
Chapter 7

The Subspace Theorem

Literature:

W.M. Schmidt, Diophantine approximation, Lecture Notes in Mathematics 785, Springer Verlag

1980, Chap.IV,VI,VII

The Subspace Theorem is a higher dimensional generalization of Roth’s Theo-

rem on the approximation of algebraic numbers by rational numbers. We explain

the Subspace Theorem, give some applications to simultaneous Diophantine ap-

proximation, and then an application to higher dimensional generalizations of Thue

equations, the so-called norm form equations.

7.1 The Subspace Theorem and some applications

In the formulation of the Subspace Theorem, we need some notions from linear

algebra, which we recall below. Let n be an integer > 1 and r 6 n. We say

that linear forms L1 =
∑n

j=1 α1jXj , . . . , Lr =
∑n

j=1 αnjXj with coefficients in C are

linearly dependent if there are c1, . . . , cr ∈ C, not all 0, such that c1L1+· · ·+crLr ≡ 0.

Otherwise, L1, . . . , Lr are called linearly independent. If r = n, then L1, . . . , Ln are

linearly independent if and only if their coefficient determinant det(L1, . . . , Ln) =

det(αij)16i,j6n 6= 0.

A linear subspace T of Qn of dimension r can be described as

T =

{
r∑
i=1

ziai : z1, . . . , zr ∈ Q

}
,
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where a1, . . . , ar are linearly independent vectors from Qn, or alternatively as

T = {x ∈ Qn : L1(x) = 0, . . . , Ln−r(x) = 0}

where L1, . . . , Ln−r are linearly independent linear forms in X1, . . . , Xn with coeffi-

cients from Q.

As before, Q is the field of complex numbers that are algebraic over Q. For the

norm of x = (x1, . . . , xn) ∈ Zn we always take the maximum norm, i.e.,

‖x‖ := max(|x1|, . . . , |xn|).

Theorem 7.1. (Subspace Theorem, W.M. Schmidt, 1972). Let n > 2, let

Li = αi1X1 + · · ·+ αinXn (i = 1, . . . , n)

be n linearly independent linear forms with coefficients in Q and let C > 0,

δ > 0. Then the set of solutions of the inequality

(7.1) |L1(x) · · ·Ln(x)| 6 C‖x‖−δ in x ∈ Zn

is contained in a union T1 ∪ · · · ∪ Tt of finitely many proper linear subspaces of Qn.

Remark. The proof of the Subspace Theorem is ineffective, i.e., it does not enable

to determine the subspaces. There is however a quantitative version of the Subspace

Theorem which gives an explicit upper bound for the number of subspaces. This is

an important tool for deriving upper bounds for the number of solutions of various

types of Diophantine equations.

We show that the Subspace Theorem implies Roth’s Theorem. Recall that the

height of ξ ∈ Q is H(ξ) = max(|x|, |y|), where ξ = x/y with x, y ∈ Z, gcd(x, y) = 1.

Corollary 7.2. Let α ∈ Q and C > 0, κ > 2. Then the inequality

(7.2) |ξ − α| 6 C ·H(ξ)−κ in ξ ∈ Q

has only finitely many solutions.

Proof. Let ξ = x/y be a solution of (7.2), with x, y ∈ Z, gcd(x, y) = 1. Write

κ = 2 + δ with δ > 0. By multiplying (7.2) with y2 we obtain

|y(x− αy)| 6 Cy2 max(|x|, |y|)−2−δ 6 C ·max(|x|, |y|)−δ.
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Since the linear forms Y and X −αY are linearly independent, this is an inequality

to which the Subspace Theorem is applicable. It follows that the pairs of integers

(x, y) ∈ Z2 with gcd(x, y) = 1 such that ξ = x/y is a solution of (7.2) lie in a union

of finitely many proper, i.e., one-dimensional linear subspaces of Q2. But a given

one-dimensional subspace of Q2 consists of all points of the shape λ(x0, y0) with

λ ∈ Q where (x0, y0) ∈ Z2, thus the rational number ξ is uniquely determined by

the subspace. This proves Roth’s Theorem.

The Subspace Theorem states that the set of solutions of (7.1) is contained in

a finite union of proper linear subspaces of Qn, but one may wonder whether (7.1)

has only finitely many solutions. For instance, it may be that there is a non-zero

x0 ∈ Zn with L1(x0) = 0. Then for every λ ∈ Z, the point λx0 is a solution to (7.1),

and this gives infinitely many solutions to (7.1). To avoid such a construction, let

us consider

(7.3) 0 < |L1(x) · · ·Ln(x)| 6 C · ‖x‖−δ in x ∈ Zn.

In the case n = 2 the number of solutions is indeed finite.

Lemma 7.3. Let Li = αi1X + αi2Y (i = 1, 2) be two linearly independent linear

forms with coefficients in Q and let C > 0, δ > 0. Then the inequality

(7.4) 0 < |L1(x)L2(x)| 6 C‖x‖−δ in x = (x, y) ∈ Z2

has only finitely many solutions.

Proof. By the Subspace Theorem, the solutions of (7.4) lie in finitely many one-

dimensional linear subspaces of Q2. So we have to prove that each of these subspaces

contains only finitely many solutions. Let T be one of these subspaces. Then

T = {λx0 : λ ∈ Q} where we may choose x0 = (x0, y0) ∈ Z2 with gcd(x0, y0) = 1.

Note that λ(x0, y0) ∈ Z2 if and only if λ ∈ Z. If L1(x0)L2(x0) = 0 then (7.4) has no

solutions in T . Suppose that L1(x0)L2(x0) 6= 0. Then x = λx0 is a solution of (7.4)

if and only if

0 < λ2|L1(x0)L2(x0)| 6 C · |λ|−δ‖x0‖−δ,

i.e., if |λ|2+δ 6 C‖x0‖−δ|L1(x0)L2(x0)|−1. This shows that |λ| is bounded, hence

that T contains only finitely many solutions of (7.4).
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However, if n > 3, then (7.3) may very well have infinitely many solutions. We

illustrate this with an example.

Example. Let 0 < δ < 1 and consider the inequality

(7.5) 0 < |(x1 +
√

2x2 +
√

3x3)(x1 −
√

2x2 +
√

3x3)(x1 −
√

2x2 −
√

3x3)| 6 ‖x‖−δ

to be solved in x = (x1, x2, x3) ∈ Z3. Notice that the three linear forms on the

left-hand side are linearly independent.

Consider the triples of integers x = (x1, x2, x3) ∈ Z3 with x3 = 0, x1x2 6= 0. For

these points, ‖x‖ = max(|x1|, |x2|, 0). By Dirichlet’s Theorem, the inequality∣∣∣√2− x1
x2

∣∣∣ 6 |x2|−2
has infinitely many solutions (x1, x2) ∈ Z2 with x2 6= 0. For these solutions, ‖x‖ has

the same order of magnitude as |x2|. Indeed,

|x1/x2| 6 |x2|−2 +
√

2 6 1 +
√

2,

and so, ‖x‖ = max(|x1|, |x2|) 6 (1 +
√

2)|x2|.

So for the points under consideration,

0 < |(x1 +
√

2x2 +
√

3x3)(x1 −
√

2x2 +
√

3x3)(x1 −
√

2x2 −
√

3x3)|
= |(x1 +

√
2x2)(x1 −

√
2x2)

2|
6 (1 +

√
2)‖x‖ · (x−12 )2 6 (1 +

√
2)3‖x‖−1

6 ‖x‖−δ,

provided ‖x‖ is sufficiently large. It follows that (7.5) has infinitely many solutions

x in the subspace x3 = 0.

Let L1, . . . , Lr be linear forms with coefficients in C in the variables X1, . . . , Xn,

where r > n. We say that L1, . . . , Lr (or more correctly the hyperplanes L1 =

0, . . . , Lr = 0 being defined by them) are in general position if each n-tuple of linear

forms among L1, . . . , Lr is linearly independent.

Theorem 7.4. Let

Li = αi1X1 + · · ·+ αinXn (i = 1, . . . , r, r > n)
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be r linear forms with coefficients in Q in general position and let C > 0, δ > 0.

Then the set of solutions of the inequality

(7.6) |L1(x) · · ·Lr(x)| 6 C · ‖x‖r−n−δ in x ∈ Zn

is contained in a union T1 ∪ · · · ∪ Tt of finitely many proper linear subspaces of Qn.

This can be deduced by combining the Subspace Theorem with the following lemma.

Lemma 7.5. Let M1, . . . ,Mn be linearly independent linear forms in X1, . . . , Xn

with complex coefficients. Then there is a constant C > 0 such that

‖x‖ 6 C max
(
|M1(x)|, . . . , |Mn(x)|

)
for all x ∈ Cn.

Proof. Since the linear forms M1, . . . ,Mn are linearly independent, they span the

complex vector space of all linear forms in X1, . . . , Xn with complex coefficients. So

we can express X1, . . . , Xn as linear combinations of M1, . . . ,Mn, i.e.,

Xi =
n∑
j=1

βijMj with βij ∈ C (i = 1, . . . , n).

Take x = (x1, . . . , xn) ∈ Cn and put M := max16i6n |Mi(x)|. Then

max
16i6n

|xi| 6 max
16i6n

n∑
j=1

|βij| · |Mj(x)| 6 C ·M with C := max
16i6n

n∑
j=1

|βij|.

Proof of Theorem 7.4. We partition the solutions x of (7.6) into a finite number of

subsets according to the ordering of the numbers |L1(x)|, . . . , |Lr(x)|, and show that

each of these subsets lies in at most finitely many proper linear subspaces of Qn.

Consider the solutions x ∈ Zn from one of these subsets, say for which

|L1(x)| 6 · · · 6 |Lr(x)|.

By Lemma 7.5, for i = n+ 1, . . . , r, since L1, . . . , Ln−1, Li are linearly independent,

there is a constant Ci such that for all solutions x under consideration,

‖x‖ 6 Ci max(|L1(x)|, . . . , |Ln−1(x)|, |Li(x)|) = Ci|Li(x)|.
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Together with (7.6) this implies

|L1(x) · · ·Ln(x)| 6 C‖x‖r−n−δ
r∏

i=n+1

|Li(x)|−1

6 C · (Cn+1 · · ·Cr)‖x‖−δ.

So the solutions x under consideration lie in at most finitely many proper linear

subspaces of Qn.

Exercise 7.1. (i) Prove that (7.5) has infinitely many solutions in the spaces x1 = 0

and x2 = 0.

(ii) Prove that (7.5) has only finitely many solutions with x1x2x3 6= 0.

Hint. The solutions of (7.5) lie in finitely many proper linear subspaces of Q3.

Let T be one of these subspaces. Let ax1 + bx2 + cx3 = 0 be a non-trivial equation

vanishing identically on T , with at least one of a, b, c 6= 0. Since we only have to

consider spaces T containing solutions with x1x2x3 6= 0, we may assume that at most

one among a, b, c is zero. Given a solution (x1, x2, x3) of (7.5) in T ∩Z3, express one

of the variables x1, x2, x3 as a linear combination of the two others and substitute

this into (7.5). What results is an inequality in two unknowns to which Theorem 7.4

can be applied.

Remark (for the interested reader). In the above exercise you were asked

to prove that inequality (7.5) has only finitely many solutions outside the spaces

{x1 = 0}, {x2 = 0}, {x3 = 0}. This provides of course more precise information

than the Subspace Theorem, which only gives that the solutions lie in a union of

finitely many proper linear subspaces of Qn. Exercise 7.1 may be viewed as a special

case of the following refinement of Theorem 7.4, proved by Vojta in 1989 (you are

not allowed to use this in exercises although probably it wouldn’t have been of any

help anyway):

Theorem 7.6. Let

Li = αi1X1 + · · ·+ αinXn (i = 1, . . . , r, r > n)

be r linear forms with coefficients in Q in general position. Then there is a finite,

effectively computable, collection U1, . . . , Us of proper linear subspaces of Qn, de-

pending only on L1, . . . , Lr, such that for every C > 0, δ > 0 the following holds: the

inequality

|L1(x) · · ·Lr(x)| 6 C · ‖x‖r−n−δ in x ∈ Zn
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has only finitely many solutions outside U1 ∪ · · · ∪ Us.

The subspaces U1, . . . , Us remain fixed if we vary C and δ, but the finite set outside

U1 ∪ · · · ∪ Us may vary with C and δ. The spaces U1, . . . , Us can be determined

effectively in principle, but in general this may be quite hard. With the presently

available proofs, the finite set of solutions outside these spaces cannot be determined

effectively.

We present some further applications of the Subspace Theorem. Before doing

this, we give a slight variation on a theorem of Dirichlet.

Lemma 7.7. Let α1, . . . , αn ∈ R be numbers that are linearly independent over Q.

Then there is C > 0 such that the inequality

(7.7) |α1x1 + · · ·+ αnxn| 6 C · ‖x‖1−n in x = (x1, . . . , xn) ∈ Zn

has infinitely many solutions.

Proof. Without loss of generality, |αn| = max16i6n |αi|. Let βi = −αi/αn (i =

1, . . . , n − 1); then |βi| 6 1 for i = 1, . . . , n − 1. For instance from Minkowski’s

convex body theorem (see Chapter 2), one deduces that there are infinitely many

x = (x1, . . . , xn) ∈ Zn such that at least one of x1, . . . , xn−1 is non-zero, and

(7.8) |xn − β1x1 − · · · − βn−1xn−1| 6 max(|x1|, . . . , |xn−1|)1−n,

Given a solution of this inequality, it follows easily that

|xn| 6 1 +
n−1∑
i=1

|βi| · |xi| 6 n max
16i6n−1

|xi|,

say, hence ‖x‖ 6 nmax16i6n−1 |xi|. By inserting this into (7.8) and multiplying with

|αn| we get (7.7) with C = |αn| · nn−1.

From the Subspace Theorem we deduce that the exponent 1− n in (7.7) cannot

be replaced by something smaller if the coefficients αi are all algebraic.

Theorem 7.8. Let α1, . . . , αn ∈ Q and C > 0, δ > 0. Then the inequality

(7.9) 0 < |α1x1 + · · ·+ αnxn| 6 C · ‖x‖1−n−δ in x = (x1, . . . , xn) ∈ Zn

has only finitely many solutions.
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Remark. For n = 2 this implies Roth’s Theorem. Indeed, let C > 0, κ > 2 and let

α be an irrational algebraic number. Take a solution ξ = x/y (with coprime integers

x, y) of |α− ξ| 6 C ·H(ξ)−κ. Then multiplying with y gives

0 < |x− αy| 6 C · |y| ·max(|x|, |y|)−κ 6 C max(|x|, |y|)1−δ

where δ = κ− 2. By the above theorem, the latter inequality has only finitely many

solutions (x, y) ∈ Z2. This leaves only finitely many possibilities for ξ.

Proof of Theorem 7.8. We proceed by induction on n. For n = 1 the assertion is

obvious. (Here we use our assumption α1x1 6= 0). Let n > 1 and suppose Theorem

7.8 is true for linear forms in fewer than n variables.

We apply the Subspace Theorem. We may assume that at least one of the

coefficients α1, . . . , αn is non-zero, otherwise there are no solutions. Suppose that

α1 6= 0. Then (7.9) implies

|(α1x1 + · · ·+ αnxn)x2 · · ·xn| 6 C‖x‖−δ

and by the Subspace Theorem, the solutions of the latter lie in a union of finitely

many proper linear subspaces T1, . . . , Tt of Qn. We consider only solutions with

α1x1 + · · · + αnxn 6= 0. Therefore, without loss of generality we may assume that

α1x1 + · · ·+ αnxn is not identically 0 on any of the spaces T1, . . . , Tt.

Consider the solutions of (7.6) in Ti. Choose a non-trivial linear form vanishing

identically on Ti, a1x1 + · · ·+anxn = 0. Suppose for instance, that an 6= 0. Then xn
can be expressed as a linear combination of x1, . . . , xn−1. By substituting this into

(7.9) we obtain an inequality

0 < |β1x1 + · · ·+ βn−1xn−1| 6 C‖x‖1−n−δ 6 C
(

max
16i6n−1

|xi|
)2−n−δ

.

By the induction hypothesis, the latter inequality has only finitely many solutions

(x1, . . . , xn−1). So Ti contains only finitely many solutions x of (7.6). Applying this

to T1, . . . , Tt we obtain that (7.9) has altogether only finitely many solutions.

Instead of approximating a given algebraic number α by rationals, we can also

consider the approximation of α by algebraic numbers of degree at most d. Recall

that the primitive minimal polynomial of ξ ∈ Q is the polynomial F := a0X
d +
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a1X
d−1 + · · · + ad ∈ Z[X] such that F (ξ) = 0, F is irreducible, and a0 > 0,

gcd(a0, . . . , ad) = 1. Then the height of ξ is H(ξ) := max(|a0|, . . . , |ad|).

We consider

(7.10) |ξ − α| 6 C ·H(ξ)−κ in ξ ∈ Q with deg ξ 6 d.

Theorem 7.9. For every C > 0, κ > d+1, inequality (7.10) has only finitely many

solutions.

Proof. Write κ = d + 1 + δ with δ > 0. Let ξ be a solution of (7.10). Let F =

x0 + x1X + · · · + xdX
d be the primitive minimal polynomial of ξ. Then x :=

(x0, . . . , xd) ∈ Zd+1 and H(ξ) = ‖x‖. We want to show that there are only finitely

many possibilities for F , and to this end, we want to estimate from above |F (α)| =
|
∑d

i=0 xiα
i| and apply Theorem 7.8.

Since F (ξ) = 0 we have

|F (α)| =
∣∣∣ ∫ 1

0

F ′(ξ + t(α− ξ)) · (α− ξ)dt
∣∣∣ 6 |α− ξ| · max

06t61
|F ′(ξ + t(α− ξ))|.

Using |ξ + t(α− ξ)| 6 |α|+ |ξ| 6 |α|+ C for 0 6 t 6 1, we obtain

|F ′(ξ + t(α− ξ))| 6
d∑
i=1

|xi| · i(|α|+ C)i−1 6 C ′‖x‖,

say. Hence |F (α)| 6 |ξ−α|·C ′‖x‖. There are only finitely many ξ that are conjugate

to α. For the remaining solutions ξ of (7.10) we have F (α) 6= 0, and so

0 < |
d∑
i=0

xiα
i| = |F (α)| 6 C ′‖x‖ · |ξ − α| 6 C ′ · C‖x‖−d−δ.

By Theorem 7.9 with n = d+ 1, this has at most finitely many solutions x ∈ Zd+1.

These give rise to at most finitely many possibilities for F , hence to at most finitely

many possibilities for ξ.

Exercise 7.2. In this exercise you are asked to prove another generalization of

Roth’s Theorem. Let C > 0, δ > 0, and let α1, . . . , αn be real algebraic numbers such

that

(7.11) 1, α1, . . . , αn are linearly independent over Q.
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Consider the system of inequalities

(7.12) |x1 − α1xn+1| 6 C‖x‖−
1
n
−δ, . . . , |xn − αnxn+1| 6 C‖x‖−

1
n
−δ

to be solved simultaneously in x = (x1, . . . , xn+1) ∈ Zn+1 \ {0}. Prove that (7.12)

has only finitely many solutions.

Hint. First apply the Subspace Theorem to conclude that the solutions of (7.12) lie

in a union T1∪ · · · ∪Tt of finitely many proper linear subspaces of Qn+1. Then show

that if T is any proper linear subspace of Qn+1, then (7.12) has only finitely many

solutions x = (x1, . . . , xn+1) ∈ Zn+1 \ {0} inside T . There is no obvious way to do

this with the Subspace Theorem, so you have to prove this directly. Take an equation

a1x1 + · · · + an+1xn+1 = 0 of T , with a1, . . . , an+1 ∈ Z, not all 0 and use that xi is

very close to αixn+1 for i = 1, . . . , n. Assumption (7.11) is crucial here.

7.2 Norm form equations

Let α be an algebraic number of degree d, and let α(1), . . . , α(d) be its conjugates.

Consider the binary form

F (X, Y ) =
d∏
i=1

(X − α(i)Y ).

In fact, F (X, 1) is the minimal polynomial of α, hence it is an irreducible polynomial

in Q[X]. So F (X, Y ) is irreducible in Q[X, Y ]. Let K = Q(α). Then σi, with

σi(α) := α(i) (i = 1, . . . , d) are the embeddings of K in C. Extending the norm

NK/Q(·) =
∏d

i=1 σi(·) on K to polynomials with coefficients in K, we get

F (X, Y ) =
d∏
i=1

(X − σi(α)Y ) = NK/Q(X − αY ).

That is, F is a norm form in two variables. The equation

(7.13) F (x, y) = NK/Q(x− αy) = c in x, y ∈ Z

has only finitely many solutions if [K : Q] > 3 ( for then F (X, 1) has at least three

distinct zeros and Thue’s Theorem applies) or if K is an imaginary quadratic field

K = Q(
√
−a) with a a positive integer (then F (X, Y ) is a quadratic form with
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negative discriminant and the solutions represent points with integer coordinates

on an ellipsis). Equation (7.13) may have infinitely many solutions if K is real

quadratic. For instance if K = Q(
√
a) with a a positive, non-square integer, then

the Pell equation x2 − ay2 = NK/Q(x−
√
ay) = 1 has infinitely many solutions.

We consider a generalization of (7.13) involving norm forms in an arbitrary

number of variables. Let K = Q(θ) be an algebraic number field of degree d. Then

the monic minimal polynomial fθ of θ can be expressed as fθ =
∏d

i=1(X − θ(i)),

where θ(1), . . . , θ(d) ∈ C are the conjugates of θ. The embeddings of K in C are

given by σi(θ) = θ(i) for i = 1, . . . , d. Define G := Q(θ(1), . . . , θ(d)). Then G

is a normal number field. Denote by Gal(G/Q) the Galois group, i.e., the group

of automorphisms of G. Recall that each τ ∈ Gal(G/Q) permutes θ(1), . . . , θ(d).

On the other hand τ is uniquely determined by its images on θ(1), . . . , θ(d). Hence

each τ ∈ Gal(G/Q) may be identified with a permutation of θ(1), . . . , θ(d), and thus

Gal(G/Q) is isomorphic to a subgroup of Sd (that is the permutation group on d

elements).

Now suppose that 2 6 n 6 d and let α1, . . . , αn be elements of K that are linearly

independent over Q. Define the polynomial

F (X1, . . . , Xn) := NK/Q(α1X1 + · · ·+ αnXn) :=
d∏
i=1

(σi(α1)X1 + · · ·+ σi(αn)Xn).

Notice that if we apply any τ from the Galois group Gal(G/Q), then it permutes

the linear factors of F , hence it leaves the coefficients of F unchanged. So F has its

coefficients in Q.

We deal with the so-called norm form equation

(7.14) NK/Q(α1x1 + · · ·+ αnxn) = c in x = (x1, . . . , xn) ∈ Zn.

In 1972, Schmidt gave a necessary and sufficient condition such that (7.14) has only

finitely many solutions. His proof was based on the Subspace Theorem. Here, we

prove a special case of his result.

Theorem 7.10. Suppose that n < d, and let α1, . . . , αn be elements of K that are

linearly independent over Q. Assume that Gal(G/Q) ∼= Sd. Then (7.14) has only

finitely many solutions.

We need some lemmas.
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Lemma 7.11. The vectors (σ1(αi), . . . , σd(αi)) (i = 1, . . . , n) are linearly indepen-

dent in Cd.

Proof. In general, any linearly independent subset of a finite dimensional vector

space can be augmented to a basis of that space. In particular, we can augment

{α1, . . . , αn} to a Q-basis {α1, . . . , αd} of K. As a consequence, there are bij ∈ Q
such that

θi =
d∑
j=1

bijαj for i = 0, . . . , d− 1.

Then also, σi(θ)
j =

∑d−1
k=0 bjkσi(αk) for i = 1, . . . , d, j = 0, . . . , d− 1, and this leads

to a matrix identity and determinant identity(
σi(θ)

j)
)

=
(
σi(αj)

)
·
(
bij

)T
, det

(
σi(θ)

j)
)

= det
(
σi(αj)

)
· det

(
bij

)
.

By Vandermonde’s identity we have

det
(
σi(θ)

j
)

=
∏

16i<j6d

(θ(j) − θ(i)) 6= 0.

Hence det
(
σi(αj)

)
6= 0, and so the vectors (σ1(αi), . . . , σd(αi)) (i = 1, . . . , d) are

linearly independent in Cd.

Lemma 7.12. Let Li := σi(α1)X1+ · · ·+σi(αn)Xn for i = 1, . . . , d. Then the linear

forms L1, . . . , Ld are in general position.

Proof. Lemma 7.11 implies that the matrix σ1(α1) · · · σ1(αn)
...

...

σd(α1) · · · σd(αn)


has column rank n. Then the row rank of this matrix is also n, which implies that this

matrix has n linearly independent rows. Suppose that the rows with indices i1, . . . , in
are linearly independent. This means precisely that the linear forms Li1 , . . . , Lin are

linearly independent, i.e., det(Li1 , . . . , Lin) 6= 0.

Let (j1, . . . , jn) be any other n-tuple of n distinct indices from {1, . . . , d}. We

have to show that also Lj1 , . . . , Ljn are linearly independent, i.e., det(Lj1 , . . . , Ljn) 6=
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0. The assumption that Gal(G/Q) ∼= Sd means that if we let act Gal(G/Q) on

(θ(1), . . . , θ(d)) we obtain all permutations of (θ(1), . . . , θ(d)). In particular, there is

τ ∈ Gal(G/Q) such that

τ(θ(i1)) = θ(j1), . . . , τ(θ(in)) = θ(jn).

This implies τ ◦ σi1 = σj1 , . . . , τ ◦ σin = σjn , and consequently, that τ maps the

coefficients of Lik to those of Ljk for k = 1, . . . , n. It follows that indeed

det(Lj1 , . . . , Ljn) = τ(det(Li1 , . . . , Lin)) 6= 0.

Proof of Theorem 7.10. We proceed by induction on the number of variables n. First

let n = 1. Then equation (7.14) becomes

NK/Q(α1x1) = NK/Q(α)xd1 = c,

and this clearly has only finitely many solutions.

Next, let n > 2, and assume the theorem is true for norm form equations in

fewer than n unknowns. Since d > n and the linear forms L1, . . . , Ld are in general

position, we can apply Theorem 7.4, and deduce that for any C > 0, δ > 0 the set

of solutions of

|F (x)| = |L1(x) · · ·Ld(x)| 6 C‖x‖d−n−δ

lies in a union of finitely many proper linear subspaces of Qn. It follows that the

solutions of (7.14) lie in only finitely many proper linear subspaces of Qn.

We show that (7.14) has only finitely many solutions in each of these subspaces.

Let T be one of these subspaces. For solutions in T , one of the coordinates can be

expressed as a linear combination of the others, with coefficients in Q. Say that we

have xn = a1x1 + · · · + an−1xn−1 identically on T , where ai ∈ Q. By substituting

this in (7.14) we get a norm form equation in n− 1 variables

NK/Q(β1x1 + · · ·+ βn−1xn−1) = c,

where βi = αi+aiαn for i = 1, . . . , n−1. It is not difficult to show that β1, . . . , βn−1
are linearly independent over Q. Hence by the induction hypothesis, this last equa-

tion has only finitely many solutions (x1, . . . , xn−1) ∈ Zn−1. This implies that the

original equation (7.14) has only finitely many solutions (x1, . . . , xn) ∈ T . This

completes our proof.
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We give examples of norm form equations with infinitely many solutions. We

recall the following fact:

Lemma 7.13. Let K be an algebraic number field and α an element of the ring of

integers OK of K. Then

α is a unit of OK ⇐⇒ NK/Q(α) = ±1.

Proof. See Chapter 3 or Chapter 5.

It is more convenient to rewrite (7.14) as

(7.15) NK/Q(ξ) = c in ξ ∈M,

where

M := {α1x1 + · · ·+ αnxn : x1, . . . , xn ∈ Z}.

Notice thatM is a free Z-module in K of rank n, i.e., its elements can be expressed

uniquely as Z-linear combinations of a basis of n elements.

Recall that if K is a number field of degree d, having r1 real embeddings and

r2 conjugate pairs of complex embeddings, then r1 + 2r2 = d, and by Dirichlet’s

Unit Theorem, the unit group O∗K of the ring of integers of K is isomorphic to

UK ×Zr1+r2−1, where UK is the finite group of roots of unity in K. This shows that

O∗K is finite if and only if r1 = 1, r2 = 0, in which case K = Q, or r1 = 0, r2 = 1,

in which case K is imaginary quadratic, i.e., of the form Q(
√
−a) with a a positive

integer.

Take an algebraic number field K such that O∗K is infinite, i.e., K 6= Q and K is

not imaginary quadratic. Take M = OK . It is known that OK is a free Z-module

of rank equal to [K : Q]. Now clearly, if ε ∈ O∗K , then ξ = ε2 is a solution to

NK/Q(ξ) = 1 in ξ ∈ OK ,

and so this last norm form equation has infinitely many solutions.

More generally, (7.15) has infinitely many solutions if

µOL = {µξ : ξ ∈ OL} ⊆ M

for some µ ∈ K∗, and some subfield L ofK which is not equal to Q or to an imaginary

quadratic field. Now Schmidt’s result on norm form equations is as follows.
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Theorem 7.14. (W.M. Schmidt, 1972) Let K be an algebraic number field,

α1, . . . , αn elements of K which are linearly independent over Q, and

M :=
{∑n

i=1 αixi : xi ∈ Z
}

. Then the following two assertions are equivalent:

(i) there do not exist µ ∈ K∗ and a subfield L of K not equal to Q or to an imaginary

quadratic field such that µOL ⊆M;

(ii) for every c ∈ Q∗, the equation

(7.15) NK/Q(ξ) = c in ξ ∈M

has only finitely many solutions.

The implication (i)=⇒(ii) is deduced from the Subspace Theorem. The proof is

too difficult to be included here. We prove only the other implication, that is, if (i)

is false then there is c ∈ Q∗ such that (7.15) has infinitely many solutions. Indeed,

for every ε ∈ O∗L we have µε2 ∈ M and NK/Q(ε) = ±1. Thus, by letting ε run

through O∗L, we obtain infinitely many elements ξ = µε2 ∈M with

NK/Q(ξ) = NK/Q(µ)NK/Q(ε)2 = NK/Q(µ).

Example. Let

K = Q(
6
√

2), M := {x1 6
√

2 + x2
√

2 + x3
6
√

2
5

: x1, x2, x3 ∈ Z}.

Notice that K contains the subfield L = Q( 3
√

2). One can show that

OL = {x1 + x2
3
√

2 + x3
3
√

4 : xi ∈ Z}, O∗L = {±(1− 3
√

2)n : n ∈ Z}.

We have M = 6
√

2OL and NK/Q(1− 3
√

2) = 1. Hence every n ∈ Z yields a solution

ξ := 6
√

2(1− 3
√

2)n ∈M of

NK/Q(ξ) = NK/Q(
6
√

2) = 2.

Exercise 7.3. Let K = Q( 5
√

2). Note that the embeddings of K in C are given by

σi(
5
√

2) = ρi 5
√

2 for i = 0, . . . , 4, where ρ = e2π
√
−1/5. Let c ∈ Q∗, and consider the

norm form equation

(7.16) NK/Q(x1+
5
√

2x2+
5
√

4x3) =
4∏
i=0

(x1+ρ
i 5
√

2x2+ρ
2i 5
√

4x3) = c in x1, x2, x3 ∈ Z.
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(i) Prove that the linear forms in the product on the right-hand side of (7.16) are

in general position.

(ii) Prove that if α, β ∈ K∗ and
β
α 6∈ Q, then the linear forms σi(α)X1 + σi(β)X2

(i = 0, . . . , 4) are in general position.

(iii) Prove that (7.16) has only finitely many solutions (you are allowed to apply

Theorem 7.4 but not Theorem 7.14).

Exercise 7.4. Using Theorem 7.14 , decide for each of the norm form equations

below whether or not there exists c such that it has infinitely many solutions. Let

θ := 6
√

2. You may use that the only subfields of K := Q(θ) are Q(θ2) and Q(θ3),

and that the rings of integers of these fields are Z[θ2], Z[θ3], respectively.

(i) NK/Q(x1 + θx2 + θ2x3) = c in (x1, . . . , x3) ∈ Z3;

(ii) NK/Q((1 + θ)x1 + (1 + θ2)x2 + (1 + θ3)x3 + (1 + θ4)x4) = c in (x1, . . . , x4) ∈ Z4.
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