
Chapter 8

P-adic numbers

Literature:

N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions,

2nd edition, Graduate Texts in Mathematics 58, Springer Verlag 1984, corrected 2nd printing 1996,

Chap. I,III

8.1 Absolute values

The p-adic absolute value | · |p on Q is defined as follows: if a ∈ Q, a 6= 0 then write

a = pmb/c where b, c are integers not divisible by p and put |a|p = p−m; further, put

|0|p = 0.

Example. Let a = −2−7385−3. Then |a|2 = 27, |a|3 = 3−8, |a|5 = 53, |a|p = 1 for

p > 7.

We give some properties:

|ab|p = |a|p|b|p for a, b ∈ Q∗;
|a+ b|p 6 max(|a|p, |b|p) for a, b ∈ Q∗ (ultrametric inequality).

Notice that the last property implies that

|a+ b|p = max(|a|p, |b|p) if |a|p 6= |b|p.

It is common to write the ordinary absolute value |a| = max(a,−a) on Q as

|a|∞, to call ∞ the ‘infinite prime’ and to define MQ := {∞} ∪ {primes}. Then we
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have the important product formula:∏
p∈MQ

|a|p = 1 for a ∈ Q, a 6= 0.

We define more generally absolute values on fields. Let K be any field. An

absolute value on K is a function | · | : K → R>0 with the following properties:

|ab| = |a| · |b| for a, b ∈ K;

|a+ b| 6 |a|+ |b| for a, b ∈ K (triangle inequality);

|a| = 0⇐⇒ a = 0.

Notice that these properties imply that |1| = 1. The absolute value | · | is called non-

archimedean if the triangle inequality can be replaced by the stronger ultrametric

inequality or strong triangle inequality

|a+ b| 6 max(|a|, |b|) for a, b ∈ K .

An absolute value not satisfying the ultrametric inequality is called archimedean.

If K is a field with absolute value | · | and L an extension of K, then an extension

or continuation of | · | to L is an absolute value on L whose restriction to K is | · |.

Examples.

1) Every field K can be endowed with the trivial absolute value | · |, given by |a| = 0

if a = 0 and |a| = 1 if a 6= 0. It is not hard to show that if K is a finite field then

there are no non-trivial absolute values on K.

2) The ordinary absolute value | · |∞ on Q is archimedean, while the p-adic absolute

values are all non-archimedean.

3) Let K be any field, and K(t) the field of rational functions of K. For a polynomial

f ∈ K[t] define |f | = 0 if f = 0 and |f | = edeg f if f 6= 0. Further, for a rational

function f/g with f, g ∈ K[t] define |f/g| = |f |/|g|. Verify that this defines a

non-archimedean absolute value on K(t).

Let K be a field. Two absolute values | · |1, | · |2 on K are called equivalent if there

is α > 0 such that |x|2 = |x|α1 for all x ∈ K. We state without proof the following

result:

Theorem 8.1. (Ostrowski) Every non-trivial absolute value on Q is equivalent to

either the ordinary absolute value or a p-adic absolute value for some prime number

p.
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8.2 Completions

Let K be a field, | · | a non-trivial absolute value on K, and {ak}∞k=0 a sequence in

K.

We say that {ak}∞k=0 converges to α with respect to | · | if limk→∞ |ak − α| = 0.

Further, {ak}∞k=0 is called a Cauchy sequence with respect to |·| if limm,n→∞ |am−an| =
0.

Notice that any convergent sequence is a Cauchy sequence.

We say that K is complete with respect to | · | if every Cauchy sequence w.r.t. | · |
in K converges to a limit in K w.r.t. | · |.

For instance, R and C are complete w.r.t. the ordinary absolute value. Ostrowski

proved that any field complete with respect to an archimedean absolute value is

isomorphic to R or C.

Every field K with an absolute value can be extended to an up to isomorphism

complete field, the completion of K.

Theorem 8.2. Let K be a field with non-trivial absolute value | · |. There is an up

to absolute value preserving isomorphism unique extension field K̃ of K, called the

completion of K, having the following properties:

(i) | · | can be continued to an absolute value on K̃, also denoted | · |, such that K̃ is

complete w.r.t. | · |;
(ii) K is dense in K̃, i.e., every element of K̃ is the limit of a sequence from K.

Proof. Basically one has to mimic the construction of R from Q or the construction

of a completion of a metric space in topology. We give a sketch. Cauchy sequences,

limits, etc. are all with respect to | · |.

The set of Cauchy sequences in K with respect to | · | is closed under termwise

addition and multiplication {an}+ {bn} := {an + bn}, {an} · {bn} := {an · bn}. With

these operations they form a ring, which we denote by R. It is not difficult to verify

that the sequences {an} such that an → 0 with respect to | · | form a maximal ideal

in R, which we denote by M. Thus, the quotient R/M is a field, which is our

completion K̃.

We define the absolute value |α| of α ∈ K̃ by choosing a representative {an} of α,
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and putting |α| := limn→∞ |an|, where now the limit is with respect to the ordinary

absolute value on R. It is not difficult to verify that this is well-defined, that is, the

limit exists and is independent of the choice of the representative {an}.

We may view K as a subfield of K̃ by identifying a ∈ K with the element of

K̃ represented by the constant Cauchy sequence {a}. In this manner, the absolute

value on K̃ constructed above extends that of K, and moreover, every element of

K̃ is a limit of a sequence from K. So K is dense in K̃. One shows that K̃ is

complete, that is, any Cauchy sequence {an} in K̃ has a limit in K̃, by taking very

good approximations bn ∈ K of an and then taking the limit of the bn.

Finally, if K ′ is another complete field with absolute value extending the one on

K such that K is dense in K ′ one obtains an isomorphism from K̃ to K ′ as follows:

Take α ∈ K̃. Choose a sequence {ak} in K converging to α; this is necessarily a

Cauchy sequence. Then map α to the limit of {ak} in K ′.

Corollary 8.3. Assume that | · | is a non-trivial, non-archimedean absolute value

on K. Then the extension of | · | to K̃ is also non-archimedean.

Proof. Let a, b ∈ K̃. Choose sequences {ak}, {bk} in K that converge to a, b,

respectively. Then

|a+ b| = lim
k→∞
|ak + bk| 6 lim

k→∞
max(|ak|, |bk|) = max(|a|, |b|).

8.3 p-adic Numbers and p-adic integers

In everything that follows, p is a prime number.

The completion of Q with respect to | · |p is called the field of p-adic numbers,

notation Qp.

The continuation of | · |p to Qp is also denoted by | · |p. This is a non-archimedean

absolute value on Qp. Convergence, limits, Cauchy sequences and the like will all

be with respect to | · |p. As mentioned before, by identifying a ∈ Q with the class of

the constant Cauchy sequence {a}, we may view Q as a subfield of Qp.

Lemma 8.4. The value set of | · |p on Qp is {0} ∪ {pm : m ∈ Z}.
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Proof. Let x ∈ Qp, x 6= 0. Choose again a sequence {xk} in Q converging to x.

Then |x|p = limk→∞ |xk|p. For k sufficiently large we have |xk|p = pmk for some

mk ∈ Z. Since the sequence of numbers pmk converges we must have mk = m ∈ Z
for k sufficiently large. Hence |x|p = pm.

The set Zp := {x ∈ Qp : |x|p 6 1} is called the ring of p-adic integers.

Notice that if x, y ∈ Zp then |x − y|p 6 max(|x|p, |y|p) 6 1. Hence x − y ∈ Zp.
Further, if x, y ∈ Zp then |xy|p 6 1 which implies xy ∈ Zp. So Zp is indeed a ring.

Viewing Q as a subfield of Qp, we have

Zp ∩Q =
{a
b : a, b ∈ Z, p - b

}
.

It is not hard to show that the group of units of Zp, these are the elements x ∈ Zp
with x−1 ∈ Zp, is equal to

Z∗p = {x ∈ Qp : |x|p = 1}.

Further, Mp := {x ∈ Qp : |x|p < 1} is an ideal of Zp. In fact, Mp is the only

maximal ideal of Zp since any ideal of Zp not contained in Mp contains an element

of Z∗p, hence generates the whole ring Zp. Noting

|x|p < 1⇐⇒ |x|p 6 p−1 ⇐⇒ |x/p|p 6 1⇐⇒ x/p ∈ Zp

for x ∈ Qp, we see that Mp = pZp.

For α, β ∈ Qp we write α ≡ β (mod pm) if (α − β)/pm ∈ Zp. This is equivalent

to |α− β|p 6 p−m. Notice that if α = a1
b1

, β = a2
b2

with a1, b1, a2, b2 ∈ Z and p - b1b2,
then

a1 ≡ a2 (mod pm), b1 ≡ b2 (mod pm) =⇒ α ≡ β (mod pm).

For p-adic numbers, “very small” means “divisible by a high power of p”, and two

p-adic numbers α and β are p-adically close if and only if α−β is divisible by a high

power of p.

Lemma 8.5. For every α ∈ Zp and every positive integer m there is a unique

am ∈ Z such that |α− am|p 6 p−m and 0 6 am < pm. Hence Z is dense in Zp.

Proof. There is a rational number a/b (with coprime a, b ∈ Z) such that

|α− (a/b)|p 6 p−m since Q is dense in Qp. At most one of a, b is divisible by p and
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it cannot be b since |a/b|p 6 1. Hence there is an integer am with bam ≡ a (mod

pm) and 0 6 am < pm. Thus,

|α− am|p 6 max(|α− (a/b)|p, |(a/b)− am|p) 6 p−m.

This shows the existence of am. As for the unicity, if a′m is another integer with the

properties specified in the lemma, we have |am − a′m|p 6 p−m, hence am ≡ a′m (mod

pm), implying am = a′m.

Theorem 8.6. The non-zero ideals of Zp are pmZp (m = 0, 1, 2, . . .) and Zp/pmZp ∼=
Z/pmZ. In particular, Zp/pZp ∼= Fp.

Proof. Let I be a non-zero ideal of Zp and choose α ∈ I for which |α|p is maximal.

Then |α|p = p−m with m ∈ Z>0. We have p−mα ∈ Z∗p, hence pm ∈ I. Further,

for β ∈ I we have |βp−m|p 6 1, hence β ∈ pmZp. Hence I ⊂ pmZp. This implies

I = pmZp.

The homomorphism Z/pmZ → Zp/pmZp: a (mod pm) 7→ a (mod pm) is clearly

injective. and also surjective in view of Lemma 8.5. Hence Z/pmZ ∼= Zp/pmZp.

Lemma 8.7. Let {ak}∞k=0 be a sequence in Qp. Then
∑∞

k=0 ak converges in Qp if

and only if limk→∞ ak = 0.

Further, every convergent series in Qp is unconditionally convergent, i.e., neither the

convergence, nor the value of the series, are affected if the terms ak are rearranged.

Proof. Suppose that α :=
∑∞

k=0 ak converges. Then

an =
n∑
k=0

ak −
n−1∑
k=0

ak → α− α = 0.

Conversely, suppose that ak → 0 as k → ∞. Let αn :=
∑n

k=0 ak. Then for any

integers m,n with 0 < m < n we have

|αn − αm|p = |
n∑

k=m+1

ak|p 6 max(|am+1|p, . . . , |an|p)→ 0 as m,n→∞ .

So the partial sums αn form a Cauchy sequence, hence must converge to a limit in

Qp.

136



To prove the second part of the lemma, let σ be a bijection from Z>0 to Z>0.

We have to prove that
∑∞

k=0 aσ(k) =
∑∞

k=0 ak. Equivalently, we have to prove that∑M
k=0 ak −

∑M
k=0 aσ(k) → 0 as M →∞, i.e., for every ε > 0 there is N such that

|
M∑
k=0

ak −
M∑
k=0

aσ(k)|p < ε for every M > N .

Let ε > 0. There is N such that |ak|p < ε for all k > N . Choose N1 > N

such that {σ(0), . . . , σ(N1)} contains {0, . . . , N} and let M > N1. Then in the sum

S :=
∑M

k=0 ak −
∑M

k=0 aσ(k), only terms ak with k > N and aσ(k) with σ(k) > N

occur. Hence each term in S has p-adic absolute value < ε and therefore, by the

ultrametric inequality, |S|p < ε.

We now show that every element of Zp has a “Taylor series expansion,” and every

element of Qp a “Laurent series expansion” where instead of powers of a variable X

one takes powers of p.

Theorem 8.8. (i) Every element of Zp can be expressed uniquely as
∑∞

k=0 bkp
k with

bk ∈ {0, . . . , p− 1} for k > 0 and conversely, every such series belongs to Zp.
(ii) Every element of Qp can be expressed uniquely as

∑∞
k=−k0 bkp

k with k0 ∈ Z,

bk ∈ {0, . . . , p − 1} for k > −k0 and b−k0 6= 0 and conversely, every such series

belongs to Qp.

Proof. We first prove part (i). First observe that by Lemma 8.7, a series
∑∞

k=0 bkp
k

with bk ∈ {0, . . . , p−1} converges in Qp. Further, it belongs to Zp, since |
∑∞

k=0 bkp
k|p 6

maxk>0 |bkpk|p 6 1.

Let α ∈ Zp. Define sequences {αk}∞k=0 in Zp, {bk}∞k=0 in {0, . . . , p−1} inductively

as follows:

(8.1)


α0 := α;

For k = 0, 1, . . . , let bk ∈ {0, . . . , p− 1} be the integer with

αk ≡ bk (mod p) and put αk+1 := (αk − bk)/p.

By induction on k, one easily deduces that for k > 0,

αk ∈ Zp, α =
k∑
j=0

bjp
j + pk+1αk.
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Hence |α−
∑k

j=0 bjp
j|p 6 p−k−1 for k > 0. It follows that

α = lim
k→∞

k∑
j=0

bjp
j =

∞∑
j=0

bjp
j.

Notice that the integer am from Lemma 8.5 is precisely
∑m−1

k=0 bkp
k. Since am is

uniquely determined, so must be the integers bk.

We prove part (ii). As above, any series
∑∞

k=−k0 bkp
k with bk ∈ {0, . . . , p − 1}

converges in Qp. Let α ∈ Qp with α 6= 0. Suppose that |α|p = pk0 . Then β := p−k0α

has |β|p = 1, so it belongs to Zp. Applying (i) to β we get

α = p−k0β = p−k0
∞∑
k=0

ckp
k

with ck ∈ {0, . . . , p− 1} which implies (ii).

Corollary 8.9. Zp is uncountable.

Proof. Apply Cantor’s diagonal method.

We use the following notation:

α = 0. b0b1 . . . (p) if α =
∑∞

k=0 bkp
k,

α = b−k0 · · · b−1 . b0b1 . . . (p) if α =
∑∞

k=−k0 bkp
k with k0 < 0.

We can describe various of the definitions given above in terms of p-adic expansions.

For instance, for α ∈ Qp we have |α|p = p−m if α =
∑∞

k=m bkp
k with bk ∈ {0, . . . , p−

1} for k > m and bm 6= 0. Next, if α =
∑∞

k=0 akp
k, β =

∑∞
k=0 bkp

k ∈ Zp with

ak, bk ∈ {0, . . . , p− 1}, then

α ≡ β (mod pm)⇐⇒ ak = bk for k < m.

For p-adic numbers given in their p-adic expansions, one has the same addition with

carry algorithm as for real numbers given in their decimal expansions, except that for

p-adic numbers one has to work from left to right instead of right to left. Likewise,

one has subtraction and multiplication algorithms for p-adic numbers which are

precisely the same as for real numbers apart from that one has to work from left to

right instead of right to left.
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Theorem 8.10. Let α =
∑∞

k=−k0 bkp
k with bk ∈ {0, . . . , p− 1} for k > −k0. Then

α ∈ Q⇐⇒ {bk}∞k=−k0 is ultimately periodic.

Proof. ⇐= Exercise.

=⇒Without loss of generality, we assume that α ∈ Zp (if α ∈ Qp with |α|p = pk0 ,

say, then we proceed further with β := pk0α which is in Zp).

Suppose that α = A/B with A,B ∈ Z, gcd(A,B) = 1. Then p does not divide B

(otherwise |α|p > 1). Let C := max(|A|, |B|). Let {αk}∞k=0 be the sequence defined

by (8.1). Notice that αk determines uniquely the numbers bk, bk+1, . . ..

Claim. αk = Ak/B with Ak ∈ Z, |Ak| 6 C.

This is proved by induction on k. For k = 0 the claim is obviously true. Suppose

the claim is true for k = m where m > 0. Then

αm+1 =
αm − bm

p
=

(Am − bmB)/p

B
.

Since αm ≡ bm (mod p) we have that Am − bmB is divisible by p. So Am+1 :=

(Am − bmB)/p ∈ Z. Further,

|Am+1| 6
C + (p− 1)B

p
6 C.

This proves our claim.

Now since the integers Ak all belong to {−C, . . . , C}, there must be indices l < m

with Al = Am, that is, αl = αm. But then, bk+m−l = bk for all k > l, proving that

{bk}∞k=0 is ultimately periodic.

Examples. (i) We determine the 3-adic expansion of −2
5
. We compute the numbers

αk, bk according to (8.1).

Notice that 1
5
≡ 2 (mod 3).

k 0 1 2 3 4

αk −2
5
−4

5
−3

5
−1

5
−2

5

bk 2 1 0 1 2
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It follows that the sequence of 3-adic digits {bk}∞k=0 of −2
5

is periodic with period

2, 1, 0, 1 and that

−2

5
= 2× 30 + 1× 31 + 0× 32 + 1× 33 + 2× 34 + 1× 35 + 0× 36 + 1× 37 + · · ·

= 0.2101 2101 . . . (2) = 0. 2101 (2).

(ii) We determine the 2-adic expansion of 1
56

. Notice that 1
56

= 2−3 × 1
7
. We start

with the 2-adic expansion of 1
7
.

k 0 1 2 3 4

αk
1
7
−3

7
−5

7
−6

7
−3

7

bk 1 1 1 0 1

So
1

7
= 0. 1 110 (2),

1

56
= 111. 011 . . . (2).

8.4 The p-adic topology

The ball with center a ∈ Qp and radius r in the value set {0} ∪ {pm : m ∈ Z} of

| · |p is defined by B(a, r) := {x ∈ Qp : |x− a|p 6 r}. Notice that if b ∈ B(a, r) then

|b − a|p 6 r. So by the ultrametric inequality, for x ∈ B(a, r) we have |x − b|p 6
max(|x − a|p, |a − b|p) 6 r, i.e. x ∈ B(b, r). So B(a, r) ⊆ B(b, r). Similarly one

proves B(b, r) ⊆ B(a, r). Hence B(a, r) = B(b, r). In other words, any point in a

ball can be taken as center of the ball.

We define the p-adic topology on Qp as follows. A subset U of Qp is called open

if for every a ∈ U there is m > 0 such that B(a, p−m) ⊂ U . It is easy to see that

this topology is Hausdorff: if a, b are distinct elements of Qp, and m is an integer

with p−m < |a− b|p, then the balls B(a, p−m) and B(b, p−m) are disjoint.

But apart from this, the p-adic topology has some strange properties.

Theorem 8.11. Let a ∈ Qp, m ∈ Z. Then B(a, p−m) is both open and compact in

the p-adic topology.

Proof. The ball B(a, p−m) is open since for every b ∈ B(a, p−m) we have B(b, p−m) =

B(a, p−m).
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To prove the compactness we modify the proof of the Heine-Borel theorem stating

that every closed and bounded set in R is compact. Assume that B0 := B(a, p−m) is

not compact. Then there is an infinite open cover {Uα}α∈A of B0 no finite subcollec-

tion of which covers B0. Take x ∈ B(a, p−m). Then |(x− a)/pm|p 6 1. Hence there

is b ∈ {0, . . . , p− 1} such that x−a
pm
≡ b (mod p). But then, x ∈ B(a + bpm, p−m−1).

So B(a, pm) = ∪p−1b=0B(a + bpm, p−m−1) is the union of p balls of radius p−m−1. It

follows that there is a ball B1 ⊂ B(a, p−m) of radius p−m−1 which can not be covered

by finitely many sets from {Uα}α∈A. By continuing this argument we find an infinite

sequence of balls B0 ⊃ B1 ⊃ B2 ⊃ · · · , where Bi has radius p−m−i, such that Bi can

not be covered by finitely many sets from {Uα}α∈A.

We show that the intersection of the balls Bi is non-empty. For i > 0, choose xi ∈
Bi. Thus, Bi = B(xi, p

−m−i). Then {xi}i>0 is a Cauchy sequence since |xi − xj|p 6
p−m−min(i,j) → 0 as i, j →∞. Hence this sequence has a limit x∗ in Qp. Now we have

|xi− x∗|p = limj→∞ |xi− xj|p 6 p−m−i, hence x∗ ∈ Bi, and so Bi = B(x∗, p−m−i) for

i > 0.

The point x∗ belongs to one of the sets, U , say, of {Uα}α∈A. Since U is open, for i

sufficiently large the ball Bi must be contained in U . This gives a contradiction.

Corollary 8.12. Every non-empty open subset of Qp is disconnected.

Proof. Let U be an open non-empty subset of Qp. Take a ∈ U . Then B :=

B(a, p−m) ⊂ U for some m ∈ Z. By increasing m we can arrange that B is strictly

smaller than U . Now B is open and also U \ B is open since B is compact. Hence

U is the union of two non-empty disjoint open sets.

8.5 Algebraic extensions of Qp

We fix an algebraic closure Qp of Qp, i.e., a minimal extension of Qp over which

every non-zero polynomial in Qp[X] factors into linear factors. We construct an

extension of | · |p to Qp.

For polynomials f, g ∈ Zp[X] we write f ≡ g (mod pm) if p−m(f − g) ∈ Zp[X].

Given f ∈ Zp[X] and a sequence of polynomials fm ∈ Zp[X] (m = 1, 2, . . .), we

write limm→∞ fm = f if for every k > 0, the sequence of coefficients of Xk in fm
converges to the coefficient of Xk in f . Clearly, limm→∞ fm = f if and only if there
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is a sequence of non-negative integers am with limm→∞ am → ∞ (in R) such that

fm ≡ f (mod pam).

An important tool is the so-called Hensel’s Lemma, which gives a method to

derive, from a factorization of a polynomial f ∈ Zp[X] modulo p, a factorization of

f in Zp[X].

Theorem 8.13. Let f, g1, h1 be polynomials in Zp[X] such that f 6= 0,

f ≡ g1h1 (mod p), gcd(g1, h1) ≡ 1 (mod p),

g1 is monic, 0 < deg g1 < deg f, deg g1h1 6 deg f.

Then there exist polynomials g, h ∈ Zp[X] such that

f = gh, g ≡ g1 (mod p), h ≡ h1 (mod p), g is monic, deg g = deg g1.

Proof. By induction on m, we prove that there are polynomials gm, hm ∈ Zp[X] such

that

(8.2)

{
f ≡ gmhm (mod pm), gm ≡ g1 (mod p), hm ≡ h1 (mod p),

gm is monic, deg gm = deg g1, deg gmhm 6 deg f.

For m = 1 this follows from our assumption. Let m > 2, and suppose that there

are polynomials gm−1, hm−1 satisfying (8.2) with m− 1 instead of m. We try to find

u, v ∈ Zp[X] such that gm = gm−1 + pm−1u, hm = hm−1 + pm−1v satisfy (8.2). By

assumption,

A := p1−m(f − gm−1hm−1) ∈ Zp[X].

Notice that f ≡ gmhm (mod pm) if and only if

f − (gm−1 + pmu)(hm−1 + pmv) ≡ 0 (mod pm)

⇐⇒ A ≡ vgm−1 + uhm−1 (mod p)⇐⇒ A ≡ vg1 + uh1 (mod p).

Thanks to our assumption gcd(g1, h1) ≡ 1 (mod p) such u, v exist, and in fact, we can

choose u with deg u < deg g1. Then clearly, gm = gm−1 +pm−1u, hm = hm−1 +pm−1v

satisfy (8.2).

Now for each term Xk, the coefficients of Xk in the gm form a Cauchy sequence,

hence have a limit, so we can take g := limm→∞ gm. Then g is monic, and 0 <

deg g < deg f . Likewise, we can define h := limm→∞ hm. Then

f − gh = lim
m→∞

(f − gmhm) = 0.

This completes our proof.
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Corollary 8.14. Let f = a0X
n + a1X

n−1 + · · · + an ∈ Qp[X] be irreducible. Put

M := max(|a0|p, . . . , |an|p). Let k be the smallest index i such that |ai|p = M . Then

k = 0 or k = n.

Proof. Assume that 0 < k < n. So |ai|p < |ak|p for i < k and |ai|p 6 |ak|p for i > k.

Put f̃ := b−1k f . Then

f̃ = b0X
n + · · ·+ bk−1X

n−k+1 +Xn−k + bk+1X
n−k−1 + · · ·+ bn

with |bi|p < 1 for i < k and |bi|p 6 1 for i > k. Now f̃ ∈ Zp[X], b0, . . . , bk−1 are

divisible by p, and thus,

f̃ ≡ (Xn−k + bk+1X
n−k−1 + · · ·+ bn) · 1 (mod p).

By applying Hensel’s Lemma, we infer that there are polynomials g, h ∈ Zp[X] such

that f̃ = gh and deg g = n − k. Then f̃ , hence f , is reducible, contrary to our

assumption.

We are now ready to define an extension of | · |p to Qp. Given α ∈ Qp, let

f = Xn + a1X
n−1 + · · ·+ an ∈ Qp[X]

be the monic minimal polynomial of α over Qp, that is the monic polynomial in

Qp[X] of smallest degree having α as a root. Then we put

|α|p := |an|1/np .

Let α(1) = α, . . . , α(n) be the conjugates of α, i.e., the roots of f in Qp. Let L be

any finite extension of Qp containing α, and suppose that [L : Qp] = m. Completely

similarly as for algebraic number fields, the field L has precisely m embeddings in

Qp that leave the elements of Qp unchanged, say σ1, . . . , σm. Now in the sequence

σ1(α), . . . , σm(α), each of the conjugates α(1), . . . , α(n) occurs precisely m/n times.

Define the norm NL/Qp(α) := σ1(α) · · ·σm(α). Then

|α|p = |an|1/np = |α(1) · · ·α(n)|1/np = |NL/Qp(α)|1/[L:Qp]
p .

In case that α ∈ Qp, the minimal polynomial of α is X − α, and thus we get back

our already defined |α|p.

Theorem 8.15. | · |p defines a non-archimedean absolute value on Qp.
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Proof. Let α, β ∈ Qp, and take L = Qp(α, β). Then

|αβ|p = |NL/Qp(αβ)|1/[L:Qp]
p = |NL/Qp(α)|1/[L:Qp]

p |NL/Qp(β)|1/[L:Qp]
p = |α|p|β|p.

To prove that |α + β|p 6 max(|α|p, |β|p), assume without loss of generality that

|α|p 6 |β|p and put γ := α/β. Then |γ|p 6 1, and we have to prove that |1+γ|p 6 1.

Let f = Xn + a1X
n−1 + · · · + an be the minimal polynomial of γ over Qp. Then

|an|p = |γ|np 6 1, and by Corollary 8.14, also |ai|p 6 1 for i = 1, . . . , n− 1. Now the

minimal polynomial of γ + 1 is f(X − 1) = Xn + · · ·+ f(−1) and so

|γ + 1|p = |f(−1)|1/np = |(−1)n + a1(−1)n−1 + · · ·+ a0|1/np

6 max(1, |a1|p, . . . , |an|p)1/n 6 1,

as required.

We recall Eisenstein’s irreducibility criterion for polynomials in Zp.

Lemma 8.16. Let f(X) = Xn + a1X
n−1 + · · · + an−1X + an ∈ Zp[X] be such that

ai ≡ 0 (mod p) for i = 1, . . . , n, and an 6≡ 0 (mod p2). Then f is irreducible in

Qp[X].

Proof. Completely similar as the Eisenstein criterion for polynomials in Z[X].

Example. Let α be a zero of X3 − 8X + 10 in Q2. The polynomial X3 − 8X + 10

is irreducible in Q2[X], hence it is the minimal polynomial of α. It follows that

|α|2 = |10|1/32 = 2−1/3.

We finish with some facts which we state without proof.

Theorem 8.17. (i) Let K be a finite extension of Qp. Then there is precisely

one absolute value on K whose restriction to Qp is | · |p, and this is given by

|NK/Qp(·)|1/[K:Qp]
p . Further, K is complete with respect to this absolute value.

(ii) Qp is not complete with respect to | · |p.
(iii) The completion Cp of Qp with respect to | · |p is algebraically closed.
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8.6 Exercises

In the exercises below, p always denotes a prime number and convergence is with

respect to | · |p.

Exercise 8.1. (a) Determine the p-adic expansion of −1.

(b) Let α =
∑∞

k=0 bkp
k with bk ∈ {0, . . . , p − 1} for k > 0. Determine the p-adic

expansion of −α.

Exercise 8.2. Let α ∈ Qp, α 6= 0. Prove that α has a finite p-adic expansion if and

only if α = a/pr where a is a positive integer and r a non-negative integer.

Exercise 8.3. Let α =
∑∞

k=−k0 bkp
k ∈ Qp where bk ∈ {0, . . . , p − 1} for k > −k0

and b−k0 6= 0. Suppose that the sequence {bk}∞k=−k0 is ultimately periodic, i.e., there

exist r, s with r > −k0, s > 0 such that ak+s = ak for all k > r. Prove that α ∈ Q.

Exercise 8.4. Let α ∈ Zp with |α − 1|p 6 p−1. In this exercise you are asked to

define αx for x ∈ Zp and to show that this exponentiation has the expected properties.

You may use without proof that the limit of the sum, product etc. of two sequences

in Zp is the sum, product etc. of the limits.

(a) Prove that
∣∣αp−1
α−1

∣∣
p
6 p−1.

(b) Let u be a positive integer. Prove that |αu − 1|p 6 |u|p|α− 1|p.
Hint. Write u = pmb where b is not divisible by p and use induction on m.

(c) Let u, v be positive integers. Prove that |αu − αv|p 6 |u− v|p|α− 1|p.

(d) We now define αx for x ∈ Zp as follows. Take a sequence of positive integers

{ak}∞k=0 such that limk→∞ ak = x and define

αx := lim
k→∞

αak .

Prove that this is well-defined, i.e., the limit exists and is independent of the

choice of the sequence {ak}∞k=0.

(e) Prove that for x, y ∈ Zp we have |αx − αy|p 6 |x − y|p|α − 1|p. (Hint. Take

sequences of positive integers converging to x, y.)

Then show that if {xk}∞k=0 is a sequence in Zp such that limk→∞ xk = x then

limk→∞ α
xk = αx (so the function x 7→ αx is continuous).
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(f) Prove the following properties of the above defined exponentiation:

(i) (αβ)x = αxβx for α, β ∈ Zp, x ∈ Zp with |α− 1|p 6 p−1, |β − 1|p 6 p−1;

(ii) αx+y = αxαy, (αx)y = αxy for α ∈ Zp with |α− 1|p 6 p−1, x, y ∈ Zp.

Remark. In 1935, Mahler proved the following p-adic analogue of the Gel’fond-

Schneider Theorem: let α, β be elements of Zp, both algebraic over Q, such that

|α− 1|p 6 p−1 and β 6∈ Q. Then αβ is transcendental over Q.

Exercise 8.5. Denote by C((t)) the field of formal Laurent series

∞∑
k=k0

bkt
k

with k0 ∈ Z, bk ∈ C for k > k0. We define an absolute value | · |0 on C((t)) by

|0|0 := 0 and |α|0 := c−k0 (c > 1 some constant) where

α =
∞∑

k=k0

bkt
k with bk0 6= 0.

This absolute value is clearly non-archimedean.

(a) Prove that C((t)) is complete w.r.t. | · |0.

(b) Define | · |0 on the field of rational functions C(t) by |0|0 := 0 and |α|0 := c−k0

if α 6= 0, where k0 is the integer such that α = tk0f/g with f, g polynomials

not divisible by t. Prove that C((t)) is the completion of C(t) w.r.t. | · |0.

Exercise 8.6. In this exercise you are asked to work out a p-adic analogue of New-

ton’s method to approximate the roots of a polynomial (which is in fact a special

case of Hensel’s Lemma). Let f = a0X
n + · · ·+ an ∈ Zp[X]. The derivative of f is

f ′ = na0X
n−1 + · · ·+ an−1.

(a) Let a, x ∈ Zp and suppose that x ≡ 0 (mod pm) for some positive integer m.

Prove that f(a+ x) ≡ f(a) (mod pm) and f(a+ x) ≡ f(a) + f ′(a)x (mod p2m).

Hint. Use that f(a+X) ∈ Zp[X].
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(b) Let x0 ∈ Z such that f(x0) ≡ 0 (mod p), f ′(x0) 6≡ 0 (mod p). Define the

sequence {xn}∞n=0 recursively by

xn+1 := xn −
f(xn)

f ′(xn)
(n > 0).

Prove that xn ∈ Zp, f(xn) ≡ 0 (mod p2
n
), f ′(xn) 6≡ 0 (mod p) for n > 0.

(c) Prove that xn converges to a zero of f in Zp.

(d) Prove that f has precisely one zero ξ ∈ Zp such that ξ ≡ x0 (mod p).

Exercise 8.7. In this exercise, p is a prime > 2.

(a) Let d be a positive integer such that d 6≡ 0 (mod p) and x2 ≡ d (mod p) is

solvable. Show that x2 = d is solvable in Zp.

(b) Let a, b be two positive integers such that none of the congruence equations x2 ≡
a (mod p), x2 ≡ b (mod p) is solvable in x ∈ Z. Prove that ax2 ≡ b (mod p) is

solvable in x ∈ Z.

Hint. Use that the multiplicative group (Z/pZ)∗ is cyclic of order p− 1. This

implies that there is an integer g such that (Z/pZ)∗ = {gm mod p : m =

0, . . . , p− 2}.

(c) Let K be a quadratic extension of Qp. Prove that K = Qp(
√
d) for some

d ∈ Zp. Next, prove that Qp(
√
d1) = Qp(

√
d2) if and only if d1/d2 is a square

in Qp.

(d) Determine all quadratic extensions of Q5.

(e) Prove that for any prime p > 2, Qp has up to isomorphism only three distinct

quadratic extensions.

Exercise 8.8. (a) Prove that xp−1 = 1 has precisely p − 1 solutions in Zp, and

that these solutions are different modulo p.

(b) Let S consist of 0 and of the solutions in Zp of xp−1 = 1. Let α ∈ Zp.
Prove that for any positive integer m, there are ξ0, . . . , ξm−1 ∈ S such that

α ≡
∑m−1

k=0 ξkp
k (mod pm). Then prove that there is a sequence {ξk}∞k=0 in S

such that α =
∑∞

k=0 ξkp
k. (This is called the Teichmüller representation of α).
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Exercise 8.9. In this exercise you may use the following facts on p-adic power

series (the coefficients are always in Qp, and m,m′ ∈ Z).

1) Suppose f(x) =
∑∞

n=0 an(x − x0)n, g(x) =
∑∞

n=0 bn(x − x0)n converge and are

equal on B(x0, p
−m). Then an = bn for all n > 0.

2) Suppose that for x ∈ B(x0, p
−m), f(x) =

∑∞
n=0 an(x−x0)n converges and |f(x)−

f(x0)|p 6 p−m
′
. Further, suppose that g(x) =

∑∞
n=0 bn(x − f(x0))

n converges on

B(f(x0), p
−m′

). Then the composition g(f(x)) can be expanded as a power series∑∞
n=0 cn(x− x0)n which converges on B(x0, p

−m).

3) We define the derivative of f(x) =
∑∞

n=0 an(x− x0)n by

f ′(x) :=
∞∑
n=1

nan(x− x0)n−1.

If f converges on B(x0, p
m) then so does f ′. The derivative satisfies the same sum

rules, product rule, quotient rule and chain rule as the derivative of a function on

R, e.g., g(f(x))′ = g′(f(x))f ′(x).

Now define the p-adic exponential function and p-adic logarithm by

expp x :=
∞∑
n=0

xn

n!
, logp x :=

∞∑
n=1

(−1)n−1

n
· (x− 1)n.

Further, let r = 1 if p > 2, r = 2 if p = 2. Prove the following properties.

(a) Prove that expp(x) converges and | expp(x)− 1|p = |x|p for x ∈ B(0, p−r).

Hint. Prove that |xn/n!|p → 0 as n→∞, and |xn/n!|p < |x|p for n > 2.

(b) Prove that logp(x) converges and | logp x|p = |x− 1|p for x ∈ B(1, p−r).

(c) Prove that expp(x+ y) = expp(x) expp(y) for x, y ∈ B(0, p−r).

Hint. Fix y and consider the function in x,

f(x) := expp(y)−1 expp(x+ y).

Then f(x) can be expanded as a power series
∑∞

n=0 anx
n. Its derivative f ′(x)

can be computed in the same way as one should do it for real or complex

functions. This leads to conditions on the coefficients an.

(d) Prove that logp(xy) = logp(x) + logp(y) for x, y ∈ B(1, p−r).

148



(e) Prove that logp(expp x) = x for x ∈ B(0, p−r).

(f) Prove that expp(logp x) = x for x ∈ B(1, p−r).
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