
DIOPHANTINE APPROXIMATION

HOMEWORK II

Due November 15

Total number of points: 60. Grade: number of points/6

You may use all theorems from the lecture notes, unless stated otherwise.

8. Theorem 2.21 of the lecture notes (Kronecker’s approximation theorem) can

be refined as follows:

Let ξ1, . . . , ξn be reals such that 1, ξ1, . . . , ξn are linearly independent over Q.

Then for every ε > 0, θ1, . . . , θn ∈ R, y0 > 0, there are x1, . . . , xn, y ∈ Z such

that

|ξ1y − x1 − θ1| < ε, . . . , |ξny − xn − θn| < ε, y > y0

(the condition that y > y0 is new). To get this, the proof of Theorem 2.21 has

to be modified as follows. On page 31, choose b = (ε−1θ1, . . . , ε
−1θn, 2Mε)T .

Then if one is able to show that there is x = (x1, . . . , xn, y)T ∈ Zn+1 with

‖Az− b‖2 6 ε, it follows that

n∑
i=1

(xi − ξiy − θi)2 +M−2(y − 2Mε)2 < ε2.

This shows that |ξiy − xi − θi| < ε for i = 1, . . . , n and |y − 2Mε| < Mε,

hence y > Mε. Now the proof of Theorem 2.21 can be followed without any

changes, except that on page 32, one has to choose M > max(R,R/µ, y0/ε),

where R = (n+ 1) · c(n+ 1)/2ε.

4 a) Deduce the following result from the above refinement of Kronecker’s Theorem:

Let ξ1, . . . , ξn be real numbers, linearly independent over Q. Then for every

t0 > 0, ε > 0, θ1, . . . , θn ∈ R, there are t ∈ R with t > t0, and x1, . . . , xn ∈ Z,

such that

|ξ1t− x1 − θ1| < ε, . . . , |ξnt− xn − θn| < ε

1



(so compared with Kronecker’s Theorem, we have weakened the condition that

{1, ξ1, . . . , ξn} is linearly independent over Q to {ξ1, . . . , ξn} linearly indepen-

dent over Q, but instead of an unknown y assuming integer values we have an

unknown t assuming real values).

6 b) A star has n planets, all whose orbits are circular with the star in the center

and lie in the same plane. Each planet has a constant angular velocity with

which it traverses its orbit. Prove that the planets are in almost the same

direction infinitely often (i.e., for every ε > 0 there are arbitrarily large t such

that at time t, seen from the star the directions of the planets are within an

angle ε > 0 from each other) in each of the following two cases:

(i) they once have been in the same direction;

(ii) their angular velocities are linearly independent over Q.

Let α ∈ Q be an algebraic number of degree d.

The denominator of α is the smallest positive m ∈ Z such that mα is an

algebraic integer, notation den(α).

The house of α is defined by

α := max(|α(1)|, . . . , |α(d)|)

where d = degα and α(1), . . . , α(d) denote the conjugates of α.

In the next exercises you are asked to prove some properties of the house.

1 9.a) Let α be a non-zero algebraic integer. Prove that α > 1.

3 b) Let α, β be algebraic integers. Prove that

α + β 6 α + β , αβ 6 α · β , αn = α n for n ∈ Z>0.

3 c) Let α be a non-zero algebraic integer of degree d. Prove that H(α) 6 (2 α )d

(consider the minimal polynomial of α).

3 d) Compute an explicit expression f(C, d) depending only on C and d, such that

the number of algebraic integers α ∈ C with α 6 C, degα 6 d is at most

f(C, d).

2



5 e) Let α be a non-zero algebraic integer. Prove that α = 1 ⇐⇒ α is a root of

unity.

5 f) Let α be a non-zero algebraic integer of degree d which is not a root of unity.

Compute an explicit expression c(d) > 1 depending only on d such that α >
c(d).

Hint. Consider the set {αn : 0 6 n 6 n0} where n0 is the largest integer n

such that α n 6 2.

Remark. The Schinzel-Zassenhaus conjecture asserts that there is a constant

c > 0 independent of d, such that α > 1 + c/d for every non-zero algebraic

integer α of degree d which is not a root of unity. Apart from the value of c

this is best possible, since d
√

2 = 21/d which is about 1 + (log 2)/d for d large.

In 1979, Dobrowolski proved that there is a constant c > 0 such that

α > 1 +
c

d
·
(

log log 3d

log 3d

)3

.

This had not been improved since. But very recently (last September!), Verger-

Gaugry posted a manuscript of 164 pages on arXiv in which he claimed a

proof of the Schinzel-Zassenhaus conjecture. Presumably, Verger-Gaugry has

submitted his paper to a journal, and one or more referees are now checking

it for correctness. This may take some time. To my knowledge, this has not

been finished yet.

arXiv is a freely accessible preprint server on which researchers in mathematics

and natural sciences can also freely post preprints of their papers, prior to

their publication in a journal. arXiv does not require that preprints posted

on it are refereed, so it can not be excluded that they contain errors. For

mathematical preprints, go to the website xxx.lanl.gov, then scroll and click

on mathematics. For those interested: if in the box ’Search or Artice-id’ you

type ’Verger-Gaugry’ you will find the manuscript mentioned above.
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4 10.a) Let α ∈ Q be a non-zero algebraic number of degree d and denote by α(1), . . . , α(d)

the conjugates of α. Prove that

den(α)d · α(1) · · ·α(d) ∈ Z, |α| > den(α)−d · α 1−d.

6 b) Using a), give a proof of the following inequality of Liouville (1844):

let α be an algebraic number in R of degree d > 2. Then there is a constant

c(α) > 0 such that∣∣∣α− x

y

∣∣∣ > c(α)y−d for all x, y ∈ Z with y > 0.

5 c) Using b), prove that
∑∞

n=1 10−n! is transcendental.

11. The Lindemann-Weierstrass Theorem asserts that if β1, . . . , βn are non-zero

algebraic numbers and α1, . . . , αn are distinct algebraic numbers, all in C, then

β1e
α1 + · · · + βne

αn 6= 0. Deduce the following consequences. The functions

sin z, cos z and tan z are defined on C by eiz = cos z+i sin z, e−iz = cos z−i sin z

and tan z = sin z/ cos z whenever cos z 6= 0.

1 a) For an algebraic number α ∈ C with α /∈ {0, 1}, prove that logα is transcen-

dental, where logα is any solution of ez = α.

4 b) For a non-zero algebraic number α ∈ C, prove that sinα, cosα, tanα are

transcendental.

5 c) Let α1, . . . , αn be algebraic numbers in C that are linearly independent over

Q. Prove that eα1 , . . . , eαn are algebraically independent.

5 d) Let α1, . . . , αn be algebraic numbers in C. Denote by rankQ(α1, . . . , αn) the

largest integer m such that α1, . . . , αn contain m elements that are linearly

independent over Q. Prove that

trdeg(eα1 , . . . , eαn) = rankQ(α1, . . . , αn).
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