Chapter 3

Characters and Gauss sums

3.1 Characters on finite abelian groups

In what follows, abelian groups are multiplicatively written, and the unit element of an abelian group A is denoted by 1. We denote the order (number of elements) of A by $|A|$.

Let A be a finite abelian group. A character on A is a group homomorphism $\chi : A \to \mathbb{C}^*$ (i.e., $\mathbb{C} \setminus \{0\}$ with multiplication).

If $|A| = n$ then $a^n = 1$, hence $\chi(a)^n = 1$ for each $a \in A$ and each character χ on A. Therefore, a character on A maps A to the roots of unity.

The product $\chi_1 \chi_2$ of two characters χ_1, χ_2 on A is defined by $(\chi_1 \chi_2)(a) := \chi_1(a)\chi_2(a)$ for $a \in A$. With this product, the characters on A form an abelian group, the so-called character group of A, which we denote by \hat{A} (or $\text{Hom}(A, \mathbb{C}^*)$). The unit element of \hat{A} is the trivial character $\chi_0^{(A)}$ that maps A to 1. Since any character on A maps A to the roots of unity, the inverse $\chi^{-1} : a \mapsto \chi(a)^{-1}$ of a character χ is equal to its complex conjugate $\overline{\chi} : a \mapsto \overline{\chi(a)}$.

We first construct an isomorphism from A to \hat{A}. This will not be canonical, since it will depend on a choice of generators for A.

Lemma 3.1.1. Let A be a cyclic group of order n. Then \hat{A} is also a cyclic group of order n.
Proof. Let $A = \langle g \rangle$. Let ρ_1 be a primitive n-th root of unity. Since g has order n, there is a character χ_1 on A with $\chi_1(g) = \rho_1$. Clearly, χ_1 has order n. Let $\chi \in \hat{A}$. Then $\chi(g)^n = 1$, so $\chi(g) = \rho_1^k$ for some integer k, and hence $\chi = \chi_1^k$ since a character on A is determined by its value in g. So $\hat{A} = \langle \chi_1 \rangle$ is a cyclic group of order n. \hfill \square

Lemma 3.1.2. Let $A = A_1 \times \cdots \times A_r$ be the direct product of finite abelian groups A_1, \ldots, A_r. Then \hat{A} is isomorphic to $\hat{A}_1 \times \cdots \times \hat{A}_r$.

Proof. Define a map

$$\varphi : \widehat{A}_1 \times \cdots \times \widehat{A}_r \to \widehat{A} : (\chi_1, \ldots, \chi_r) \mapsto \chi_1 \cdots \chi_r,$$

$$\chi_1 \cdots \chi_r((g_1, \ldots, g_r)) := \chi_1(g_1) \cdots \chi_r(g_r) \text{ for } g_i \in A_i, \ i = 1, \ldots, r.$$

It is easy to see that φ is a group homomorphism. Substituting $g_j = 1_{A_j}$ for $j \neq i$, we see that χ_i is uniquely determined by $\chi_1 \cdots \chi_r$, for $i = 1, \ldots, r$. Hence φ is injective. Conversely, let $\chi \in \widehat{A}$, and for $i = 1, \ldots, r$ define $\chi_i \in \widehat{A}_i$ by

$$\chi_i(g_i) := \chi(\ldots, g_i, \ldots) \text{ for } g_i \in A_i,$$

with on the j-th place the unit element of A_i, for $j \neq i$. Then one easily verifies that $\chi = \chi_1 \cdots \chi_r$. Hence φ is also surjective. \hfill \square

Proposition 3.1.3. Every finite abelian group is isomorphic to a direct product of cyclic groups.

Proof. See S. Lang, Algebra, Chap.1, §10. \hfill \square

Theorem 3.1.4. Let A be a finite abelian group. Then there exists an isomorphism from A to \hat{A}. So in particular, $|\hat{A}| = |A|$.

Proof. By Proposition 3.1.3, A is isomorphic to a direct product $C_1 \times \cdots \times C_r$ of finite cyclic groups. By Lemmas 3.1.1, 3.1.2, $\widehat{C_i}$ is a cyclic group of the same order as C_i, for $i = 1, \ldots, r$, and \hat{A} is isomorphic to $\widehat{C_1} \times \cdots \times \widehat{C_r}$. Now the isomorphism from A to \hat{A} can be established by mapping a generator of C_i to one of $\widehat{C_i}$, for $i = 1, \ldots, r$. \hfill \square

Remark. The isomorphism constructed above depends on choices for generators of $C_i, \widehat{C_i}$, for $i = 1, \ldots, r$. So it is not canonical.
Corollary 3.1.5. Let A be a finite abelian group, and $g \in A$ with $g \neq 1$. Then there is a character χ on A with $\chi(g) \neq 1$.

Proof. First assume that $A = \langle g_1 \rangle$ is a cyclic group of order n. Then $g = g_1^k$ with $1 \leq k < n$. Let χ_1 be a generator of \hat{A} as constructed in the proof of Lemma 3.1.1. Then clearly, $\chi_1(g) \neq 1$.

Now let A be an arbitrary finite abelian group. We may assume that $A = C_1 \times \cdots \times C_r$, where C_1, \ldots, C_r are finite cyclic groups, and $g = (g_1, \ldots, g_r)$ with $g_i \in C_i$ for $i = 1, \ldots, r$ and, say, $g_1 \neq 1_{C_1}$. Choose $\chi_1 \in \hat{C}_1$ with $\chi_1(g_1) \neq 1$, let χ_2, \ldots, χ_r be the principal characters on C_2, \ldots, C_r, and put $\chi := \chi_1 \cdots \chi_r$. Then clearly, $\chi(g) = \chi_1(g_1) \neq 1$.

For a finite abelian group A, let $\hat{\hat{A}}$ denote the character group of \hat{A}. We construct a canonical isomorphism from A to $\hat{\hat{A}}$. Notice that each element $a \in A$ gives rise to a character \hat{a} on \hat{A}, given by $\hat{a}(\chi) := \chi(a)$.

Theorem 3.1.6 (Duality). Let A be a finite abelian group. Then the map $a \mapsto \hat{a}$ defines an isomorphism from A to $\hat{\hat{A}}$.

Proof. The map $\varphi: a \mapsto \hat{a}$ obviously defines a group homomorphism from A to $\hat{\hat{A}}$. By Corollary 3.1.5 we have $\ker(\varphi) = \{a \in A : \hat{a}(\chi) = 1 \forall \chi \in \hat{A}\} = \{1\}$; hence φ is injective. By Theorem 3.1.4 we have $|\hat{\hat{A}}| = |\hat{A}| = |A|$. Hence φ is also surjective.

Theorem 3.1.7 (Orthogonality relations for characters). Let A be a finite abelian group.

(i) For any two characters χ_1, χ_2 on A we have
\[
\sum_{a \in A} \chi_1(a) \overline{\chi_2(a)} = \begin{cases}
|A| & \text{if } \chi_1 = \chi_2, \\
0 & \text{if } \chi_1 \neq \chi_2.
\end{cases}
\]

(ii) For any two elements a, b of A we have
\[
\sum_{\chi \in \hat{A}} \chi(a) \overline{\chi(b)} = \begin{cases}
|A| & \text{if } a = b, \\
0 & \text{if } a \neq b.
\end{cases}
\]
Proof. Part (ii) follows by applying part (i) with \(\hat{A} \) instead of \(A \), and using Theorem 3.1.6 and \(|\hat{A}| = |A| \). So we prove only (i). Let \(\chi_1, \chi_2 \in \hat{A} \) and put \(S := \sum_{a \in A} \chi_1(a)\chi_2(a) \). Let \(\chi := \chi_1\chi_2 = \chi_1\chi_2^{-1} \). Then \(S = \sum_{a \in A} \chi(a) \). Clearly, if \(\chi_1 = \chi_2 \) then \(\chi = \chi_0^{(A)} \), hence \(S = |A| \). Let \(\chi_1 \neq \chi_2 \). Then \(\chi \neq \chi_0^{(A)} \), hence there is \(g \in A \) with \(\chi(g) \neq 1 \). Further,

\[
\chi(g)S = \sum_{a \in A} \chi(ga) = S,
\]

since \(ga \) runs through the elements of \(A \). Hence \(S = 0 \).

\[\square\]

3.2 Dirichlet characters

Let \(q \in \mathbb{Z}_{\geq 2} \). Denote the residue class of \(a \) mod \(q \) by \(\bar{a} \). Recall that the prime residue classes mod \(q \), \((\mathbb{Z}/q\mathbb{Z})^* = \{\bar{a} : \gcd(a, q) = 1\} \) form a group of order \(\varphi(q) \) under multiplication of residue classes. We can lift any character \(\tilde{\chi} \) on \((\mathbb{Z}/q\mathbb{Z})^* \) to a map \(\chi : \mathbb{Z} \to \mathbb{C} \) by setting

\[
\chi(a) := \begin{cases}
\tilde{\chi}(\bar{a}) & \text{if } \gcd(a, q) = 1; \\
0 & \text{if } \gcd(a, q) > 1.
\end{cases}
\]

Notice that \(\chi \) has the following properties:

(i) \(\chi(1) = 1 \);

(ii) \(\chi(ab) = \chi(a)\chi(b) \) for \(a, b \in \mathbb{Z} \);

(iii) \(\chi(a) = \chi(b) \) if \(a \equiv b \pmod{q} \);

(iv) \(\chi(a) = 0 \) if \(\gcd(a, q) > 1 \).

Any map \(\chi : \mathbb{Z} \to \mathbb{C} \) with properties (i)–(iv) is called a (Dirichlet) character modulo \(q \). Conversely, from a character \(\chi \) mod \(q \) one easily obtains a character \(\tilde{\chi} \) on \((\mathbb{Z}/q\mathbb{Z})^* \) by setting \(\tilde{\chi}(\bar{a}) := \chi(a) \) for \(a \in \mathbb{Z} \) with \(\gcd(a, q) = 1 \).

Let \(G(q) \) be the set of characters modulo \(q \). We define the product \(\chi_1\chi_2 \) of \(\chi_1, \chi_2 \in G(q) \) by \((\chi_1\chi_2)(a) = \chi_1(a)\chi_2(a) \) for \(a \in \mathbb{Z} \). With this operation, \(G(q) \) becomes a group, with unit element the principal character modulo \(q \) given by

\[
\chi_0^{(q)}(a) = \begin{cases}
1 & \text{if } \gcd(a, q) = 1; \\
0 & \text{if } \gcd(a, q) > 1.
\end{cases}
\]
The inverse of $\chi \in G(q)$ is its complex conjugate

$$\overline{\chi} : a \mapsto \overline{\chi(a)}.$$

It is clear, that this makes $G(q)$ into a group, and that $\chi \mapsto \overline{\chi}$ defines an isomorphism from $G(q)$ to the character group of $(\mathbb{Z}/q\mathbb{Z})^*$.

One of the advantages of viewing characters as maps from \mathbb{Z} to \mathbb{C} is that this allows to multiply characters of different moduli: if χ_1 is a character mod q_1 and χ_2 a character mod q_2, then their product $\chi_1 \chi_2$ is a character mod $\text{lcm}(q_1, q_2)$.

We can easily translate the orthogonality relations for characters of $(\mathbb{Z}/q\mathbb{Z})^*$ into orthogonality relations for Dirichlet characters modulo q. Recall that a complete residue system modulo q is a set, consisting of precisely one integer from every residue class modulo q, e.g., $\{3, 5, 11, 22, 104\}$ is a complete residue system modulo 5.

Theorem 3.2.1. Let $q \in \mathbb{Z}_{\geq 2}$, and let S_q be a complete residue system modulo q.

(i) Let $\chi_1, \chi_2 \in G(q)$. Then

$$\sum_{a \in S_q} \chi_1(a) \overline{\chi_2(a)} = \begin{cases} \varphi(q) & \text{if } \chi_1 = \chi_2; \\ 0 & \text{if } \chi_1 \neq \chi_2. \end{cases}$$

(ii) Let $a, b \in \mathbb{Z}$. Then

$$\sum_{\chi \in G(q)} \chi(a) \overline{\chi(b)} = \begin{cases} \varphi(q) & \text{if } \gcd(ab, q) = 1, \ a \equiv b \pmod{q}; \\ 0 & \text{if } \gcd(ab, q) = 1, \ a \not\equiv b \pmod{q}; \\ 0 & \text{if } \gcd(ab, q) > 1. \end{cases}$$

Proof. Easy exercise.

Let χ be a character mod q and d a positive divisor of q.

We say that q is induced by a character χ' mod d if $\chi(a) = \chi'(a)$ for every $a \in \mathbb{Z}$ with $\gcd(a, q) = 1$. Here we define the principal character mod 1 by $\chi^{(1)}_0(a) = 1$ for $a \in \mathbb{Z}$. For instance, $\chi^{(q)}_0$ is induced by $\chi^{(1)}_0$. Notice that if $\gcd(a, d) = 1$ and $\gcd(a, q) > 1$, then $\chi'(a) \neq 0$ but $\chi(a) = 0$.

An alternative formulation of χ being induced by χ' is that $\chi = \chi' \cdot \chi^{(q)}_0$. 93
The conductor of χ is the smallest positive divisor d of q such that χ is induced by a character mod d.

We define the principal character mod 1 by $\chi_0^{(1)}(n) = 1$ for all $n \in \mathbb{Z}$. Clearly, if q is an integer ≥ 2 then $\chi_0^{(q)}$ is induced by $\chi_0^{(1)}$, so $\chi_0^{(q)}$ has conductor 1.

A character χ is called primitive if there is no divisor $d < q$ of q such that χ is induced by a character mod d, in other words, if χ has conductor q.

Theorem 3.2.2. Let $q \in \mathbb{Z}_{\geq 2}$, χ a character mod q. Denote by f the conductor of χ.

(i) There is a unique character χ^* mod f that induces χ, and this is necessarily primitive.

(ii) Let d be a divisor of q and χ' a character mod d that induces χ. Then f is a divisor of d and χ^* induces χ'.

We need some lemmas.

Lemma 3.2.3. Let d be a divisor of q and a an integer with $\gcd(a, d) = 1$. Then there is $b \in \mathbb{Z}$ with $b \equiv a \pmod{d}$, $\gcd(b, q) = 1$.

Proof. Write $q = q_1 q_2$, where q_1 is composed of the primes occurring in the factorization of d, and where q_2 is composed of primes not dividing d. Thus, d and q_2 are coprime. By the Chinese Remainder Theorem, there is $b \in \mathbb{Z}$ with

$$b \equiv a \pmod{d}, \quad b \equiv 1 \pmod{q_2}.$$

This integer b is coprime with d, hence with q_1, and also coprime with q_2, so it is coprime with q. \qed

Lemma 3.2.4. Let χ be a character mod q, and d a divisor of q. Then there is at most one character mod d that induces χ.

Proof. Suppose χ is induced by a character χ_1 mod d. Let $a \in \mathbb{Z}$ with $\gcd(a, d) = 1$. Choose $b \in \mathbb{Z}$ with $b \equiv a \pmod{d}$ and $\gcd(b, q) = 1$. Then $\chi_1(a) = \chi_1(b) = \chi(b)$. Hence χ_1 is uniquely determined by χ. \qed

The next lemma gives a method to verify if a character χ is induced by a character mod d.

94
Lemma 3.2.5. Let \(\chi \) be a character mod \(q \), and \(d \) a divisor of \(q \). Then the following assertions are equivalent:

(i) \(\chi \) is induced by a character mod \(d \);
(ii) \(\chi(a) = \chi(b) \) for all \(a, b \in \mathbb{Z} \) with \(a \equiv b \pmod{d} \) and \(\gcd(ab, q) = 1 \);
(iii) \(\chi(a) = 1 \) for all \(a \in \mathbb{Z} \) with \(a \equiv 1 \pmod{d} \) and \(\gcd(a, q) = 1 \).

Proof. The implications (i) \(\Rightarrow \) (ii) \(\Rightarrow \) (iii) are trivial.

(iii) \(\Rightarrow \) (ii). Let \(a, b \in \mathbb{Z} \) with \(a \equiv b \pmod{d} \) and \(\gcd(ab, q) = 1 \). There is \(c \in \mathbb{Z} \) with \(\gcd(c, q) = 1 \) such that \(a \equiv bc \pmod{q} \). For this \(c \) we have \(c \equiv 1 \pmod{d} \). Now by (iii) we have \(\chi(a) = \chi(b) \chi(c) = \chi(b) \).

(ii) \(\Rightarrow \) (i). We define a character \(\chi' \) mod \(d \) as follows. For \(a \in \mathbb{Z} \) with \(\gcd(a, d) > 1 \) put \(\chi'(a) := 0 \). For \(a \in \mathbb{Z} \) with \(\gcd(a, d) = 1 \), choose \(b \in \mathbb{Z} \) such that \(b \equiv a \pmod{d} \) and \(\gcd(b, q) = 1 \) (which is possible by Lemma 3.2.3), and put \(\chi'(a) := \chi(b) \). By (ii) this gives a well-defined character mod \(d \) that clearly induces \(\chi \). \(\square \)

Remark. Notice that this lemma provides a method to compute the conductor of a character \(\chi \) mod \(q \): check for every divisor \(d \) of \(q \) whether \(\chi(a) = 1 \) for all integers \(a \) with \(1 \leq a < q, a \equiv 1 \pmod{d} \) and \(\gcd(a, q) = 1 \). The smallest divisor \(d \) of \(q \) for which this holds is the conductor of \(\chi \).

Lemma 3.2.6. Let \(\chi \) be a character mod \(q \). Let \(d_1, d_2 \) be divisors of \(q \). Assume that \(\chi \) is induced by characters \(\chi_1 \mod d_1, \chi_2 \mod d_2 \). Then there is a character \(\chi_3 \mod \gcd(d_1, d_2) \) that induces \(\chi, \chi_1 \) and \(\chi_2 \).

Proof. Let \(d := \gcd(d_1, d_2), d_0 := \text{lcm}(d_1, d_2) \). We first show that \(\chi_1 \) is induced by a character mod \(d \). We apply criterion (iii) of the previous lemma. That is, we have to show that if \(a \) is an integer with \(\gcd(a, d_1) = 1 \) and \(a \equiv 1 \pmod{d} \), then \(\chi_1(a) = 1 \).

Take such \(a \). Then \(a = 1 + td \) with \(t \in \mathbb{Z} \). There are \(x, y \in \mathbb{Z} \) with \(xd_1 + yd_2 = d \). Hence \(a = 1 + txd_1 + tyd_2 \). The number \(c := 1 + tyd_2 = a - txd_1 \) is clearly coprime with \(d_2 \), and it is also coprime with \(d_1 \) since \(a \) is coprime with \(d_1 \). Hence \(c \) is coprime with \(d_0 \). By Lemma 3.2.3, there is \(b \) with \(b \equiv c \pmod{d_0} \) and \(\gcd(b, q) = 1 \). We have \(b \equiv a \pmod{d_1} \), \(b \equiv 1 \pmod{d_2} \). So by Lemma 3.2.5 applied with \(d_1 \) and \(d_2 \), \(\chi_1(a) = \chi(b) = \chi_2(1) = 1 \).

It follows that \(\chi_1 \) is induced by a character, say \(\chi_3 \mod d \). Similarly, \(\chi_2 \) is induced by a character \(\chi_3' \mod d \). Both \(\chi_3, \chi_3' \) induce \(\chi \). So by Lemma 3.2.4, \(\chi_3 = \chi_3' \). \(\square \)
Proof of Theorem 3.2.2. (i) By Lemma 3.2.4 there is a unique character \(\chi^* \) mod \(f \) inducing \(\chi \). If \(\chi^* \) were induced by a character \(\chi' \) modulo a divisor \(d < f \) of \(f \), then \(\chi \) were induced by \(\chi' \), contradicting the definition of the conductor. So \(\chi^* \) is primitive.

(ii) By Lemma 3.2.6 there is a character \(\chi'' \) mod \(\gcd(d,f) \) inducing \(\chi, \chi^* \) and \(\chi' \). Since \(\chi^* \) is primitive we must have \(f | d \) and \(\chi'' = \chi^* \). So \(\chi^* \) induces \(\chi' \). ∎

3.3 Computation of \(G(q) \)

We give a method to compute the character group modulo \(q \). We first make a reduction to prime powers.

Theorem 3.3.1. Let \(q = p_1^{k_1} \cdots q_t^{k_t} \), where \(p_1, \ldots, p_t \) are distinct primes and \(k_1, \ldots, k_t \) positive integers. Then the map

\[
G(p_1^{k_1}) \times \cdots \times G(p_t^{k_t}) \to G(q) : (\chi_1, \ldots, \chi_t) \mapsto \chi_1 \cdots \chi_t
\]

is a group isomorphism.

Proof. Let \(\rho \) denote the map under consideration. Then \(\rho \) is a homomorphism. Since \(G(p_1^{k_1}) \times \cdots \times G(p_t^{k_t}) \) and \(G(q) \) have the same order \(\varphi(q) \), it suffices to show that \(\rho \) is injective. That is, we have to show that if \(\chi_i \in G(p_i^{k_i}) \) \((i = 1, \ldots, t) \) are such that \(\chi_1 \cdots \chi_t = \chi_0^{(q)} \), then \(\chi_i = \chi_0^{(p_i^{k_i})} \) for \(i = 1, \ldots, t \).

To prove this, let \(i \in \{1, \ldots, t\} \) and \(a \in \mathbb{Z} \) with \(\gcd(a, p_i) = 1 \). By the Chinese Remainder Theorem, there is \(b \in \mathbb{Z} \) such that

\[
b \equiv a \pmod{p_i^{k_i}}, \quad b \equiv 1 \pmod{p_j^{k_j}} \quad \text{for} \quad j \neq i,
\]

and using this \(b \) we infer \(\chi_i(a) = \chi_1(b) \cdots \chi_t(b) = \chi_0^{(q)}(b) = 1 \). Hence \(\chi_i = \chi_0^{(p_i^{k_i})} \). ∎

To compute \(G(p^k) \) for a prime power \(p^k \), we need some information about the structure of \((\mathbb{Z}/p^k\mathbb{Z})^* \). This is provided by the following theorem.

Theorem 3.3.2. (i) Let \(p \) be a prime \(\geq 3 \). Then the group \((\mathbb{Z}/p^k\mathbb{Z})^* \) is cyclic of order \(p^{k-1}(p-1) \).

(ii) \((\mathbb{Z}/4\mathbb{Z})^* \) is cyclic of order 2.

Further, if \(k \geq 3 \) then \((\mathbb{Z}/2^k\mathbb{Z})^* = \langle -1 \rangle \times \langle 5 \rangle \) is isomorphic to the direct product of a cyclic group of order 2 and a cyclic group of order \(2^{k-2} \).
We skip the proof of $k = 1$ of (i), which belongs to a basic algebra course. For the proof of the remaining parts, we need a lemma.

For a prime number p, and for $a \in \mathbb{Z} \setminus \{0\}$, we denote by $\text{ord}_p(a)$ the largest integer k such that p^k divides a.

Lemma 3.3.3. Let p be a prime number and a an integer such that $\text{ord}_p(a - 1) \geq 1$ if $p \geq 3$ and $\text{ord}_p(a - 1) \geq 2$ if $p = 2$. Then

$$\text{ord}_p(a^{p^k} - 1) = \text{ord}_p(a - 1) + k.$$

Proof. We prove the assertion only for $k = 1$; then the general statement follows easily by induction on k. Our assumption on a implies that $a = 1 + pt$, where $t \geq 1$ if $p \geq 3$ and $t \geq 2$ if $p = 2$, and where b is an integer not divisible by p. By the binomial formula,

$$a^p - 1 = p^{t+1}b + \binom{p}{2}p^2b^2t + \cdots + \binom{p}{p-1}p(p-1)^t(b)(p-1)^t + p^t(1) \equiv p^{t+1}b \pmod{p^{t+2}}$$

since $\binom{p}{2}, \ldots, \binom{p}{p-1}$ are all divisible by p and $pt \geq t + 2$ in both the cases $p \geq 3$, $p = 2$. So $\text{ord}_p(a^p - 1) = t + 1$. □

Lemma 3.3.4. Let $p \geq 3$ be a prime number. Then there is an integer g such that $g \pmod{p}$ is a generator of $(\mathbb{Z}/p\mathbb{Z})^*$ and $\text{ord}_p(g^{p-1} - 1) = 1$.

Proof. We take for granted that $(\mathbb{Z}/p\mathbb{Z})^*$ is cyclic of order $p - 1$; then there is an integer h such that $h \pmod{p}$ is a generator of $(\mathbb{Z}/p\mathbb{Z})^*$. So $\text{ord}_p(h^{p-1} - 1) \geq 1$. Put $g := h$ if $\text{ord}_p(h^{p-1} - 1) = 1$ and $g := h + p$ if $\text{ord}_p(h^{p-1} - 1) \geq 2$. In the latter case, we have

$$g^{p-1} - 1 = h^{p-1} - 1 + (p - 1)h^{p-2}p + \binom{p-1}{2}h^{p-3}p^2 + \cdots + p^{p-1} \equiv -h^{p-2}p \pmod{p^2},$$

hence $\text{ord}_p(g^{p-1} - 1) = 1$. □

Proof of Theorem 3.3.2. (i). Let $p \geq 3$ and $k \geq 2$. Take g as in Lemma 3.3.4. We show that $\overline{g} := g \pmod{p^k}$ generates $(\mathbb{Z}/p^k\mathbb{Z})^*$ or equivalently, that the order n of \overline{g} in $(\mathbb{Z}/p^k\mathbb{Z})^*$ equals the order of $(\mathbb{Z}/p^k\mathbb{Z})^*$, which is $p^{k-1}(p-1)$. In any case, n divides $p^{k-1}(p-1)$. Further, $g^n \equiv 1 \pmod{p}$, hence $p - 1$ divides n. So $n = p^s(p-1)$ with $s \leq k - 1$. By Lemma 3.3.3 we have

$$\text{ord}_p(g^n - 1) = \text{ord}_p(g^{p-1} - 1) + s = s + 1.$$
This has to be at least \(k \), so \(s = k - 1 \). Hence indeed \(n = p^{k-1}(p - 1) \).

(ii). Assume that \(k \geq 3 \). Define the subgroup
\[
H := \{ \bar{a} \in (\mathbb{Z}/2^k\mathbb{Z})^* : a \equiv 1 \pmod{4} \}.
\]

Note that \(\bar{a} \in (\mathbb{Z}/2^{k-1}\mathbb{Z})^* \) if \(a \equiv 3 \pmod{4} \). So
\[
(\mathbb{Z}/2^k\mathbb{Z})^* = H \cup (\overline{-1})H = \langle \overline{-1} \rangle \times H.
\]

Similarly as above, one shows that \(H \) is cyclic of order \(2^{k-2} \), and that \(H = \langle 5 \rangle \). \(\square \)

We can now give an explicit description for the groups \(G(p^k) \), following the proofs of Lemmas 3.1.1, 3.1.2.

If \(p > 2 \), choose \(g \in \mathbb{Z} \) such that \(g \pmod{p^k} \) generates \((\mathbb{Z}/p^k\mathbb{Z})^* \), and choose a primitive \(p^{k-1}(p-1) \)-th root of unity \(\rho \). Then \(G(p^k) = \langle \chi_1 \rangle \) where \(\chi_1 \) is the Dirichlet character determined by \(\chi_1(g) = \rho \), and \(G(p^k) \) is cyclic of order \(p^{k-1}(p-1) \).

Clearly, \(G(2) = \{ \chi_0^{(2)} \} \) and \(G(4) = \{ \chi_0^{(4)}, \chi_4 \} \), where \(\chi_4(a) = 1 \) if \(a \equiv 1 \pmod{4} \), \(\chi_4(a) = -1 \) if \(a \equiv 3 \pmod{4} \), \(\chi_4(a) = 0 \) if \(a \) is even.

As for \(2^k \) with \(k \geq 3 \), choose a primitive \(2^{k-2} \)-th root of unity \(\rho \). Then \(G(2^k) = \langle \chi_1 \rangle \times \langle \chi_2 \rangle \), where \(\chi_1, \chi_2 \) are given by
\[
\chi_1(-1) = -1, \; \chi_1(5) = 1; \quad \chi_2(-1) = 1, \; \chi_2(5) = \rho,
\]
\(\chi_1 \) has order 2, and \(\chi_2 \) has order \(2^{k-2} \).

3.4 Gauss sums

Let \(q \in \mathbb{Z}_{>2} \). For a character \(\chi \pmod{q} \) and for \(b \in \mathbb{Z} \), we define the Gauss sum
\[
\tau(b, \chi) := \sum_{a \in S_q} \chi(a)e^{2\pi iba/q},
\]
where \(S_q \) is a full system of representatives modulo \(q \). This does not depend on the choice of \(S_q \). The Gauss sum \(\tau(1, \chi) \) occurs for instance in the functional equation for the L-function \(L(s, \chi) = \sum_{n=1}^{\infty} \chi(n)n^{-s} \) (later).

We prove some basic properties of Gauss sums.
Theorem 3.4.1. Let $q \in \mathbb{Z}_{\geq 2}$ and let χ be a character mod q. Further, let $b \in \mathbb{Z}$.

(i) If $\gcd(b, q) = 1$, then $\tau(b, \chi) = \overline{\chi(b)} \cdot \tau(1, \chi)$.

(ii) If $\gcd(b, q) > 1$ and χ is primitive, then $\tau(b, \chi) = \overline{\chi(b)} \cdot \tau(1, \chi) = 0$.

Proof. (i) Suppose $\gcd(b, q) = 1$. If a runs through a complete residue system S_q mod q, then ba runs through another complete residue system S'_q mod q. Write $y = ba$. Then $\chi(y) = \chi(b)\chi(a)$, hence $\chi(a) = \overline{\chi(b)}\chi(y)$. Therefore,

$$
\tau(b, \chi) = \sum_{a \in S_q} \chi(a)e^{2\piiba/q} = \sum_{y \in S'_q} \overline{\chi(b)}\chi(y)e^{2\piiy/q}
= \overline{\chi(b)} \cdot \tau(1, \chi).
$$

(ii) Let $\gcd(b, q) =: d > 1$ and put $b_1 := b/d$, $q_1 := q/d$. Then χ is not induced by a character mod q_1, so by Lemma 3.2.5 there is $c \in \mathbb{Z}$ such that $c \equiv 1 \pmod{q_1}$, $\gcd(c, q) = 1$, and $\chi(c) \neq 1$. With this c we have

$$
\chi(c)\tau(b, \chi) = \sum_{a \in S_q} \chi(ca)e^{2\piiba/q}.
$$

If a runs through a complete residue system S_q mod q, then $y := ca$ runs through another complete residue system S'_q mod q. Further, since $c \equiv 1 \pmod{q_1}$ we have

$$
e^{2\piiba/q} = e^{2\piib_1/q_1} = e^{2\piicb_1/q_1} = e^{2\piib/q}.
$$

Hence

$$
\chi(c)\tau(b, \chi) = \sum_{y \in S'_q} \chi(y)e^{2\piiby/q} = \tau(b, \chi).
$$

Since $\chi(c) \neq 1$ this implies that $\tau(b, \chi) = 0$.

Theorem 3.4.2. Let $q \in \mathbb{Z}_{\geq 2}$ and let χ be a primitive character mod q. Then

$$
|\tau(1, \chi)| = \sqrt{q}.
$$

99
Proof. We have by Theorem 3.4.1,

\[
|\tau(1, \chi)|^2 = \tau(1, \chi) \cdot \tau(1, \chi) = \sum_{a=0}^{q-1} \chi(a) e^{-2\pi ia/q} \tau(1, \chi)
\]

\[
= \sum_{a=0}^{q-1} e^{-2\pi ia/q} \tau(a, \chi) = \sum_{a=0}^{q-1} e^{-2\pi ia/q} \left(\sum_{b=0}^{q-1} \chi(b) e^{2\pi ib/q} \right)
\]

\[
= \sum_{b=0}^{q-1} \chi(b) \left(\sum_{a=0}^{q-1} e^{2\pi ia(b-1)/q} \right) = \sum_{b=0}^{q-1} \chi(b) S(b), \text{ say.}
\]

If \(b = 1 \), then \(S(b) = \sum_{a=0}^{q-1} 1 = q \), while if \(b \neq 1 \), then by the sum formula for geometric sequences,

\[
S(b) = \frac{e^{2\pi i(b-1)} - 1}{e^{2\pi i(b-1)/q} - 1} = 0.
\]

Hence \(|\tau(1, \chi)|^2 = \chi(1)q = q. \]

Remark. Theorem 3.4.2 implies that \(\varepsilon_{\chi} := \tau(1, \chi)/\sqrt{q} \) lies on the unit circle. Gauss gave an easy explicit expression for \(\varepsilon_{\chi} \) in the case that \(\chi \) is a primitive real character mod \(q \), i.e., \(\chi \) assumes its values in \(\mathbb{R} \), so in \{0, ±1\}. There is no general efficient method known to compute \(\varepsilon_{\chi} \) for non-real characters \(\chi \) modulo large values of \(q \).

3.5 Character sums

For many purposes one needs good estimates for expressions \(|\sum_{a=M+1}^{M+N} \chi(a)|\), where \(\chi \) is a non-principal character modulo an integer \(q \geq 2 \). We prove the following classic result, which, apart from the constant 3 in front of \(\sqrt{q} \log q \), was obtained independently by Polyá and I.N. Vinogradov in 1918.

Theorem 3.5.1. Let \(q \) be an integer \(\geq 2 \), \(\chi \) a non-principal character modulo \(q \), and \(M, N \) integers with \(N \geq 1 \). Then

\[
\left| \sum_{a=M+1}^{M+N} \chi(a) \right| \leq 3\sqrt{q} \log q.
\]
Of course, the left-hand side is at most N. So this estimate is non-trivial only if $N > 3\sqrt{q}\log q$.

We need the following simple exponential sum estimate.

Lemma 3.5.2. Let $0 < x < 1$. Then

$$\left| \sum_{a=M+1}^{M+N} e^{2\pi i ax} \right| \leq \frac{1}{2} \cdot \max \left(\frac{1}{x}, \frac{1}{1-x} \right).$$

Proof. By the sum formula for geometric series,

$$\left(\sum_{a=M+1}^{M+N} e^{2\pi i ax} \right) = e^{2(M+1)\pi ix} \cdot \frac{e^{2N\pi ix} - 1}{e^{2\pi ix} - 1} = e^{(2M+N+1)\pi ix} \cdot \frac{e^{N\pi ix} - e^{-N\pi ix}}{e^{\pi ix} - e^{-\pi ix}} = e^{(2M+N+1)\pi ix} \cdot \frac{\sin(\pi Nx)}{\sin(\pi x)}.$$

The lemma easily follows by taking absolute values, using $|e^{\pi iy}| = 1$ and $|\sin \pi y| \leq 1$ for every $y \in \mathbb{R}$, and $\sin \pi y \geq 2 \min(y, 1-y)$ for every y with $0 \leq y \leq 1$ (check the graph of sin).

Proof of Theorem 3.5.1. We give an elementary proof, due to Schur (1918). We first assume that χ is a primitive character modulo q. Then by Theorem 3.4.1,

$$\sum_{a=M+1}^{M+N} \chi(a) = \tau(1, \chi)^{-1} \sum_{a=M+1}^{M+N} \tau(a, \chi)$$

$$= \tau(1, \chi)^{-1} \sum_{a=M+1}^{M+N} \left(\sum_{n=1}^{q-1} \chi(n) e^{2\pi ian/q} \right)$$

$$= \tau(1, \chi)^{-1} \sum_{n=1}^{q-1} \chi(n) \left(\sum_{a=M+1}^{M+N} e^{2\pi ian/q} \right).$$

Now from Theorem 3.4.2, $|\chi(n)| \leq 1$ for all n and Lemma 3.5.2, we infer

$$\left| \sum_{a=M+1}^{M+N} \chi(a) \right| \leq \sqrt{q^{-1}} \sum_{n=1}^{q-1} \frac{1}{n} \cdot \max \left(\frac{1}{n/q}, \frac{1}{1-(n/q)} \right)$$

$$\leq \sqrt{q} \sum_{n=1}^{\lfloor q/2 \rfloor} \frac{1}{n} \leq \sqrt{q} \left(1 + \int_{1}^{\lfloor q/2 \rfloor} \frac{dx}{x} \right) = \sqrt{q} \left(1 + \log(q/2) \right),$$

101
(clear from the graph of $1/x$) and thus, using $1 + \log(x/2) \leq \frac{3}{2} \log x$ for $x \geq 2$,

$$\left| \sum_{a=M+1}^{M+N} \chi(a) \right| \leq \frac{3}{2} \sqrt{q} \log q. \tag{3.5.2}$$

This proves our theorem for primitive characters χ modulo q.

We still have to prove our theorem for non-primitive characters. Let χ be a non-primitive, non-principal character modulo q, and let f be the conductor of χ. Then χ is induced by a primitive character χ^* modulo f. We write $q = f \cdot q'$. If $\gcd(a,q') = 1$ then $\gcd(a,f) = \gcd(a,q)$, hence $\chi(a) = \chi^*(a)$. If $\gcd(a,q') > 1$, then $\chi(a) = 0$. Thus,

$$\sum_{a=M+1}^{M+N} \chi(a) = \sum_{a=M+1}^{M+N} \chi^*(a).$$

The following trick is used quite often. Recall the property of the Möbius function

$$\sum_{d \mid q', d \mid a} \mu(d) = \sum_{d \mid \gcd(a,q')} \mu(d) = \begin{cases} 1 & \text{if } \gcd(a,q') = 1, \\ 0 & \text{if } \gcd(a,q') = 0. \end{cases}$$

By inserting this into the above identity and interchanging the summations, we obtain

$$\sum_{a=M+1}^{M+N} \chi(a) = \sum_{a=M+1}^{M+N} \left(\sum_{d \mid q', d \mid a} \mu(d) \right) \chi^*(a)$$

$$= \sum_{d \mid q'} \mu(d) \left(\sum_{a=M+1}^{M+N} \chi^*(a) \right)$$

$$= \sum_{d \mid q'} \mu(d) \chi^*(d) \left(\sum_{(M+1)/d \leq b \leq (M+N)/d} \chi^*(b) \right),$$

where we have written $a = db$ and used the multiplicativity of χ^*. The inner sum has absolute value at most $\frac{3}{2} \sqrt{f} \log f$ by (3.5.2) with χ^*, f instead of χ, q, the quantities $\mu(d)$ and $\chi^*(d)$ have absolute value at most 1 and the number of summands d is precisely the number of divisors $\tau(q')$ of q'. Hence

$$\left| \sum_{a=M+1}^{M+N} \chi(a) \right| \leq \frac{3}{2} \tau(q') \sqrt{f} \log f.$$
Note that for each divisor d of q' with $\sqrt{q} \leq d \leq q$ there is a divisor $q'/d \leq \sqrt{q'}$. Hence $\tau(q') \leq 2\sqrt{q'}$ (of course there are much better estimates). Since also $f \leq q$, we arrive at
$$\left| \sum_{a=M+1}^{M+N} \chi(a) \right| \leq 3\sqrt{q'} \sqrt{f} \log f \leq 3\sqrt{q} \log q.$$

We mention that the estimate in Theorem 3.5.1 can not be improved very much, since by a result of Schur, for every primitive character χ modulo an integer $q \geq 2$ one has
$$\max_N \left| \sum_{a=1}^{N} \chi(a) \right| > \frac{\sqrt{q}}{2\pi}.$$
As mentioned above, Theorem 3.5.1 improves the trivial bound N only if $N > 3\sqrt{q} \log q$. It would be important to have non-trivial estimates also for smaller values of N. Burgess proved in 1962 that for every $\varepsilon > 0$ there is a number $C(\varepsilon) > 0$ such that for every integer $q \geq 2$, every primitive character χ modulo q, and every pair of integers M, N with $N > 0$,
$$\left| \sum_{a=M+1}^{M+N} \chi(a) \right| \leq C(\varepsilon) N^{1/2} q^{(3/16)+\varepsilon}.$$
This upper bound is non-trivial (smaller than N) if $N \gg q^{(3/8)+2\varepsilon}$.

3.6 Quadratic reciprocity

We give an analytic proof of Gauss’ Quadratic Reciprocity Theorem, by computing certain special Gauss sums.

Let $p > 2$ be a prime number. An integer a is called a **quadratic residue modulo** p if $x^2 \equiv a \pmod{p}$ is solvable in $x \in \mathbb{Z}$ and $p \nmid a$, and a **quadratic non-residue modulo** p if $x^2 \equiv a \pmod{p}$ is not solvable in $x \in \mathbb{Z}$. Further, a quadratic (non-)residue class modulo p is a residue class modulo p represented by a quadratic (non-)residue.
We define the Legendre symbol
\[
\left(\frac{a}{p} \right) := \begin{cases}
1 & \text{if } a \text{ is a quadratic residue modulo } p; \\
-1 & \text{if } a \text{ is a quadratic non-residue modulo } p; \\
0 & \text{if } p | a.
\end{cases}
\]

Lemma 3.6.1. Let \(p \) be a prime \(> 2 \).
(i) \(\left(\frac{\cdot}{p} \right) \) is a primitive character mod \(p \).
(ii) There are precisely \(\frac{1}{2}(p - 1) \) quadratic residue classes, and precisely \(\frac{1}{2}(p - 1) \) quadratic non-residue classes modulo \(p \).
(iii) \(\left(\frac{a}{p} \right) \equiv a^{(p-1)/2} \pmod{p} \) for \(a \in \mathbb{Z} \).

Proof. (i) The group \((\mathbb{Z}/p\mathbb{Z})^*\) is cyclic of order \(p - 1 \). Let \(g \pmod{p} \) be a generator of this group. Take \(a \in \mathbb{Z} \) with \(\gcd(a, p) = 1 \). Then there is \(t \in \mathbb{Z} \) such that \(a \equiv g^t \pmod{p} \). Now clearly, \(x^2 \equiv a \pmod{p} \) is solvable in \(x \in \mathbb{Z} \) if and only if \(t \) is even. Hence \(\left(\frac{a}{p} \right) = (-1)^t \). This shows that \(\left(\frac{\cdot}{p} \right) \) is a character mod \(p \). It is not the principal character mod \(p \), since \(\left(\frac{g}{p} \right) = -1 \). Since \(p \) is a prime, it must be primitive.

(ii) The group \((\mathbb{Z}/p\mathbb{Z})^*\) consists of \(g^t \pmod{p} \) \((t = 0, \ldots, p - 1) \). As we have seen, the quadratic residue classes are those with \(t \) even, and the quadratic non-residue classes those with \(t \) odd. This implies (ii).

(iii) The assertion is clearly true if \(p | a \). Assume that \(p \nmid a \). Then there is \(t \in \mathbb{Z} \) with \(a \equiv g^t \pmod{p} \). Note that \((g^{(p-1)/2})^2 \equiv 1 \pmod{p} \), hence \(g^{(p-1)/2} \equiv \pm 1 \pmod{p} \). But \(g^{(p-1)/2} \not\equiv 1 \pmod{p} \) since \(g \pmod{p} \) is a generator of \((\mathbb{Z}/p\mathbb{Z})^*\). Hence \(g^{(p-1)/2} \equiv -1 \pmod{p} \). As a consequence,
\[
a^{(p-1)/2} \equiv (-1)^t \equiv \left(\frac{a}{p} \right) \pmod{p}.
\]

\(\square \)

The following is immediate:

Corollary 3.6.2. Let \(p \) be a prime \(> 2 \). Then
\[
\left(\frac{-1}{p} \right) = (-1)^{(p-1)/2} = \begin{cases}
1 & \text{if } p \equiv 1 \pmod{4}, \\
-1 & \text{if } p \equiv 3 \pmod{4}.
\end{cases}
\]

We now come to the formulation of Gauss’ Quadratic Reciprocity Theorem:
Theorem 3.6.3. Let \(p, q \) be distinct primes > 2. Then
\[
\left(\frac{p}{q} \right) \left(\frac{q}{p} \right) = (-1)^{(p-1)(q-1)/4} = \begin{cases}
1 & \text{if } p \equiv q \equiv 3 \pmod{4}, \\
-1 & \text{otherwise.}
\end{cases}
\]

Furthermore, as a supplement we have:

Theorem 3.6.4. Let \(p \) be a prime > 2. Then
\[
\left(\frac{2}{p} \right) = (-1)^{(p^2-1)/8} = \begin{cases}
1 & \text{if } p \equiv \pm 1 \pmod{8}, \\
-1 & \text{if } p \equiv \pm 3 \pmod{8}.
\end{cases}
\]

Example. Check if \(x^2 \equiv 33 \pmod{97} \) is solvable.
\[
\left(\frac{33}{97} \right) = \left(\frac{3}{97} \right) \cdot \left(\frac{11}{97} \right) = \left(\frac{97}{3} \right) \cdot \left(\frac{97}{11} \right)
= \left(\frac{1}{3} \right) \cdot \left(-\frac{2}{11} \right) = \left(\frac{1}{3} \right) \cdot \left(-\frac{1}{11} \right) \cdot \left(\frac{2}{11} \right) = 1 \cdot (-1) \cdot (-1) = 1.
\]

We prove only Theorem 3.6.3 and leave Theorem 3.6.4 as an exercise. We give an analytic proof, based on exponential sums \(S(q) := \sum_{x=0}^{q-1} e^{2\pi ix^2/q} \), which are closely connected to certain Gauss sums.

We start with a simple result from Fourier analysis, which will be used also elsewhere.

We define the Fourier coefficients of an integrable function \(f : [0,1] \to \mathbb{C} \) by
\[
c_n(f) := \int_0^1 f(t) e^{-2\pi int} dt \quad \text{for } n \in \mathbb{Z}.
\]

Theorem 3.6.5. Let \(f \) be a complex analytic function, defined on an open subset of \(\mathbb{C} \) containing the real interval \([0,1]\). Then
\[
\lim_{N \to \infty} \sum_{n=-N}^{N} c_n(f) = \frac{1}{2} (f(0) + f(1)).
\]

Remarks.
1. Theorem 3.6.5 holds in fact for measurable functions \(f : [0,1] \to \mathbb{C} \) for which
\[\int_0^1 |f(t)| \, dt < \infty \] and \(f \) has bounded variation. The version we state and prove with a much more restrictive condition on \(f \) is amply sufficient for our purposes.

2. It may be that \(\lim_{N \to \infty} \sum_{n=-N}^{N} a_n \) converges, whereas the doubly infinite series \(\sum_{n=-\infty}^{\infty} a_n = \lim_{M, N \to \infty} \sum_{n=-M}^{N} a_n \) (with \(M, N \to \infty \) independently of each other) diverges. For instance, if \(a_{-n} = -a_n \) for \(n \in \mathbb{Z} \setminus \{0\} \), then \(\lim_{N \to \infty} \sum_{n=-N}^{N} a_n = a_0 \), but \(\sum_{n=-\infty}^{\infty} a_n \) may be horribly divergent.

Proof. We first consider some special cases. For the constant function \(f(z) = 1 \) we have \(c_0(f) = 1 \), while \(c_n(f) = 0 \) for \(n \neq 0 \), and so in this case, \(\sum_{n=-N}^{N} c_n(f) = 1 = \frac{1}{2}(f(0) + f(1)) \) for all \(N \).

For the function \(f(z) = z \) we have \(c_0(f) = \frac{1}{2} \), while \(c_n(f) = -\frac{1}{2 \pi i n} \) for \(n \neq 0 \). So also in this case, \(\sum_{n=-N}^{N} c_n(f) = \frac{1}{2} = \frac{1}{2}(f(0) + f(1)) \) for all \(N \).

We now take an arbitrary function \(f \) as in the statement of the theorem, say analytic on an open subset \(U \) of \(\mathbb{C} \) containing \([0, 1] \). Define the function \(f^*(z) := f(z) - f(0) + (f(0) - f(1))z \). Then \(f^* \) is analytic on \(U \) and \(f^*(0) = f^*(1) = 0 \). We prove that \(\lim_{N \to \infty} \sum_{n=-N}^{N} c_n(f^*) = 0 \). Together with the special cases just considered and the linearity of \(c_n(\cdot) \) over \(\mathbb{C} \) this implies \(\lim_{N \to \infty} \sum_{n=-N}^{N} c_n(f) = \frac{1}{2}(f(0) + f(1)) \).

From the identity

\[
\sum_{n=-N}^{N} e^{-2\pi i nt} = e^{2\pi i N t} \sum_{n=0}^{2N} e^{-2\pi i nt} = e^{2\pi i N t} \cdot \frac{e^{-2\pi i (2N+1)t} - 1}{e^{-2\pi i t} - 1} = \frac{e^{-\pi i (2N+1)t} - e^{\pi i (2N+1)t}}{e^{-\pi i t} - e^{\pi i t}} = \sin((2N+1)\pi t) \cdot \frac{1}{\sin \pi t}
\]

we obtain

\[
\sum_{n=-N}^{N} c_n(f^*) = \int_0^1 \frac{f^*(t)}{\sin \pi t} \cdot \sin((2N+1)\pi t) \cdot dt = \int_0^1 g(t) \cdot \sin(h_N(t)) \, dt,
\]

where

\[
g(z) := \frac{f^*(z)}{\sin \pi z}, \quad h_N(z) := (2N+1)\pi z.
\]

Assume that \(U \) is small enough, so that it does not contain any integers other than 0, 1. Then \(g \) is analytic on \(U \). Indeed, \(\sin \pi z \neq 0 \) on \(U \) except at \(z = 0, z = 1 \) where
it has simple zeros, but these are cancelled by the zeros of f^* at $z = 0, z = 1$. Now using integration by parts, we obtain

\[
\left| \sum_{n=-N}^{N} c_n(f^*) \right| = \left| \int_{0}^{1} g(t) \sin(h_N(t)) dt \right| = \frac{1}{(2N+1)\pi} \left| \int_{0}^{1} g(t) d\cos(h_N(t)) \right|
\]

\[
= \frac{1}{(2N+1)\pi} \left| -g(1) - g(0) - \int_{0}^{1} g'(t) \cos(h_N(t)) dt \right|
\]

\[
\leq \frac{1}{(2N+1)\pi} \left(|g(1)| + |g(0)| + \int_{0}^{1} |g'(t)| dt \right) \to 0 \quad \text{as } N \to \infty.
\]

Here we used that g' is analytic on U, hence $t \mapsto |g'(t)|$ is continuous and bounded on $[0, 1]$. This completes our proof.

Corollary 3.6.6 (Poisson’s summation formula for finite sums). Let a, b be integers with $a < b$ and let f be a complex analytic function, defined on an open subset of \mathbb{C} containing the interval $[a, b]$. Then

\[
\sum_{m=a}^{b} f(m) = \frac{1}{2} (f(a) + f(b)) + \lim_{N \to \infty} \sum_{n=-N}^{N} \int_{a}^{b} f(t) e^{-2\pi i nt} dt
\]

\[
= \frac{1}{2} (f(a) + f(b)) + \int_{a}^{b} f(t) dt + 2 \sum_{n=1}^{\infty} \int_{a}^{b} f(t) \cos 2\pi nt \cdot dt.
\]

Proof. Pick $m \in \{a, \ldots, b-1\}$. Then by Theorem 3.6.5, applied to $z \mapsto f(z + m)$, using $e^{2\pi im} = 1$,

\[
\frac{1}{2} (f(m) + f(m + 1)) = \lim_{N \to \infty} \sum_{n=-N}^{N} \int_{0}^{1} f(t + m) e^{-2\pi i nt} dt
\]

\[
= \lim_{N \to \infty} \sum_{n=-N}^{N} \int_{m}^{m+1} f(t) e^{-2\pi i nt} dt
\]

\[
= \int_{m}^{m+1} f(t) dt + \lim_{N \to \infty} \sum_{n=1}^{N} \int_{m}^{m+1} f(t) (e^{2\pi int} + e^{-2\pi int}) dt
\]

\[
= \int_{m}^{m+1} f(t) dt + 2 \sum_{n=1}^{\infty} \int_{m}^{m+1} f(t) \cos 2\pi nt \cdot dt.
\]
Now take the sum over \(m = a, a + 1, \ldots, b - 1 \).

Let \(q \) be any integer \(\geq 1 \), and \(b \) any integer coprime with \(q \). Define the exponential sums
\[
S(b, q) := \sum_{a=0}^{q-1} e^{2\pi i ba^2/q}, \quad S(q) := S(1, q).
\]

Lemma 3.6.7. Let \(q \) be an odd prime and \(b \) an integer coprime with \(q \). Then
\[
S(b, q) = \tau(b, \left(\frac{q}{b} \right)) = \left(\frac{b}{q} \right) S(q).
\]

Proof. Let \(Q := \sum_{a=1}^{q-1} e^{2\pi i ba/q}, N := \sum_{a=1}^{q-1} e^{2\pi i ba/q} \), where \(\sum_{a=1}^{q-1} \) denotes the summation over the quadratic residues \(a \in \{0, \ldots, q-1\} \) and \(\sum_{a=1}^{q-1} \) that over the quadratic non-residues \(a \in \{0, \ldots, q-1\} \). Then
\[
1 + Q + N = \sum_{a=0}^{q-1} e^{2\pi i ba/q} = \frac{e^{2\pi i b} - 1}{e^{2\pi i b/q} - 1} = 0.
\]

If \(a \) runs through 1, \ldots, \(q - 1 \), then \(a^2 \) (mod \(q \)) runs twice through the quadratic residue classes mod \(q \) (note that \(a^2 \) and \((q - a)^2 \) give the same quadratic residue). So
\[
S(b, q) = 1 + 2Q = Q - N = \sum_{a=0}^{q-1} \left(\frac{a}{q} \right) e^{2\pi i ba/q} = \tau(b, \left(\frac{b}{q} \right)).
\]
The second equality in the statement follows from Theorem 3.4.1.

Lemma 3.6.8. Let \(p, q \) be two distinct odd primes. Then
\[
S(pq) = S(q, p)S(p, q) = \left(\frac{q}{p} \right) \left(\frac{p}{q} \right) S(p)S(q).
\]

Proof. If \(a \) runs through 0, \ldots, \(p - 1 \) and \(b \) through 0, \ldots, \(q - 1 \), then \(qa + pb \) runs through a complete system of residues mod \(pq \). Thus,
\[
S(pq) = \sum_{a=0}^{p-1} \sum_{b=0}^{q-1} e^{2\pi i (qa + pb)^2/pq} = \sum_{a=0}^{p-1} \sum_{b=0}^{q-1} e^{2\pi i ((qa^2/p) + pb^2/q) + 2ab)}
\]
\[
= \sum_{a=0}^{p-1} \sum_{b=0}^{q-1} e^{2\pi i a^2/p} \cdot e^{2\pi i b^2/q} = \sum_{a=0}^{p-1} e^{2\pi i a^2/p} \sum_{b=0}^{q-1} e^{2\pi i b^2/q} = S(q, p)S(p, q).
\]

By Lemma 3.6.7, the latter is \(\left(\frac{q}{p} \right) \left(\frac{p}{q} \right) S(p)S(q) \).
Lemma 3.6.9. Let q be a positive integer. Then
\[
S(q) = \begin{cases}
(1 + i)\sqrt{q} & \text{if } q \equiv 0 \pmod{4}, \\
\sqrt{q} & \text{if } q \equiv 1 \pmod{4}, \\
0 & \text{if } q \equiv 2 \pmod{4}, \\
i\sqrt{q} & \text{if } q \equiv 3 \pmod{4}.
\end{cases}
\]

Proof. By Corollary 3.6.6 we have
\[
S(q) = -1 + \sum_{a=0}^{q} e^{2\pi ia^2/q} = \lim_{N \to \infty} \sum_{n=-N}^{N} \int_{0}^{q} e^{(2\pi it^2/q) - 2\pi int} dt
\]
\[
= \sqrt{q} \cdot \lim_{N \to \infty} \sum_{n=-N}^{N} \int_{0}^{\sqrt{q}} e^{2\pi i u^2 - 2\pi in\sqrt{q}} du \quad \text{(substituting } u = t/\sqrt{q})
\]
\[
= \sqrt{q} \cdot \lim_{N \to \infty} \sum_{n=-N}^{N} \int_{0}^{\sqrt{q}} e^{2\pi i((u-n\sqrt{q}/2)^2-n^2q/4)} du
\]
\[
= \sqrt{q} \cdot \lim_{N \to \infty} \sum_{n=-N}^{N} e^{-\pi n^2q/2} \int_{0}^{\sqrt{q}} e^{2\pi i(u-n\sqrt{q})^2} du.
\]

We split the summation into even n and odd n. Note that $e^{-\pi i n^2q/2} = 1$ if n is even, and $e^{-\pi i n/2}$ if n is odd. So
\[
\sum_{n=-N}^{N} e^{-\pi n^2q/2} \int_{0}^{\sqrt{q}} e^{2\pi i(u-n\sqrt{q})^2} du = \sum_{n=-N}^{N} \int_{-(1-n/2)\sqrt{q}}^{(1-n/2)\sqrt{q}} e^{2\pi i u^2} du = \int_{-N_1\sqrt{q}}^{N_2\sqrt{q}} e^{2\pi i u^2} du,
\]
\[
say, \text{where we use that the intervals } [-\frac{1}{2}n\sqrt{q}, (1-\frac{1}{2}n)\sqrt{q}] (n \in \{-N, \ldots, N\} \text{ even})
\]
\[
\text{apart from their begin points and end points do not overlap and paste together to a single interval } [-N_1\sqrt{q}, N_2\sqrt{q}] \text{ where } |N_i - \frac{1}{2}N| \leq 1 \text{ for } i = 1, 2. \text{ Likewise, the sum over the odd values of } n \in \{-N, \ldots, N\} \text{ is}
\]
\[
e^{-\pi i q/2} \int_{-N_3\sqrt{q}}^{N_4\sqrt{q}} e^{2\pi i u^2} du,
\]
\[
\text{where } |N_i - \frac{1}{2}N| \leq 1 \text{ for } i = 3, 4. \text{ Taking for the moment for granted that the integral } C := \int_{-\infty}^{\infty} e^{2\pi i u^2} du \text{ converges, we get}
\]
\[
S(q) = \sqrt{q} \lim_{N \to \infty} \left(\int_{-N_1\sqrt{q}}^{N_2\sqrt{q}} e^{2\pi i u^2} du + e^{-\pi i q/2} \int_{-N_3\sqrt{q}}^{N_4\sqrt{q}} e^{2\pi i u^2} du \right) = \sqrt{q}(1 + e^{-\pi i q/2}) C.
\]
Substituting $q = 1$ and using $S(1) = 1$ we read off $C = (1 - i)^{-1}$. Thus we get $S(q) = \sqrt{q} \cdot (1 + e^{-\pi i q/2})/(1 - i)$, which gives our lemma.

It remains to show that $\int_{-\infty}^{\infty} e^{2\pi i u^2} du$ converges. This integral is equal to $2\int_{0}^{\infty} e^{2\pi i u^2} du$, provided the latter converges. But this is indeed the case, since for any $B > A > 0$,

$$\left| \int_{A}^{B} e^{2\pi i u^2} du \right| = \left| \int_{A}^{B} (4\pi i u)^{-1} e^{2\pi i u^2} du \right|$$

$$= \left| \frac{e^{2\pi i B^2}}{4\pi i B} - \frac{e^{2\pi i A^2}}{4\pi i A} + \frac{1}{4\pi i} \int_{A}^{B} u^{-2} e^{2\pi i u^2} du \right|$$

$$\leq (4\pi)^{-1} \left(B^{-1} + A^{-1} + \int_{A}^{B} u^{-2} du \right) = (2\pi A)^{-1} \rightarrow 0 \quad \text{as} \ A, B \rightarrow \infty.$$

This completes our proof.

\[\square \]

Proof of Theorem 3.6.3. Immediate from Lemmas 3.6.9 and 3.6.8. \[\square \]

3.7 Exercises

Exercise 3.1. Compute the characters modulo 12 and determine the conductor of each character.

Exercise 3.2. Recall that a character $\chi \mod q$ is called real if $\chi(a) \in \mathbb{R}$ for every $a \in \mathbb{Z}$, i.e., if $\chi(a) \in \{-1, 1\}$ for every $a \in \mathbb{Z}$ with $\gcd(a, q) = 1$.

a) For a positive integer q denote by $R(q)$ the number of real characters mod q. Prove that R is a multiplicative arithmetic function, and compute $R(p^k)$ for every prime power p^k.

b) Determine those positive integers q such that every character mod q is real.

Exercise 3.3. For a positive integer q, denote by $F(q)$ the number of primitive characters mod q. Prove that F is a multiplicative arithmetic function, and compute $F(p^k)$ for every prime power p^k.

Hint. Prove that if f is a divisor of q, then $F(f)$ is precisely the number of characters mod q with conductor f. After having done so, use the results from Chapter 2.
Exercise 3.4. Let q be a positive integer. Prove that $\tau(1, \chi^{(q)}) = \sum_{\substack{a = 0 \\ \gcd(a, q) = 1}}^{q-1} e^{2\pi ia/q} = \mu(q)$.

Exercise 3.5. Prove Theorem 3.6.4.

Hint. Prove an analogue of Lemma 3.6.8 with $q = 8$.

Exercise 3.6. For an integer a and a positive odd integer b we define the Jacobi-symbol

$$\left(\frac{a}{b}\right) := \prod_{i=1}^{\ell} \left(\frac{a}{p_i}\right)^{k_i},$$

where $b = p_1^{k_1} \cdots p_{\ell}^{k_{\ell}}$ is the unique prime factorization of b.

a) Let b be a positive odd integer. Prove that

$$\left(\frac{-1}{b}\right) = (-1)^{(b-1)/2}, \quad \left(\frac{2}{b}\right) = (-1)^{(b^2-1)/8}.$$

b) Let a, b be two odd, positive, coprime integers. Prove that

$$\left(\frac{a}{b}\right) \cdot \left(\frac{b}{a}\right) = (-1)^{(a-1)(b-1)/4}.$$

c) Let n be a positive odd, square-free integer which is not a prime. Prove that there are integers a such that $x^2 \equiv a \pmod{n}$ is not solvable, while $\left(\frac{a}{n}\right) = 1$.

Exercise 3.7. Let p be a prime > 2 and m a divisor of $p - 1$ with $m \geq 2$. An integer a is called an m-th power residue modulo p if $p \nmid a$ and if there is an integer b with $a \equiv b^m \pmod{p}$. Let M, N be integers with $0 \leq M < M + N < p$. Denote by R_m the number of m-th power residues mod p in the interval $[M + 1, M + N]$. The purpose of this exercise is to show that

$$|R_m - \frac{N}{m}| \leq 3(m - 1)\sqrt{p \log{p}}.$$

In case that p is a large prime and N is much larger than $3m(m - 1)\sqrt{p \log{p}}$ this implies that about a fraction of $1/m$ among the integers in $\{M + 1, \ldots, M + N\}$ is an m-th power residue modulo p. Perform the following steps:
a) Recall that \((\mathbb{Z}/p\mathbb{Z})^*\) is a cyclic group of order \(p - 1\). Choose an integer \(g\) such that \(g \mod p\) generates \((\mathbb{Z}/p\mathbb{Z})^*\). Choose a character \(\chi_1 \mod p\) such that \(\chi_1(g) = e^{2\pi i/(p-1)}\); then \(G(p) = \langle \chi_1 \rangle\). Let \(t := (p - 1)/m\). Prove that
\[
\sum_{j=0}^{m-1} \chi_1^{tj}(a) = \begin{cases}
 m & \text{if } a \text{ is an } m\text{-th power residue mod } p, \\
 0 & \text{otherwise.}
\end{cases}
\]

b) Compute \(\sum_{j=0}^{m-1} \sum_{a=M+1}^{M+N} \chi_1^{tj}(a)\) in two ways.