DIOPHANTINE APPROXIMATION HOMEWORK I

Due October 18

Total number of points: 60. Grade: number of points/6

5 **1.** Let *a* be an integer with $a \ge 3$ and put

$$\xi := \sum_{n=1}^{\infty} 10^{-a^{2n}}.$$

Prove that there are infinitely many pairs $(x, y) \in \mathbb{Z}^2$ with

$$\left|\xi - \frac{x}{y}\right| \leqslant y^{-a}, \quad y > 0, \ \gcd(x, y) = 1.$$

2. Complete the following irrationality proof for π (attributed to Cartwright, 1945).

Assume that $\pi = \frac{a}{b}$ with $a, b \in \mathbb{Z}_{>0}$, gcd(a, b) = 1.

3 *a)* Define

$$I_n := \int_{-1}^{1} (1 - x^2)^n \cos(\frac{1}{2}\pi x) dx \text{ for } n = 0, 1, 2, \dots$$

Prove that

$$I_0 = \frac{4}{\pi}, \ I_1 = \frac{32}{\pi^3}, \ I_n = \frac{8n}{\pi^2} \Big((2n-1)I_{n-1} - (2n-2)I_{n-2} \Big) \text{ for } n \ge 2.$$

3 b) Prove that $\frac{a^{2n+1}}{n!} \cdot I_n \in \mathbb{Z}$ for $n \ge 0$.

4 c) Prove that $0 < \frac{a^{2n+1}}{n!} \cdot I_n < 1$ for *n* sufficiently large, and deduce a contradiction.

- **3.** Let C be a central symmetric convex body in \mathbb{R}^n . For $\mathbf{x} \in \mathbb{R}^n$, define $\|\mathbf{x}\|_C := \min\{\lambda \in \mathbb{R}_{\geq 0} : \mathbf{x} \in \lambda C\}.$
- a) Prove that $\|\cdot\|_C$ defines a norm on \mathbb{R}^n .

5

5

5

2

1

7

b) Prove that for $\lambda \ge 0$ we have $\lambda C = \{ \mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\|_C \le \lambda \}.$

4. The symmetric convex hull of a subset S of \mathbb{R}^n is defined to be the intersection of all convex sets, symmetric about $\mathbf{0}$, that contain S. The symmetric convex hull of S is itself a convex set, symmetric about $\mathbf{0}$.

Prove that if $\mathbf{v}_1, \ldots, \mathbf{v}_r$ are points in \mathbb{R}^n , then the symmetric convex hull of $\mathbf{v}_1, \ldots, \mathbf{v}_r$ is given by

$$\left\{\sum_{i=1}^r x_i \mathbf{v}_i : x_1, \dots, x_r \in \mathbb{R}, \sum_{i=1}^r |x_i| \leq 1\right\}.$$

- 5. Let p be a prime number with $p \equiv 1 \pmod{4}$.
- a) Prove that there is an integer x_0 with $x_0^2 \equiv -1 \pmod{p}$. **Hint.** You may use that the group $(\mathbb{Z}/p\mathbb{Z})^*$ is cyclic. Prove that it has an element of order 4.
 - b) Let L be the lattice $\{(x, y) \in \mathbb{Z}^2 : x \equiv x_0 y \pmod{p}\}$. Prove that $x^2 + y^2 \equiv 0 \pmod{p}$ for $(x, y) \in L$.
- c) Apply Minkowski's theorem with $C = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq A\}$ for appropriate A and the lattice L from b) and deduce that there is $(x, y) \in \mathbb{Z}^2$ with $x^2 + y^2 = p$.
- 5 **6.***a*) Let $l_i = \xi_{i1}X_1 + \dots + \xi_{im}X_m$ $(i = 1, \dots, n)$ be linear forms with real coefficients, satisfying

 $\{\mathbf{x} = (x_1, \dots, x_m) \in \mathbb{Z}^m : l_i(\mathbf{x}) \in \mathbb{Z} \text{ for } i = 1, \dots, n\} = \{\mathbf{0}\}.$

Prove that there are infinitely many tuples $(\mathbf{x}, \mathbf{y}) = (x_1, \ldots, x_m, y_1, \ldots, y_n) \in \mathbb{Z}^{m+n}$ with

$$|l_i(\mathbf{x}) - y_i| \leq \left(\max_{1 \leq i \leq m} |x_i|\right)^{-m/n}$$
 for $i = 1, \dots, n, \ \mathbf{x} \neq \mathbf{0}$.

b) (Dirichlet's theorem for Gaussian numbers). Let ζ be a complex number not belonging to the field $\mathbb{Q}(i) = \{x+iy : x, y \in \mathbb{Q}\}$. Prove that there are infinitely many pairs $(z, w) \in \mathbb{Z}[i] \times \mathbb{Z}[i]$ (where $\mathbb{Z}[i] = \{x+iy : x, y \in \mathbb{Z}\}$) such that

$$|z-\zeta w| \leqslant \frac{4}{\pi} |w|^{-1}, \ w \neq 0.$$

Hint. Prove that for every integer $Q \ge 2$ there are $z, w \in \mathbb{Z}[i]$ with

$$|z - \zeta w| \leq \frac{4}{\pi}Q^{-1}, \quad |w| \leq Q, \quad w \neq 0.$$

To this end, consider the lattice in \mathbb{R}^4 ,

$$\{(\operatorname{Re}(z-\zeta w), \operatorname{Im}(z-\zeta w), \operatorname{Re}w, \operatorname{Im}w): z, w \in \mathbb{Z}[i]\}$$

and apply Minkowski's first convex body theorem.

- 7. Let C be a symmetric convex body in \mathbb{R}^n , and L a lattice in \mathbb{R}^n . Denote by $\lambda_1, \ldots, \lambda_n$ the successive minima of C with respect to L. Then there are linearly independent vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n \in L$ such that $\mathbf{v}_i \in \lambda_i C$ for $i = 1, \ldots, n$.
- a) Let M be the lattice with basis $\mathbf{v}_1, \ldots, \mathbf{v}_n$. Prove that $[L:M] \leq n!$.
- b) Assume that n = 2. Prove that L has a basis $\{\mathbf{w}_1, \mathbf{w}_2\}$ with $\mathbf{w}_1 \in \lambda_1 C$, $\mathbf{w}_2 \in \lambda_2 C$. **Hint.** Let \mathbf{v}, \mathbf{v}_2 be vectors in L with $\mathbf{v}_i \in \lambda_i C$ for i = 1, 2 and M the lattice with basis $\mathbf{v}_1, \mathbf{v}_2$. Then by a), [L : M] = 1 or [L : M] = 2. Assume that [L : M] = 2. Take $\mathbf{w}_1 = \mathbf{v}_1$. Replace \mathbf{v}_2 by another vector $\mathbf{w}_2 \in L$.

5