
Chapter 6

The Prime number theorem for

arithmetic progressions

6.1 The Prime number theorem

We denote by π(x) the number of primes 6 x.

Theorem 6.1.1. We have π(x) ∼ x

log x
as x→∞.

Before giving the detailed proof, we outline our strategy. Define the functions

θ(x) :=
∑
p6x

log p, ψ(x) :=
∑

k,p: pk6x

log p =
∑
n6x

Λ(n),

where Λ is the von Mangoldt function, given by Λ(n) = log p if n = pk for some

prime p and some k > 1, and Λ(n) = 0 otherwise.

• Using partial summation we prove that

π(x) ∼ x

log x
⇐⇒ θ(x) ∼ x⇐⇒ ψ(x) ∼ x as x→∞.

• By Lemma 2.3.4 from Chapter 2 we have

∞∑
n=1

Λ(n)n−s = −ζ
′(s)

ζ(s)
for Re s > 1.
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By applying our Tauberian theorem for Dirichlet series (Theorem 5.3.1) to the latter

we obtain
ψ(x)

x
=

1

x

∑
n6x

Λ(n)→ 1 as x→∞,

which by the above implies the Prime Number Theorem.

We work out in detail the strategy described above. We start with deducing

some properties of θ(x) and ψ(x).

Lemma 6.1.2. (i) θ(x) = O(x) as x→∞.

(ii) ψ(x) = θ(x) +O(
√
x) as x→∞.

(iii) ψ(x) = O(x) as x→∞.

Proof. (i) By Exercise 1.4 a), we have
∏

p6x p 6 4x for x > 2. This implies

θ(x) =
∑
p6x

log p 6 x log 4 = O(x) as x→∞.

(ii) We have

ψ(x) =
∑

p,k: pk6x

log p =
∑
p6x

log p+
∑
p26x

log p+
∑
p36x

log p+ · · ·

= θ(x) + θ(x1/2) + θ(x1/3) + · · ·

Notice that θ(t) = 0 if t < 2. So θ(x1/k) = 0 if x1/k < 2, that is, if k > log x/ log 2.

Hence

ψ(x)− θ(x) =

[log x/ log 2]∑
k=2

θ(x1/k) 6 θ(
√
x) +

[log x/ log 2]∑
k=3

θ( 3
√
x)

6 θ(
√
x) +

( log x

log 2
− 3
)
θ( 3
√
x) = O

(√
x+ 3
√
x · log x

)
= O(

√
x) as x→∞.

(iii) Combine (i) and (ii).

Lemma 6.1.3. We have

π(x) · log x

x
=
θ(x)

x
+O

( 1

log x

)
=
ψ(x)

x
+O

( 1

log x

)
as x→∞.
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Proof. By partial summation, we have

π(x) =
∑
p6x

1 =
∑
p6x

log p · 1

log p
= θ(x)

1

log x
−
∫ x

2

θ(t) ·
( 1

log t

)′
dt

=
θ(x)

log x
+

∫ x

2

θ(t)

t log2 t
dt.

The integral is non-negative. Further, by Lemma 6.1.2 (i) there is a constant C > 0

such that θ(t) 6 Ct for all t > 2. Together with Exercise 1.3 a) this implies

0 6
∫ x

2

θ(t)

t log2 t
· dt 6 C ·

∫ x

2

dt

log2 t
= O

( x

log2 x

)
as x→∞.

Hence

π(x) log x

x
=

θ(x)

x
+O

( log x

x
· x

log2 x

)
=

θ(x)

x
+O

( 1

log x

)
as x→∞,

and then Lemma 6.1.2 (ii) gives

π(x) log x

x
=
ψ(x)

x
+O

( 1√
x

)
+O

( 1

log x

)
=
ψ(x)

x
+O

( 1

log x

)
as x→∞.

Proof of Theorem 6.1.1. As a consequence of Lemma 6.1.3, π(x) log x/x → 1 as

x→∞ if and only if

ψ(x)

x
=

1

x

∑
n6x

Λ(n)→ 1 as x→∞.

So it suffices to prove the latter. But this follows once we have verified that LΛ(s) =∑∞
n=1 Λ(n)n−s satisfies conditions (i)–(iv) of Theorem 5.3.1 with α = 1, σ = 1. To

this end, we have to combine various results from the previous chapters.

(i), (ii) Λ(n) > 0 for all n by definition, and
∑

n6x Λ(n) = ψ(x) = O(x) as

x→∞ by Lemma 6.1.2 (iii).

(iii), (iv) By Lemma 2.3.4, LΛ(s) = −ζ ′(s)/ζ(s) for s ∈ C with Re s > 1, and

the series converges and defines an analytic function for s ∈ C with Re s > 1. By
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Theorem 4.1.2, ζ(s) is analytic on {s ∈ C : Re s > 0} \ {1}, with a simple pole at

s = 1. Further, by Corollary 4.1.4 and Theorem 4.2.1, ζ(s) 6= 0 on A := {s ∈ C :

Re s > 1} (with the convention that a meromorphic function is non-zero at a pole),

and hence also ζ(s) 6= 0 on an open set U containing A. By taking U sufficiently

small, we may conclude from Lemma 0.6.17, that ζ ′(s)/ζ(s) is analytic on U \ {1},
with a simple pole with residue −1 at s = 1; hence LΛ(s) has residue 1 at s = 1. We

conclude that indeed, conditions (i)–(iv) of Theorem 5.3.1 hold with α = 1, σ = 1.

This completes the proof of the Prime Number Theorem.

6.2 The Prime number theorem for arithmetic

progressions

Let q, a be integers with q > 2, gcd(a, q) = 1. Define

π(x; q, a) := number of primes p 6 x with p ≡ a (mod q).

Theorem 6.2.1. We have π(x; q, a) ∼ 1

ϕ(q)
· x

log x
as x→∞.

The proof is very similar to that of the Prime number theorem. Define the

quantities

θ(x; q, a) :=
∑

p6x, p≡a (mod q)

log p,

ψ(x; q, a) :=
∑

p,k, pk6x, pk≡a (mod q)

log p =
∑

n6x, n≡a (mod q)

Λ(n).

Lemma 6.2.2. (i) θ(x; q, a) = O(x) as x→∞.

(ii) ψ(x; q, a)− θ(x; q, a) = O(
√
x) as x→∞.

(iii) ψ(x; q, a) = O(x) as x→∞.

Proof. (i) We have θ(x; q, a) 6 θ(x) = O(x) as x→∞.

(ii) We have

ψ(x; q, a)− θ(x; q, a) =
∑

k,p, k>2,pk6x, pk≡a (mod q)

log p

6
∑

k,p, k>2,pk6x

log p = ψ(x)− θ(x) = O(
√
x) as x→∞.
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(iii) Obvious.

Lemma 6.2.3. We have

π(x; q, a) · log x

x
=
θ(x; q, a)

x
+O

( 1

log x

)
=
ψ(x; q, a)

x
+O

( 1

log x

)
as x→∞.

Proof. Follow the proof of Lemma 6.1.3 and replace everywhere π(x), θ(x), ψ(x) by

π(x; q, a), θ(x; q, a), ψ(x; q, a). Verify the details yourself.

Let f(n) := Λ(n) if n ≡ a (mod q), f(n) = 0 otherwise. Then

Lf (s) =
∞∑

n=1, n≡a (mod q)

Λ(n)n−s.

Further,
∑

n6x f(n) = ψ(x; q, a).

By Lemma 6.2.3, π(x; q, a) log x/x → 1/ϕ(q) if and only if 1
x

∑
n6x f(n) =

ψ(x; q, a)/x→ 1/ϕ(q), and the latter follows once we have verified that Lf (s) satis-

fies conditions (i)–(iv) of Theorem 5.3.1 with α = 1/ϕ(q) and σ = 1.

We need some preparations. Let G(q) denote the group of characters modulo q.

Lemma 6.2.4. For s ∈ C with Re s > 1 we have

Lf (s) = − 1

ϕ(q)
·
∑
χ∈G(q)

χ(a) · L
′(s, χ)

L(s, χ)
.

Proof. Let χ be a character modulo q and let s ∈ C with Re s > 1. By Exercise

2.5 we have, since χ is a strongly multiplicative arithmetic function and L(s, χ)

converges absolutely,
L′(s, χ)

L(s, χ)
= −

∞∑
n=1

χ(n)Λ(n)n−s.

Using Theorem 3.2.1 (ii) (one of the orthogonality relations for characters) we obtain∑
χ∈G(q)

χ(a) · L
′(s, χ)

L(s, χ)
= −

∑
χ∈G(q)

χ(a)
∞∑
n=1

χ(n)Λ(n)n−s

= −
∞∑
n=1

 ∑
χ∈G(q)

χ(a)χ(n)

Λ(n)n−s = −ϕ(q) ·
∞∑

n=1, n≡a (mod q)

Λ(n)n−s.
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Lemma 6.2.5. There is an open subset U of C containing {s ∈ C : Re s > 1} such

that Lf (s) can be continued to a function analytic U \ {1}, with a simple pole with

residue ϕ(q)−1 at s = 1.

Proof. By Theorem 4.1.3 (iii), L(s, χ
(q)
0 ) is analytic on {s ∈ C : Re s > 0}\{1}, with

a simple pole at s = 1. Further, by Corollary 4.1.4 and Theorem 4.2.1, L(s, χ
(q)
0 ) 6= 0

for s ∈ A := {s ∈ C : Re s > 1}, and hence L(s, χ
(q)
0 ) 6= 0 for s in an open set U

containing A. By taking U sufficiently small, we may conclude from Lemma 0.6.17,

that L′(s, χ
(q)
0 )/L(s, χ

(q)
0 ) is analytic on U \ {1}, with a simple pole with residue −1

at s = 1.

Let χ be a character mod q with χ 6= χ
(q)
0 . By Theorem 4.1.3 (ii), L(s, χ) is

analytic on {s ∈ C : Re s > 0}, and by Corollary 4.1.4 and Theorems 4.2.1, 4.2.3,

it is non-zero on A, hence on an open set containing A, which we assume to be the

above set U if we take this sufficiently small. Therefore, L′(s, χ)/L(s, χ) is analytic

on U .

Now by Lemma 6.2.4, Lf (s) is analytic on U \ {1}, with a simple pole with

residue χ
(q)
0 (a)/ϕ(q) = ϕ(q)−1 at s = 1.

Proof of Theorem 6.2.1. As mentioned above, we have to verify that Lf (s) satisfies

conditions (i)–(iv) of Theorem 5.3.1. Clearly f(n) > 0 for all n, while
∑

n6x f(n) =

ψ(x; q, a) = O(x) as x → ∞ by Lemma 6.2.2 (iii). Hence (i) and (ii) are satisfied.

Further, Lemmas 6.2.4 and 6.2.5 imply that (iii) and (iv) are satisfied with α =

1/ϕ(q) and σ = 1. Hence ψ(x; q, a)/x → 1/ϕ(q), and then π(x; q, a) log x/x →
1/ϕ(q) by Lemma 6.2.3. This completes our proof.

6.3 Related results

Riemann sketched a proof, and von Mangoldt gave the complete proof, of the fol-

lowing result, which relates the distribution of primes to the distribution of the zeros

of the Riemann zeta function. Define

ψ0(x) :=

{
ψ(x) =

∑
n6x Λ(n) if x is not a prime power,

ψ(x)− 1
2
Λ(x) if x is a prime power.
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Theorem 6.3.1. We have for x > 1,

ψ0(x) = x− lim
T→∞

∑
|Im ρ|<T

xρ

ρ
− log 2π − 1

2
log(1− x−2),

where the sum is over all zeros ρ of ζ(s) with 0 < Re ρ < 1 and |Im ρ| < T , and

zeros are taken with order, that is, if a zero ρ of ζ(s) has order k then it is taken k

times in the sum.

For a proof of this theorem, see Chapter 17 and some previous preparatory chap-

ters in H. Davenport, Multiplicative Number Theory, Graduate texts in mathematics

74, Springer Verlag, 2nd ed., 1980.

Using information about the distribution of the zeros of ζ(s), such as knowledge

of a zero-free region, Theorem 6.3.1 yields a good estimate for |ψ(x) − x| and by

means of partial summation techniques one can deduce a good estimate for the error

term |π(x)−Li(x)|, where Li(x) =
∫ x

2
dt/ log t. This leads to the sharp versions of the

Prime Number Theorem with error term, mentioned in Chapter 1. In Exercise 6.2

below you are asked to deduce a good estimate for |π(x)− Li(x)| under assumption

of the Riemann Hypothesis, namely von Koch’s estimate mentioned in Chapter 1.

There are similar refinenents of the Prime number theorem for arithmetic pro-

gressions with an estimate for the error |π(x; q, a)− Li(x)/ϕ(q)|. The simplest case

is when we fix q and let x → ∞, but for applications it is important to have also

versions where we allow q to move in some range depending on x when we let x→∞.

The following result was proved by Walfisz in 1936, with important preliminary

work by Landau and Siegel.

Theorem 6.3.2. For every A > 0 there is a constant C(A) > 0 such that for every

real x > 3, every integer q > 2 and every integer a with gcd(q, a) = 1, we have∣∣∣∣π(x; q, a)− 1

ϕ(q)
Li(x)

∣∣∣∣ 6 C(A)
x

(log x)A
.

The constant C(A) is ineffective, this means that by going through the proof of the

theorem one cannot compute the constant, but only show that it exists.

Theorem 6.3.2 is trivial if q > (log x)A. For in this case, π(x; q, a) 6 1 + [x/q] 6
1 + x/(log x)A, while by Exercise 1.3a and Exercise 6.4 below,

Li(x)

ϕ(q)
� x

log x
· log log q

q
� x

(log x)A
.
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As we mentioned in Chapter 1 and above, there is an intricate connection between

the zero-free region of ζ(s) and estimates for |π(x) − Li(x)|. Similarly, there is a

connection between zero-free regions of L-functions and estimates for |π(x; q, a) −
Li(x)/ϕ(q)|. We recall the following, rather complicated, result of Landau (1921)

on the zero-free region of L-functions.

Theorem 6.3.3. There is an absolute constant c > 0 such that for every integer

q > 2 the following holds. Among all characters χ modulo q, there is at most one

such that L(s, χ) has a zero in the region

R(q) :=

{
s ∈ C : Re s > 1− c

log(q(1 + |Im s|))

}
.

If such a character χ and a zero β ∈ R(q) of L(s, χ) exist, then χ is real and non-

principal, β is simple and real, and L(s, χ) does not have zeros in R(q) other than

β.

Moreover, if q′ is any integer with 2 6 q′ < q and χ′ is any character modulo q′,

then L(s, χ′) does not have a zero in R(q) either.

Any character χ modulo q having a zero in R(q) is called an exceptional character

mod q, and the zero of L(s, χ) in R(q) is called an exceptional zero or Siegel zero.

The Generalized Riemann Hypothesis (GRH) asserts that if χ is a Dirichlet character

modulo an integer q > 2, then the zeros of L(s, χ) in the critical strip 0 < Re s < 1

lie in fact on the line Re s = 1
2
. A consequence of GRH is that exceptional characters

do not exist.

In order to obtain Theorem 6.3.2, one needs an estimate for the real part of a

possible exceptional zero of an L-function. The following result was proved by Siegel

(1935).

Theorem 6.3.4. For every ε > 0 there is a number c(ε) > 0 such that for every

integer q > 2 the following holds: if χ is an exceptional character modulo q and β

an exceptional zero of L(s, χ), then Re β < 1− c(ε)q−ε.

Theorem 6.3.2 is proved by combining Theorems 6.3.3 and 6.3.4 with an analogue

of Theorem 6.3.1 for ψ(x; q, a), see H. Davenport, Multiplicative Number Theory,

Graduate texts in mathematics 74, Springer Verlag, 2nd ed., 1980. It is because of

the possible occurrence of an exceptional zero that the upper bound for the quantity
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|π(x; q, a) − Li(x)/ϕ(q)| in Theorem 6.3.2 is much larger than the best one known

for |π(x)− Li(x)|.

Under assumption of GRH, one can show, similar to von Koch’s result mentioned

in Chapter 1, that for any integer q > 2, any integer a with gcd(a, q) = 1 and any

real x > 2,

(6.3.1)

∣∣∣∣π(x; q, a)− 1

ϕ(q)
Li(x)

∣∣∣∣ 6 Cx1/2 log x,

where C is an absolute constant, i.e., not depending on anything (see Davenport’s

book, Chapter 20). This estimate is trivial if q > x1/2/ log x, for in this case π(x; q, a)

and Li(x)/ϕ(q) are both� x1/2 log x. A conjecture, due to Montgomery, which does

not follow from GRH, asserts that for every ε > 0 there is C(ε) > 0, such that for

every integer q > 2, integer a with gcd(a, q) = 1 and real x > 2,∣∣∣∣π(x; q, a)− 1

ϕ(q)
Li(x)

∣∣∣∣ 6 C(ε)q−1/2x(1/2)+ε.

There has been considerable interest in the average of the quantities

E(x; q) := max
16a<q

gcd(a,q)=1

∣∣∣∣π(x; q, a)− 1

ϕ(q)
Li(x)

∣∣∣∣ ,
taken over particular ranges of q. Bombieri and independently A.I. Vinogradov (not

to be confused with I.M. Vinogradov mentioned in Chapter 1 in connection with

the estimate for |π(x) − Li(x)|) proved around 1965 a result which states that on

average, E(x; q) has an upper bound similar to the right-hand side of (6.3.1). The

following result, proved by Bombieri but similar to one proved by Vinogradov, is

referred to as the “Bombieri-Vinogradov Theorem.”

Theorem 6.3.5 (Bombieri, 1965). Let A be a real > 0. Then for every real x > 3,

and every real Q with x1/2/(log x)A 6 Q 6 x1/2 one has

1

Q

∑
q6Q

E(x; q) 6 C(A))x1/2(log x)4,

where C(A) depends only on A.

For a proof of a related result, we refer to Davenport’s book Multiplicative Num-

ber Theory, Chap. 28.
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Knowing that an arithmetic progression contains infinitely many primes, one

would like to know when the first prime in such a progression occurs, i.e., the

smallest x such that π(x; q, a) > 0. The following estimate is due to Linnik (1944).

Theorem 6.3.6. Denote by P (q, a) the smallest prime number p with p ≡ a (mod q).

There are absolute constants c, L such that for every integer q > 2 and every integer

a with gcd(a, q) = 1 we have P (q, a) 6 cqL.

The exponent L is known as ’Linnik’s constant.’ Since the appearance of Linnik’s

paper, various people have tried to estimate it. The present record is L = 5.18, due

to Xylouris (2011).

We would like to finish with mentioning some recent breakthroughs concerning

gaps between consecutive primes. Let p1 < p2 < p3 < · · · be the sequence of

consecutive primes. The twin prime conjecture asserts that there are infinitely many

n with pn+1 − pn = 2. In 2014, Yitai Zhang made a breakthrough by showing that

there are infinitely many n with pn+1 − pn 6 7 × 107, that is, there are infinitely

many pairs of consecutive primes that are not further than 7× 107 apart. Maynard

(2015) subsequently improved this to 600. The Bombieri-Vinogradov Theorem is

an important ingredient in his proof. Several mathematicians have been working

collectively to further improve Maynard’s bound. Today’s record is 246, see the

polymath wiki,

http://michaelnielsen.org/polymath1 → polymath8

6.4 Exercises

In the exercise below, the following is needed:

Definition. f(x) = g(x) +O(xa+ε) as x→∞ for every ε > 0 means the following:

for every ε > 0 there exist numbers C, x0, that may depend on ε, such that

|f(x)− g(x)| 6 C · xa+ε for every x > x0.

Exercise 6.1. In general, one obtains a version of the Prime Number Theorem

with error term, i.e., π(x) = Li(x) +O(E(x)) as x→∞ with some explicit function

E(x), from a zero-free region of ζ(s). Here, Li(x) =
∫ x

2
dt/ log t.

In this exercise you are asked to prove the converse:
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Suppose that for all ε > 0 we have π(x) = Li(x) + O(x
1
2

+ε) as x → ∞. Then

ζ(s) 6= 0 for all s ∈ C with 1
2
< Re s < 1.

From Corollary 4.3.5 it follows that then also ζ(s) 6= 0 for s ∈ C with 0 < Re s < 1
2
.

That is, the Riemann Hypothesis holds.

To prove the above, perform the following steps.

a) For x > 2, prove that

θ(x) = π(x) log x−
∫ x

2

(π(t)/t)dt,

x− 2 = Li(x) log x−
∫ x

2

(Li(t)/t)dt.

b) Assume that for every ε > 0 we have π(x) = Li(x) + O(x
1
2

+ε) as x → ∞.

Prove that for every ε > 0 we have

θ(x) = x+O(x
1
2

+ε) as x→∞, ψ(x) = x+O(x
1
2

+ε) as x→∞.

c) Using Exercise 2.2a, prove that for every ε > 0, ζ(s) +
(
ζ ′(s)/ζ(s)

)
can be

continued to a function analytic on {s ∈ C : Re s > 1
2

+ ε}, and then that

ζ(s) 6= 0 for all s ∈ C with 1
2
< Re s < 1.

Exercise 6.2. Von Mangoldt proved the following identity, of which Theorem 6.3.1

is a consequence: there is a constant C > 0 such that for all reals x, T > 2 one has

ψ0(x) = x−
∑
|Im ρ|<T

xρ

ρ
− log 2π − 1

2
log(1− x−2) +R(x, T ),

where

|R(x, T )| 6 C ·
(
x(log xT )2

T
+ log x ·min

(
1,

x

〈x〉T

))
,

with 〈x〉 the distance of x to the closest prime power. Here the summation is over

all zeros ρ of ζ(s) with 0 < Re ρ < 1 and |Im ρ| < T , taken with order.

Another fact needed in this exercise is an estimate for the number N(T ) of zeros

ρ of ζ(s) with 0 < Re ρ < 1 and |Im ρ| < T , taken with order, which was stated

without proof by Riemann in his memoir, and proved rigorously by von Mangoldt,

171



namely, N(T ) = O(T log T ) as T → ∞. Both facts can be proved by means of

complex analysis.

The purpose of this exercise is to deduce von Koch’s theorem from the Riemann

Hypothesis and the expressions for ψ0(x) and N(T ).

a) Assume the Riemann Hypothesis. Deduce that ψ(x) = x + O(
√
x(log x)2) as

x→∞.

Hint. Apply the expression for ψ0(x) with T = x. By Schwarz’ reflection

principle, if s0 is a zero of ζ(s) of order n0, then so is s0. Let N (x) be the set

of t with 0 6 t < x such that 1
2
± it are zeros of ζ(s), and for t ∈ N (x), let

n(t) be the order of 1
2
± it. Then∣∣∣∣∣∣

∑
|Im ρ|<x

xρ

ρ

∣∣∣∣∣∣ 6 2
∑
t∈N (x)

n(t)|x(1/2)+it| · |1
2

+ it|−1 = 2x1/2
∑
t∈N (x)

n(t)
1√

1
4

+ t2
.

Estimate this sum using partial summation.

b) Deduce that θ(x) = x + O(
√
x(log x)2) as x → ∞ and subsequently, using

partial summation, that π(x) = Li(x) +O(
√
x log x) as x→∞.

Exercise 6.3. The purpose of this exercise is to improve theorems proved by Mertens

in the 19th century.

a) Prove that there is c1 ∈ R such that∑
p6x

log p

p
= log x+ c1 + o(1) as x→∞

(i.e.,
∑
p6x

log p

p
= log x+ c1 +R1(x) where lim

x→∞
R1(x) = 0). Work out the fol-

lowing steps:

Prove that

∫ ∞
1

ψ(x)− x
x2

dx converges (use an appropriate result from Chapter

5).

Prove that

∫ ∞
1

θ(x)− x
x2

dx converges.

Prove that
∑
p6x

log p

p
=
θ(x)

x
+

∫ x

1

θ(t)

t2
dt.
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b) Prove that there is c2 ∈ R such that∑
p6x

1

p
= log log x+ c2 + o

( 1

log x

)
as x→∞

(i.e.,
∑
p6x

1

p
= log log x+ c2 +

R2(x)

log x
, where lim

x→∞
R2(x) = 0).

Hint. Write
∑
p6x

1

p
=
∑
p6x

log p

p
· 1

log p
and use partial summation. Show and

use that if f(x), g(x) are measurable real functions on [a,∞) such that g(x) >
0 for x > a, f(x) = o(g(x)) as x → ∞ and

∫∞
a
g(t)dt converges, then∫ x

a
f(t)dt =

∫∞
a
f(t)dt+ o

( ∫∞
x
g(t)dt

)
as x→∞.

c) Prove that α :=
∑
p

(
log(1− p−1)−1 − 1

p

)
converges, and that

∑
p6x

(
log(1− p−1)−1 − 1

p

)
= α +O

(1

x

)
as x→∞.

Subsequently, deduce that there is c3 ∈ R such that∑
p6x

log(1− p−1)−1 = log log x+ c3 + o
( 1

log x

)
as x→∞.

Hint. Use that log(1− z)−1 =
∞∑
n=1

zn/n for z ∈ C with |z| < 1.

d) Prove that there is c4 > 0 such that∏
p6x

(
1− 1

p

)−1

= c4 log x+ o(1) as x→∞.

With a more precise analysis, it can be shown that c4 = eγ, where γ is the Euler-

Mascheroni constant.

Mertens proved in an elementary manner the above results with error terms O(1),

O
( 1
log x

)
instead of o(1), o

( 1
log x

)
.

Exercise 6.4. a) Prove that
∏
p|n

(1− p−1)−1 = O(log log n) as n → ∞, and sub-

sequently that there is c1 > 0 such that ϕ(n) > c1
n

log log n for all integers n > 3.
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b) Prove that there is a constant c2 > 0 such that ϕ(n) 6 c2
n

log log n holds for

infinitely many integers n.

c) You may even try to prove that lim inf
n→∞

ϕ(n) log log n/n = c−1
4 , where c4 is the

constant from Exercise 6.3 (so in fact the liminf is e−γ).

Exercise 6.5. a) Let q, a be integers with q > 2 and gcd(a, q) = 1. Prove that

lim
x→∞

1

x

∑
n6x

n≡a(mod q)

µ(n) = 0.

b) Let m be any positive integer. Prove that

lim
x→∞

1

x

∑
n6x

n≡a(mod q)
gcd(n,m)=1

µ(n) = 0.

c) Let q, a be integers with q > 2, gcd(q, a) = d > 1. Prove that

lim
x→∞

1

x

∑
n6x

n≡a(mod q)

µ(n) = 0.
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