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2.1 Introduction

Geometry of numbers is concerned with the study of lattice points in certain bodies

in Rn, where n > 2. We discuss Minkowski’s theorems on lattice points in central

symmetric convex bodies. In this introduction we give the necessary definitions.

Lattices. A (full) lattice in Rn is an additive group

L = {z1v1 + · · ·+ znvn : z1, . . . , zn ∈ Z}

where {v1, . . . ,vn} is a basis of Rn, i.e., {v1, . . . ,vn} is linearly independent over R.

We call {v1, . . . ,vn} a basis of L. The determinant of L is defined by

d(L) := | det(v1, . . . ,vn)|,

that is, the absolute value of the determinant of the matrix with columns v1, . . . ,vn.
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We show that the determinant of a lattice does not depend on the choice of the

basis. Recall that GL(n,Z) is the multiplicative group of n×n-matrices with entries

in Z and determinant ±1.

Lemma 2.1. Let L be a lattice, and {v1, . . . ,vn}, {w1, . . . ,wn} two bases of L.

Then there is a matrix U = (uij) ∈ GL(n,Z) such that

(2.1) wi =
n∑
j=1

uijvj for i = 1, . . . , n.

Consequently, | det(v1, . . . ,vn)| = | det(w1, . . . ,wn)|.

Proof. Let U be the matrix expressing w1, . . . ,wn into v1, . . . ,vn, that is, the matrix

given by (2.1). A priori, U is just a non-singular matrix, but since w1, . . . ,wn lie in

the lattice generated by v1, . . . ,vn, it must have its entries in Z.

Let U−1 = (uij). Then from linear algebra we know that vi =
∑n

j=1 u
ijwj for

i = 1, . . . , n. Now U−1 has its entries in Z since v1, . . . ,vn lie in the lattice generated

by w1, . . . ,wn. Since both detU and detU−1 are integers and must be multiplicative

inverses of one another, we have detU = ±1, i.e., U ∈ GL(n,Z).

Finally, we observe that

| det(w1, . . . ,wn)| = | detU | · | det(v1, . . . ,vn)| = | det(v1, . . . ,vn)|.

Let L,M be two lattices in Rn with M ⊆ L. Choose bases {v1, . . . ,vn} of

L, {w1, . . . ,wn} of M . Let U = (uij) be the matrix expressing w1, . . . ,wn into

v1, . . . ,vn. Then U has its entries in Z. We define the index of M in L by

|L : M | := | detU |.

The relation det(w1, . . . ,wn) = detU · det(v1, . . . ,vn) easily translates into

d(M) = |L : M | · d(L)

and this shows that |L : M | does not depend on the choices of the bases of L and
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Convex bodies. Notions such as boundedness, openness, closedness, etc. for

subsets of Rn are all with respect to the usual Euclidean metric on Rn and the

topology induced by it.

Recall that a subset C of Rn is convex if for any two points x,y ∈ C, also the

line segment connecting them, i.e., {tx + (1 − t)y : 0 6 t 6 1}, is contained in C.

A central symmetric convex body in Rn is a closed, bounded, convex subset C of Rn

having 0 as an interior point, and which is symmetric about 0, i.e. if x ∈ C then

also −x ∈ C.

Given a central symmetric convex body C in Rn and a real λ > 0, we define the

dilation of C with factor λ by

λC := {λx : x ∈ C}.

In case that λ > 0, this is again a central symmetric convex body.

Exercise 2.1. Let C be a central symmetric convex body.

(i) Let λ, µ be reals with 0 6 λ 6 µ. Prove that λC ⊆ µC.

(ii) Let x ∈ λC, y ∈ µC where λ, µ > 0. Prove that x + y ∈ (λ+ µ)C.

(iii) Let B be a bounded subset of Rn. Then there is λ > 0 such that B ⊆ λC.

Examples.

(i). Images under linear transformations: If C is a central symmetric convex

body and φ a linear transformation of Rn (i.e., an invertible linear map from Rn to

itself), then φ(C) is also a central symmetric convex body.

(ii). Parallelepipeds, ellipsoids and octahedra: Let

Kn = {x ∈ Rn : max
16i6n

|xi| 6 1}, Bn = {x ∈ Rn : x21 + · · ·+ x2n 6 1},

On = {x ∈ Rn : |x1|+ · · ·+ |xn| 6 1}

be the n-dimensional unit cube, Euclidean unit ball, and unit octahedron, respec-

tively, where x = (x1, . . . , xn) ∈ Rn. Then (central) parallepipeds, ellipsoids and

1The index |L : M | as defined above is equal to the index as defined in group theory, that

is the order of the quotient group L/M . This can be seen as follows. By a general theorem

for abelian groups, there are a basis {v1, . . . ,vn} of L and positive integers d1, . . . , dn such that

{d1v1, . . . , dnvn} is a basis of M . On the one hand, according to the above definition, |L : M | =
d1 · · · dn, on the other hand, L/M ∼= Z/d1Z⊕ · · · ⊕ Z/dnZ, and so it has cardinality d1 · · · dn.
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octahedra in Rn are the images of Kn, Bn and On respectively under linear trans-

formations of Rn. These are all central symmetric convex bodies.

(iii). Unit balls of norms: Recall that a norm on Rn is a function ‖·‖ : Rn → R>0

such that

• ‖λx‖ = |λ| · ‖x‖ for all x ∈ Rn, λ ∈ R;

• ‖x + y‖ 6 ‖x‖+ ‖y‖ for all x,y ∈ Rn;

• ‖x‖ = 0⇐⇒ x = 0.

Then the unit ball B‖·‖ := {x ∈ Rn : ‖x‖ 6 1} is a central symmetric convex body.

Indeed, recall that all norms on Rn induce the same topology, that is that the defi-

nitions of openness, closedness, interior points, boundedness, etc., do not depend on

the choice of the norm. This implies directly that B‖·‖ is closed and bounded and

has 0 as an interior point. The central symmetry and convexity follow easily from

the first and second property of a norm.

In fact, every central symmetric convex body arises from a norm. Let again C

be a central symmetric convex body in Rn and define for x ∈ Rn,

‖x‖C := min{λ ∈ R>0 : x ∈ λC}.

Lemma 2.2. (i) ‖ · ‖C is well defined.

(ii) ‖ · ‖C defines a norm on Rn.

(iii) λC = {x ∈ Rn : ‖x‖C 6 λ} for λ > 0.

Proof. (i). Clearly, ‖0‖C = 0. Let x ∈ Rn with x 6= 0. Consider the set

S := {λ : λ ∈ R>0, x ∈ λC}.

We have to prove that S is non-empty and that it has a minimum. Our argument

will imply also that this minimum is positive. Let r denote the (Euclidean) length

of x.

First, 0 is an interior point of C which means that there is δ > 0 such that C

contains all vectors in Rn of length at most δ. As a consequence (r/δ)C contains all

vectors of length at most r, so in particular x. Hence S 6= ∅. Thus, the set S has

an infimum, which we denote by µ.

The definition of the infimum implies that x ∈ (µ + ε)C for every ε > 0, hence

(µ + ε)−1x ∈ C for every ε > 0. Since the set C is bounded, this implies µ > 0.
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Further, since the set C is closed, it contains the limit of the sequence of points

{(µ + 1/m)−1x : m = 1, 2, . . .}, which is µ−1x. So x ∈ µC, i.e., µ ∈ S. Hence µ is

the minimum of S. This shows that ‖x‖C is well-defined and positive.

(ii). We have shown above that ‖x‖C > 0 if x 6= 0. The proofs of the other two

norm properties are left to the reader.

(iii). Left to the reader.

Exercise 2.2. Prove (ii) and (iii).

2.2 Minkowski’s first convex body theorem

Using Lebesgue theory, one can define an n-dimensional volume vol(S) ∈ R>0∪{∞}
(the so-called Lebesgue measure) for subsets S of Rn from a large class, the so-called

measurable subsets of Rn. We do not need the precise definition of Lebesgue mea-

sure or measurable set. What is important to us is that all open sets and all closed

sets are measurable, bounded measurable sets have finite volume, and the empty

set has volume 0. The volume of S is equal to the Riemann integral
∫
S
dx1 · · · dxn

for every set S for which this integral is defined. However, there are measurable

sets S for which the Riemann integral is not defined. We mention some important

properties of the volume:

1. Let S be a measurable subset of Rn. Then every translate a+S := {a+x : x ∈ S}
is also measurable and vol(a + S) = vol(S). Further, if φ is a linear transformation

of Rn, then φ(S) is measurable and vol(φ(S)) = | detφ| · vol(S).

2. Let S ⊂ Rn be measurable. Then Sc := Rn \ S is measurable.

3. Let Sn (n = 1, 2, 3, . . .) be a countable collection of measurable subsets of Rn.

Then S =
⋃∞
n=1 Sn is measurable. Moreover, if the sets Sn are pairwise disjoint,

then vol(S) =
∑∞

n=1 vol(Sn).

Theorem 2.3. (Minkowski’s first convex body theorem, 1896). Let C be a

central symmetric convex body in Rn and L a lattice in Rn of rank n. Suppose that

vol(C) > 2nd(L). Then C contains a point from L \ {0}.
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Choose a basis {v1, . . . ,vn} of L. We call

F := {x1v1 + · · ·+ xnvn : xi ∈ R, 0 6 xi < 1 for i = 1, . . . , n}

a fundamental parallelepiped for L. Notice that F has volume d(L) and that the

translates u + F (u ∈ L) are pairwise disjoint and cover Rn, that is,

Rn =
⋃
u∈L

(u + F ).

We present two proofs of Theorem 2.3: one based on computing volumes, and

another one based on a lattice point counting result which is of interest in itself.

First proof of Theorem 2.3. We first assume that vol(C) > 2nd(L). Then the set
1
2
C = {1

2
x : x ∈ C} has volume > d(L). For u ∈ L, define Su := 1

2
C∩(u+F ). Then

the sets Su (u ∈ L) are pairwise disjoint and their union is precisely 1
2
C. Hence∑

u∈L

vol(Su) = vol(1
2
C) > d(L).

We shift the sets Su into F , that is, we define

S∗u := −u + Su = (−u + 1
2
C) ∩ F for u ∈ L.

Since S∗u has the same volume as Su, we have∑
u∈L

vol(S∗u) =
∑
u∈L

vol(Su) > d(L) = vol(F ).

That is, we have a collection of subsets S∗u (u ∈ L) of F , the sum of whose volumes is

larger than the volume of F . So there are two distinct u,v ∈ L such that S∗u∩S∗v 6= ∅.

Pick a point a ∈ S∗u∩S∗v. Then for certain x,y ∈ 1
2
C we have x−u = y−v = a.

Hence x− y = u− v ∈ L \ {0}.

Now 2x, 2y ∈ C, by the symmetry of C we have −2y ∈ C, and by the convexity

of C we have 1
2
(2x− 2y) = x−y ∈ C. This shows that C contains a non-zero point

from L.

Now assume that vol(C) = 2nd(L). Suppose that C does not contain a non-zero

point from L. Then for every integer m > 1, (1 +m−1)C contains a non-zero point
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xm from L since vol((1 + m−1)C) = (1 + m−1)n vol(C) > 2nd(L). All points xm lie

in 2C, and since (2C) ∩ L is finite, there can be only finitely many distinct among

them. So there is a non-zero x ∈ L such that x ∈ (1 + m−1)C for infinitely many

m. Hence (1 +m−1)−1x ∈ C for infinitely many m. Taking the limit, using that C

is closed, it follows that x ∈ C.

Exercise 2.3. Prove the following theorem of Blichfeldt. let S be a measurable, not

necessarily convex, subset of Rn with vol(S) > d(L). Then there are x,y ∈ S with

x 6= y and x− y ∈ L.

Before giving the second proof of Theorem 2.3, we derive a lattice point counting

result. We use Landau’sO-notation: for real functions f, g, h, defined on subintervals

of R, we write

f(x) = g(x) +O(h(x)) as x→∞

if there are real numbers x0 and c such that f, g, h are defined for x > x0, and

|f(x)− g(x)| 6 ch(x) for x > x0. This means that if we approximate f(x) by g(x)

and let x→∞, then asymptotically our error has order of magnitude at most h(x).

For instance, for fixed n, a we have (x+ a)n = xn +O(xn−1) as x→∞.

The cardinality of a set S is denoted by #S.

Lemma 2.4. Let C be a central symmetric convex body and L a lattice in Rn. Put

α := vol(C)/d(L). Then

#(λC ∩ L) = αλn +O(λn−1) as λ→∞.

Proof. Let N(λ) := #(λC ∩ L). Consider the set S :=
⋃

u∈λC∩L(u + F ). Note that

S is a disjoint union of precisely N(C) parallelepipeds, each of volume d(L). So

S has volume N(λ) · d(L). Further, λC has volume λn vol(C). Suppose that all

parallelepipeds u + F lie either completely inside, or completely outside λC. Then

S = λC, and N(λ) = αλn. But of course, in general some of the parallelepipeds

u + F lie partly inside, partly outside λC. So by approximating N(λ) by αλn we

make an error, which we have to estimate.

Since F is bounded, there is a > 0 such that ‖y‖C 6 a for y ∈ F . We first prove

that

(*) (λ− a)C ⊆ S ⊆ (λ+ a)C for λ > a.
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Write x ∈ Rn as u+y, with u ∈ L and y ∈ F . So ‖x−u‖C 6 a. Translating (*) into

norms via Lemma 2.2, what we have to show that ‖x‖C 6 λ− a⇒ ‖u‖C 6 λ, and

‖u‖C 6 λ⇒ ‖x‖C 6 λ+ a. But this follows directly from the triangle inequality.

Taking volumes in (*), we obtain

(λ− a)n vol(C) 6 N(λ) · d(L) 6 (λ+ a)n vol(C),

and this shows that there are c > 0, λ0 > 0 such that |N(λ)− αλn| 6 cλn−1 for all

λ > λ0.

Second proof of Theorem 2.3. We first consider again the case that vol(C) > 2nd(L),

so that α > 2n. Let m be a positive integer. The previous lemma implies that

#(mC∩L) = αmn+O(mn−1) is larger than (2m)n, provided we choose m sufficiently

large.

We divide L into congruence classes modulo 2m by setting x ≡ y(mod 2m) if

(2m)−1(x − y) ∈ L. Thus, if {v1, . . . ,vn} is a basis of L and if we write x =

x1v1 + · · · + xnvn, y = y1v1 + · · · ynvn with xi, yi ∈ Z, we have x ≡ y(mod 2m) if

and only if xi ≡ yi(mod 2m) for i = 1, . . . , n. Hence L can be divided into precisely

(2m)n congruence classes modulo 2m.

Now by the box principle, there are two distinct x,y ∈ mC ∩ L with x ≡
y(mod 2m). So u := 1

2m(x − y) is a non-zero element of L. By the symmetry of

mC, we have −y ∈ mC, and by its convexity, 1
2
(x− y) ∈ mC. Hence u ∈ C. Thus

Theorem 2.3 follows in the case vol(C) > 2nd(L). The case vol(C) = 2nd(L) is

treated in the same way as in the first proof.

Exercise 2.4. Let C,L be a central symmetric convex body and lattice in Rn and r a

positive integer such that vol(C) > r ·2nd(L). Prove that there are u1, . . . ,ur ∈ C∩L
such that ui 6= ±uj for i, j = 1, . . . , r.

Hint. Given distinct points x0, . . . ,xr ∈ Rn, prove that there is i ∈ {1, . . . , r} such

that 2xi 6= xj + xk for all j, k ∈ {1, . . . , r} \ {i}.

We give some consequences of Theorem 2.3.

Corollary 2.5. Let li = αi1X1 + · · ·+αinXn (i = 1, . . . , n) be linear forms with real

coefficients and with det(l1, . . . , ln) 6= 0. Let A1, . . . , An be positive reals with

A1 · · ·An > | det(l1, . . . , ln)| .
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Then there is a non-zero x ∈ Zn with

|l1(x)| 6 A1, . . . , |ln(x)| 6 An .

Proof. Recall that

Kn = {y = (y1, . . . , yn) ∈ Rn : |yi| 6 1 for i = 1, . . . , n},

and define the lattice

L := {(A−11 l1(x), . . . , A−1n ln(x)) : x ∈ Zn}.

Clearly, Kn is a central symmetric convex body with volume 2n, while L is a lattice

of determinant | det(l1, . . . , ln)|/A1 · · ·An 6 1. Theorem 2.3 implies that Kn contains

a non-zero point from L. Corollary 2.5 follows.

In the introduction we showed that if ξ is a real irrational number, then there

are infinitely many pairs of integers (x, y) with gcd(x, y) = 1, y > 0 and

(2.2)

∣∣∣∣ξ − x

y

∣∣∣∣ 6 y−2.

We prove some generalizations.

Corollary 2.6 (Dirichlet, 1842). (i) Let ξ1, . . . , ξn be real numbers, at least one of

which is irrational. Then there are infinitely many tuples of integers (x1, . . . , xn, y)

with gcd(x1, . . . , xn, y) = 1, y > 0 and

(2.3)

∣∣∣∣ξi − xi
y

∣∣∣∣ 6 y−1−1/n for i = 1, . . . , n.

(ii) Let ξ1, . . . , ξn be real numbers such that 1, ξ1, . . . , ξn are linearly independent over

Q. Then there are infinitely many tuples of integers (x, y1, . . . , yn) with (y1, . . . , yn) 6=
(0, . . . , 0) and

|ξ1y1 + · · ·+ ξnyn − x| 6 max(|y1|, . . . , |yn|)−n.

Proof. We prove only (i). We consider instead of (2.3) the system of inequalities

(2.4) |xi − ξiy| 6 Q−1/n (i = 1, . . . , n), 0 < y 6 Q, gcd(x1, . . . , xn, y) = 1
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for any integer Q > 1, and let Q vary. If (x1, . . . , xn, y) is a tuple of integers satisfying

this system, then it is also a solution of

|xi − ξiy| 6 y−1/n for i = 1, . . . , n

with y > 0, gcd(x1, . . . , xn, y) = 1, and hence a solution of (2.3) with these proper-

ties.

Notice that the system of linear forms X1 − ξ1Xn+1, . . . , Xn − ξnXn+1, Xn+1 has

determinant 1. So by Corollary 2.5, for every integer Q > 1 there is a non-zero

tuple of integers (x1, . . . , xn, y) satisfying |xi − ξiy| 6 Q−1/n for i = 1, . . . , n and

|y| 6 Q. If y = 0 then x1 = · · · = xn = 0 which is impossible. Hence y 6= 0. By

changing signs and dividing out the gcd of x1, . . . , xn, y if necessary, we obtain a

solution xQ = (x1, . . . , xn, y) of (2.4).

We claim that if we letQ→∞, then xQ runs through an infinite set. Indeed, sup-

pose the contrary. Then there is an infinite sequence of integers Qi →∞ such that

for each Qi the point xQi
is equal to some fixed tuple of integers x = (x1, . . . , xn, y)

independent of i. But then, ξi = xi/y ∈ Q for i = 1, . . . , n, against our assumption.

Thus, as observed above, the vectors xQ give infinitely many solutions of (2.3)

with y > 0 and gcd(x1, . . . , xn, y) = 1.

Exercise 2.5. Prove the following common generalization of both (i) and (ii). Let

m,n be positive integers and li = ξi1X1 + · · · + ξinXn (i = 1, . . . ,m) linear forms

with real coefficients satisfying

{y ∈ Zn : li(y) ∈ Z for i = 1, . . . ,m} = {0}.

Then there are infinitely many tuples (x,y), with x = (x1, . . . , xm) ∈ Zm, y =

(y1, . . . , yn) ∈ Zn, y 6= 0, such that

|li(y)− xi| 6
(

max
16j6n

|yj|
)−n/m

for i = 1, . . . ,m.

Given a real number θ, we denote by ‖θ‖ the distance of θ to the nearest integer,

i.e., ‖θ‖ = min{|θ − m| : m ∈ Z}. Corollary 2.6 implies that for any two real

numbers ξ1, ξ2, not both in Q, there are infinitely many positive integers y such that

‖ξ1y‖ 6 y−1/2, ‖ξ2y‖ 6 y−1/2.
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This implies that there are infinitely many positive integers y such that

y‖ξ1y‖ · ‖ξ2y‖ 6 1.

In fact, this is true also if both ξ1, ξ2 ∈ Q, since then, there are infinitely many

integers y with ‖ξ1y‖ = 0, ‖ξ2y‖ = 0. The following famous conjecture, due to

Littlewood, is still open:

Littlewood’s Conjecture. Let ξ1, ξ2 be any two real numbers. Then for every

ε > 0 there exists a positive integer y such that

y‖ξ1y‖ · ‖ξ2y‖ < ε.

Note that ‖x‖ 6 1
2

for every x ∈ R. So Littlewood’s conjecture would imply also

that for any n > 3 reals ξ1, . . . , ξn, and for any ε > 0 there is a positive integer y

with y‖ξ1y‖ · · · ‖ξny‖ < ε.

Exercise 2.6. Let d be a positive integer that is not a square. Prove that there is a

constant c(d) > 0 such that

y · ‖
√
dy‖ > c(d) for all y ∈ Z>0

(that is, there is no one-dimensional analogue of Littlewood’s Conjecture).

In general, a real, irrational number ξ for which there exists c > 0 such that

y · ‖ξy‖ > c for all positive integers y is called badly approximable. It can be

shown that there are uncountably many badly approximable numbers.

2.3 Minkowski’s second convex body theorem

Let L be a lattice in Rn and C a central symmetric convex body in Rn.

Definition. The n successive minima λ1, . . . , λn of C with respect to L are defined

as follows:

λi is the minimum of all positive reals λ such that λC ∩L contains at least i linearly

independent points.
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Lemma 2.7. The successive minima λ1, . . . , λn of C with respect to L are well-

defined, and 0 < λ1 6 · · · 6 λn <∞.

Further, there are linearly independent v1, . . . ,vn ∈ L with vi ∈ λiC for i = 1, . . . , n.

Proof. Let ‖ · ‖C be the norm associated with C, defined by ‖x‖C = min{λ ∈ R>0 :

x ∈ λC}. Recall that λC = {x ∈ Rn : ‖x‖C 6 λ}.

We can order the points of L as a sequence x0 = 0,x1,x2, . . . such that 0 =

‖x0‖C < ‖x1‖C 6 ‖x2‖C 6 · · · . To see this, consider for each positive integer m

the points x ∈ L with m − 1 < ‖x‖C 6 m, these are the points with x ∈ mC,

x 6∈ (m − 1)C. Since L is discrete and mC is closed and bounded, there are only

finitely many such points and these can be ordered according to their ‖ · ‖C-values.

Define λ1 := ‖x1‖C and put k1 := 1, v1 := x1. For i = 2, . . . , n, let ki be the

first index k such that rank {x1, . . . ,xk} = i, and put λi := ‖xki‖C and vi := xki .

Clearly, 0 < λ1 6 · · · 6 λn <∞, v1, . . . ,vn are linearly independent, and vi ∈ λiC
for i = 1, . . . , n.

It remains to show that λi is the i-th successive minimum of C with respect

to L, for i = 1, . . . , n. Clearly, λiC ∩ L contains the i linearly independent points

v1, . . . ,vi. We have to show that λC ∩ L does not contain i linearly independent

points if 0 < λ < λi. Take such λ. Note that λC ∩ L contains precisely the points

x ∈ L with ‖x‖C 6 λ, i.e., the points x0,x1, . . . ,xk where ‖xk‖C 6 λ < ‖xk+1‖C .

Clearly, k < ki, so there cannot be i linearly independent points among x0, . . . ,xk.

This proves our lemma.

Remark. The vectors v1, . . . ,vn from the above lemma need not form a basis of L.

Minkowski’s second convex body theorem gives an optimal upper and lower

bound for the product of the successive minima of a central symmetric convex body

C with respect to a lattice L.

Theorem 2.8 (Minkowski’s second convex body theorem, 1910). Let L be

a lattice and C a central symmetric convex body, both in Rn, and let λ1, . . . , λn be

the successive minima of C with respect to L. Then

2n

n!
· d(L)

vol(C)
6 λ1 · · ·λn 6 2n · d(L)

vol(C)
.
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Remark. Theorem 2.8 is invariant under linear transformations in the following

sense. Let C,L, λ1, . . . , λn be as in Theorem 2.8. Let φ : Rn → Rn be a linear

transformation. Then φ(C) is a central symmetric convex body, φ(L) is a lattice,

and one easily shows that λ1, . . . , λn are the successive minima of φ(C) with respect

to φ(L). Further,

d(φ(L))

vol(φ(C))
=
| det(φ)| · d(L)

| det(φ)| · vol(C)
=

d(L)

vol(C)
.

For every lattice L of Rn there is a linear transformation φ of Rn such that φ(L) = Zn.

This observation shows that the general Minkowski’s second convex body theorem

with arbitrary lattices L follows from the special case where L = Zn.

We show that Minkowski’s second convex body theorem implies his first.

Second convex body theorem ⇒ First convex body theorem. Minkowski’s second con-

vex body theorem implies that λn1 6 2nd(L)/ vol(C). Assume that vol(C) > 2nd(L);

then λ1 6 1. Now λ1C contains a non-zero point from L and λ1C ⊆ C; hence C

contains a non-zero point from L.

Example 1. Let Bn be the Euclidean ball in Rn, given by x21 + · · · + x2n 6 1. Let

L be a lattice in Rn, and let λ1, . . . , λn be the successive minima of Bn with respect

to L. It is clear that x ∈ λBn if and only if ‖x‖2 6 λ, where ‖x‖2 =
(∑n

j=1 x
2
j

)1/2
is the Euclidean norm. There are linearly independent vectors v1, . . . ,vn ∈ L with

‖vi‖2 = λi for i = 1, . . . , n. In fact, v1 is a (not necessarily unique) shortest non-

zero vector in L, and for i = 2, . . . , n, vi is a shortest vector in L outside the linear

subspace spanned by v1, . . . ,vi−1.

Now Theorem 2.8 implies that

n∏
i=1

‖vi‖2 6 2nV (n)−1d(L),

where V (n) = vol(Bn). Recall that V (1) = 2, V (2) = π, and V (n) = 2π
n V (n − 2)

for n > 3. We mention once more that {v1, . . . ,vn} need not be a basis of L.

Example 2. We prove that the constant 2n in the upper bound of Theorem 2.8 is

best possible, i.e., the theorem becomes false if 2n is replaced by a smaller quantity.

Moreover, we show that every sequence of reals 0 < λ1 6 · · · 6 λn may occur as
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successive minima. For the lattice we take Zn. Let e1 = (1, 0, . . . , 0), . . . , en =

(0, . . . , 0, 1) be the standard basis of Zn. Further, let λ1, . . . , λn be reals with 0 <

λ1 6 · · · 6 λn. Define

C1 :=
{
x = (x1, . . . , xn) ∈ Rn : |xi| 6 λ−1i for i = 1, . . . , n

}
.

Clearly, C1 is a central symmetric convex body with volume 2n(λ1 · · ·λn)−1. Thus,

λ1 · · ·λn = 2nd(Zn) vol(C1)
−1.

We now show that λj is the j-th the successive minima of C1 with respect to Zn,

for j = 1, . . . , n. For λ > 0 we have

λC1 = {x ∈ Rn : |xi| 6 λ/λi for i = 1, . . . , n}.

This implies that λjC1 contains the j linearly independent points e1, . . . , ej. Let

λ < λj and let y = (y1, . . . , yn) ∈ Zn be a point in λC1. Then |yj| < 1, . . . , |yn| < 1,

implying that yj = · · · = yn = 0. So all lattice points in λC1 lie in the (j − 1)-

dimensional space spanned by e1, . . . , ej−1, and this space cannot contain j linearly

independent points. So λj is the j-th successive minimum of C1 with respect to Zn.

Example 3. We prove that the factor 2n/n! in the lower bound of Theorem 2.8 is

best possible. For our lattice we take again Zn. Let

C2 :=

{
x = (x1, . . . , xn) ∈ R :

n∑
i=1

λi|xi| 6 1

}
.

Then C2 is a central symmetric convex body of volume 2n

n!
(λ1 · · ·λn)−1 (verify this!).

Hence λ1 · · ·λn = 2n

n!
d(L)/ vol(C2).

Exercise 2.7. Prove that λ1, . . . , λn are the successive minima of C2 with respect

to Zn.

We deduce the lower bound for λ1 · · ·λn in Theorem 2.8. For a proof of the upper

bound, which is much more involved, we refer to the book of Cassels, Chapter 8.

We need a lemma.

Lemma 2.9. Let w1, . . . ,wr ∈ Rn. Then{ r∑
i=1

xiwi : xi ∈ R for i = 1, . . . , n,
r∑
i=1

|xi| 6 1
}
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is the smallest convex subset in Rn, symmetric about 0, that contains w1, . . . ,wr,

that is, the set itself is convex and symmetric about 0, and it is contained in every

other convex set which is symmetric about 0 and contains w1, . . . ,wr.

Exercise 2.8. Prove this lemma.

Proof of the lower bound in Theorem 2.8. Choose linearly independent vectors

v1, . . . ,vn of L such that vi ∈ λiC for i = 1, . . . , n. Then λ−1i vi ∈ C for i = 1, . . . , n.

Consider the set

D :=
{ n∑

i=1

xi · λ−1i vi : xi ∈ R for i = 1, . . . , n,
n∑
i=1

|xi| 6 1
}
.

By Lemma 2.9, this is the smallest symmetric convex set containing the points

λ−1i vi ∈ C (i = 1, . . . , n). Hence D ⊆ C.

Note that D is the image of the n-dimensional octahedron

On :=
{

x = (x1, . . . , xn) ∈ Rn :
n∑
i=1

|xi| 6 1
}

under the linear transformation φ given by φ(ei) = λ−1i vi for i = 1, . . . , n. Hence

vol(D) = | det(φ)| · vol(On) =
| det(v1, . . . ,vn))|

λ1, . . . , λn
· 2n

n!

=
d(M)

λ1, . . . , λn
· 2n

n!
,

where M is the lattice with basis {v1, . . . ,vn}.

Clearly, M is a sublattice of L, therefore, d(M) = |L : M | · d(L) > d(L). By

combining this with what we obtained above, we obtain

vol(C) > vol(D) >
2n

n!
d(L)(λ1 · · ·λn)−1.

This implies the lower bound for λ1 · · ·λn from Theorem 2.8.

We prove a weaker version of the upper bound in the special case that C = Bn

is the n-dimensional Euclidean unit ball. Recall that the associate norm is ‖ · ‖2. In

fact, we prove the following theorem which goes back to Hermite.
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Theorem 2.10. Let L be a lattice in Rn. Then L has a basis {v1, . . . ,vn} with

‖v1‖2 · · · ‖vn‖2 6 (4/3)n(n−1)/4 · d(L).

Corollary 2.11. let λ1, . . . , λn be the successive minima of Bn with respect to L.

Then λ1 · · ·λn 6 (4/3)n(n−1)/4 · d(L).

For suppose that ‖v1‖2 6 · · · 6 ‖vn‖2. Then clearly, λi 6 ‖vi‖2 for i = 1, . . . , n.

Corollary 2.12. Let E be a central ellipsoid in Rn and L a lattice in Rn. Then for

the successive minima λ1, . . . , λn of E with respect to L we have

λ1 · · ·λn 6 (4/3)n(n−1)/4 · V (n) · d(L)

vol(E)
,

where V (n) := vol(Bn).

For this is clearly true for E = Bn, and the assertion for an arbitrary ellipsoid

E follows by taking a linear transformation φ such that E = φ(Bn) and using the

invariance of Corollary 2.12 under linear transformations.

In fact, by applying a theorem from 1949 of the German mathematician Fritz

John, one can proceed further, and prove a weaker version of Minkowski’s theorem

for arbitrary central symmetric convex bodies. For a proof, we refer to Schmidt’s

lecture notes, p. 87 (there called ’Jordan’s Theorem’).

Theorem 2.13. Let C be a central symmetric body in Rn. Then there is a central

ellipsoid E such that E ⊆ C ⊆
√
nE.

As has also been explained in Schmidt’s lecture notes (and you should be able to

prove this yourself), together with Corollary 2.12, this implies the following weaker

version of Minkowski’s second convex body theorem:

Corollary 2.14. There is a number c(n) > 0, depending only on n, with the fol-

lowing property. Let C be a central symmetric convex body, and L a lattice in Rn.

Then for the successive minima λ1, . . . , λn of C with respect to L we have

λ1 · · ·λn 6 c(n) · d(L)

vol(C)
.
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Proof of Theorem 2.10. We need some first year linear algebra. We proceed by

induction on n. For n = 1 the assertion is easily verified. Let n > 2 and assume

Theorem 2.10 is true for lattices of dimension n− 1. Let v1 be a non-zero vector in

L of minimal length. We take for granted that v1 can be augmented to a basis of

L. 2 Then ‖v1‖2 = λ1. Put e1 := λ−11 v1. Then e1 has length 1. We augment e1 to

an orthonormal basis {e1, . . . , en} of Rn. Then a vector x ∈ Rn can be expressed

uniquely as
∑n

i=1 xiei with xi ∈ R for all i, and ‖x‖2 =
(∑n

i=1 x
2
i

)1/2
. We define a

linear map

ρ : Rn → Rn−1 :
n∑
i=1

xiei 7→ (x2, . . . , xn).

Define L′ := ρ(L). We need a few lemmas.

Lemma 2.15. L′ is a lattice in Rn−1.

More precisely, if {v1, . . . ,vn} is any basis of L containing v1, then {ρ(v2), . . . , ρ(vn)}
is a basis of L′.

Proof. Left to the reader.

Lemma 2.16. Let {v′2, . . . ,v′n} be a basis of L′ and let vi ∈ L with ρ(vi) = v′i for

i = 2, . . . , n. Then {v1,v2, . . . ,vn} is a basis of L.

Proof. Let w be any element of L. We have to show that w =
∑n

i=1 xivi with xi ∈ Z.

Since {v1,v2, . . . ,vn} is a basis of Rn, as can be easily verified, we know that w can

be expressed as such, but with xi ∈ R. By applying ρ, we get xi ∈ Z for i = 2, . . . , n.

Let m be an integer with |x1−m| 6 1
2
. Then (x1−m)v1 = w−mv1−

∑n
i=2 xivi ∈ L.

Since v1 is a non-zero vector of minimal length in L, we must have x1 = m ∈ Z.

Lemma 2.17. d(L) = λ1 · d(L′).

2This can be deduced from the following theorem on free abelian groups: if L is a free abelian

group of rank n, and M is a subgroup of L, then M is free of rank s 6 n, and there are a basis

{w1, . . . ,wn} of L, and positive integers d1, . . . , ds, such that {d1w1, . . . , dsws} is a basis of M .

You have to apply this with L the lattice from above, and M the subgroup generated by v1. Then

a basis of M is necessarily either {v1} or {−v1}.

25



Proof. Pick a basis {v1, . . . ,vn} of L. Then v1 = λ1e1 and vi =
∑n

j=1 aijej with

aij ∈ R for i = 2, . . . , n. Recall that ρ(vi) = (ai2, . . . , ain). Now we get

d(L) = | det(e1, . . . , en)| ·

∣∣∣∣∣∣∣∣∣det


λ1 0 · · · 0

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann


∣∣∣∣∣∣∣∣∣

= λ1 · | det(ρ(v2), . . . , ρ(vn))| = λ1 · d(L′).

Lemma 2.18. Let v′ ∈ L′. Then there is v ∈ L with ρ(v) = v′ and ‖v‖22 6 4
3
·‖v′‖22.

Proof. If v′ = 0 we may take v = 0. Assume v′ 6= 0. Write v′ = (x2, . . . , xn). Take

w ∈ L with ρ(w) = v′. Then w = xe1 +
∑n

i=2 xiei with x ∈ R. Let m be an integer

such that |x − mλ1| 6 1
2
λ1 and put v := w − mv1. Then v ∈ L, ρ(v) = v′ and

v =
∑n

i=1 xiei with |x1| 6 1
2
λ1 = 1

2
‖v1‖2. Now using that v1 is a vector of minimal

length in L we get

‖v‖22 = x21 + x22 + · · ·+ x2n = x21 + ‖v′‖2 6 1
4
‖v1‖22 + ‖v′‖22 6 1

4
‖v‖22 + ‖v′‖22.

Hence 3
4
· ‖v‖22 6 ‖v′‖22.

Completion of the induction step. By the induction hypothesis, L′ has a basis

{v′2, . . . ,v′n} such that

n∏
i=2

‖v′i‖2 6 (4/3)(n−1)(n−2)/4 · d(L′).

By Lemma 2.18, for i = 2, . . . , n, there exists vi ∈ L such that ρ(vi) = v′i and

‖vi‖2 6
√

4
3
‖v′i‖2. By Lemma 2.16, {v1, . . . ,vn} is a basis of L. For this basis we

have

n∏
i=1

‖vi‖2 6 (4/3)(n−1)/2‖v1‖2 ·
n∏
i=2

‖v′i‖2

6 (4/3)(n−1)/2+(n−1)(n−2)/4 · λ1 · d(L′) = (4/3)n(n−1)/4d(L),

where in the last step we used Lemma 2.17.
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Exercise 2.9. Prove Hadamard’s inequality: if L is a lattice in Rn with basis

{v1, . . . ,vn}, then ‖v1‖2 · · · ‖vn‖2 > d(L).

Hint. From the Gram-Schmidt orthogonalization process, one computes an or-

thonormal basis {e1, . . . , en} of Rn such that vi =
∑i

j=1 aijej with aij ∈ R for

i = 1, . . . , n, j = 1, . . . , i.

Exercise 2.10. Let li = αi1X1 + · · ·+αinXn (i = 1, . . . , n) be linear forms with real

coefficients and with det(l1, . . . , ln) 6= 0. Let A1, . . . , An be positive reals. Denote by

λ1, . . . , λn the successive minima of the central symmetric convex body

C := {x ∈ Rn : |l1(x)| 6 A1, . . . , |ln(x)| 6 An}

with respect to Zn. Using Theorem 2.10, prove that

λ1 · · ·λn 6 (4/3)n(n−1)/4
| det(l1, . . . , ln)|

A1 · · ·An
.

For many applications, for instance to factorization of polynomials, cryptogra-

phy, determining all solutions of Diophantine equations from certain classes, it is

desirable to have a computationally efficient algorithm, which for a given lattice

computes a basis such as in Theorem 2.10. In 1982, Arjen Lenstra, Hendrik Lenstra

and László Lovász developed a fundamental algorithm, now known as the LLL lattice

basis reduction algorithm which, from input an arbitrary basis of a given lattice L,

computes a so-called LLL-reduced basis of L. Such a basis {v1, . . . ,vn} has various

properties, among which

‖v1‖2 · · · ‖vn‖2 6 2n(n−1)/4 · d(L).

So in certain respects it is slightly worse than the one from Theorem 2.10, but

good enough for most purposes. For more information on the LLL-algorithm, see

for instance the paper where it was introduced, A.K. Lenstra, H.W. Lenstra, L.

Lovász, Factoring polynomials with rational coefficients, Mathematische Annalen

261 (1982), 515–534.

2.4 Polar lattices

Henceforth, vectors in Rn will be column vectors, unless otherwise stated. By AT

we denote the transpose of a matrix A. As usual, the standard inner product of
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x = (x1, . . . , xn)T ,y = (y1, . . . , yn)T ∈ Rn is given by 〈x,y〉 =
∑n

i=1 xiyi = xTy. We

denote as before by Bn the n-dimensional Euclidean ball given by ‖x‖2 = 〈x,x〉1/2 6
1. We will need the Cauchy-Schwarz inequality:

|〈x,y〉| 6 ‖x‖2 · ‖y‖2 for x,y ∈ Rn.

Let L be a lattice in Rn The polar (or reciprocal) of L is given by

L∗ := {x ∈ Rn : 〈x,y〉 ∈ Z for all y ∈ L}.

Let {v1, . . . ,vn} be a basis of L, and V the matrix with columns v1, . . . ,vn. Thus,

L = {V z : z ∈ Zn}. Using 〈x, V y〉 = 〈V Tx,y〉 for x,y ∈ Rn, we obtain

L∗ = {x ∈ Rn : 〈x, V z〉 ∈ Z ∀z ∈ Zn}
= {x ∈ Rn : 〈V Tx, z〉 ∈ Z ∀z ∈ Zn}
= {x ∈ Rn : V Tx ∈ Zn} = {(V T )−1w : w ∈ Zn}.

Hence L∗ is a lattice in Rn, with basis the columns v∗1, . . . ,v
∗
n of (V T )−1. Note that

d(L∗) = | det(V T )−1| = | detV |−1 = d(L)−1.

Theorem 2.19. Let L be a lattice in Rn and L∗ its polar. Further, let λ1, . . . , λn be

the successive minima of Bn with respect to L, and λ∗1, . . . , λ
∗
n the successive minima

of Bn with respect to L∗. Then

1 6 λiλ
∗
n+1−i 6 c(n) for i = 1, . . . , n,

where c(n) depends only on n.

Remark. If we use Minkowski’s second convex body theorem, we obtain the above

theorem with c(n) = 4n vol(Bn)−2. If we use instead Theorem 2.10, we can prove

the above theorem with c(n) = (4/3)n(n−1)/2. For the application we have in mind,

the precise value of c(n) doesn’t matter.

Proof. We first deduce the lower bound for λiλ
∗
n+1−i. Let v1, . . . ,vn be linearly

independent vectors from L such that vi ∈ λiBn, i.e., ‖vi‖2 = λi for i = 1, . . . , n.

Likewise, let v∗1, . . . ,v
∗
n be linearly independent vectors from L∗ such that ‖v∗i ‖2 = λ∗i

for i = 1, . . . , n.
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Take i ∈ {1, . . . , n}, and consider the set of vectors

{x ∈ Rn : 〈vk,x〉 = 0 for k = 1, . . . , i}.

Since v1, . . . ,vi are linearly independent, this is a linear subspace of Rn of dimension

n− i. Hence at least one of the vectors v∗1, . . . ,v
∗
n+1−i does not lie in this space. It

follows that there are indices k 6 i, l 6 n+ 1− i, such that 〈vk,v∗l 〉 6= 0.

But 〈vk,v∗l 〉 ∈ Z, since vk ∈ L, v∗l ∈ L∗. Hence |〈vk,v∗l 〉| > 1. Now by the

Cauchy-Schwarz inequality,

1 6 |〈vk,v∗l 〉| 6 ‖vk‖2‖v∗l ‖2 6 λkλ
∗
l 6 λiλ

∗
n+1−i.

This establishes the lower bound. To prove the upper bound, recall that by

Theorem 2.10, we have

λ1 · · ·λn 6 c′(n)d(L), λ∗1 · · ·λ∗n 6 c′(n)d(L∗),

where c′(n) depends on n only. Further, d(L∗) = d(L)−1. Hence

n∏
i=1

(λiλ
∗
n+1−i) 6 c′(n)2d(L)d(L∗) = c′(n)2 =: c(n).

It follows that for i = 1, . . . , n,

λiλ
∗
n+1−i 6

c(n)∏
j 6=i λjλ

∗
n+1−j

6 c(n).

This proves Theorem 2.19.

As an application we show that if the polar lattice L∗ does not have small non-

zero vectors, then every point of Rn can be approximated closely by a point from

L.

Corollary 2.20. Let L be a lattice of Rn and R > 0. Assume that ‖y‖2 > R

for every non-zero y ∈ L∗. Then for every b ∈ Rn there is x ∈ L such that

‖x− b‖2 6 n · c(n)/2R.

Proof. Let λ1, . . . , λn be the successive minima of Bn with respect to L, and let

λ∗1, . . . , λ
∗
n be the successive minima of Bn with respect to L∗. By assumption,
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λ∗1 > R. So by Theorem 2.19, λn 6 c(n)/R. Choose linearly independent vectors

v1, . . . ,vn ∈ L with ‖vi‖2 = λi for i = 1, . . . , n. So ‖vi‖2 6 λn 6 c(n)/R for

i = 1, . . . , n.

Let b ∈ Rn. Then b = ξ1v1+ · · ·+ξnvn with ξ1, . . . , ξn ∈ R. There exist integers

z1, . . . , zn with |zi− ξi| 6 1
2

for i = 1, . . . , n. Put x := z1v1 + · · ·+ znvn. Then x ∈ L
and

‖x− b‖2 = ‖(z1 − ξ1)v1 + · · ·+ (zn − ξn)vn‖2 6 1
2
(‖v1‖2 + · · ·+ ‖vn‖2)

6 n · c(n)/2R.

2.5 Kronecker’s approximation theorem

Recall that by Dirichlet’s Theorem, if ξ1, . . . , ξn are real numbers of which at least

one is irrational, then there are infinitely many tuples of integers x1, . . . , xn, y such

that

|ξi − xi/y| 6 y−1−1/n for i = 1, . . . , n, y > 0.

This implies that for every ε > 0, there exists (x1, . . . , xn, y) ∈ Zn+1 such that

|ξiy − xi| 6 ε for i = 1, . . . , n, y > 0.

Kronecker’s approximation theorem deals with systems of inhomogeneous inequali-

ties of the shape

(2.5) |ξiy − xi − θi| 6 ε (i = 1, . . . , n) in x1, . . . , xn, y ∈ Z

where θ1, . . . , θn are any real numbers.

Theorem 2.21. Let ξ1, . . . , ξn, θ1, . . . , θn be real numbers. Suppose that 1, ξ1, . . . , ξn
are linearly independent over Q. Then for every ε > 0, there exists (x1, . . . , xn, y) ∈
Zn+1 with (2.5).

Remark. The condition that 1, ξ1, . . . , ξn be linearly independent over Q can not

be removed. For suppose that 1, ξ1, . . . , ξn are linearly dependent over Q. Then
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there are integers a1, . . . , an, a0, not all 0, such that a1ξ1 + · · ·+ anξn = a0. In fact,

at least one of a1, . . . , an is non-zero. Choose θ1, . . . , θn ∈ R such that

a1θ1 + · · ·+ anθn 6∈ Z.

Let δ be the distance from a1θ1 + · · · + anθn to the nearest integer. We show that

for sufficiently small ε > 0, (2.5) is not solvable. Indeed, suppose (2.5) is solvable

and let (x1, . . . , xn, y) ∈ Zn+1 be a solution. Then∣∣∣ n∑
i=1

ai(ξiy − xi − θi)
∣∣∣ 6 n∑

i=1

|ai| · |ξiy − xi − θi| 6 ε

n∑
i=1

|ai|.

But on the other hand,∣∣∣ n∑
i=1

ai(ξiy − xi − θi)
∣∣∣ =

∣∣∣a0y − n∑
i=1

aixi −
n∑
i=1

aiθi

∣∣∣ > δ.

Hence (2.5) is unsolvable for ε < δ/
∑n

i=1 |ai|.

Proof of Theorem 2.21. We apply Corollary 2.20 with an astutely chosen lattice.

Let M be a large positive integer, to be chosen later. Consider the lattice in Rn+1,

LM :=
{(
x1 − ξ1y, . . . , xn − ξny,M−1y

)
: x1, . . . , xn, y ∈ Z

}
= {Az : z ∈ Zn+1},

where

A =


1 0 −ξ1

. . .
...

0 1 −ξn
0 0 M−1

 , z =


x1
...

xn
y

 .

Put b := (θ1, . . . , θn, 0)T .

We want to show for appropriate M that there is u ∈ LM such that ‖u−b‖2 6 ε.

Writing u = Az with z = (x1, . . . , xn, y)T ∈ Zn+1, this translates into( n∑
i=1

(xi − ξiy − θi)2 +M−2y2
)1/2

6 ε,

and this certainly implies that x1, . . . , xn, y satisfy (2.5).
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By Corollary 2.20, we have to show that we can chooseM in such a way that every

non-zero vector in the polar lattice L∗M has length at least R := (n+1) · c(n+1)/2ε.

It is easy to verify that

(AT )−1 =


1 0

. . .
...

1 0

Mξ1 . . . Mξn M

 .

Hence

L∗M =
{

(AT )−1z : z ∈ Zn+1
}

=
{(
x1, . . . , xn,M(ξ1x1 + · · ·+ ξnxn + y)

)
: x1, . . . , xn, y ∈ Z

}
.

Let µ be the minimum of all numbers |ξ1x1 + · · ·+ ξnxn + y|, taken over all integers

x1, . . . , xn, y such that

|xi| < R for i = 1, . . . , n, |ξ1x1 + · · ·+ ξnxn + y| 6 1,

(x1, . . . , xn, y) 6= 0.

Then µ is the minimum of finitely many real numbers which are all positive, since

1, ξ1, . . . , ξn are linearly independent over Q. Hence µ > 0.

Now let M be an integer with M > R/µ and M > R. Then for every non-zero

u ∈ L∗M we have indeed

‖u‖2 > R

since at least one of the numbers x1, . . . , xn, M(ξ1x1 + · · ·+ ξnxn + y) has absolute

value at least R. This completes our proof.

In fact, Kronecker proved a much more general approximation theorem, of which

Theorem 2.21 is just a special case. As usual, ‖x‖2 denotes the Euclidean norm of

a vector x ∈ Rn.

Theorem 2.22 (Kronecker, 1887). Let A be an m×n-matrix with real entries, and

b ∈ Rm a column vector. Then the following two assertions are equivalent:

(i) For every y ∈ Rm with ATy ∈ Zn we have 〈b,y〉 ∈ Z;

(ii) For every ε > 0 there is z ∈ Zn such that

‖Az− b‖2 6 ε.
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For a proof, we refer to Siegel, Chapter II.

Exercise 2.11. a) Prove (ii)=⇒(i).

b) Deduce Theorem 2.21 from Theorem 2.22.
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