
Chapter 9

The p-adic Subspace Theorem

Literature:

B. Edixhoven, J.-H. Evertse (eds.), Diophantine Approximation and Abelian Varieties, Introduc-

tory Lectures, Lecture Notes in Mathematics 1566, Springer Verlag 1993, Chap.IV

9.1 Results

The p-adic Subspace Theorem deals with Diophantine inequalities in which several

different absolute values occur (e.g., the ordinary absolute value and | · |p1 , . . . , | · |ps
for distinct primes p1, . . . , ps). Recall that the p-adic absolute value | · |p has a

unique continuation to Qp (the algebraic closure of Qp). By ‘algebraic’ we always

mean ‘algebraic over Q’.

We start with a generalization of Roth’s Theorem.

Theorem 9.1. Let p1, . . . , ps be distinct prime numbers. Let α be an algebraic

number in R and for i = 1, . . . , s, let αpi be a number in Qp which is algebraic over

Q. Finally, let κ > 2. Then the inequality

(9.1) |α− ξ| · |αp1 − ξ|p1 · · · |αps − ξ|ps 6 H(ξ)−κ in ξ ∈ Q

has only finitely many solutions.

Example. Consider

| 3
√

2− ξ| · | 3
√

3− ξ|2 6 H(ξ)−κ in ξ ∈ Q
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where κ > 2. Here, 3
√

3 = 31/3 ∈ Q2 is defined by Exercise 8.6.

Theorem 9.1 implies that there are only finitely many ξ ∈ Q such that ξ is very close

to 3
√

2 but 2-adically not too close to 3
√

3 or conversely; and also if ξ is moderately

close to 3
√

2 and also 2-adically moderately close to 3
√

3.

We now formulate the p-adic Subspace Theorem. This involves again absolute

values | · |, | · |p1 , . . . , | · |ps and for each of these absolute values, a system of n linearly

independent linear forms in X1, . . . , Xn.

Theorem 9.2. Let n > 2, ε > 0, and let p1, . . . , ps be distinct prime numbers.

Further, let L1∞, . . . , Ln∞ be linearly independent linear forms in X1, . . . , Xn with

coefficients in C that are algebraic over Q, and for j = 1, . . . , s, let L1,pj , . . . , Ln,pj
be linearly independent linear forms in X1, . . . , Xn with coefficients in Qpj that are

algebraic over Q. Consider the inequality

(9.2) |L1∞(x) · · ·Ln∞(x)| ·
s∏
j=1

|L1,pj(x) · · ·Ln,pj(x)|pj 6 ‖x‖−ε in x ∈ Zn .

Then there are a finite number of proper linear subspaces T1, . . . , Tt of Qn such that

all solutions of (9.2) lie in T1 ∪ · · · ∪ Tt.

Proof of Theorem 9.1. Let ξ be a solution of (9.1). Write ξ = x/y with x, y ∈ Z,

gcd(x, y) = 1. Multiply (9.1) with A :=
(
|y| · |y|p1 · · · |y|ps

)2
. Notice that |y|pj 6 1

for j = 1, . . . , s. Hence A 6 y2 6 H(ξ)2. Let ε = κ− 2. Then (9.1) implies

|(x− αy)y| ·
s∏
j=1

|(x− αpjy)y|pj 6 max(|x|, |y|)−ε.

The solutions (x, y) ∈ Z2 of the latter lie in only finitely many proper one-dimensional

linear subspaces of Q2, and each of these gives rise to a single fraction ξ = x/y. So

(9.1) has only finitely many solutions.

Example. Let ε > 0. We show that the inequality

(9.3) |2u + 3v − 5w| 6 max(|2u|, |3v|, |5w|)1−ε

has only finitely many solutions in non-negative integers u, v, w.
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Write x1 = 2u, x2 = 3v, x3 = 5w, x = (x1, x2, x3). We first show that the set of

solutions x lies in the union of finitely many proper linear subspaces of Q3. Consider

for the moment those solutions for which ‖x‖ = |x3|. Notice that

|x1x2x3|2 · |x1x2x3|3 · |x1x2x3|5 = 2−u3−v5−w = |x1x2x3|−1.

In combination with (9.3), this gives

|(x1 + x2 − x3)x1x2| · |x1x2x3|2 · |x1x2x3|3 · |x1x2x3|5 6 |x3|−1‖x‖1−ε 6 ‖x‖−ε.

The solutions of the latter inequality lie in the union of finitely many proper linear

subspaces of Q3. So the solutions of (9.3) with ‖x‖ = |x3| lie in finitely many

proper linear subspaces of Q3. In a similar way one proves that the solutions with

‖x‖ = |x1| or with ‖x‖ = |x2| lie in finitely many proper linear subspaces of Q3.

It is left as an exercise to prove that if T is a two-dimensional linear subspace of

Q3 then T contains only finitely many solutions of (9.3).

Similarly as for the basic Subspace Theorem discussed in Chapter 7, there is a

version with linear forms in general position.

Theorem 9.3. Let ε > 0, and let p1, . . . , ps be distinct prime numbers. Further,

let L1∞, . . . , Lr∞ (r > n) be linear forms in X1, . . . , Xn in general position with

coefficients in C that are algebraic over Q, and for j = 1, . . . , s, let L1,pj , . . . , Lrj ,pj
(rj > n) be linear forms in X1, . . . , Xn in general position with coefficients in Qpj

that are algebraic over Q. Consider the inequality

|L1∞(x) · · ·Lr∞(x)| ·
s∏
j=1

|L1,pj(x) · · ·Lrj ,pj(x)|pj 6 ‖x‖r−n−ε(9.4)

in x ∈ Zn with gcd(x1, . . . , xn) = 1.

Then there are a finite number of proper linear subspaces T1, . . . , Tt of Qn such that

all solutions of (9.4) lie in T1 ∪ · · · ∪ Tt.

Proof. We partition the solutions x ∈ Zn of (9.4) in classes depending on which

n quantities among |L1∞(x)|, . . . , |Lr∞(x)| are the smallest, and likewise, for j =

1, . . . , s, which n quantities among |L1,pj(x)|pj , . . . , |Lrj ,pj(x)|pj are the smallest. It

suffices to show that the solutions in a given class lie in finitely many proper linear

subspaces of Qn.
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Consider for instance the solutions x ∈ Zn such that |L1∞(x)|, . . . , |Ln∞(x)| are

the smallest among |L1∞(x)|, . . . , |Lr∞(x)| and |L1,pj(x)|pj , . . . , |Ln,pj(x)|pj are the

smallest among |L1,pj(x)|pj , . . . , |Lrj ,pj(x)|pj for j = 1, . . . , s.

Let i > n+ 1. According to Lemma 7.4, there is a constant Ci such that for the

solutions under consideration,

‖x‖ 6 Ci|Li∞(x)| .

Let j ∈ {1, . . . , s}. Since we consider only solutions whose coordinates have gcd

1, for each solution x = (x1, . . . , xn) under consideration, there is an index k with

|xk|pj = 1. Since L1,p1 , . . . , Ln−1,pj , Li,pj span the vector space of all linear forms in

Qpj , we have

Xk = α1L1,pj + · · ·+ αn−1Ln−1,pj + αnLi,pj

for certain constants α1, . . . , αn. So by the ultrametric inequality,

1 = |xk|pj 6 max
l
|αl|pj |Ll,pj(x)|pj 6 Ci,pj |Li,pj(x)|pj

for some constant Ci,pj . By combining these inequalities with (9.4), we obtain

|L1∞(x) · · ·Ln∞(x)| ·
s∏
j=1

|L1,pj(x) · · ·Ln,pj(x)|pj 6 C‖x‖−ε

for some constant C > 0. Now apply Theorem 9.2 to the latter.

Let F (X, Y ) ∈ Z[X, Y ] be a square-free binary form of degree n > 3 and

p1, . . . , ps distinct prime numbers. We consider the so-called Thue-Mahler equation

(9.5) |F (x, y)| = pz11 · · · pzss in x, y, z1, . . . , zs ∈ Z with gcd(x, y) = 1.

Notice that if we drop the condition gcd(x, y) = 1 it is possible to construct infinitely

many solutions from a given solution. We prove the following.

Theorem 9.4. (Mahler, 1933). Equation (9.5) has only finitely many solutions.

We use the following important fact.

Lemma 9.5. Let u ∈ Q. Then u = ±pw1
1 · · · pws

s for certain integers w1, . . . , ws if

and only if |u| · |u|p1 · · · |u|ps = 1.
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Proof. Trivial.

Proof of Theorem 9.4. If F (1, 0) 6= 0 then the form F can be factored as a0(X −
α1Y ) · · · (X −αnY ) with α1, . . . , αn distinct, while if F (1, 0) = 0, F can be factored

as a0Y (X − α1Y ) · · · (X − αn−1Y ) with α1, . . . , αn−1 distinct. In both cases, F is a

product of n linear forms in two variables in general position.

Take ε with 0 < ε < n − 2. Then by Lemma 9.5 we have for any solution

(x, y, z1, . . . , zs) of (9.5),

|F (x, y)| ·
s∏
j=1

|F (x, y)|pj = 1 6 max(|x|, |y|)n−2−ε.

By Theorem 9.3, the set of solutions (x, y) ∈ Z2 of this inequality lies in the union of

finitely many one-dimensional linear subspaces of Q2. Each such subspace contains

only two solutions with gcd(x, y) = 1. This proves that (9.5) has only finitely many

solutions.

Remark. The above proof of the finiteness of the number of solutions of the

Thue-Mahler equation is based on the p-adic Subspace Theorem and is therefore

ineffective. There is however an alternative, effective proof of Theorem 9.4. There

are effective lower bounds for the p-adic absolute value of linear forms in p-adic

logarithms of algebraic numbers, similar to those mentioned in Chapter 5. Then

one can prove Theorem 9.4, with an effective upper bound for max(|x|, |y|), by

combining estimates for linear forms in ‘ordinary logarithms’ with estimates for

linear forms in pj-adic logarithms for j = 1, . . . , s.

Recall that in Chapter 5, we considered the unit equation ax+ by = 1 where the

unknowns x, y are taken from the unit group O∗K of the ring of integers OK of an

algebraic number field K. It was proved that this equation has only finitely many

solutions. By Dirichlet’s Unit Theorem, the group O∗K is finitely generated, and we

have

O∗K
∼= W × Zr

where W is the group of roots of unity in K (which is finite), and where r is the

unit rank. Recall that r = r1 + r2−1 where r1 is the number of embeddings K → R
and r2 the number of complex conjugate pairs of embeddings σ, σ : K → C, where

σ is the composition of σ and complex conjugation.
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We consider a much more general situation where x, y are taken from an arbitrary

finitely generated multiplicative group in an arbitrary field of characteristic 0. For

such a finitely generated group Γ we have Γ ∼= Γtors×Zr where Γtors is the (necessarily

finite) torsion subgroup of Γ, consisting of roots of unity. Thus,

(9.6) Γ = {ζgm1
1 · · · gmr

r : m1, . . . ,mr ∈ Z}

for certain generators g1, . . . , gr.

Theorem 9.6. (Lang, 1960). Let K be any field of characteristic 0, let a, b be non-

zero elements from K, and let Γ be a finitely generated subgroup of the multiplicative

group K∗ of K. Then the equation

(9.7) ax+ by = 1 in x, y ∈ Γ

has only finitely many solutions.

Lang’s proof is ineffective.

From Theorem 5.17, that we proved in Chapter 5, one can derive an effective

proof of the above theorem in the special case that Γ is a subgroup of Q∗ and that

a, b are non-zero elements of Q∗. We now give another, but ineffective proof of this

result. Let g1, . . . , gr be a set of generators of Γ as in (9.6). Let p1, . . . , ps be primes

such that the numerators and denominators of a, b, g1, . . . , gr are composed of primes

from p1, . . . , ps. Write ax = u/w, by = v/w, where u, v, w are integers, necessarily

composed of primes from p1, . . . , ps, with gcd(u, v, w) = 1 and u + v = w. Now

clearly, we have

|uv(u+ v)| = pz11 · · · pzss , gcd(u, v) = 1

for certain non-negative integers z1, . . . , zs. This is a Thue-Mahler equation. There-

fore there are only finitely many possibilities for the pair (u, v), hence for (u, v, w),

hence for (x, y).

Remark. In case that the group Γ is contained in an algebraic number field K,

it is possible to give an effective proof of Theorem 9.6, see Theorem 5.18. If the

degree of K and the number of generators of Γ are not too large, there is a practical

algorithm to determine all solutions.

Example. Let Γ be the multiplicative group generated by 2, 3, 5, 7, 11, 13 and

consider the equation

(9.8) x+ y = 1 in x, y ∈ Γ with x 6 y.
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We give some solutions:(1

2
,
1

2

)
,
(3

7
,
4

7

)
,
( 2

13
,
11

13

)
,
( 3993

20800
,
16807

20800

)
=
( 3 · 113

26 · 52 · 13
,

75

26 · 52 · 13

)
.

In his thesis of 1988, de Weger determined all 545 solutions of (9.8).

9.2 Further applications

Let K be a field of characteristic 0 and Γ a finitely generated subgroup of K∗.

Further, let n > 2 and α1, . . . , αn ∈ K∗. We consider the equation

(9.9) α1x1 + · · ·+ αnxn = 1 in x1, . . . , xn ∈ Γ.

If n > 3 this equation may have infinitely many solutions. For instance, let 2 6
m < n and suppose (9.9) has a solution (x1, . . . , xn) with

α1x1 + · · ·+ αmxm = 1, αm+1xm+1 + · · ·+ αnxn = 0 .

Then for every u ∈ Γ, the tuple (x1, . . . , xm, uxm+1, . . . , uxn) is also a solution of

(9.9). Assuming the group Γ is infinite, we obtain in this way infinitely many

solutions of (9.9). More generally, we can construct infinitely many solutions from

a given solution (x1, . . . , xn) with a vanishing subsum
∑

i∈I αixi = 0 for some non-

empty subset I of {1, . . . , n}.

To make such easy constructions of infinite sets of solutions impossible, we con-

sider only solutions without vanishing subsums.

Definition. A solution (x1, . . . , xn) of (9.9) is called non-degenerate if∑
i∈I

αixi 6= 0 for each non-empty subset I of {1, . . . , n}.

Theorem 9.7. (Van der Poorten, Schlickewei, Laurent, E., 1980’s) Equation

(9.9) has only finitely many non-degenerate solutions.

Roughly speaking, the proof consists of two steps. In the first step one makes a

reduction from the general case that K is a field of characteristic 0 to the special case

that K is an algebraic number field by using techniques from algebraic geometry.
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To treat the case that Γ is contained in an algebraic number field one has to apply

the ‘p-adic Subspace Theorem over number fields,’ which is a generalization of the

p-adic Subspace Theorem which involves absolute values on an algebraic number

field and in which the unknowns are algebraic integers of that number field.

Since in these notes we have only the p-adic Subspace Theorem over Q at our

disposal, we assume henceforth

Γ ⊂ Q∗, α1, . . . , αn ∈ Q∗

and prove Theorem 9.9 in this special case. It will be convenient to consider instead

of (9.9) the homogeneous equation

(9.10) α0x0 + · · ·+ αnxn = 0 in x0, . . . , xn ∈ Γ,

where α0, . . . , αn are non-zero rational numbers. Solutions (x0, . . . , xn) of (9.10) will

be called non-degenerate if
∑

i∈I αixi 6= 0 for each proper, non-empty subset I of

{0, . . . , n}. We prove the following.

Theorem 9.8. There is a finite set U such that xi/xj ∈ U for each non-degenerate

solution (x0, . . . , xn) of (9.10) and each pair of indices i, j ∈ {0, . . . , n}.

By taking α0 = −1 and considering solutions of (9.10) with x0 = 1 we obtain

Theorem 9.7 in the case Γ ⊂ Q∗.

Let H be the linear subspace of Qn+1 given by α0x0 + · · ·+ αnxn = 0.

Lemma 9.9. There are finitely many proper linear subspaces T1, . . . , Tt of H such

that the set of solutions (x0, . . . , xn) of (9.9) (non-degenerate or not) lies in T1 ∪
· · · ∪ Tt.

Proof. We use the ‘general position version’ of the p-adic Subspace Theorem. We

start with some preparations.

There are g1, . . . , gr of Q∗ such that every element of Γ can be expressed as

±gu11 · · · gurr with u1, . . . , ur ∈ Z. Let p1, . . . , ps be the prime numbers occurring in

the numerators and denominators of α1, . . . , αn, g1, . . . , gr. Let ϕ be the bijective

linear map from H to Qn given by (x0, . . . , xn) 7→ (α1x1, . . . , αnxn).

Take a solution x = (x0, . . . , xn) of (9.10). Let w be a positive rational number

such that

yi := wαixi ∈ Z for i = 1, . . . , n, gcd(y1, . . . , yn) = 1
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and put y = (y1, . . . , yn). Thus, y = ϕ(wx). Further, y1 + · · · + yn = −wα0x0.

Clearly, y1, . . . , yn and y1 + · · · + yn are composed of primes from p1, . . . , ps. This

implies that for any ε with 0 < ε < 1,

(9.11) |y1 · · · yn(y1 + · · ·+ yn)| ·
s∏
j=1

|y1 · · · yn(y1 + · · ·+ yn)|pj = 1 6 ‖y‖(n+1)−n−ε.

The linear forms y1, . . . , yn, y1 + · · · + yn are in general position. So by the ‘gen-

eral position-version’ of the p-adic Subspace Theorem, the set of solutions y =

(y1, . . . , yn) ∈ Zn of (9.11) with gcd(y1, . . . , yn) = 1 lies in a union S1 ∪ · · · ∪ St of

proper linear subspaces of Qn. Hence the corresponding solutions x = (x0, . . . , xn)

of (9.10) lie in T1 ∪ · · · ∪ Tt, where Ti := ϕ−1(Si) is a proper linear subspace of H,

for i = 1, . . . , t. This proves the lemma.

Lemma 9.10. There is a finite set U ′ ∈ Q∗ such that for every solution (x1, . . . , xn)

of (9.10) (non-degenerate or not) there are distinct i, j ∈ {0, . . . , n} with xi/xj ∈ U .

Proof. We proceed by induction on n. If n = 1 we have an equation α0x0+α1x1 = 0

and the lemma is obvious.

Now let n > 2 and assume that the lemma is true for equations of type (9.10)

in fewer than n + 1 unknowns. By the previous lemma, there are proper linear

subspaces T1, . . . , Tt of H such that the solutions of (9.10) lie in T1 ∪ · · · ∪ Tt.
Consider the solutions in T ∈ {T1, . . . , Tt}. The points x = (x0, . . . , xn) ∈ T satisfy,

apart from the defining equation α0x0 + · · · + αnxn = 0 for H, another equation

that is linearly independent of it, say γ0x0 + · · · + γnxn = 0. If for instance γn 6= 0

then by subtracting γn/αn times the first equation from the second, we get another

equation

(9.12) β0x0 + · · ·+ βn−1xn−1 = 0

valid for all x ∈ T , where at least one of β0, . . . , βn−1 is non-zero.

By the induction hypothesis, applied to (9.12) with the terms with βi = 0 re-

moved, there is a finite set UT such that for every solution (x0, . . . , xn) of (9.10)

lying in T there are distinct indices i, j ∈ {0, . . . , n− 1} such that xi/xj ∈ UT .

Now the lemma holds with U ′ = UT1 ∪ · · · ∪ UTt .
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Proof of Theorem 9.8. We proceed again by induction on n. For n = 1 Theorem 9.8

is trivial. Let n > 2 and suppose Theorem 9.8 is true for equations in fewer than

n+ 1 unknowns.

Suppose the set U ′ from the previous lemma is {β1, . . . , βm}. Then the non-

degenerate solutions (x1, . . . , xn) of (9.10) can be divided into finitely many sets

Spqr (p, q = 0, . . . , n, p 6= q, r = 1, . . . ,m), where Spqr is the set of solutions with

xp/xq = βr.

Consider for instance the non-degenerate solutions in Sn,n−1,1, i.e., with xn =

β1xn−1. These solutions satisfy

α0x0 + · · ·+ (αn−1 + β1αn)xn−1 = 0.

Each non-empty subsum of the left-hand side is non-zero, since (x0, . . . , xn) is non-

degenerate. By the induction hypothesis, there is a finite set Un,n−1,1 such that

xi/xj ∈ Un,n−1,1 for all solutions (x0, . . . , xn) of (9.10) in Sn,n−1,1 and all i, j ∈
{0, . . . , n− 1}. Using xn/xn−1 = β1 we can enlarge Un,n−1,1 such that it contains all

quotients xi/xj with i = n or j = n as well. We get a similar set Upqr for each other

triple of indices p, q, r. Now Theorem 9.8 is satisfied with U equal to the union of

the sets Upqr with p, q = 0, . . . , n, p 6= q and r = 1, . . . ,m.

We now deal with linear recurrence sequences.

A sequence U = {uh}∞h=0 with terms in C is called a linear recurrence sequence

if it is given by a linear recurrence

(9.13) uh = c1uh−1 + · · ·+ ckuh−k for h > k,

where c1, . . . , ck are constants in C and ck 6= 0, and by initial values u0, . . . , uk−1.

Given a linear recurrence sequence U , there are various linear recurrences which

it may satisfy but there is a unique one with minimal length k (exercise). This k is

called the order of the linear recurrence sequence U , and the polynomial

fU(X) = Xk − c1Xk−1 − · · · − ck

the companion polynomial of U .

Theorem 9.11. Let U = {uh}∞h=0 be a linear recurrence sequence in C with com-

panion polynomial fU(X) = Xk − c1Xk−1 − · · · − ck. Write

fU(X) = (X − θ1)e1 · · · (X − θm)em ,
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where θ1, . . . , θm are distinct complex numbers and e1, . . . , em positive integers. Then

there are polynomials g1, . . . , gm ∈ C[X] of degrees at most e1 − 1, . . . , em − 1, re-

spectively, such that

(9.14) uh = g1(h)θh1 + · · ·+ gm(h)θhm for h > 0.

Conversely, any sequence satisfying (9.14) is a linear recurrence sequence.

Proof. Consider the power series

y(z) =
∞∑
h=0

uh
h!
zh.

One proves easily by induction on h that there is a constant C > 0 such that

|uh| 6 Ch for all h > 0. Hence y(z) converges, and thus defines an analytic function,

everywhere on C. Using that the sequence U satisfies recurrence relation (9.13), it

follows easily that y satisfies the linear differential equation

y(k) = c1y
(k−1) + · · ·+ ck−1y

′ + cky .

By the theory of linear differential equations, the set of solutions of the latter equa-

tion is a complex vector space with basis {zjeθiz : i = 1, . . . ,m, j = 0, . . . , ei − 1}.
Hence there are cij ∈ C such that

y(z) =
m∑
i=1

ei−1∑
j=0

cijz
jeθiz =

m∑
i=1

ei−1∑
j=0

cij

∞∑
l=0

θli
zl+j

l!

=
∞∑
h=0

(
m∑
i=1

{
ei−1∑
j=0

cijh(h− 1) · · · (h− j + 1)θ−ji

}
θhi

)
zh

h!
.

This implies that {uh}∞h=0 satisfies (9.14). Conversely, if {uh}∞h=0 satisfies (9.14) then

by reversing the above argument one shows that y(z) =
∑∞

h=0(uh/h!)zh satisfies a

linear differential equation with constant coefficients, and subsequently that {uh}∞h=0

is a linear recurrence sequence.

Example. Let U = {uh}∞h=0 be given by

uh = 10uh−1 − 31uh−2 + 30uh−3 (h > 3), u0 = 1, u1 = 0, u2 = −12.
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The companion polynomial of U is given by

fU(X) = X3 − 10X2 + 31X − 30 = (X − 2)(X − 3)(X − 5).

By Theorem 9.11 there are constants c1, c2, c3 such that uh = c12
h + c23

h + c35
h.

Substituting h = 0, 1, 2 one obtains c1 = 1, c2 = 0, c2 = −12 and

uh = 2h + 3h − 5h.

The zero set of a linear recurrence sequence U = {uh}∞h=0 is defined by

ZU := {h ∈ Z>0 : uh = 0}

and the zero multiplicity of U is NU := #ZU . With the notation from Theorem

9.11, the set ZU is the set of solutions of

(9.15) g1(h)θh1 + · · ·+ gm(h)θhm = 0 in h ∈ Z>0.

This is called an exponential-polynomial equation.

A linear recurrence sequence U = {uh}∞h=0 is called non-degenerate if the zeros

of its companion polynomial θ1, . . . , θm are such that none of the quotients θi/θj
(1 6 i < j 6 m) is a root of unity.

Theorem 9.12. (Skolem-Mahler-Lech, 1953) Let U be a non-degenerate linear

recurrence sequence. Then its zero set is finite.

Stated equivalently, if θ1, . . . , θm are non-zero complex numbers such that none of

the quotients θi/θj (1 6 i, j 6 m, i 6= j) is a root of unity and if g1(X), . . . , gm(X)

are polynomials in C[X], not all equal to 0, then Eq. (9.15) has only finitely many

solutions.

There are two very different proofs.

In the first proof, which was the one given by Skolem, Mahler and Lech, one

‘maps’ the linear recurrence sequence to a sequence with terms in Qp for a suitable

prime p and then uses techniques from p-adic analysis.

In the second proof, one ‘maps’ the linear recurrence sequence to a sequence with

terms in an algebraic number field, and then applies the p-adic Subspace Theorem

over number fields.
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Here we prove Theorem 9.12 in the special case that the companion polynomial

fU of U = {uh}∞h=0 does not have multiple zeros, i.e., in Theorem 9.11 we have e1 =

· · · = em = 1. Then the polynomials gi(h) in (9.14) have degree 0, so uh =
∑m

i=1 giθ
h
i

for h > 0 where the gi are constants. That is, we have to show that the equation

g1θ
h
1 + · · ·+ gmθ

h
m = 0

has finitely many solutions in h ∈ Z>0.

We proceed by induction on m. For m = 1 there are no solutions and we are

done. Let m > 2 and suppose the theorem is true if we have fewer than m terms.

Let ai := −gi/gm, βi := θi/θm. Then the equation reduces to

(9.16) a1β
h
1 + · · ·+ am−1β

h
m−1 = 1.

Further, none of the numbers βi, nor any of the quotients βi/βj (i 6= j) is a root of

unity.

We apply Theorem 9.7 with the group Γ generated by β1, . . . , βm−1. It follows

that there are only finitely many integers h which satisfy (9.16) and for which none

of the subsums of the left-hand side of (9.16) vanishes, i.e.,∑
i∈I

aiβ
h
i 6= 0 for each non-empty subset I of {1, . . . ,m}.

But by the induction hypothesis, each equation
∑

i∈I aiβ
h
i = 0 has only finitely many

solutions h. So altogether, (9.16) has only finitely many solutions h.

Remark. Using a much refined version of the p-adic Subspace over number fields,

Schmidt proved the following:

Theorem 9.13. (Schmidt, 2000) Let U be a non-degenerate linear recurrence

sequence with terms in C of order k. Then for its zero multipicity we have

NU 6 exp exp exp 20k.

This has been improved by Amoroso and Viada (2011) to NU 6 exp exp 70k.

Bavencoffe and Bézivin (Une Famille Remarquable de Suites Récurrentes Linéaires,

Monatshefte für Mathematik 120 (1995), 189–203) found examples of non-degenerate

linear recurrence sequences U of arbitrarily large order k, having NU > 1
2
k2− 1

2
k+1;
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no linear recurrence sequences of order k with larger zero multiplicity are known.

In fact, let

Pk(X) :=
Xk+1 + (−2)k−1X + (−2)k

X + 2
;

verify that Pk(X) ∈ Z[X]. Let U = {un}∞n=0 be the linear recurrence sequence

with companion polynomial Pk and initial values u0 = · · · = uk−2 = 0, uk−1 = 1.

Bavencoffe and Bézivin proved that U is non-degenerate, and moreover, that un = 0

for

n = l(k + 1) + q with l > 0, q > 0, l + q 6 k − 2,

n = j(2k + 1) with 1 6 j 6 k − 1.

9.3 Exercises

Exercise 9.1. Let p1, p2, p3 be distinct prime numbers, A1, A2, A3 non-zero integers,

and ε > 0. Prove that the inequality

|A1p
u1
1 + A2p

u2
2 + A3p

u3
3 | 6 max(pu11 , p

u2
2 , p

u3
3 )1−ε

has only finitely many solutions in non-negative integers u1, u2, u3.

Exercise 9.2. let p be a prime number, α a real, irrational algebraic number and

ε > 0.

(a) Prove that the inequality ∣∣∣∣α− x

pu

∣∣∣∣ 6 max(|x|, pu)−1−ε

has only finitely many solutions in integers x, u with u > 0.

(b) Prove that the inequality∣∣∣∣α− x

pu − 1

∣∣∣∣ 6 max(|x|, pu)−1−ε

has only finitely many solutions in integers x, u with u > 0.
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Exercise 9.3. Let ε > 0. Prove that the inequality∣∣∣∣(3

2

)n
− u
∣∣∣∣ 6 e−εn

has only finitely many solutions in non-negative integers n, u.

Hint. Let x = 3n, y = u2n and apply in an appropriate way the p-adic Subspace

Theorem.

Exercise 9.4. Let f(X) = a0X
n + a1X

n−1 + · · · + an ∈ Z[X] be a square-free

polynomial, i.e., without multiple zeros, and let p1, . . . , ps be distinct prime numbers.

We consider the equation

(9.17) |f(ξ)| = pz11 · · · pzss in ξ ∈ Q, z1, . . . , zs ∈ Z .

(a) Let (ξ, z1, . . . , zs) be a solution of (9.17). Prove that |ξ|p 6 1 for every prime

p with p 6∈ {p1, . . . , ps}, p - a0.

(b) Let n > 2. Prove that (9.17) has only finitely many solutions. What if n = 1?

Hint. Write ξ = x/y with x, y ∈ Z, gcd(x, y) = 1 and reduce (9.17) to a

Thue-Mahler equation.

Exercise 9.5. Let p be a prime number, α ∈ Zp, α 6∈ Q.

(a) Prove that for every positive integer m there are integers x, y, not both 0, such

that

|x− αy|p 6 p−2m, |x| 6 pm, |y| 6 pm.

Hint. Choose a positive integer a such that |α− a|p 6 p−2m and show that if

x, y is a solution then x− ay = p2mu for some u ∈ Z.

(b) Prove that the inequality

|x− αy|p 6 max(|x|, |y|)−2

has infinitely many solutions in (x, y) ∈ Z2.

(c) Suppose that α is algebraic and let ε > 0. Prove that the inequality

|x− αy|p 6 max(|x|, |y|)−2−ε

has only finitely many solutions in (x, y) ∈ Z2.
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Exercise 9.6. For a finite set of primes S = {p1, . . . , ps}, denote by US the set of

integers of the shape ±pu11 · · · puss : u1, . . . , us ∈ Z>0.

Let S0, . . . ,Sn be pairwise disjoint sets of prime numbers, and a0, . . . , an non-zero

integers. Prove that the equation

a0x0 + · · ·+ anxn = 0 in x0 ∈ US0 , . . . , xn ∈ USn

has only finitely many solutions.

Exercise 9.7. Let U = {uh}∞h=0 be a linear recurrence sequence with terms in C.

(c) Prove that the following two assertions are equivalent:

(i) uh = c1uh−1 + · · ·+ ckuh−k for all h > k;

(ii)
∑∞

h=0 uhX
h = g(X)/h(X), where h(X) = 1− c1X − · · · − ckXk and g(X)

is a polynomial of degree at most k − 1.

(b) Let IU be the set of all polynomials d0X
m + · · · + dm ∈ C[X] (m > 0,

d0, . . . , dm ∈ C) such that d0uh + d1uh−1 + · · · + dmuh−m = 0 for all h > m.

Prove that IU is an ideal of the ring C[X], generated by the companion poly-

nomial of U .

(c) Give a necessary and sufficient condition, in terms of the companion polyno-

mial of U , such that U is periodic (i.e., there is m > 0 such that uh+m = uh
for all h > 0.

(d) Give an example of a non-periodic linear recurrence sequence U = {uh}∞h=0

such that ZU = {h ∈ Z>0 : uh = 0} is infinite.

Exercise 9.8. An arithmetic progression is a sequence a, a+d, a+2d, . . . where a, d

are integers with d > 0.

Let U = {uh}∞h=0 be a linear recurrence sequence with terms in C. We do not assume

that U is non-degenerate. Assuming the Skolem-Mahler-Lech Theorem, prove that

either ZU is finite, or ZU is the union of a finite set and a finite number of arithmetic

progressions.

Hint. Assume that U is degenerate and let θ1, . . . , θm be the roots of the companion

polynomial of U . Let N be a positive integer such that all roots of unity among

the quotients θi/θj have order dividing N . Consider the sequences {uhN+i}∞h=0 (i =

0, . . . , N − 1).
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Exercise 9.9. A linear recurrence sequence U = {uh}∞h=0 is called strongly non-

degenerate if for the zeros θ1, . . . , θm of the companion polynomial of U , neither any

of the numbers θi (i = 1, . . . ,m), nor any of the quotients θi/θj (1 6 i, j 6 mi 6= j)

is a root of unity.

(a) Let U be a strongly non-degenerate linear recurrence sequence with terms in

C. Prove that for every a ∈ C, the set ZU(a) := {h ∈ Z>0 : uh = a} is finite.

(b) Let U = {uh}∞h=0 be a linear recurrence sequence with companion polynomial

f(X) = (X − θ1)(X − θ2) where none of θ1, θ2, θ1/θ2 is a root of unity. Prove

that the set

TU := {(h, l) ∈ Z2 : uh = ul, 0 < h < l}

is finite.

Hint. Use Theorem 9.7.

Remark. One can show that TU is finite for every strongly non-degenerate linear

recurrence sequence U .

167


