Chapter 3

Characters and Gauss sums

3.1 Characters on finite abelian groups

In what follows, abelian groups are multiplicatively written, and the unit element of an abelian group \(A \) is denoted by 1. We denote the order (number of elements) of \(A \) by \(|A|\).

Let \(A \) be a finite abelian group. A character on \(A \) is a group homomorphism \(\chi : A \to \mathbb{C}^* \) (i.e., \(\mathbb{C} \setminus \{0\} \) with multiplication).

If \(|A| = n\) then \(a^n = 1\), hence \(\chi(a)^n = 1 \) for each \(a \in A \) and each character \(\chi \) on \(A \). Therefore, a character on \(A \) maps \(A \) to the roots of unity.

The product \(\chi_1 \chi_2 \) of two characters \(\chi_1, \chi_2 \) on \(A \) is defined by \((\chi_1 \chi_2)(a) := \chi_1(a)\chi_2(a) \) for \(a \in A \). With this product, the characters on \(A \) form an abelian group, the so-called character group of \(A \), which we denote by \(\hat{A} \) (or \(\text{Hom}(A, \mathbb{C}^*) \)). The unit element of \(\hat{A} \) is the trivial character \(\chi_0^{(A)} \) that maps \(A \) to 1. Since any character on \(A \) maps \(A \) to the roots of unity, the inverse \(\chi^{-1} : a \mapsto \chi(a)^{-1} \) of a character \(\chi \) is equal to its complex conjugate \(\overline{\chi} : a \mapsto \overline{\chi(a)} \).

We first construct an isomorphism from \(A \) to \(\hat{A} \). This will not be canonical, since it will depend on a choice of generators for \(A \).

Lemma 3.1.1. Let \(A \) be a cyclic group of order \(n \). Then \(\hat{A} \) is also a cyclic group of order \(n \).
Proof. Let \(A = \langle g \rangle \). Let \(\rho_1 \) be a primitive \(n \)-th root of unity. Since \(g \) has order \(n \), there is a character \(\chi_1 \) on \(A \) with \(\chi_1(g) = \rho_1 \). Clearly, \(\chi_1 \) has order \(n \). Let \(\chi \in \hat{A} \). Then \(\chi(g)^n = 1 \), so \(\chi(g) = \rho_1^k \) for some integer \(k \), and hence \(\chi = \chi_1^k \) since a character on \(A \) is determined by its value in \(g \). So \(\hat{A} = \langle \chi_1 \rangle \) is a cyclic group of order \(n \). □

Lemma 3.1.2. Let \(A = A_1 \times \cdots \times A_r \) be the direct product of finite abelian groups \(A_1, \ldots, A_r \). Then \(\hat{A} \) is isomorphic to \(\hat{A}_1 \times \cdots \times \hat{A}_r \).

Proof. Define a map

\[
\varphi : \hat{A}_1 \times \cdots \times \hat{A}_r \to \hat{A} : (\chi_1, \ldots, \chi_r) \mapsto \chi_1 \cdots \chi_r,
\]

\[\chi_1 \cdots \chi_r((g_1, \ldots, g_r)) := \chi_1(g_1) \cdots \chi_r(g_r) \text{ for } g_i \in A_i, \ i = 1, \ldots, r.\]

It is easy to see that \(\varphi \) is a group homomorphism. Substituting \(g_j = 1_{A_j} \) for \(j \neq i \), we see that \(\chi_i \) is uniquely determined by \(\chi_1 \cdots \chi_r \), for \(i = 1, \ldots, r \). Hence \(\varphi \) is injective. Conversely, let \(\chi \in \hat{A} \), and for \(i = 1, \ldots, r \) define \(\chi_i \in \hat{A}_i \) by

\[\chi_i(g_i) := \chi(\ldots, g_i, \ldots) \text{ for } g_i \in A_i,\]

with on the \(j \)-th place the unit element of \(A_i \), for \(j \neq i \). Then one easily verifies that \(\chi = \chi_1 \cdots \chi_r \). Hence \(\varphi \) is also surjective. □

Proposition 3.1.3. Every finite abelian group is isomorphic to a direct product of cyclic groups.

Proof. See S. Lang, Algebra, Chap.1, §10. □

Theorem 3.1.4. Let \(A \) be a finite abelian group. Then there exists an isomorphism from \(A \) to \(\hat{A} \). So in particular, \(|\hat{A}| = |A| \).

Proof. By Proposition 3.1.3, \(A \) is isomorphic to a direct product \(C_1 \times \cdots \times C_r \) of finite cyclic groups. By Lemmas 3.1.1, 3.1.2, \(\hat{C}_i \) is a cyclic group of the same order as \(C_i \), for \(i = 1, \ldots, r \), and \(\hat{A} \) is isomorphic to \(\hat{C}_1 \times \cdots \times \hat{C}_r \). Now the isomorphism from \(A \) to \(\hat{A} \) can be established by mapping a generator of \(C_i \) to one of \(\hat{C}_i \), for \(i = 1, \ldots, r \). □

Remark. The isomorphism constructed above depends on choices for generators of \(C_i, \hat{C}_i \), for \(i = 1, \ldots, r \). So it is not canonical.
Corollary 3.1.5. Let A be a finite abelian group, and $g \in A$ with $g \neq 1$. Then there is a character χ on A with $\chi(g) \neq 1$.

Proof. First assume that $A = \langle g_1 \rangle$ is a cyclic group of order n. Then $g = g_1^k$ with $1 \leq k < n$. Let χ_1 be a generator of \hat{A} as constructed in the proof of Lemma 3.1.1. Then clearly, $\chi_1(g) \neq 1$.

Now let A be an arbitrary finite abelian group. We may assume that $A = C_1 \times \cdots \times C_r$, where C_1, \ldots, C_r are finite cyclic groups, and $g = (g_1, \ldots, g_r)$ with $g_i \in C_i$ for $i = 1, \ldots, r$ and, say, $g_1 \neq 1_{C_1}$. Choose $\chi_1 \in \hat{C_1}$ with $\chi_1(g_1) \neq 1$, let χ_2, \ldots, χ_r be the principal characters on C_2, \ldots, C_r, and put $\chi := \chi_1 \cdots \chi_r$. Then clearly, $\chi(g) = \chi_1(g_1) \neq 1$.

For a finite abelian group A, let $\hat{\hat{A}}$ denote the character group of \hat{A}. We construct a canonical isomorphism from A to $\hat{\hat{A}}$. Notice that each element $a \in A$ gives rise to a character \hat{a} on \hat{A}, given by $\hat{a}(\chi) := \chi(a)$.

Theorem 3.1.6 (Duality). Let A be a finite abelian group. Then the map $a \mapsto \hat{a}$ defines an isomorphism from A to $\hat{\hat{A}}$.

Proof. The map $\varphi : a \mapsto \hat{a}$ obviously defines a group homomorphism from A to $\hat{\hat{A}}$. By Corollary 3.1.5 we have $\text{Ker}(\varphi) = \{ a \in A : \hat{\hat{a}}(\chi) = 1 \forall \chi \in \hat{A} \} = \{1\}$; hence φ is injective. By Theorem 3.1.4 we have $|\hat{\hat{A}}| = |\hat{\hat{A}}| = |A|$. Hence φ is also surjective.

Theorem 3.1.7 (Orthogonality relations for characters). Let A be a finite abelian group.

(i) For any two characters χ_1, χ_2 on A we have

$$\sum_{a \in A} \overline{\chi_1(a)} \chi_2(a) = \begin{cases} |A| & \text{if } \chi_1 = \chi_2, \\ 0 & \text{if } \chi_1 \neq \chi_2. \end{cases}$$

(ii) For any two elements a, b of A we have

$$\sum_{\chi \in \hat{A}} \overline{\chi(a)} \chi(b) = \begin{cases} |A| & \text{if } a = b, \\ 0 & \text{if } a \neq b. \end{cases}$$
Proof. Part (ii) follows by applying part (i) with \(\hat{A} \) instead of \(A \), and using Theorem 3.1.6 and \(|\hat{A}| = |A| \). So we prove only (i). Let \(\chi_1, \chi_2 \in \hat{A} \) and put \(S := \sum_{a \in A} \chi_1(a)\chi_2(a) \). Let \(\chi := \chi_1\chi_2 = \chi_1\chi_2^{-1} \). Then \(S = \sum_{a \in A} \chi(a) \). Clearly, if \(\chi_1 = \chi_2 \) then \(\chi = \chi_0^{(A)} \), hence \(S = |A| \). Let \(\chi_1 \neq \chi_2 \). Then \(\chi \neq \chi_0^{(A)} \), hence there is \(g \in A \) with \(\chi(g) \neq 1 \). Further,
\[
\chi(g)S = \sum_{a \in A} \chi(ga) = S,
\]

since \(ga \) runs through the elements of \(A \). Hence \(S = 0 \). \(\square \)

3.2 Dirichlet characters

Let \(q \in \mathbb{Z}_{\geq 2} \). Denote the residue class of \(a \) mod \(q \) by \(\bar{a} \). Recall that the prime residue classes mod \(q \), \((\mathbb{Z}/q\mathbb{Z})^* = \{ \bar{a} : \gcd(a, q) = 1 \} \) form a group of order \(\varphi(q) \) under multiplication of residue classes. We can lift any character \(\bar{\chi} \) on \((\mathbb{Z}/q\mathbb{Z})^* \) to a map \(\chi : \mathbb{Z} \to \mathbb{C} \) by setting
\[
\chi(a) := \begin{cases}
\bar{\chi}(\bar{a}) & \text{if } \gcd(a, q) = 1; \\
0 & \text{if } \gcd(a, q) > 1.
\end{cases}
\]

Notice that \(\chi \) has the following properties:

(i) \(\chi(1) = 1 \);
(ii) \(\chi(ab) = \chi(a)\chi(b) \) for \(a, b \in \mathbb{Z} \);
(iii) \(\chi(a) = \chi(b) \) if \(a \equiv b \pmod{q} \);
(iv) \(\chi(a) = 0 \) if \(\gcd(a, q) > 1 \).

Any map \(\chi : \mathbb{Z} \to \mathbb{C} \) with properties (i)–(iv) is called a (Dirichlet) character modulo \(q \). Conversely, from a character \(\chi \) mod \(q \) one easily obtains a character \(\bar{\chi} \) on \((\mathbb{Z}/q\mathbb{Z})^* \) by setting \(\bar{\chi}(\bar{a}) := \chi(a) \) for \(a \in \mathbb{Z} \) with \(\gcd(a, q) = 1 \).

Let \(G(q) \) be the set of characters modulo \(q \). We define the product \(\chi_1\chi_2 \) of \(\chi_1, \chi_2 \in G(q) \) by \(\chi_1\chi_2(a) = \chi_1(a)\chi_2(a) \) for \(a \in \mathbb{Z} \). With this operation, \(G(q) \) becomes a group, with unit element the principal character modulo \(q \) given by
\[
\chi_0^{(q)}(a) = \begin{cases}
1 & \text{if } \gcd(a, q) = 1; \\
0 & \text{if } \gcd(a, q) > 1.
\end{cases}
\]
The inverse of $\chi \in G(q)$ is its complex conjugate

$$\bar{\chi} : a \mapsto \overline{\chi(a)}.$$

It is clear, that this makes $G(q)$ into a group, and that $\chi \mapsto \bar{\chi}$ defines an isomorphism from $G(q)$ to the character group of $(\mathbb{Z}/q\mathbb{Z})^\ast$.

One of the advantages of viewing characters as maps from \mathbb{Z} to \mathbb{C} is that this allows to multiply characters of different moduli: if χ_1 is a character mod q_1 and χ_2 a character mod q_2, then their product $\chi_1 \chi_2$ is a character mod lcm(q_1, q_2).

We can easily translate the orthogonality relations for characters of $(\mathbb{Z}/q\mathbb{Z})^\ast$ into orthogonality relations for Dirichlet characters modulo q. Recall that a complete residue system modulo q is a set, consisting of precisely one integer from every residue class modulo q, e.g., $\{3, 5, 11, 22, 104\}$ is a complete residue system modulo 5.

Theorem 3.2.1. Let $q \in \mathbb{Z}_{\geq 2}$, and let S_q be a complete residue system modulo q.

(i) Let $\chi_1, \chi_2 \in G(q)$. Then

$$\sum_{a \in S_q} \chi_1(a) \overline{\chi_2(a)} = \begin{cases} \varphi(q) & \text{if } \chi_1 = \chi_2; \\ 0 & \text{if } \chi_1 \neq \chi_2. \end{cases}$$

(ii) Let $a, b \in \mathbb{Z}$. Then

$$\sum_{\chi \in G(q)} \chi(a) \overline{\chi(b)} = \begin{cases} \varphi(q) & \text{if } \gcd(ab, q) = 1, \ a \equiv b \pmod{q}; \\ 0 & \text{if } \gcd(ab, q) = 1, \ a \not\equiv b \pmod{q}; \\ 0 & \text{if } \gcd(ab, q) > 1. \end{cases}$$

Proof. Easy exercise. \hfill \square

Let χ be a character mod q and d a positive divisor of q.

We say that χ is *induced* by a character χ' mod d if $\chi(a) = \chi'(a)$ for every $a \in \mathbb{Z}$ with $\gcd(a, q) = 1$. Here we define the principal character mod 1 by $\chi_0^{(1)}(a) = 1$ for $a \in \mathbb{Z}$. For instance, $\chi_0^{(q)}$ is induced by $\chi_0^{(1)}$. Notice that if $\gcd(a, d) = 1$ and $\gcd(a, q) > 1$, then $\chi'(a) \neq 0$ but $\chi(a) = 0$.

An alternative formulation of χ being induced by χ' is that $\chi = \chi' \cdot \chi_0^{(q)}$.

93
The conductor of χ is the smallest positive divisor d of q such that χ is induced by a character mod d.

We define the principal character mod 1 by $\chi_0^{(1)}(n) = 1$ for all $n \in \mathbb{Z}$. Clearly, if q is an integer ≥ 2 then $\chi_{0}^{(q)}$ is induced by $\chi_{0}^{(1)}$, so $\chi_{0}^{(q)}$ has conductor 1.

A character χ is called primitive if there is no divisor $d < q$ of q such that χ is induced by a character mod d, in other words, if χ has conductor q.

Theorem 3.2.2. Let $q \in \mathbb{Z}_{\geq 2}$, χ a character mod q. Denote by f the conductor of χ.

(i) There is a unique character χ^* mod f that induces χ, and this is necessarily primitive.

(ii) Let d be a divisor of q and χ' a character mod d that induces χ. Then f is a divisor of d and χ^* induces χ'.

We need some lemmas.

Lemma 3.2.3. Let d be a divisor of q and a an integer with $\gcd(a, d) = 1$. Then there is $b \in \mathbb{Z}$ with $b \equiv a \pmod{d}$, $\gcd(b, q) = 1$.

Proof. Write $q = q_1 q_2$, where q_1 is composed of the primes occurring in the factorization of d, and where q_2 is composed of primes not dividing d. Thus, d and q_2 are coprime. By the Chinese Remainder Theorem, there is $b \in \mathbb{Z}$ with

$$b \equiv a \pmod{d}, \quad b \equiv 1 \pmod{q_2}.$$

This integer b is coprime with d, hence with q_1, and also coprime with q_2, so it is coprime with q. \qed

Lemma 3.2.4. Let χ be a character mod q, and d a divisor of q. Then there is at most one character mod d that induces χ.

Proof. Suppose χ is induced by a character χ_1 mod d. Let $a \in \mathbb{Z}$ with $\gcd(a, d) = 1$. Choose $b \in \mathbb{Z}$ with $b \equiv a \pmod{d}$ and $\gcd(b, q) = 1$. Then $\chi_1(a) = \chi_1(b) = \chi(b)$. Hence χ_1 is uniquely determined by χ. \qed

The next lemma gives a method to verify if a character χ is induced by a character mod d.

94
Lemma 3.2.5. Let χ be a character mod q, and d a divisor of q. Then the following assertions are equivalent:

(i) χ is induced by a character mod d;
(ii) $\chi(a) = \chi(b)$ for all $a, b \in \mathbb{Z}$ with $a \equiv b \pmod{d}$ and $\gcd(ab, q) = 1$;
(iii) $\chi(a) = 1$ for all $a \in \mathbb{Z}$ with $a \equiv 1 \pmod{d}$ and $\gcd(a, q) = 1$.

Proof. The implications (i)\Rightarrow(ii)\Rightarrow(iii) are trivial.

(iii) \Rightarrow (ii). Let $a, b \in \mathbb{Z}$ with $a \equiv b \pmod{d}$ and $\gcd(ab, q) = 1$. There is $c \in \mathbb{Z}$ with $\gcd(c, q) = 1$ such that $a \equiv bc \pmod{q}$. For this c we have $c \equiv 1 \pmod{d}$. Now by (iii) we have $\chi(a) = \chi(b)\chi(c) = \chi(b)$.

(ii)\Rightarrow(i). We define a character χ' mod d as follows. For $a \in \mathbb{Z}$ with $\gcd(a, d) > 1$ put $\chi'(a) := 0$. For $a \in \mathbb{Z}$ with $\gcd(a, d) = 1$, choose $b \in \mathbb{Z}$ such that $b \equiv a \pmod{d}$ and $\gcd(b, q) = 1$ (which is possible by Lemma 3.2.3), and put $\chi'(a) := \chi(b)$. By (ii) this gives a well-defined character mod d that clearly induces χ.

Remark. Notice that this lemma provides a method to compute the conductor of a character χ mod q: check for every divisor d of q whether $\chi(a) = 1$ for all integers a with $1 \leq a < q$, $a \equiv 1 \pmod{d}$ and $\gcd(a, q) = 1$. The smallest divisor d of q for which this holds is the conductor of χ.

Lemma 3.2.6. Let χ be a character mod q. Let d_1, d_2 be divisors of q. Assume that χ is induced by characters $\chi_1 \pmod{d_1}$, $\chi_2 \pmod{d_2}$. Then there is a character $\chi_3 \pmod{\gcd(d_1, d_2)}$ that induces χ, χ_1 and χ_2.

Proof. Let $d := \gcd(d_1, d_2)$, $d_0 := \text{lcm}(d_1, d_2)$. We first show that χ_1 is induced by a character mod d. We apply criterion (iii) of the previous lemma. That is, we have to show that if a is an integer with $\gcd(a, d_1) = 1$ and $a \equiv 1 \pmod{d}$, then $\chi_1(a) = 1$.

Take such a. Then $a = 1 + td$ with $t \in \mathbb{Z}$. There are $x, y \in \mathbb{Z}$ with $xd_1 + yd_2 = d$. Hence $a = 1 + txd_1 + tyd_2$. The number $c := 1 + tyd_2 = a - txd_1$ is clearly coprime with d_2, and it is also coprime with d_1 since a is coprime with d_1. Hence c is coprime with d_0. By Lemma 3.2.3, there is b with $b \equiv c \pmod{d_0}$ and $\gcd(b, q) = 1$. We have $b \equiv a \pmod{d_1}$, $b \equiv 1 \pmod{d_2}$. So by Lemma 3.2.5 applied with d_1 and d_2, $\chi_1(a) = \chi(b) = \chi_2(1) = 1$.

It follows that χ_1 is induced by a character, say $\chi_3 \pmod{d}$. Similarly, χ_2 is induced by a character $\chi'_3 \pmod{d}$. Both χ_3, χ'_3 induce χ. So by Lemma 3.2.4, $\chi_3 = \chi'_3$. □
Proof of Theorem 3.2.2. (i) By Lemma 3.2.4 there is a unique character $\chi^\ast \mod f$ inducing χ. If χ^\ast were induced by a character χ' modulo a divisor $d < f$ of f, then χ were induced by χ', contradicting the definition of the conductor. So χ^\ast is primitive.

(ii) By Lemma 3.2.6 there is a character $\chi'' \mod \gcd(d, f)$ inducing χ, χ^\ast and χ'. Since χ^\ast is primitive we must have $f \mid d$ and $\chi'' = \chi^\ast$. So χ^\ast induces χ'.

\section{Computation of $G(q)$}

We give a method to compute the character group modulo q. We first make a reduction to prime powers.

\textbf{Theorem 3.3.1.} Let $q = p_1^{k_1} \cdots q_t^{k_t}$, where p_1, \ldots, p_t are distinct primes and k_1, \ldots, k_t positive integers. Then the map

$$G(p_1^{k_1}) \times \cdots \times G(p_t^{k_t}) \to G(q) : (\chi_1, \ldots, \chi_t) \mapsto \chi_1 \cdots \chi_t$$

is a group isomorphism.

\textbf{Proof.} Let ρ denote the map under consideration. Then ρ is a homomorphism. Since $G(p_1^{k_1}) \times \cdots \times G(p_t^{k_t})$ and $G(q)$ have the same order $\varphi(q)$, it suffices to show that ρ is injective. That is, we have to show that if $\chi_i \in G(p_i^{k_i})$ ($i = 1, \ldots, t$) are such that $\chi_1 \cdots \chi_t = \chi_0^{(q)}$, then $\chi_i = \chi_0^{(p_i^{k_i})}$ for $i = 1, \ldots, t$.

To prove this, let $i \in \{1, \ldots, t\}$ and $a \in \mathbb{Z}$ with $\gcd(a, p_i) = 1$. By the Chinese Remainder Theorem, there is $b \in \mathbb{Z}$ such that

$$b \equiv a \pmod{p_i^{k_i}}, \quad b \equiv 1 \pmod{p_j^{k_j}} \text{ for } j \neq i,$$

and using this b we infer $\chi_i(a) = \chi_1(b) \cdots \chi_t(b) = \chi_0^{(q)}(b) = 1$. Hence $\chi_i = \chi_0^{(p_i^{k_i})}$. \qed

To compute $G(p^k)$ for a prime power p^k, we need some information about the structure of $(\mathbb{Z}/p^k\mathbb{Z})^\ast$. This is provided by the following theorem.

\textbf{Theorem 3.3.2.} (i) Let p be a prime ≥ 3. Then the group $(\mathbb{Z}/p^k\mathbb{Z})^\ast$ is cyclic of order $p^{k-1}(p-1)$.

(ii) $(\mathbb{Z}/4\mathbb{Z})^\ast$ is cyclic of order 2.

Further, if $k \geq 3$ then $(\mathbb{Z}/2^k\mathbb{Z})^\ast = \langle -1 \rangle \times \langle 5 \rangle$ is isomorphic to the direct product of a cyclic group of order 2 and a cyclic group of order 2^{k-2}.
We skip the proof of \(k = 1 \) of (i), which belongs to a basic algebra course. For the proof of the remaining parts, we need a lemma.

For a prime number \(p \), and for \(a \in \mathbb{Z} \setminus \{0\} \), we denote by \(\text{ord}_p(a) \) the largest integer \(k \) such that \(p^k \) divides \(a \).

Lemma 3.3.3. Let \(p \) be a prime number and \(a \) an integer such that \(\text{ord}_p(a - 1) \geq 1 \) if \(p \geq 3 \) and \(\text{ord}_p(a - 1) \geq 2 \) if \(p = 2 \). Then

\[
\text{ord}_p(a^{p^k} - 1) = \text{ord}_p(a - 1) + k.
\]

Proof. We prove the assertion only for \(k = 1 \); then the general statement follows easily by induction on \(k \). Our assumption on \(a \) implies that \(a = 1 + ptb \), where \(t \geq 1 \) if \(p \geq 3 \) and \(t \geq 2 \) if \(p = 2 \), and where \(b \) is an integer not divisible by \(p \). By the binomial formula,

\[
a^p - 1 = p^{t+1}b + \binom{p}{2}p^2b^2 + \cdots + \binom{p}{p-1}p^{p-1}tb^{p-1}t + p^tbt^t \equiv p^{t+1}b \pmod{p^{t+2}}
\]

since \(\binom{p}{2}, \ldots, \binom{p}{p-1} \) are all divisible by \(p \) and \(pt \geq t + 2 \) in both the cases \(p \geq 3 \), \(p = 2 \). So \(\text{ord}_p(a^p - 1) = t + 1 \). \(\square \)

Lemma 3.3.4. Let \(p \geq 3 \) be a prime number. Then there is an integer \(g \) such that \(g \pmod{p} \) is a generator of \((\mathbb{Z}/p\mathbb{Z})^* \) and \(\text{ord}_p(g^{p-1} - 1) = 1 \).

Proof. We take for granted that \((\mathbb{Z}/p\mathbb{Z})^* \) is cyclic of order \(p - 1 \); then there is an integer \(h \) such that \(h \pmod{p} \) is a generator of \((\mathbb{Z}/p\mathbb{Z})^* \). So \(\text{ord}_p(h^{p-1} - 1) \geq 1 \). Put \(g := h \) if \(\text{ord}_p(h^{p-1} - 1) = 1 \) and \(g := h + p \) if \(\text{ord}_p(h^{p-1} - 1) \geq 2 \). In the latter case, we have

\[
g^{p-1} - 1 = h^{p-1} - 1 + (p - 1)h^{p-2}p + \binom{p-1}{2}h^{p-3}p^2 + \cdots + p^{p-1} \equiv -h^{p-2}p \pmod{p^2},
\]

hence \(\text{ord}_p(g^{p-1} - 1) = 1 \). \(\square \)

Proof of Theorem 3.3.2. (i). Let \(p \geq 3 \) and \(k \geq 2 \). Take \(g \) as in Lemma 3.3.4. We show that \(\bar{g} := g \pmod{p^k} \) generates \((\mathbb{Z}/p^k\mathbb{Z})^* \) or equivalently, that the order \(n \) of \(\bar{g} \) in \((\mathbb{Z}/p^k\mathbb{Z})^* \) equals the order of \((\mathbb{Z}/p\mathbb{Z})^* \), which is \(p^{k-1}(p - 1) \). In any case, \(n \) divides \(p^{k-1}(p - 1) \). Further, \(g^n \equiv 1 \pmod{p} \), hence \(p - 1 \) divides \(n \). So \(n = p^s(p - 1) \) with \(s \leq k - 1 \). By Lemma 3.3.3 we have

\[
\text{ord}_p(g^n - 1) = \text{ord}_p(g^{p-1} - 1) + s = s + 1.
\]
This has to be at least k, so $s = k - 1$. Hence indeed $n = p^{k-1}(p - 1)$.

(ii). Assume that $k \geq 3$. Define the subgroup

$$H := \{ \bar{a} \in (\mathbb{Z}/2^k \mathbb{Z})^* : a \equiv 1 \pmod{4} \}.$$

Note that $\bar{a} \in (\mathbb{Z}/2^k \mathbb{Z})^*$ if $a \equiv 3 \pmod{4}$. So

$$(\mathbb{Z}/2^k \mathbb{Z})^* = H \cup (\mathbb{Z}/2^k \mathbb{Z}) = \langle -1 \rangle \times H.$$

Similarly as above, one shows that H is cyclic of order 2^{k-2}, and that $H = \langle 5 \rangle$. \qed

We can now give an explicit description for the groups $G(p^k)$, following the proofs of Lemmas 3.1.1, 3.1.2.

If $p > 2$, choose $g \in \mathbb{Z}$ such that $g \pmod{p^k}$ generates $(\mathbb{Z}/p^k \mathbb{Z})^*$, and choose a primitive $p^{k-1}(p - 1)$-th root of unity ρ. Then $G(p^k) = \langle \chi_1 \rangle$ where χ_1 is the Dirichlet character determined by $\chi_1(g) = \rho$, and $G(p^k)$ is cyclic of order $p^{k-1}(p - 1)$.

Clearly, $G(2) = \{ \chi_0^{(2)} \}$ and $G(4) = \{ \chi_0^{(4)}, \chi_4 \}$, where $\chi_4(a) = 1$ if $a \equiv 1 \pmod{4}$, $\chi_4(a) = -1$ if $a \equiv 3 \pmod{4}$, $\chi_4(a) = 0$ if a is even.

As for 2^k with $k \geq 3$, choose a primitive 2^{k-2}-th root of unity ρ. Then $G(2^k) = \langle \chi_1 \rangle \times \langle \chi_2 \rangle$, where χ_1, χ_2 are given by

$$\chi_1(-1) = -1, \; \chi_1(5) = 1; \; \chi_2(-1) = 1, \; \chi_2(5) = \rho,$$

χ_1 has order 2, and χ_2 has order 2^{k-2}.

3.4 Gauss sums

Let $q \in \mathbb{Z}_{\geq 2}$. For a character $\chi \mod q$ and for $b \in \mathbb{Z}$, we define the Gauss sum

$$\tau(b, \chi) := \sum_{a \in S_q} \chi(a)e^{2\pi iba/q},$$

where S_q is a full system of representatives modulo q. This does not depend on the choice of S_q. The Gauss sum $\tau(1, \chi)$ occurs for instance in the functional equation for the L-function $L(s, \chi) = \sum_{n=1}^\infty \chi(n)n^{-s}$ (later).

We prove some basic properties of Gauss sums.
Theorem 3.4.1. Let \(q \in \mathbb{Z}_{\geq 2} \) and let \(\chi \) be a character mod \(q \). Further, let \(b \in \mathbb{Z} \).

(i) If \(\gcd(b, q) = 1 \), then \(\tau(b, \chi) = \overline{\chi(b)} \cdot \tau(1, \chi) \).

(ii) If \(\gcd(b, q) > 1 \) and \(\chi \) is primitive, then \(\tau(b, \chi) = \overline{\chi(b)} \cdot \tau(1, \chi) = 0 \).

Proof. (i) Suppose \(\gcd(b, q) = 1 \). If \(a \) runs through a complete residue system \(S_q \) mod \(q \), then \(ba \) runs through another complete residue system \(S'_q \) mod \(q \). Write \(y = ba \). Then \(\chi(y) = \chi(b)\chi(a) \), hence \(\chi(a) = \overline{\chi(b)}\chi(y) \). Therefore,

\[
\tau(b, \chi) = \sum_{a \in S_q} \chi(a)e^{2\pi i ba/q} = \sum_{y \in S'_q} \overline{\chi(b)}\chi(y)e^{2\pi iy/q} = \overline{\chi(b)} \cdot \tau(1, \chi).
\]

(ii) Let \(\gcd(b, q) = d > 1 \) and put \(b_1 := b/d, \ q_1 := q/d \). Then \(\chi \) is not induced by a character mod \(q_1 \), so by Lemma 3.2.5 there is \(c \in \mathbb{Z} \) such that \(c \equiv 1 \pmod{q_1} \), \(\gcd(c, q) = 1 \), and \(\chi(c) \not\equiv 1 \). With this \(c \) we have

\[
\chi(c)\tau(b, \chi) = \sum_{a \in S_q} \chi(ca)e^{2\pi i ba/q}.
\]

If \(a \) runs through a complete residue system \(S_q \) mod \(q \), then \(y := ca \) runs through another complete residue system \(S'_q \) mod \(q \). Further, since \(c \equiv 1 \pmod{q_1} \) we have

\[
e^{2\pi i ab/q} = e^{2\pi i b_1/q_1} = e^{2\pi i c b_1/q_1} = e^{2\pi i yb/q}.
\]

Hence

\[
\chi(c)\tau(b, \chi) = \sum_{y \in S'_q} \chi(y)e^{2\pi iyb/q} = \tau(b, \chi).
\]

Since \(\chi(c) \not\equiv 1 \) this implies that \(\tau(b, \chi) = 0 \).

\[\square\]

Theorem 3.4.2. Let \(q \in \mathbb{Z}_{\geq 2} \) and let \(\chi \) be a primitive character mod \(q \). Then

\[|\tau(1, \chi)| = \sqrt{q}.
\]
Proof. We have by Theorem 3.4.1,

\[|\tau(1, \chi)|^2 = \tau(1, \chi) \cdot \tau(1, \chi) = \sum_{a=0}^{q-1} \chi(a) e^{-2\pi ia/q} \tau(1, \chi) \]

\[= \sum_{a=0}^{q-1} e^{-2\pi ia/q} \tau(a, \chi) = \sum_{a=0}^{q-1} e^{-2\pi ia/q} \left(\sum_{b=0}^{q-1} \chi(b) e^{2\pi iab/q} \right) \]

\[= \sum_{a=0}^{q-1} \left(\sum_{b=0}^{q-1} \chi(b) e^{2\pi iab/q} \right) \]

If \(b = 1 \), then \(S(b) = \sum_{a=0}^{q-1} 1 = q \), while if \(b \neq 1 \), then by the sum formula for geometric sequences,

\[S(b) = \frac{e^{2\pi i(b-1)} - 1}{e^{2\pi i(b-1)/q} - 1} = 0. \]

Hence \(|\tau(1, \chi)|^2 = \chi(1)q = q. \)

Remark. Theorem 3.4.2 implies that \(\varepsilon_\chi := \tau(1, \chi)/\sqrt{q} \) lies on the unit circle. Gauss gave an easy explicit expression for \(\varepsilon_\chi \) in the case that \(\chi \) is a primitive real character mod \(q \), i.e., \(\chi \) assumes its values in \(\mathbb{R} \), so in \(\{0, \pm 1\} \). There is no general efficient method known to compute \(\varepsilon_\chi \) for non-real characters \(\chi \) modulo large values of \(q \).

3.5 Character sums

For many purposes one needs good estimates for expressions \(\left| \sum_{a=M+1}^{M+N} \chi(a) \right| \), where \(\chi \) is a non-principal character modulo an integer \(q \geq 2 \). We prove the following classic result, which, apart from the constant 3 in front of \(\sqrt{q} \log q \), was obtained independently by Polyá and I.N. Vinogradov in 1918.

Theorem 3.5.1. Let \(q \) be an integer \(\geq 2 \), \(\chi \) a non-principal character modulo \(q \), and \(M, N \) integers with \(N \geq 1 \). Then

\[\left| \sum_{a=M+1}^{M+N} \chi(a) \right| \leq 3\sqrt{q} \log q. \]
Of course, the left-hand side is at most N. So this estimate is non-trivial only if $N > 3\sqrt{q} \log q$.

We need the following simple exponential sum estimate.

Lemma 3.5.2. Let $0 < x < 1$. Then

$$\left| \sum_{a=M+1}^{M+N} e^{2\pi i ax} \right| \leq \frac{1}{2} \cdot \max \left(\frac{1}{x}, \frac{1}{1-x} \right).$$

Proof. By the sum formula for geometric series,

$$M+1 \sum_{a=M+1}^{M+N} e^{2\pi i ax} = e^{2(M+1)\pi i x} \frac{e^{2N\pi i x} - 1}{e^{2\pi i x} - 1} = e^{(2M+N+1)\pi i x} \frac{e^{N\pi i x} - e^{-N\pi i x}}{e^{\pi i x} - e^{-\pi i x}}$$

$$= e^{(2M+N+1)\pi i x} \frac{\sin(\pi N x)}{\sin(\pi x)}.$$

The lemma easily follows by taking absolute values, using $|e^{\pi iy}| = 1$ and $|\sin \pi y| \leq 1$ for every $y \in \mathbb{R}$, and $\sin \pi y \geq 2 \min(y, 1-y)$ for every y with $0 \leq y \leq 1$ (check the graph of \sin).

Proof of Theorem 3.5.1. We give an elementary proof, due to Schur (1918). We first assume that χ is a primitive character modulo q. Then by Theorem 3.4.1,

$$\sum_{a=M+1}^{M+N} \chi(a) = \tau(1, \chi)^{-1} \sum_{a=M+1}^{M+N} \tau(a, \chi)$$

$$= \tau(1, \chi)^{-1} \sum_{a=M+1}^{M+N} \left(\sum_{n=1}^{q-1} \chi(n)e^{2\pi i a n / q} \right)$$

$$= \tau(1, \chi)^{-1} \sum_{n=1}^{q-1} \chi(n) \left(\sum_{a=M+1}^{M+N} e^{2\pi i a n / q} \right).$$

Now from Theorem 3.4.2, $|\chi(n)| \leq 1$ for all n and Lemma 3.5.2, we infer

$$\left| \sum_{a=M+1}^{M+N} \chi(a) \right| \leq \sqrt{q} \sum_{n=1}^{q-1} \frac{1}{n} \cdot \max \left(\frac{1}{n/q}, \frac{1}{1 - (n/q)} \right)$$

$$\leq \sqrt{q} \sum_{n=1}^{[q/2]} \frac{1}{n} \leq \sqrt{q} \left(1 + \int_{1}^{q/2} \frac{dx}{x} \right) = \sqrt{q} \left(1 + \log(q/2) \right),$$

101
(clear from the graph of $1/x$) and thus, using $1 + \log(x/2) \leq \frac{3}{2} \log x$ for $x \geq 2$,

\[(3.5.2) \left| \sum_{a=M+1}^{M+N} \chi(a) \right| \leq \frac{3}{2} \sqrt{q} \log q.
\]

This proves our theorem for primitive characters χ modulo q.

We still have to prove our theorem for non-primitive characters. Let χ be a non-primitive, non-principal character modulo q, and let f be the conductor of χ. Then χ is induced by a primitive character χ^* modulo f. We write $q = f \cdot q'$. If $\gcd(a, q') = 1$ then $\gcd(a, f) = \gcd(a, q)$, hence $\chi(a) = \chi^*(a)$. If $\gcd(a, q') > 1$, then $\chi(a) = 0$. Thus,

\[
\sum_{a=M+1}^{M+N} \chi(a) = \sum_{a=M+1}^{M+N} \chi^*(a).
\]

The following trick is used quite often. Recall the property of the Möbius function

\[
\sum_{d|q', d|a} \mu(d) = \sum_{d|\gcd(a, q')} \mu(d) = \begin{cases} 1 & \text{if } \gcd(a, q') = 1, \\ 0 & \text{if } \gcd(a, q') > 1. \end{cases}
\]

By inserting this into the above identity and interchanging the summations, we obtain

\[
\sum_{a=M+1}^{M+N} \chi(a) = \sum_{a=M+1}^{M+N} \left(\sum_{d|q', d|a} \mu(d) \right) \chi^*(a)
\]

\[
= \sum_{d|q'} \mu(d) \left(\sum_{a=M+1}^{M+N} \chi^*(a) \right)
\]

\[
= \sum_{d|q'} \mu(d) \chi^*(d) \left(\sum_{(M+1)/d \leq b \leq (M+N)/d} \chi^*(b) \right),
\]

where we have written $a = db$ and used the multiplicativity of χ^*. The inner sum has absolute value at most $\frac{3}{2} \sqrt{f} \log f$ by (3.5.2) with χ^*, f instead of χ, q, the quantities $\mu(d)$ and $\chi^*(d)$ have absolute value at most 1 and the number of summands d is precisely the number of divisors $\tau(q')$ of q'. Hence

\[
\left| \sum_{a=M+1}^{M+N} \chi(a) \right| \leq \frac{3}{2} \tau(q') \sqrt{f} \log f.
\]
Note that for each divisor \(d \) of \(q' \) with \(\sqrt{q'} \leq d \leq q \) there is a divisor \(q'/d \leq \sqrt{q'} \). Hence \(\tau(q') \leq 2\sqrt{q'} \) (of course there are much better estimates). Since also \(f \leq q \), we arrive at
\[
\left| \sum_{a=M+1}^{M+N} \chi(a) \right| \leq 3\sqrt{q'} \sqrt{f} \log f \leq 3\sqrt{q} \log q.
\]

We mention that the estimate in Theorem 3.5.1 can not be improved very much, since by a result of Schur, for every primitive character \(\chi \) modulo an integer \(q \geq 2 \) one has
\[
\max_N \left| \sum_{a=1}^{N} \chi(a) \right| > \frac{\sqrt{q}}{2\pi}.
\]
As mentioned above, Theorem 3.5.1 improves the trivial bound \(N \) only if \(N > 3\sqrt{q} \log q \). It would be important to have non-trivial estimates also for smaller values of \(N \). Burgess proved in 1962 that for every \(\varepsilon > 0 \) there is a number \(C(\varepsilon) > 0 \) such that for every integer \(q \geq 2 \), every primitive character \(\chi \) modulo \(q \), and every pair of integers \(M, N \) with \(N > 0 \),
\[
\left| \sum_{a=M+1}^{M+N} \chi(a) \right| \leq C(\varepsilon) N^{1/2} q^{(3/16)+\varepsilon}.
\]
This upper bound is non-trivial (smaller than \(N \)) if \(N \gg q^{(3/8)+2\varepsilon} \).

3.6 Quadratic reciprocity

We give an analytic proof of Gauss’ Quadratic Reciprocity Theorem, by computing certain special Gauss sums.

Let \(p > 2 \) be a prime number. An integer \(a \) is called a \textit{quadratic residue modulo} \(p \) if \(x^2 \equiv a \pmod{p} \) is solvable in \(x \in \mathbb{Z} \) and \(p \nmid a \), and a \textit{quadratic non-residue modulo} \(p \) if \(x^2 \equiv a \pmod{p} \) is not solvable in \(x \in \mathbb{Z} \). Further, a quadratic (non-)residue class modulo \(p \) is a residue class modulo \(p \) represented by a quadratic (non-)residue.
We define the Legendre symbol
\[
\left(\frac{a}{p} \right) := \begin{cases}
1 & \text{if } a \text{ is a quadratic residue modulo } p; \\
-1 & \text{if } a \text{ is a quadratic non-residue modulo } p; \\
0 & \text{if } p \mid a.
\end{cases}
\]

Lemma 3.6.1. Let \(p \) be a prime > 2.
(i) \(\left(\frac{a}{p} \right) \) is a primitive character mod \(p \).
(ii) There are precisely \(\frac{1}{2}(p - 1) \) quadratic residue classes, and precisely \(\frac{1}{2}(p - 1) \) quadratic non-residue classes modulo \(p \).
(iii) \(\left(\frac{a}{p} \right) \equiv a^{(p-1)/2} \pmod{p} \) for \(a \in \mathbb{Z} \).

Proof. (i) The group \((\mathbb{Z}/p\mathbb{Z})^*\) is cyclic of order \(p - 1 \). Let \(g \pmod{p} \) be a generator of this group. Take \(a \in \mathbb{Z} \) with gcd\((a,p) = 1\). Then there is \(t \in \mathbb{Z} \) such that \(a \equiv g^t \pmod{p} \). Now clearly, \(x^2 \equiv a \pmod{p} \) is solvable in \(x \in \mathbb{Z} \) if and only if \(t \) is even. Hence \(\left(\frac{a}{p} \right) = (-1)^t \). This shows that \(\left(\frac{\cdot}{p} \right) \) is a character mod \(p \). It is not the principal character mod \(p \), since \(\left(\frac{g}{p} \right) = -1 \). Since \(p \) is a prime, it must be primitive.

(ii) The group \((\mathbb{Z}/p\mathbb{Z})^*\) consists of \(g^t \pmod{p} \) \((t = 0, \ldots, p - 1) \). As we have seen, the quadratic residue classes are those with \(t \) even, and the quadratic non-residue classes those with \(t \) odd. This implies (ii).

(iii) The assertion is clearly true if \(p \mid a \). Assume that \(p \nmid a \). Then there is \(t \in \mathbb{Z} \) with \(a \equiv g^t \pmod{p} \). Note that \((g^{(p-1)/2})^2 \equiv 1 \pmod{p} \), hence \(g^{(p-1)/2} \equiv \pm 1 \pmod{p} \). But \(g^{(p-1)/2} \not\equiv 1 \pmod{p} \) since \(g \pmod{p} \) is a generator of \((\mathbb{Z}/p\mathbb{Z})^*\). Hence \(g^{(p-1)/2} \equiv -1 \pmod{p} \). As a consequence,
\[
a^{(p-1)/2} \equiv (-1)^t \equiv \left(\frac{a}{p} \right) \pmod{p}.
\]

The following is immediate:

Corollary 3.6.2. Let \(p \) be a prime > 2. Then
\[
\left(\frac{-1}{p} \right) = (-1)^{(p-1)/2} = \begin{cases}
1 & \text{if } p \equiv 1 \pmod{4}, \\
-1 & \text{if } p \equiv 3 \pmod{4}.
\end{cases}
\]

We now come to the formulation of Gauss’ Quadratic Reciprocity Theorem:
Theorem 3.6.3. Let p, q be distinct primes > 2. Then

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{(p-1)(q-1)/4} = \begin{cases} -1 & \text{if } p \equiv q \equiv 3 \pmod{4}, \\ 1 & \text{otherwise.} \end{cases}$$

Furthermore, as a supplement we have:

Theorem 3.6.4. Let p be a prime > 2. Then

$$\left(\frac{2}{p}\right) = (-1)^{(p^2-1)/8} = \begin{cases} 1 & \text{if } p \equiv \pm 1 \pmod{8}, \\ -1 & \text{if } p \equiv \pm 3 \pmod{8}. \end{cases}$$

Example. Check if $x^2 \equiv 33 \pmod{97}$ is solvable.

$$\left(\frac{33}{97}\right) = \left(\frac{3}{97}\right) \cdot \left(\frac{11}{97}\right) = \left(\frac{97}{3}\right) \cdot \left(\frac{97}{11}\right)$$

$$= \left(\frac{1}{3}\right) \cdot \left(-2\right) = \left(\frac{1}{3}\right) \cdot \left(-1\right) \cdot \left(\frac{2}{11}\right) = 1 \cdot (-1) \cdot (-1) = 1.$$
\[\int_0^1 |f(t)| dt < \infty \] and \(f \) has bounded variation. The version we state and prove with a much more restrictive condition on \(f \) is amply sufficient for our purposes.

2. It may be that \(\lim_{N \to \infty} \sum_{n=-N}^{N} a_n \) converges, whereas the doubly infinite series \(\sum_{n=-\infty}^{\infty} a_n = \lim_{M,N \to \infty} \sum_{n=-M}^{N} a_n \) (with \(M, N \to \infty \) independently of each other) diverges. For instance, if \(a_{-n} = -a_n \) for \(n \in \mathbb{Z} \setminus \{0\} \), then \(\lim_{N \to \infty} \sum_{n=-N}^{N} a_n = a_0 \), but \(\sum_{n=-\infty}^{\infty} a_n \) may be horribly divergent.

Proof. We first consider some special cases. For the constant function \(f(z) = 1 \) we have \(c_0(f) = 1 \), while \(c_n(f) = 0 \) for \(n \neq 0 \), and so in this case, \(\sum_{n=-N}^{N} c_n(f) = 1 = \frac{1}{2}(f(0) + f(1)) \) for all \(N \). For the function \(f(z) = z \) we have \(c_0(f) = \frac{1}{2} \), while \(c_n(f) = -\frac{1}{2\pi i n} \) for \(n \neq 0 \). So also in this case, \(\sum_{n=-N}^{N} c_n(f) = \frac{1}{2} = \frac{1}{2}(f(0) + f(1)) \) for all \(N \).

We now take an arbitrary function \(f \) as in the statement of the theorem, say analytic on an open subset \(U \) of \(\mathbb{C} \) containing \([0, 1]\). Define the function \(f^*(z) := f(z) - f(0) + (f(0) - f(1))z \). Then \(f^* \) is analytic on \(U \) and \(f^*(0) = f^*(1) = 0 \). We prove that \(\lim_{N \to \infty} \sum_{n=-N}^{N} c_n(f^*) = 0 \). Together with the special cases just considered and the linearity of \(c_n(\cdot) \) over \(\mathbb{C} \) this implies \(\lim_{N \to \infty} \sum_{n=-N}^{N} c_n(f) = \frac{1}{2}(f(0) + f(1)) \).

From the identity
\[
\sum_{n=-N}^{N} e^{-2\pi i n t} = e^{2\pi i N t} \sum_{n=0}^{2N} e^{-2\pi i n t} = e^{2\pi i N t} \frac{e^{-2\pi i (2N+1) t} - 1}{e^{-2\pi i t} - 1} = \frac{e^{-\pi i (2N+1) t} - e^{\pi i (2N+1) t}}{e^{-\pi i t} - e^{\pi i t}} = \frac{\sin((2N+1)\pi t)}{\sin \pi t}
\]
we obtain
\[
\sum_{n=-N}^{N} c_n(f^*) = \int_0^1 f^*(t) \cdot \sin((2N+1)\pi t) \cdot dt = \int_0^1 g(t) \cdot \sin(h_N(t)) dt,
\]
where \(g(z) := \frac{f^*(z)}{\sin \pi z}, \quad h_N(z) := (2N+1)\pi z. \)

Assume that \(U \) is small enough, so that it does not contain any integers other than \(0, 1 \). Then \(g \) is analytic on \(U \). Indeed, \(\sin \pi z \neq 0 \) on \(U \) except at \(z = 0, z = 1 \) where
it has simple zeros, but these are cancelled by the zeros of \(f^* \) at \(z = 0, z = 1 \). Now using integration by parts, we obtain

\[
\left| \sum_{n=-N}^{N} c_n(f^*) \right| = \left| \int_{0}^{1} g(t) \sin(h_N(t))dt \right| = \frac{1}{(2N+1)\pi} \left| \int_{0}^{1} g(t) d\cos(h_N(t)) \right|
\]

\[
= \frac{1}{(2N+1)\pi} \left| -g(1) - g(0) - \int_{0}^{1} g'(t) \cos(h_N(t))dt \right|
\]

\[
\leq \frac{1}{(2N+1)\pi} \left(\left| g(1) \right| + \left| g(0) \right| + \int_{0}^{1} \left| g'(t) \right| dt \right) \rightarrow 0 \text{ as } N \rightarrow \infty.
\]

Here we used that \(g' \) is analytic on \(U \), hence \(t \mapsto \left| g'(t) \right| \) is continuous and bounded on \([0,1]\). This completes our proof. \(\square \)

Corollary 3.6.6 (Poisson’s summation formula for finite sums). Let \(a, b \) be integers with \(a < b \) and let \(f \) be a complex analytic function, defined on an open subset of \(\mathbb{C} \) containing the interval \([a,b]\). Then

\[
\sum_{m=a}^{b} f(m) = \frac{1}{2} \left(f(a) + f(b) \right) + \lim_{N \rightarrow \infty} \sum_{n=-N}^{N} \int_{a}^{b} f(t) e^{-2\pi i nt} dt
\]

\[
= \frac{1}{2} \left(f(a) + f(b) \right) + \int_{a}^{b} f(t) dt + 2 \sum_{n=1}^{\infty} \int_{a}^{b} f(t) \cos 2\pi nt \cdot dt.
\]

Proof. Pick \(m \in \{a, \ldots, b-1\} \). Then by Theorem 3.6.5, applied to \(z \mapsto f(z + m) \), using \(e^{2\pi im} = 1 \),

\[
\frac{1}{2} \left(f(m) + f(m + 1) \right) = \lim_{N \rightarrow \infty} \sum_{n=-N}^{N} \int_{0}^{1} f(t + m)e^{-2\pi i nt} dt
\]

\[
= \lim_{N \rightarrow \infty} \sum_{n=-N}^{N} \int_{m}^{m+1} f(t) e^{-2\pi i nt} dt
\]

\[
= \int_{m}^{m+1} f(t) dt + \lim_{N \rightarrow \infty} \sum_{n=1}^{N} \int_{m}^{m+1} f(t) \left(e^{2\pi i nt} + e^{-2\pi i nt} \right) dt
\]

\[
= \int_{m}^{m+1} f(t) dt + 2 \sum_{n=1}^{\infty} \int_{m}^{m+1} f(t) \cos 2\pi nt \cdot dt.
\]
Now take the sum over \(m = a, a + 1, \ldots, b - 1 \).

Let \(q \) be any integer \(\geq 1 \), and \(b \) any integer coprime with \(q \). Define the exponential sums

\[
S(b, q) := \sum_{a=0}^{q-1} e^{2\pi iba^2/q}, \quad S(q) := S(1, q).
\]

Lemma 3.6.7. Let \(q \) be an odd prime and \(b \) an integer coprime with \(q \). Then

\[
S(b, q) = \tau(b, \left(\frac{q}{b} \right)) = \left(\frac{b}{q} \right) S(q).
\]

Proof. Let \(Q := \sum_{a=0}^{q-1} e^{2\pi iba^2/q}, N := \sum_{a=0}^{q-1} e^{2\pi iba/q} \), where \(\sum_{a=0}^{q-1} \) denotes the summation over the quadratic residues \(a \in \{0, \ldots, q-1\} \) and \(\sum_{a=0}^{q-1} \) that over the quadratic non-residues \(a \in \{0, \ldots, q-1\} \). Then

\[
1 + Q + N = \sum_{a=0}^{q-1} e^{2\pi iba/q} = \frac{e^{2\pi ib} - 1}{e^{2\pi ib/q} - 1} = 0.
\]

If \(a \) runs through \(1, \ldots, q-1 \), then \(a^2 \pmod{q} \) runs twice through the quadratic residue classes mod \(q \) (note that \(a^2 \) and \((q-a)^2 \) give the same quadratic residue). So

\[
S(b, q) = 1 + 2Q = Q - N = \sum_{a=0}^{q-1} \left(\frac{a}{q} \right) e^{2\pi ba/q} = \tau(b, \left(\frac{q}{b} \right)).
\]

The second equality in the statement follows from Theorem 3.4.1. \(\square \)

Lemma 3.6.8. Let \(p, q \) be two distinct odd primes. Then

\[
S(pq) = S(q,p)S(p,q) = \left(\frac{q}{p} \right) \left(\frac{p}{q} \right) S(p)S(q).
\]

Proof. If \(a \) runs through \(0, \ldots, p-1 \) and \(b \) through \(0, \ldots, q-1 \), then \(qa + pb \) runs through a complete system of residues mod \(pq \). Thus,

\[
S(pq) = \sum_{a=0}^{p-1} \sum_{b=0}^{q-1} e^{2\pi i(qa + pb)^2/pq} = \sum_{a=0}^{p-1} \sum_{b=0}^{q-1} e^{2\pi i((qa^2/p) + pb^2/q) + 2abq)}
\]

\[
= \sum_{a=0}^{p-1} \sum_{b=0}^{q-1} e^{2\pi iqa^2/p} \cdot e^{2\pi ib^2/q} = \sum_{a=0}^{p-1} e^{2\pi iqa^2/p} \sum_{b=0}^{q-1} e^{2\pi ib^2/q} = S(q,p)S(p,q).
\]

By Lemma 3.6.7, the latter is \(\left(\frac{q}{p} \right) \left(\frac{p}{q} \right) S(p)S(q) \). \(\square \)
Lemma 3.6.9. Let q be a positive integer. Then

$$S(q) = \begin{cases}
(1 + i)\sqrt{q} & \text{if } q \equiv 0 \pmod{4}, \\
\sqrt{q} & \text{if } q \equiv 1 \pmod{4}, \\
0 & \text{if } q \equiv 2 \pmod{4}, \\
i\sqrt{q} & \text{if } q \equiv 3 \pmod{4}.
\end{cases}$$

Proof. By Corollary 3.6.6 we have

\[
S(q) = -1 + \sum_{a=0}^{q} e^{2\pi ia^2/q} = \lim_{N \to \infty} \sum_{n=-N}^{N} \int_{0}^{q} e^{(2\pi it^2/q) - 2\pi in t} dt
\]

\[
= \sqrt{q} \cdot \lim_{N \to \infty} \sum_{n=-N}^{N} \int_{0}^{q} e^{2\pi i u^2 - 2\pi n \sqrt{q} u} (\text{substituting } u = t/\sqrt{q})
\]

\[
= \sqrt{q} \cdot \lim_{N \to \infty} \sum_{n=-N}^{N} \int_{0}^{q} e^{2\pi i ((u-n\sqrt{q})^2-n^2 q/4)} du
\]

\[
= \sqrt{q} \cdot \lim_{N \to \infty} \sum_{n=-N}^{N} e^{-\pi n^2 q/2} \int_{0}^{q} e^{2\pi i (u-n \sqrt{q})^2} du.
\]

We split the summation into even n and odd n. Note that $e^{-\pi i n^2 q/2} = 1$ if n is even, and $e^{-\pi i n/2}$ if n is odd. So

\[
\sum_{n=-N}^{N} e^{-\pi n^2 q/2} \int_{0}^{q} e^{2\pi i (u-n \sqrt{q})^2} du = \sum_{n=-N}^{N} \int_{-N(1/2) \sqrt{q}}^{-N(1/2) \sqrt{q}} e^{2\pi i u^2} du = \int_{-N(1/2) \sqrt{q}}^{N(1/2) \sqrt{q}} e^{2\pi i u^2} du,
\]

say, where we use that the intervals $[-\frac{1}{2}n \sqrt{q}, (1 - \frac{1}{2}n) \sqrt{q}]$ $(n \in \{-N, \ldots, N\}$ even) apart from their begin points and end points do not overlap and paste together to a single interval $[-N_1 \sqrt{q}, N_2 \sqrt{q}]$ where $|N_i - \frac{1}{2} N| \leq 1$ for $i = 1, 2$. Likewise, the sum over the odd values of n in $\{-N, \ldots, N\}$ is

\[
e^{-\pi i q/2} \int_{-N_3 \sqrt{q}}^{N_3 \sqrt{q}} e^{2\pi i u^2} du,
\]

where $|N_i - \frac{1}{2} N| \leq 1$ for $i = 3, 4$. Taking for the moment for granted that the integral $C := \int_{-\infty}^{\infty} e^{2\pi i u^2} du$ converges, we get

\[
S(q) = \sqrt{q} \lim_{N \to \infty} \left(\int_{-N_1 \sqrt{q}}^{N_1 \sqrt{q}} e^{2\pi i u^2} du + e^{-\pi i q/2} \int_{-N_3 \sqrt{q}}^{N_3 \sqrt{q}} e^{2\pi i u^2} du \right) = \sqrt{q}(1 + e^{-\pi i q/2}) C.
\]
Substituting $q = 1$ and using $S(1) = 1$ we read off $C = (1 - i)^{-1}$. Thus we get $S(q) = \sqrt{q} \cdot (1 + e^{-\pi i/2})/(1 - i)$, which gives our lemma.

It remains to show that $\int_{-\infty}^{\infty} e^{2\pi i u^2} du$ converges. This integral is equal to $2 \int_{0}^{\infty} e^{2\pi i u^2} du$, provided the latter converges. But this is indeed the case, since for any $B > A > 0$,

$$
\left| \int_{A}^{B} e^{2\pi i u^2} du \right| = \left| \int_{A}^{B} (4\pi i u)^{-1} e^{2\pi i u^2} du \right|
= \left| e^{2\pi i B^2} - e^{2\pi i A^2} - \frac{1}{4\pi i} \int_{A}^{B} u^{-2} e^{2\pi i u^2} du \right|
\leq (4\pi)^{-1} \left(B^{-1} + A^{-1} + \int_{A}^{B} u^{-2} du \right) = (2\pi A)^{-1} \rightarrow 0 \text{ as } A, B \rightarrow \infty.
$$

This completes our proof. \qed

Proof of Theorem 3.6.3. Immediate from Lemmas 3.6.9 and 3.6.8. \qed

3.7 Exercises

Exercise 3.1. Compute the characters modulo 12 and determine the conductor of each character.

Exercise 3.2. Recall that a character $\chi \mod q$ is called real if $\chi(a) \in \mathbb{R}$ for every $a \in \mathbb{Z}$, i.e., if $\chi(a) \in \{-1, 1\}$ for every $a \in \mathbb{Z}$ with $\gcd(a, q) = 1$.

a) For a positive integer q denote by $R(q)$ the number of real characters mod q. Prove that R is a multiplicative arithmetic function, and compute $R(p^k)$ for every prime power p^k.

b) Determine those positive integers q such that every character mod q is real.

Exercise 3.3. For a positive integer q, denote by $F(q)$ the number of primitive characters mod q. Prove that $F = \mu \ast \varphi$ where $\varphi(n) = \# \{m \in \mathbb{Z} : 1 \leq m \leq n, \gcd(m, n) = 1 \}$.

Hint. Show that $F(f)$ is equal to the number of characters mod q with conductor f. Use Theorem 3.2.2.
Exercise 3.4. Let \(q \) be a positive integer. The Gauss sum \(\tau(1, \chi_0^{(q)}) \) is defined by
\[
\sum_{a=0}^{q-1} \chi_0^{(q)}(a)e^{2\pi ia/q} = \sum_{\substack{a=0 \atop \gcd(a,q)=1}}^{q-1} e^{2\pi ia/q}.
\]
Prove that \(\tau(1, \chi_0^{(q)}) = \mu(q) \).

Exercise 3.5.

a) Let \(p^k \) be a prime power with \(k \geq 2 \) and \(\chi \) a non-primitive character modulo \(p^k \). Prove that \(\tau(1, \chi) = 0 \).

b) Let \(q_1, q_2 \) be two coprime integers \(\geq 2 \), \(\chi_1 \) a character modulo \(q_1 \) and \(\chi_2 \) a character modulo \(q_2 \). Prove that \(\tau(1, \chi_1 \chi_2) = \chi_1(q_2) \chi_2(q_1) \tau(1, \chi_1) \tau(1, \chi_2) \).

Hint. If \(a \) runs through \(\{0, \ldots, q_1 - 1\} \) and \(b \) through \(\{0, \ldots, q_2 - 1\} \) then \(aq_2 + bq_1 \) runs through a complete residue system modulo \(q_1 q_2 \).

Exercise 3.6. Let \(p \) be a prime \(> 2 \) and \(m \) a divisor of \(p - 1 \) with \(m \geq 2 \). An integer \(a \) is called an \(m \)-th power residue modulo \(p \) if \(p \) does not divide \(a \) and if there is an integer \(b \) with \(a \equiv b^m \pmod{p} \). Let \(M, N \) be integers with \(0 \leq M < M + N < p \). Denote by \(R_m \) the number of \(m \)-th power residues mod \(p \) in the interval \([M+1, M+N]\). The purpose of this exercise is to show that
\[
| R_m - \frac{N}{m} | \leq \frac{3(m-1)}{m} \sqrt{p \log p}.
\]

In case that \(p \) is a large prime and \(N \) is much larger than \(3(m-1)\sqrt{p \log p} \) this implies that about a fraction of \(1/m \) among the integers in \(\{M+1, \ldots, M+N\} \) is an \(m \)-th power residue modulo \(p \). To prove this, perform the following steps:

a) Recall that \((\mathbb{Z}/p\mathbb{Z})^*\) is a cyclic group of order \(p - 1 \). Choose an integer \(g \) such that \(g \mod p \) generates \((\mathbb{Z}/p\mathbb{Z})^*\). Choose a character \(\chi_1 \mod p \) such that \(\chi_1(g) = e^{2\pi i/(p-1)} \); then \(G(p) = \langle \chi_1 \rangle \). Let \(t := (p-1)/m \). Prove that
\[
\sum_{j=0}^{m-1} \chi_1^{tj}(a) = \begin{cases} m & \text{if } a \text{ is an } m \text{-th power residue mod } p, \\ 0 & \text{otherwise.} \end{cases}
\]

b) Compute \(\sum_{j=0}^{m-1} \sum_{a=M+1}^{M+N} \chi_1^{tj}(a) \) in two ways.

Exercise 3.7. Prove Theorem 3.6.4.

Hint. Prove an analogue of Lemma 3.6.8 with \(q = 8 \).
Exercise 3.8. For an integer a and a positive odd integer b we define the Jacobi-symbol

$$\left(\frac{a}{b}\right) := \prod_{i=1}^{t} \left(\frac{a}{p_i}\right)^{k_i},$$

where $b = p_1^{k_1} \cdots p_t^{k_t}$ is the unique prime factorization of b.

a) Let b be a positive odd integer. Prove that

$$\left(\frac{-1}{b}\right) = (-1)^{(b-1)/2}, \quad \left(\frac{2}{b}\right) = (-1)^{(b^2-1)/8}.$$

b) Let a, b be two odd, positive, coprime integers. Prove that

$$\left(\frac{a}{b}\right) \cdot \left(\frac{b}{a}\right) = (-1)^{(a-1)(b-1)/4}.$$

c) Let n be a positive odd, square-free integer which is not a prime. Prove that there are integers a such that $x^2 \equiv a \pmod{n}$ is not solvable, while $\left(\frac{a}{n}\right) = 1$.

112