
Chapter 5

Linear forms in logarithms
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5.1 Lower bounds for linear forms in logarithms

We recall Baker’s transcendence result from the previous chapter. As before, ez =∑∞
k=0 z

k/k!.

Theorem 5.1 (A. Baker, 1966). Let α1, . . . , αm ∈ Q\{0, 1}, γ ∈ Q and β1, . . . , βm ∈
Q \ {0}. For i = 1, . . . , n let logαi be a solution of ez = αi and assume that

logα1, . . . , logαm are linearly independent over Q.

Then γ + β1 logα1 + · · ·+ βm logαm 6= 0.

One may ask about quantitative versions of this theorem, i.e., can we give a

strictly positive lower bound for the absolute value of the left-hand side? In 1967,

Baker indeed obtained such a lower bound, which we conveniently refer to as a ’lower

bound for a linear form in logarithms’. Baker’s lower bound turned out to be an

extremely powerful tool, not only in transcendence theory, but also in applications
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which have nothing to do with transcendence, such as Diophantine equations and

Gauss’ class number 1 problem. For this reason, Baker’s lower bound from 1967

was improved first by Baker himself and subsequently by many others. We will give

some applications to certain Diophantine equations.

We recall a lower bound for linear forms in logarithms by Baker from 1975. In

Chapter 2 we defined the height H(α) of α ∈ Q as the maximum of the absolute

values of the coefficients of the primitive minimal polynomial Fα of α.

Theorem 5.2 (A. Baker, 1975). Let α1, . . . , αm ∈ Q \ {0, 1} and γ, β1, . . . , βm ∈ Q.

Suppose that α1, . . . , αm, β1, . . . , βm and γ have degrees at most d, that α1, . . . , αm
have heights at most A, and that γ, β1, . . . , βm have heights at most B. For i =

1 . . .m, let logαi be any solution of ez = αi. Assume that

Λ := γ + β1 logα1 + · · ·+ βm logαm 6= 0.

Then

|Λ| > (eB)−C

where C is an effectively computable positive number depending on m, d and A and

on the choices of logα1, . . . , logαn.

The assertion that C is effectively computable means that by going through the

proof of Theorem 5.2 one can compute an explicit value of C.

For applications, the dependence of the lower bound on B turned out to be

the most important. Quite often, for certain αi, γ, βi arising from a particular

application, one is able to show that |Λ| 6 e−C
′B with C ′ > 0 depending on the

same parameters as in the theorem. Then in combination with the lower bound

(eB)−C for |Λ| one derives an upper bound for B, i.e., for the heights of the βi and

γ, from which one can draw important conclusions.

For our applications, we restrict ourselves to the case that γ = 0 and βi = bi ∈ Z
for i = 1, . . . ,m. In that case, we can get rid of the logarithms.

Corollary 5.3. Let α1, . . . , αm ∈ Q \ {0, 1} and let b1, . . . , bm ∈ Z such that

αb11 · · ·αbmm 6= 1.

Then

|αb11 · · ·αbmm − 1| > (eB)−C
′
,
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where B := max(|b1|, . . . , |bm|) and where C ′ is an effectively computable positive

number depending only on m and on the degrees and heights of α1, . . . , αm.

Proof. For the logarithm of a complex number z we choose log z = log |z| + iarg z

with −π < arg z 6 π. With this choice of log we have

log(1 + z) =
∞∑
n=1

(−1)n−1

n
· zn for z ∈ C with |z| < 1.

Using this power series expansion, one easily shows that

| log(1 + z)| 6 |z|(1 + |z|+ |z|2 + · · · ) 6 2|z| for z ∈ C with |z| 6 1
2
.

We apply this with z := αb11 · · ·αbmm − 1. If |z| > 1/2 we have something much

stronger than the lower bound we want to deduce, so we suppose that |z| 6 1/2.

We have to estimate from below | log(1 + z)|.

Recall that the complex logarithm is additive only modulo 2πi. That is,

log(1+z) = b1 logα1+· · ·+bm logαm+2kπi = b1 logα1+· · ·+bm logαm+2k log(−1)

for some k ∈ Z, since log(−1) = πi. Applying Theorem 5.2 we get

| log(1 + z)| >
(
emax(B, |2k|)

)−C
where C is an effectively computable constant depending only on m and the heights

and degrees of α1, . . . , αm.

We still have to get rid of 2k in the lower bound and to this end, we proceed as

follows. Since | log(1 + z)| 6 2|z| 6 1 we have |Im log(1 + z)| 6 1 and so

|b1Im logα1 + · · ·+ bmIm logαm + 2kπ| 6 1.

By our choice of the logarithm we have |Im logαi| 6 π for i = 1, . . . ,m. So

|2k| 6 π−1
(

1 +
m∑
j=1

π · |bj|
)
6 (m+ 1)B.

This implies

|αb11 · · ·αbmm − 1| = |z| > 1
2
| log(1 + z)| > 1

2
((m+ 1)eB)−C > (eB)−C

′

for a suitable C ′, as required.
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We should mention that although the proof of Corollary 5.3 uses techniques from

transcendence theory, the result itself has nothing to do anymore with transcendence:

it is an inequality for algebraic numbers!

For completeness, we give a completely explicit version of Corollary 5.3 in the

case that α1, . . . , αm are rational numbers. Recall that the height of a rational

number a = x/y with x, y ∈ Z coprime, is given by H(a) := max(|x|, |y|).

Theorem 5.4 (Matveev, 2000). Let a1, . . . , am be non-zero rational numbers and

let b1, . . . , bm be integers such that

ab11 · · · abmm 6= 1.

Then |ab11 · · · abmm − 1| > (eB)−C
′
, where

B = max(|b1|, . . . , |bm|), C ′ = 1
2
e ·m4.530m+3

m∏
j=1

max
(
1, logH(aj)

)
.

To illustrate the power of the above results we give a quick application.

Corollary 5.5. let a, b be integers with a > 2, b > 2. Then there is an effectively

computable number C1 > 0, depending only on a, b, such that for any two positive

integers m,n with am 6= bn,

|am − bn| > max(am, bn)

(emax(m,n))C1
.

Consequently, for any non-zero integer k, there exists an effectively computable num-

ber C2, depending on a, b, k such that if m,n are positive integers with am− bn = k,

then m,n 6 C2.

Proof. Let m,n be positive integers. Put B := max(m,n). Assume without loss of

generality that am > bn. By Corollary 5.3 or Theorem 5.4 we have

|1− bna−m| > (eB)−C1 ,

where C1 is an effectively computable number depending only on a, b. Multiplying

with am gives our first assertion.
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Now let m,n be positive integers with am − bn = k. Put again B := max(m,n).

Since a, b > 2 we have am > 2m, bn > 2n, hence am = max(am, bn) > 2B. So,

|k| > 2B · (eB)−C1 .

This proves that B is bounded above by an effectively computable number depending

on a, b, k.

Exercise 5.1. In 1995, Laurent, Mignotte and Nesterenko proved the following ex-

plicit estimate for linear forms in two logarithms. Let a1, a2 be two positive ra-

tional numbers 6= 1. Further, let b1, b2 be non-zero integers. Suppose that Λ :=

b1 log a1 − b2 log a2 6= 0. Then

log |Λ| >

−24.34

(
max

{
log
( |b1|

logH(a2)
+

|b2|
logH(a1)

)
+ 0.14 , 21

})2

logH(a1) logH(a2) .

Using this estimate, compute an upper bound C, such that for all positive integers

m,n with 97m − 89n = 8 we have m,n 6 C.

Hint. Use | log(1 + z)| 6 2|z| if |z| 6 1
2
.

In 1844, Catalan conjectured that the equation in four unknowns,

xm − yn = 1 in x, y,m, n ∈ Z with x, y,m, n > 2

has only one solution, that is, 32−23 = 1. In 1976, as one of the striking consequences

of the results on linear forms in logarithms mentioned above, Tijdeman proved that

there is an effectively computable constant C, such that for every solution (x, y,m, n)

of Catalan’s equation, one has xm, yn 6 C. The constant C can be computed

but it is extremely large. Several people tried to prove Catalan’s conjecture, on

the one hand by reducing Tijdeman’s constant C using sharper linear forms in

logarithm estimates, on the other hand by showing with techniques from algebraic

number theory that xm, yn have to be very large as long as (xm, yn) 6= (32, 23), and

finally using heavy computations. This didn’t lead to success. In 2000 Mihailescu

managed to prove Catalan’s conjecture by an algebraic method which is completely

independent of linear forms in logarithms.

We give another application. Consider the sequence {an} with an = 2n for

n = 0, 1, 2, . . .. Note that an − an−1 = 1
2
an. Similarly, we may consider the in-

creasing sequence {an} of numbers which are all composed of primes from {2, 3},
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i.e., 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, . . . and ask how the gap an− an−1 compares

with an as n→∞. More generally, we may take a finite set of primes and ask this

question about the sequence of consecutive integers composed of these primes.

Theorem 5.6 (Tijdeman, 1974). Let S = {p1, . . . , pt} be a finite set of distinct

primes, and let a0 < a1 < a2 < · · · be the sequence of consecutive positive integers

composed of primes from S. Then there are effectively computable positive numbers

c1, c2, depending on t, p1, . . . , pt, such that

an − an−1 >
an

c1(log an)c2
for n = 1, 2, . . . .

Proof. let n > 1. We have an = pk11 · · · pktt , and an−1 = pl11 · · · pltt with non-negative

integers ki, li. By Corollary 5.3,∣∣∣1− an−1
an

∣∣∣ = |1− pl1−k11 · · · plt−ktt | > (eB)−C ,

where B := max(|l1− k1|, . . . , |lt− kt|) and C is effectively computable and depends

only on t, p1, . . . , pt. Note that

ki 6
log an
log pi

6
log an
log 2

, li 6
log an−1

log pi
6

log an
log 2

for i = 1, . . . , t,

hence B 6 log an/ log 2. It follows that an − an−1 > an(e log an/ log 2)−C .

5.2 Dirichlet’s Unit Theorem

We want to apply the results from the previous section to certain Diophantine

equations, and for this, we need some facts on units in algebraic number fields.

Let K be an algebraic number field of degree d. Recall that K has precisely d

embeddings in C. An embedding σ of K in C is called real if σ(K) ⊂ R, and complex

otherwise. If σ is a complex embedding of K, then so is σ : x 7→ σ(x), i.e., the

composition of σ and complex conjugation. Hence the complex embeddings of K

occur in complex conjugate pairs {σ, σ}, and so, the number of complex embeddings

of K is even. Let us denote by r1 the number of real embeddings of K, and by 2r2
the number of complex embeddings of K. Thus,

r1 + 2r2 = d.
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Further, we order the embeddings σ1, . . . , σd of K in such a way that

σ1, . . . , σr1 are the real embeddings,

σr1+r2+1 = σr1+1, . . . , σr1+2r2 = σr1+r2 .

We denote as usual by OK the ring of integers of K, and by O∗K the group of

units of OK . Further, we define the norm and house of α ∈ OK by respectively,

NK/Q(α) := σ1(α) · · ·σd(α), α := max
16i6d

|σi(α)|.

Recall that the norm is multiplicative, and that NK/Q(α) ∈ Z for α ∈ OK .

Lemma 5.7. Let α ∈ OK. Then α ∈ O∗K ⇐⇒ NK/Q(α) = ±1.

Proof. =⇒. Let α ∈ O∗K . Then α, α−1 ∈ OK . Hence NK/Q(α) ∈ Z, NK/Q(α−1) ∈ Z.

But the product of these two integers is NK/Q(1) = 1, hence both integers are ±1.

⇐= Suppose σ1 = id. Then α−1 = ±
∏d

i=2 σi(α) is an algebraic integer in K,

hence in OK . So α ∈ O∗K .

To study the units of OK , it will be useful to consider the logarithms of the

absolute values of their conjugates. More precisely, we consider the map

−→
log: O∗K → Rd : ε 7→ (log |σ1(ε)|, . . . , log |σd(ε)|).

This is clearly a group homomorphism from O∗K with multiplication to Rd with

addition. For ε ∈ O∗K we have

log |σr1+r2+i(ε)| = log |σr1+i(ε)| for i = 1, . . . , r2,
d∑
i=1

log |σi(ε)| = log |NK/Q(ε)| = 0,

so
−→
log maps O∗K to the linear subspace H of Rd, consisting of the vectors x =

(x1, . . . , xd) ∈ Rd satisfying the equations

xr1+r2+1 = xr1+1, . . . , xr1+2r2 = xr1+r2 , x1 + · · ·+ xd = 0.

Notice that H has dimension r := d− (r2 + 1) = r1 + r2 − 1.
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The following result is known as Dirichlet’s Unit Theorem. For a proof we refer

to any textbook on algebraic number theory. A lattice in a real vector space V is

an additive group

{z1a1 + · · ·+ zmam : z1, . . . , zm ∈ Z}

where {a1, . . . , am} is a basis of V . We call {a1, . . . , am} also a basis of the lattice.

Theorem 5.8 (Dirichlet). The image of
−→
log is a lattice in H. The kernel of

−→
log is

the group UK of roots of unity of K, and this group is finite.

Choose units ε1, . . . , εr such that
−→
log (ε1), . . . ,

−→
log (εr) form a basis of the lattice

−→
log (O∗K) (we call such ε1, . . . , εr a system of fundamental units for K). Then for

every ε ∈ O∗K , there are unique integers b1, . . . , br such that

−→
log (ε) = b1

−→
log (ε1) + · · ·+ br

−→
log (εr)

Hence ε ∈ O∗K can be expressed uniquely as

(5.1) ζεb11 · · · εbrr with ζ ∈ UK , b1, . . . , br ∈ Z.

We deduce some consequences.

Lemma 5.9. There is an effectively computable number C > 0 depending on K, ε1, . . . , εr,

such that for every ε ∈ O∗K we have

max(|b1|, . . . , |br|) 6 C · log ε ,

where b1, . . . , br are the integers defined by (5.1).

Proof. From ε = ζεb11 · · · εbrr we deduce

log |σi(ε)| =
r∑
j=1

bj log |σi(εj)| (i = 1, . . . , d)

or in matrix notation
log |σ1(ε1)| · · · log |σ1(εr)|

...
...

...
...

log |σd(ε1)| · · · log |σd(εr)|

 ·
 b1

...

br

 =


log |σ1(ε)|

...

...

log |σd(ε)|

 .
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The matrix has rank r = dimH since its columns form a basis of H. So we can select

r rows, say with indices i1, . . . , ir, which form an invertible r× r-matrix. Denote by

Ω the inverse of this matrix, and let Ω =
(
aij
)
i,j=1,...,r

. Then

bi =
r∑
j=1

aij log |σij(ε)| for i = 1, . . . , r.

Note that the terms aij are determined by K, ε1, . . . , εr and are effectively com-

putable in terms of these quantities.

By one of the homework exercises, ε > 1 and |σj(ε)| > ε 1−d for j = 1, . . . , d.

Hence ∣∣ log |σj(ε)|
∣∣ 6 d log ε for j = 1, . . . , d.

Now an application of the triangle inequality gives

max
16i6r

|bi| 6

(
max
16i6r

r∑
j=1

|aij|

)
· d log ε = C · log ε .

The next lemma states that given α ∈ OK \ {0}, we can find ε ∈ O∗K such that

all conjugates of εα have about the same absolute value. Then the maximum of

these absolute values, which is εα , is about the d-th root of the product of these

absolute values, which is |NK/Q(εα)| = |NK/Q(α)| since NK/Q(ε) = ±1.

Lemma 5.10. There is an effectively computable number c > 1 with the following

property: for every non-zero α ∈ OK there is ε ∈ O∗K such that

(5.2) c−1|NK/Q(α)|1/d 6 εα 6 c|NK/Q(α)|1/d.

Proof. In general, if L is a lattice in H, then for every point x ∈ H there is a

point u ∈ L such that ‖u − x‖2 6 c(L) for some number c(L) depending only

on L. This c(L) can be computed in terms of a basis of L. By applying this

with L =
−→
log (O∗K), we see that there is an effectively computable number c1 > 0,

depending on the lattice
−→
log (O∗K), such that for every x ∈ H there is ε ∈ O∗K with

‖x−
−→
log (ε)|‖2 6 c1. This implies∣∣xi − log |σi(ε)|

∣∣ 6 c1 for i = 1, . . . , d,
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where x = (x1, . . . , xd). We apply this with

xi := − log |σi(α)|+ 1
d

log |NK/Q(α)| (i = 1, . . . , d).

With these xi, the point x is easily seen to lie in H. It follows that there is ε ∈ O∗K
such that ∣∣∣ log |σi(ε)|+ log |σi(α)| − 1

d
log |NK/Q(α)|

∣∣∣ 6 c1 for i = 1, . . . , d,

i.e., ∣∣∣ log |σi(εα)| − 1
d

log |NK/Q(α)|
∣∣∣ 6 c1 for i = 1, . . . , d.

Choosing i with εα = |σi(εα)|, we get (5.2) with c := ec1 .

Corollary 5.11. Given α ∈ OK \ {0}, one can effectively determine a finite set of

divisors γ1, . . . , γm of α in OK such that for each divisor β of α in OK there are

ε ∈ O∗K and i ∈ {1, . . . ,m} such that β = εγi.

Proof. Let β be a divisor of α. Then NK/Q(β) divides NK/Q(α). By the previous

lemma, there is ε ∈ O∗K , such that

εβ 6 c|NK/Q(β)|1/d 6 c|NK/Q(α)|1/d.

By one of the homework exercises, there are only finitely many algebraic integers γ

of degree at most d and house at most c|NK/Q(α)|1/d. This implies that there are at

most finitely many γ ∈ OK with

γ 6 c|NK/Q(α)|1/d.

In fact, these can be determined effectively, and for each of these γ it can be checked

whether it divides α in OK . Let {γ1, . . . , γm} be the set of divisors of α among these

γ. Then εβ ∈ {γ1, . . . , γm}, i.e., β = ε−1γi for some i.

5.3 Unit equations and Thue equations

Let K be an algebraic number field. We consider the so-called unit equation

(5.3) αx+ βy = 1 in x, y ∈ O∗K ,

where α, β ∈ K∗.
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Theorem 5.12. Eq. (5.3) has at most finitely many solutions, and these can be

determined effectively.

In 1921, Siegel proved that (5.3) has only finitely many solutions, but his proof

is ineffective, in the sense that it shows only that there are only finitely many

solutions, but it does not give a method how to determine them. Our proof, based

on lower bounds for linear forms in logarithms, does give a method to determine the

solutions. This effective proof is already implicit in work of Baker from the 1960’s.

Győry (1978) made this explicit.

Proof. Let (x, y) be a solution of (5.3). By (5.1), there are ζ1, ζ2 ∈ UK , as well as

a1, . . . , ar, b1, . . . , br ∈ Z, such that

x = ζ1ε
a1
1 · · · εarr , y = ζ2ε

b1
1 · · · εbrr .

Thus,

αζ1ε
a1
1 · · · εarr + βζ2ε

b1
1 · · · εbrr = 1.

We assume without loss of generality that B := max(|a1|, . . . , |br|) = |br|. We

estimate from above and below,

Λi := |σi(α)σ(ζ1)σi(ε1)
a1 · · ·σi(εr)ar − 1| = |σi(β)σi(y)|

for a suitable choice of i.

In fact, let |σi(y)| be the smallest, and |σj(y)| = y the largest among |σ1(y)|, . . . , |σd(y)|.
Then by Lemma 5.7,

|σi(y)|d−1 · y 6 1.

Subsequently, by Lemma 5.9 we have eB 6 y C , hence

|σi(y)| 6 y −1/(d−1) 6 e−(B/C(d−1)).

This leads to

Λi 6 |σi(β)|e−(B/C(d−1)).

Since 1 − αx = βy 6= 0 we have Λi 6= 0. So we can apply by Corollary 5.3 and

obtain |Λi| > (eB)−C
′

for some effectively computable number C ′ depending on α,

ε1, . . . , εr and the finitely many roots of unity of K. Combining the upper and lower

bound for |Λi| derived above gives

(eB)−C
′
6 |σi(β)|e−B/C(d−1)

and this leads to an effectively computable upper bound for B.
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Remark. There are practical algorithms to solve equations of the type (5.3) which

work well as long as the degree of the field K is not too large, and K has a system of

fundamental units whose heights are not too large. These algorithms are based on

lower bounds for linear forms in logarithms and the Lenstra-Lenstra-Lovász lattice

basis reduction algorithm (LLL-algorithm). For instance, in 2000 Wildanger deter-

mined all solutions of the equation x+y = 1 in x, y ∈ O∗K , with K = Q(cos(2π/19)).

This number field has degree 9 and all its embeddings are real. Thus, the unit group

O∗K has rank 8.

In general, a form of degree d in n variables is a homogenenous polynomial

F (X1, . . . , Xn) of degree d, i.e., a polynomial consisting of terms cX i1
1 · · ·X in

n with

i1 + · · · + in = d. Note that F (tX1, . . . , tXn) = tdF (X1, . . . , Xn). A binary form of

degree d is a homogeneous polynomial of degree d in two variables, i.e.,

F (X, Y ) = a0X
d + a1X

d−1Y + · · ·+ adY
d.

Suppose that F has its coefficients in C, say. Let ar be the first non-zero coefficient of

F from the left. We can factor the polynomial F (X, 1) as ar(X−α1)
r1 · · · (X−αt)rt ,

where α1, . . . , αt are distinct complex numbers, and the multiplicities r1, . . . , rt are

positive integers with r1 + · · ·+ rt = r. Then we get

(5.4) F (X, Y ) = Y dF (X/Y, 1) = arY
d−r(X − α1Y )r1 · · · (X − αtY )rt .

Thus, a binary form can be factored into linear forms.

A Thue equation is an equation of the shape

(5.5) F (x, y) = m in x, y ∈ Z,

where F is a binary form with coefficients in Z and m is a non-zero integer.

We consider some special cases. First suppose that F is linear. Then (5.5)

becomes

ax+ by = m in x, y ∈ Z.

As is well-known, this equation has no solution if gcd(a, b) does not divide m, and in-

finitely many solutions if gcd(a, b) does divide m. Next, suppose that F is quadratic.

Then (5.5) specializes to

ax2 + bxy + cy2 = m.
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If the discriminant D = b2 − 4ac < 0 then this equation describes an ellipsis, and

this has only finitely many points (x, y) ∈ Z2 on it. In fact, these points may be

determined by rewriting the equation as

a(x+ (b/2a)y)2 + (|D|/4a)y2 = m.

In case that D > 0 the equation may have infinitely many solutions, e.g., the Pell

equation x2 − dy2 = 1 where d > 1 is a positive integer, not equal to a square.

In fact it can be shown that if D = b2 − 4ac > 0 and D is not a square, then

ax2 + bxy = cy2 = m has either no, or infinitely many solutions.

Another special case is, where F may have arbitrary degree d but the coefficient

a0 of Xd is 0. Then F is divisible by Y , so if (x, y) is a solution of (5.5), then y

divides m. For each divisor y of m there are at most finitely many integers x with

F (x, y) = m, which, if they exist, can be determined effectively.

We prove the following.

Theorem 5.13. Let F ∈ Z[X, Y ] be a binary form of degree d. Suppose that the

coefficient of Xd in F is non-zero and that F (X, 1) has at least three distinct zeros

in C. Let m be a non-zero integer. Then the equation

(5.5) F (x, y) = m in x, y ∈ Z

has only finitely many solutions.

In 1909, the Norwegian mathematician A. Thue proved in an ineffective way

that Eq. (5.5) has only finitely many solutions (thence the name ’Thue equation’

for (5.5)). We discuss Thue’s proof in the next chapter. Here we give an effective

and rather different proof, which uses Siegel’s idea (1921) of reducing (5.5) to a unit

equation. This proof is essentially the one given by Baker in 1967 for Theorem 5.13.

Proof. By assumption, F (X, Y ) = a0X
d + · · · + adY

d with a0 6= 0. We make a

reduction to the case a0 = 1. If (x, y) is a solution of (5.5), then, by multiplying

with ad−10 ,

(a0x)d + a1(a0x)d−1 + a2a0(a0x)d−2y2 + · · ·+ ada
d−1
0 yd = mad−10 .

Thus, (a0x, y) satisfies a Thue equation F ′(x′, y′) = m′, where the coefficient of Xd

in F ′ is 1.
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Henceforth, we assume that the coefficient of Xd in F is 1. Then

F (X, Y ) = (X − α1Y )r1 · · · (X − αtY )rt

where α1, . . . , αt are pairwise distinct complex numbers, r1, . . . , rt > 0 and t > 3.

We want to reduce (5.5) to a unit equation. The crucial observation here is that

the three linear forms in two variables X − αiY (i = 1, 2, 3) are linearly dependent

over C. More precisely, we have Siegel’s identity

(α2 − α3)(X − α1Y ) + (α3 − α1)(X − α2Y ) + (α1 − α2)(X − α3Y ) = 0.

This implies that if (x, y) ∈ Z2 is a solution of (5.5), then

(5.6)
α2 − α3

α2 − α1

· x− α1y

x− α3y
+
α3 − α1

α2 − α1

· x− α2y

x− α3y
= 1.

Let K = Q(α1, . . . , αt). Then α1, . . . , αt ∈ OK since they are zeros of the monic

polynomial F (X, 1) ∈ Z[X]. Let (x, y) ∈ Z2 be a solution of (5.5). Then the

numbers x− αiy (i = 1, 2, 3) divide m in OK . By Corollary 5.11, we have

x− αiy = µiεi,

where µi belongs to an effectively determinable finite set and εi ∈ O∗K for i = 1, 2, 3.

By substituting this into (5.6) we obtain(
α2 − α3

α2 − α1

· µ1

µ3

)
· ε1
ε3

+

(
α3 − α1

α2 − α1

· µ2

µ3

)
· ε2
ε3

= 1.

We may view this as a unit equation with unknowns ε1/ε3, ε2/ε3. We have only

finitely many possibilities for each µi which can be determined effectively, and by

Theorem 5.12, for each choice of µ1, µ2, µ3 we have only finitely possibilities for the

pair (ε1/ε3, ε2/ε3) which can be determined effectively. Consequently, if (x, y) runs

through the solutions of (5.5), then the quotient (x−α1y)/(x−α3y) = (µ1/µ3)(ε1/ε3)

runs through a finite set which can be determined effectively. We can compute x/y

from (x − α1y)/(x − α3y) and then x, y from ydF (x/y, 1) = F (x, y) = m. In this

way, it follows that (5.5) has only finitely many solutions which can be determined

effectively.

Remark. Since 25 years, Thue equations can really be solved in practice, and

several packages contain routines to solve Thue equations (KANT, Maple but to

my knowledge not yet SAGE). These routines are based on lower bounds for linear

forms in logarithms, and the LLL-algorithm.
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Exercise 5.2. Let F (X, Y ) ∈ Z[X, Y ] be a positive definite binary form of degree

d > 3, i.e., the coefficient of Xd is > 0 and the zeros of F (X, 1) are all in C \ R.

Prove, without using lower bounds for linear forms in logarithms, that for each

positive integer m the equation F (x, y) = m has only finitely many solutions in

x, y ∈ Z.

We finish with stating, without proof, an effective finiteness result for the equa-

tion

(5.7) byn = f(x) in x, y ∈ Z.

where n > 2, b is a non-zero integer and f ∈ Z[X]. For n = 2 this is called a

hyperelliptic equation and for n > 3 a superelliptic equation. Such equations can be

reduced to unit equations or Thue equations.

Theorem 5.14 (Baker, 1968). Assume that f has no multiple zeros and that f has

degree at least 2 if n > 3 and degree at least 3 if n = 2. Then (5.7) has only finitely

many solutions, and its set of solutions can be determined effectively.

We consider a special case to illustrate the idea of the proof. Consider the

equation

(5.8) y3 = 2x(x− 3) in x, y ∈ Z.

Let (x, y) be a solution of (5.8). The gcd of 2x and x−3 divides 6. So if p is a prime

number > 5, then p divides at most one of 2x, x − 3 and if it divides one of these

numbers, the exponent of p in the unique factorization of that number is divisible

by 3. It follows that

2x = au3, x− 3 = bv3

where ab is a third power, and both a and b are composed of primes from {2, 3}.
In fact, we may assume that the exponents on 2, 3 in a, b are either 0,1, or 2, since

powers 23k, 33l can be absorbed by u, v. Thus, a, b ∈ {±2k3l : k, l = 0, 1, 2}.
Considering the solutions (x, y) of (5.8) with fixed a, b, we get a Thue equation

au3 − 2bv3 = 6.

By determining the solutions (u, v) for each of these Thue equations, we can deter-

mine the solutions of (5.8).
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A similar approach can be followed for equations yn = f(x) with n > 3 if f is

not reducible over Z. Then f factorizes over some algebraic number field K, and

we have to make a reduction to Thue equations of which the unknowns are taken

from OK instead of Z. For such equations one has a finiteness result similar to

Theorem 5.13. In the case n = 2, one can make a reduction only to Thue equations

where the involved binary form has degree 2, and in this case, Thue’s theorem is

not applicable. Then one needs a more complicated argument.

Exercise 5.3. Let ai, bi, ci (i = 1, 2) be integers with

a1, b1, c1, a2, b2, c2, a1b2 − a2b1, b1c2 − b2c1 6= 0.

Prove that there are only finitely many triples (x, y, z) ∈ Z3 satisfying the system of

equations

(5.9) a1x
2 − b1z2 = c1, a2y

2 − b2z2 = c2.

Hint. Let K = Q(
√
a1,
√
b1,
√
a2,
√
b2). Apply Theorem 5.12 and the ideas in the

proof of Theorem 5.13 to the identities√
b2(x
√
a1 + z

√
b1)−

√
b1(y
√
a2 + z

√
b2) = x

√
a1b2 − y

√
a2b1,√

b2(x
√
a1 − z

√
b1)−

√
b1(y
√
a2 − z

√
b2) = x

√
a1b2 − y

√
a2b1.

Then conclude that if (x, y, z) runs through the solutions of (5.9) then

(x
√
a1 + z

√
b1)/(x

√
a1 − z

√
b1) runs through a finite set.

Exercise 5.4. Use Exercise 5.3 to prove that the equation

y2 = x(2x− 3)(4x− 5) in x, y ∈ Z

has only finitely many solutions.

In 1976, Schinzel and Tijdeman obtained the surprising result that Eq. (5.7) has

no solutions with y 6= 0,±1 if n is too large.

Theorem 5.15 (Schinzel-Tijdeman, 1976). Let b be a non-zero integer and f(X) ∈
Z[X] a polynomial of degree at least 2 without multiple zeros. Then there is an

effectively computable number C depending on f such that if byn = f(x) is solvable

in x, y ∈ Z with y 6= 0,±1, then n 6 C.
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Exercise 5.5. (i) Prove that the equation

xn − 2yn = 1 in x, y ∈ Z with x > 2, y > 2

has no solutions if n > 15000.

Hint. Applying the estimate of Laurent-Mignotte-Nesterenko from Exercise 5.1 to

an appropriate linear form in two logarithms you will get a lower estimate depending

on n and x, y. But you can derive also an upper estimate which depends on n, x, y.

Comparing the two estimates leads to an upper bound for n independent of x, y.

(ii) Let a, b, c be positive integers. Prove that there is a number C, effectively com-

putable in terms of a, b, c, such that the equation

axn − byn = c

has no solutions if n > C. In the case a = b you may give an elementary proof,

without using the result of Laurent-Mignotte-Nesterenko.

(iii) Prove that the equation

yz =

(
x

3

)
in x, y, z ∈ Z with x > 4, y > 2, z > 3

has only finitely many solutions.

5.4 p-adic analogues

The results mentioned in Section 5.1 have so-called p-adic analogues. We give one

example.

Recall that each non-zero rational number can be expressed uniquely as a product

of prime powers. We may express this as

a = ±
∏
p∈P

pordp(a),

where P is the set of prime numbers, and the exponents ordp(a) are integers, at

most finitely many of which are non-zero. We define the p-adic absolute value of a

by

|a|p := p−ordp(a) for a ∈ Q∗, |0|p := 0.
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For instance, −72/343 = −23 · 32 · 7−3, hence

| − 72/343|2 = 2−3, | − 72/343|3 = 3−2, | − 72/343|7 = 73.

Notice that for any prime number p we have

|ab|p = |a|p|b|p, |a+ b|p 6 max(|a|p, |b|p) for a, b ∈ Q.

The last inequality is called the strong triangle inequality or ultrametric inequality.

In general, if a1, . . . , ar are rational numbers such that |a1|p > |ai|p for i = 2, . . . , r,

then

(5.10) |a1 + · · ·+ ar|p = |a1|p.

The strong triangle inequality implies that the p-adic absolute value |·|p defines a

metric dp on Q, given by dp(x− y) := |x− y|p. Two numbers x, y ∈ Q are p-adically

close, if dp(x − y) is small, which means that x − y = a/b where a, b are coprime

integers and a is divisible by a high power of p. From topology it is known how

to complete a metrical space, by adding to this space the limits of all its Cauchy

sequences. The metrical completion of Q with metric dp is denoted Qp. As it turns

out, addition and multiplication on Q can be extended to Qp, and this makes Qp

into a field, the field of p-adic numbers. In Diophantine approximation, | · |p and Qp

have the same ‘status’ as the ordinary absolute value and R, and many results in

Diophantine approximation and transcendence theory have analogues in the p-adic

setting. We will not go into this.

To gave a flavour, we give an analogue of Corollary 5.3 in the case that α1, . . . , αm
are rational numbers. There is a more general version for algebraic α1, . . . , αm but

it requires more knowledge of algebraic number theory to state this.

Theorem 5.16. (Yu, 1986) Let p be a prime number, let a1, . . . , am be non-zero

rational numbers with |ai|p = 1 for i = 1, . . . ,m. Further, let b1, . . . , bm be integers

such that

ab11 · · · abmm 6= 1.

Put B := max(|b1|, . . . , |bm|). Then

|ab11 · · · abmm − 1|p > (eB)−C

where C is an effectively computable number depending on p, m and a1, . . . , am.
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For m = 1 there is a sharper result which can be proved by elementary means

(exercise below). But for m > 2 the proof is very difficult. One may define p-adic

logarithms and translate the theorem into a lower bound for the p-adic absolute

value of a linear form in p-adic logarithms. We do not work this out.

Exercise 5.6. Let a be an integer, and p a prime, such that |a|p 6 p−1 if p > 2 and

|a|2 6 2−2 if p = 2. Prove that for any positive integer b we have

|(1 + a)b − 1|p = |ab|p > 1/ab.

Hint. First prove this for b with |b|p = 1 and for b = p. Then prove it for b = upt

where u is an integer not divisible by p and t > 0.

We give an application. Let S = {p1, . . . , pt} be a finite set of primes numbers

and define the multiplicative group of S-units

US := {±pz11 · · · pztt : z1, . . . , zt ∈ Z}.

Theorem 5.17. The equation

(5.11) x+ y = 1 in x, y ∈ US

has only finitely many solutions, and these can be determined effectively.

Proof. Let (x, y) be a solution of (5.11). We may write x = u/w, y = v/w where

u, v, w are integers with gcd(u, v, w) = 1. Then

(5.12) u+ v = w.

The integers u, v, w are composed of primes from S, and moreover, no prime divides

two numbers among u, v, w since u, v, w are coprime. After reordering the primes

p1, . . . , pt, we may assume that

u = ±pb11 · · · pbrr , v = ±pbr+1

r+1 · · · pbss , w = ±pbs+1

s+1 · · · pbtt ,

where 0 6 r 6 s 6 t and the bi are non-negative integers (empty products are equal

to 1; for instance if r = 0 then u = ±1). We have to prove that B := max(b1, . . . , bt)

is bounded above by an effectively computable number depending only on p1, . . . , pt.
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We may clearly assume that B > 0, and after permuting u, v, w and changing their

signs if necessary, that B = bt. Then using −(u/v)− 1 = −(w/v) we obtain

0 < | ± pb11 · · · pbrr p
−br+1

r+1 · · · p−bss − 1|pt = |w/v|pt = p−btt = p−Bt .

From Theorem 5.16 we obtain that | · · · |pt > (eB)−C , where C is effectively com-

putable in terms of p1, . . . , pt. Hence

(eB)−C 6 p−Bt .

So indeed, B is bounded above by an effectively computable number depending on

p1, . . . , pt.

Remark. In his PhD-thesis from 1988, de Weger gave a practical algorithm, based

on strong linear forms in logarithms estimates and the LLL-basis reduction algo-

rithm, to solve equations of the type (5.11). As a consequence, he showed that the

equation x + y = 1 has precisely 545 solutions in positive integers x, y ∈ US with

0 < x 6 y, where S = {2, 3, 5, 7, 11, 13}.

Let K be an algebraic number field and let Γ be a finitely generated, multiplica-

tive subgroup of K∗, i.e., there are γ1, . . . , γt ∈ Γ such that every element of Γ can

be expressed as

ζγz11 · · · γztt
where ζ is a root of unity in K, and z1, . . . , zt are integers. Further, let a, b be

non-zero elements from K and consider the equation

(5.13) ax+ by = 1 in x, y ∈ Γ.

The following result is a common generalization of both Theorems 5.12 and 5.17.

Theorem 5.18 (Győry, 1979). Equation (5.13) has only finitely many solutions,

and these can be determined effectively.

In 1960, Lang gave an ineffective proof of this result, by combining earlier work of

Siegel (1921), Mahler (1933) and Parry (1950). Győry’s proof is based on Corollary

5.3 and a generalization of Theorem 5.16 for algebraic numbers.
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