — C be an analytic
function. Then f has at most one analytic continuation to V.
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Proof. Let g1, go be two analytic continuations of f to V. Then g1(2) = ¢2(2) = f(2)
for z € U. Since U is open, every point in U is a limit point of U, hence of V.
Therefore, g1(z) = go(2) for z € V. ]

The next corollary states that under certain circumstances, analytic continua-
tions of a function f to different sets can be glued together to a single continuation
to the union of these sets.

Corollary 0.6.23. Let U be a non-empty open subset of C, and {V;}icr with I any
index set a collection of connected open subsets of C each of which contains U, and
such that V; NV} is connected for any two i, € I. Let f be an analytic function
on U, and g; an analytic continuation of f to V;, for i € I. Then g; = g; holds on
Vin'V; for anyi,j € I, and f has a unique analytic continuation to | J,.; V;, which
coincides with g; on V;, fori € 1.

iel

Proof. 1f i, j are any two indices from I, then both g;, g; are analytic continuations
of f to V;N'Vj, hence must be equal on V; NV}, since V; NV is assumed to be
connected. Now define a function g on V := J,.; Vi by g(2) == gi(z) if z € V. If
i,j are any two indices such that z € V; and z € V}, then g¢;(2) = ¢;(2), so this is
well-defined. Further, g clearly coincides with f on U, and is analytic on V. O

Another consequence of Theorem 0.6.19 is the so-called Schwarz’ reflection prin-
ciple, which implies that analytic functions assuming real values on the real line
have nice symmetric properties.

Corollary 0.6.24 (Schwarz’ reflection principle).

Let U be an open, connected subset of C,

U such that U NR # 0 and such that U is

= symmetric about R, i.e., Z € U for every
z € U. Further, let f : U — C be a non-
R identically zero analytic function with the

5 property that

{zeUNR: f(z) e R}

has a limit point in U.
Then f has the following properties:
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(i) f(z) €R for z € UNR;

(ii) f(Z) = f(z) for z € U;
(iii) If zo and r > 0 are such that D°(z,r) C U, then ords(f) = ord,, (f).

Proof. We first show that the function z — f(Z) is analytic on U. Indeed, for
zo € U, the limit

i LG ZIE) _ (M) &

zZ—20 Z — ZO Z—r20

exists.

Notice that for every z € U NR with f(z) € R, we have f(Z) = f(z). So by our

assumption on f, the set of z € U with f(Z) = f(z) has a limit point in U. Now

Corollary 0.6.21 implies that f(Z) = f(z) for z € U. This implies (i) and (ii).

We finish with proving (iii). Our assumption implies that f has a Laurent series

expansion
oo

f(z) = Z an(z — z)"

n=—oo

converging on D%(zg,r). Then for z € D°(zy,r) we have z € D°(2g,r) and

f(z)=f(z)= (Z an(z—zo)”> D G

n=—oo n=—oo

which clearly implies (iii). O

0.6.7 Analytic functions defined by integrals

In analytic number theory, one often has to deal with complex functions that are
defined by infinite series, infinite products, infinite integrals, or even worse, infinite
integrals of infinite series. In this section we have collected some useful results that
allow us to verify in a not too difficult manner that such complicated functions
are analytic. Although all results we mention are well-known, we could not find
a convenient reference for them, therefore we have included their not too exciting
proofs.

We start with a general theorem on analytic functions defined by an integral,
which will be frequently used in our course. In practical applications, condition (i)
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will always be taken for granted (in fact, in all our applications, f will be a Borel
function, i.e., Re f and Im f will be Borel functions) and only (ii) and (iii) will be
verified.

Theorem 0.6.25. Let D be a measurable subset of R™, U an open subset of C and
f: DxU— C a function with the following properties:

(1) f is measurable on D x U (with U viewed as subset of R?);

(ii) for every fized x € D, the function z — f(x,z) is analytic on U;

(i) for every compact subset K of U there is a measurable function My : D — R
such that

|f(x,2)| < Mg(zx) forzx € D, z € K, /MK(:lj)daj<oo,
D

Then the function F' given by

F(z) = /D (o, 2)da

1s analytic on U, and for every k > 1,
FOG) = [ 9, 2)ds,
D

where f®)(z, 2) denotes the k-th derivative with respect to z of the analytic function
z f(x, 2).

Proof. Fix z € U. Choose r > 0 such that D(z,7) C U, and let 0 < 6 < ir.
We show that F' can be expanded into a Taylor series around z on D(z,0); then
it follows that F' is analytic on D(z,0) and so in particular in z. By assumption,
there is a measurable function M : D — R such that |f(z,w)| < M(z) for x € D,
w € D(z,7) and [, M(z)dz < cc.

Let w € D(z,6). Then by Cauchy’s integral formula (i.e., Corollary 0.6.5),

F(w) :/Df(x,w)dx:/D{%ji% ‘Q(i’fu) -d(}dm.

By inserting

Fe0) _ f@O @O [ w—z\"
T et et )
= jw0
2=y W3
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we obtain

ro) = [ f (St o)
_ / { / (i /@, ;5;73?6%”)(@0—2)") dt}d:c.

n=0

We want to interchange the summation with the two integrations, and require the
Fubini-Tonelli Theorem to show that this is possible. We have to check that the
conditions of that theorem are satisfied, i.e., that in the above expression for F'(w)
we have absolute convergence. Note that since |w — z| < & we have

/D{/Ol (i [z, z + 20e*™) z”)dt} I

(20e2mit)n (w=2)
< /D {/01 (i M(x)Q") dt} dr < /D2M(x)dx < 00,

which shows that indeed, the conditions of the Fubini-Tonelli Theorem are satis-

fied. So in the expression for F(w) derived above we can indeed interchange the
summation and the two integrations and thus obtain

F) = S ([ { [ 1B )

where in the last step we have applied Corollary 0.6.10. This shows that indeed,

F has a Taylor expansion around z converging on D(z,¢). So in particular, F' is
analytic in z. Further, F*)(z) is equal to k! times the coefficient of (w — 2)*, that
is, [ f®)(z, z)dx. This proves our Theorem. ]

We deduce a result, which states that under certain conditions, the pointwise
limit of a sequence of analytic functions is again analytic.
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Theorem 0.6.26. Let U C C be a non-empty open set, and {f, : U — C}32, a
sequence of analytic functions, converging pointwise to a function f on U. Assume
that for every compact subset K of U there is a constant Cx < oo such that

|fn(2)] < Ck forallz€ K,n>0.

Then f is analytic on U, and f,(lk) — ) pointwise on U for all k > 1.

Proof. The set U can be covered by disks D(zg,d) with zo € U, 6 > 0, such that the
closed disk with center z, and radius 28, D(zg,20) is contained in U. We fix such a
disk D(zp,d) and prove that f is analytic on D(z,d) and FB s £ ®) pointwise on
D(zp,9) for k > 1. This clearly suffices.

Let z € D(z,9), k = 0. Then by Corollary 0.6.10, we have

W = 2 7{ ) g

210 S, o (¢ — z)kt1

/1 k' fn(ZO + 256271'1'15)26627”'15
0

(ZO + 25627rit _ Z)k+l

1
0

say. By assumption, there is C' < oo such that |f, (w)| < C for w € D(z,25), n > 0.
Further, for ¢ € [0, 1] we have |z + 2§e*™ — 2| > 4. Hence

(0.6.6) gni(t,2)] < C -k -20/8F =20 - k6% for n,k > 0.
Notice that for £ > 0, ¢t € [0, 1], z € D(z,0) we have

f(ZO + 25627rz‘t)2§€2m‘t

i =kl — )
T}Lr{:ogn,k(ta z) = k! (o 2027 — )1 g\ (t, 2),

where , 4
f(z0 + 20e™i) 252t

20 + 20e2mt —

g(t, z) =

and g¥)(t, 2) is the k-th derivative of the analytic function in z, z — g(t, 2).

Thanks to (0.6.6) we can apply the dominated convergence theorem, and obtain

1
lim f#)(z) = / g®(t,2)dt for z € D(z,6), k > 0.
0

n—oo
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Applying this with £ = 0 and using f,, — f pointwise, we obtain

f(z) = /0 g(t,z)dt for z € D(z,0).

It follows from Theorem 0.6.25 that the right-hand side, and hence f, is analytic on
D(zp,6), and moreover,

1
o () = / g®(t,z)dt for z € D(z,0), k> 1.
0

Indeed, g(t, z) is measurable on [0, 1] x D(z,d) and for every fixed ¢, the function
z + g(t, z) is analytic on D(z,d). Further, by (0.6.6) and since g, (¢, 2) — g(¢, 2),
we have |g(t,z)| < 2C for t € [0,1], z € D(zp,9). So all conditions of Theorem
0.6.25 are satisfied.

Now it follows that

n—o0

1
lim f7(z) = / g®(t,2)dt = fP(2) for z € D(2,0), k > 1,
0

which is what we wanted to prove. O

Corollary 0.6.27. Let U C C be a non-empty open set, and {f, : U — C}2,
a sequence of analytic functions, converging to a function f pointwise on U, and
uniformly on every compact subset of U.

Then f is analytic on U and fék) — %) pointwise on U for every k > 1.

Proof. Take a compact subset K of U. Let € > 0. Then there is N such that
|fu(2) — fi(2)| < e for all z € K, m,n > N. Choose m > N. Then there is C' > 0
such that |f,,(z)] < C for z € K since f,, is continuous. Hence |f,(z)| < C + ¢ for
z € K, n> N. Now our Corollary follows at once from Theorem 0.6.26. m

Corollary 0.6.28. let U C C be a non-empty open set, and {f, : U — C}2,
a sequence of analytic functions, converging to a function f pointwise on U and
uniformly on every compact subset of U. Then

LR f)
S fal2) T 1)

for all z € U with f(z) # 0, where the limit is taken over those n for which f,(z) # 0.
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Proof. Obvious. O]

Corollary 0.6.29. Let U C C be a non-empty open set and {f, : U — C}32, a
sequence of analytic functions. Assume that for every compact subset K of U there
are reals M, i such that |f,(z)] < M, i for z € K and )~ M, x converges. Then

(k)
(i) >0 fu is analytic on U, and (fo:o fn> =30 9 for k>0,
(i) [To—o(1 + fn) is analytic on U.
Proof. Our assumption on the functions f,, implies that both the series Y f, and

the infinite product [[ - ,(1+ f,) converge uniformly on every compact subset of U
(see Propositions 0.2.6 and 0.2.7). Now apply Corollary 0.6.27. ]

Corollary 0.6.30. Let U, {f,}5°, be as in Corollary 0.6.29 and assume in addition
that f, # —1 on U for every n > 0. Then for the function F = [[°7_ (1 + f,) we

have
F'o=
F_nZ:OlJrf’

n

Proof. Let F,, :==[[_,(1+ f,). Then F,, — F uniformly on every compact subset
of U. Hence by Corollary 0.6.28,

R L Dy
which clearly implies Corollary 0.6.30. [
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