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2.1 Introduction

Geometry of numbers is concerned with the study of lattice points in certain bodies

in Rn, where n > 2. We discuss Minkowski’s theorems on lattice points in central

symmetric convex bodies. In this introduction we give the necessary definitions.

Discrete subgroups of Rn. We call vectors w1, . . . ,wr ∈ Rn linearly independent

if they are linearly independent over R, i.e., there is no tuple (ξ1, . . . , ξr) ∈ Rr \ {0}
with ξ1w1 + · · · + ξrwr = 0. Notions such as boundedness, openness, closedness,

etc. for subsets of Rn are all with respect to the usual Euclidean metric on Rn and

the topology induced by it. We use [x] to denote the largest integer 6 x.

A subset S of Rn is called discrete if S ∩B is finite for every bounded subset B

of Rn. We consider discrete subgroups of Rn, i.e., discrete subsets such that if x,y

belong to this set then so do zx+wy for all z, w ∈ Z. The rank of a discrete subgroup

M of Rn is the maximal number r such that M contains r linearly independent

11



vectors.

The lemma below shows that a non-zero discrete subgroup M of Rn has a basis.

A basis of M is a set of vectors {v1, . . . ,vr}, linearly independent over R, such that

M = {z1v1 + · · ·+ zrvr : z1, . . . , zr ∈ Z}.

We show how to construct a basis of M taking as starting point any linearly inde-

pendent subset {w1, . . . ,wr} of M of maximal cardinality.

Lemma 2.1. Let M be a discrete subgroup of Rn and let {w1, . . . ,wr} be any linearly

independent subset of M of maximal cardinality. Then M has a basis {v1, . . . ,vr}
such that for k = 1, . . . , r we have

(2.1) vk = ξk1w1 + · · ·+ ξkkwk with ξkj ∈ R, 0 6 ξkj 6 1 for j = 1, . . . , k, ξkk 6= 0.

Proof. We first choose v1, . . . ,vr. For k = 1, . . . , r define Sk to be the set of vectors

in M of the form

k∑
j=1

ξjwj with ξj ∈ R, 0 6 ξj 6 1 for j = 1, . . . , k, ξk 6= 0.

The set Sk is non-empty since wk ∈ Sk. Since M is discrete and Sk is a bounded

subset of M , the set Sk is finite. Choose vk from Sk with minimal wk-coordinate,

that is, if we write vk =
∑k

j=1 ξkjwj, then

(2.2)
k∑
j=1

ξjwj ∈ Sk ⇒ ξk > ξkk.

We have thus chosen a set {v1, . . . ,vr} which satisfies (2.1), and from this it follows

easily that it is linearly independent over R. We show that it is a basis of M . In

fact, we prove the following assertion by induction on k, for k = 0, . . . , r:

let Mk := M ∩ {
∑k

j=1 ξjwj : ξ1, . . . , ξk ∈ R}. Then {v1, . . . ,vk} is a basis of Mk.

For k = 0 this has to be interpreted as that M0 = {0} and the empty set is a basis

of M0.

For k = 0 our assertion is trivially true. Let k > 0. The induction hypothesis

is that our assertion is true for k − 1 replacing k. In the induction step we use the
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following observation: if x =
∑k

j=1 ξjwj ∈ Mk and ξk > 0, then in fact ξk > ξkk.

Indeed, suppose that 0 < ξk < ξkk. Then

x−
k−1∑
j=1

[ξj]wj =
k−1∑
j=1

(ξj − [ξj])wj + ξkwk ∈ Sk.

But this contradicts (2.2).

Now we complete the induction step. Let x =
∑k

j=1 ξjwj ∈ Mk. We must

show that x is a Z-linear combination of v1, . . . ,vk. Let zk := [ξk/ξkk]; then 0 6
ξk − zkξkk < ξkk. Now

x1 := x− zkvk =
k∑
j=1

(ξj − zkξkj)wj ∈Mk.

By the above observation we must have ξk − zkξkk = 0. So in fact, x1 ∈ Mk−1.

By the induction hypothesis, x1 is a Z-linear combination of v1, . . . ,vk−1 (or 0

if k = 1). Hence x is a Z-linear combination of v1, . . . ,vk. This completes the

induction step.

Lattices. A (full) lattice in Rn is a discrete subgroup of Rn of maximal rank n. By

the above lemma this implies that L has a basis {v1, . . . ,vn}, that is,

L = {z1v1 + · · ·+ znvn : z1, . . . , zn ∈ Z}.

The determinant of L is defined by

d(L) := | det(v1, . . . ,vn)|,

that is, the absolute value of the determinant of the matrix with columns v1, . . . ,vn.

We show that the determinant of a lattice does not depend on the choice of the

basis. Recall that GL(n,Z) is the multiplicative group of n×n-matrices with entries

in Z and determinant ±1.

Lemma 2.2. Let L be a lattice, and {v1, . . . ,vn}, {w1, . . . ,wn} two bases of L.

Then there is a matrix U = (uij) ∈ GL(n,Z) such that

(2.3) wi =
n∑
j=1

uijvj for i = 1, . . . , n.

Consequently, | det(v1, . . . ,vn)| = | det(w1, . . . ,wn)|.
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Proof. Let U be the matrix expressing w1, . . . ,wn into v1, . . . ,vn, that is, the matrix

given by (2.3). A priori, U is just a non-singular matrix, but since w1, . . . ,wn lie in

the lattice generated by v1, . . . ,vn, it must have its entries in Z.

Let U−1 = (uij). Then from linear algebra we know that vi =
∑n

j=1 u
ijwj for

i = 1, . . . , n. Now U−1 has its entries in Z since v1, . . . ,vn lie in the lattice generated

by w1, . . . ,wn. Since both detU and detU−1 are integers and must be multiplicative

inverses of one another, we have detU = ±1, i.e., U ∈ GL(n,Z).

Finally, we observe that

| det(w1, . . . ,wn)| = | detU | · | det(v1, . . . ,vn)| = | det(v1, . . . ,vn)|.

Let L,M be two lattices in Rn with M ⊆ L. Choose bases {v1, . . . ,vn} of

L, {w1, . . . ,wn} of M . Let U = (uij) be the matrix expressing w1, . . . ,wn into

v1, . . . ,vn. Then U has its entries in Z. We define the index of M in L by

|L : M | := | detU |.

The relation det(w1, . . . ,wn) = detU · det(v1, . . . ,vn) easily translates into

d(M) = |L : M | · d(L)

and this shows that |L : M | does not depend on the choices of the bases of L and

M . 1

Convex bodies. Recall that a subset C of Rn is convex if for any two points

x,y ∈ C, also the line segment connecting them, i.e., {tx + (1− t)y : 0 6 t 6 1}, is

contained in C. A central symmetric convex body in Rn is a closed, bounded, convex

subset C of Rn having 0 as an interior point, and which is symmetric about 0, i.e.

if x ∈ C then also −x ∈ C.

1The index |L : M | as defined above is equal to the index as defined in group theory, that

is the order of the quotient group L/M . This can be seen as follows. By a general theorem

for abelian groups, there are a basis {v1, . . . ,vn} of L and positive integers d1, . . . , dn such that

{d1v1, . . . , dnvn} is a basis of M . On the one hand, according to the above definition, |L : M | =
d1 · · · dn, on the other hand, L/M ∼= Z/d1Z⊕ · · · ⊕ Z/dnZ, and so it has cardinality d1 · · · dn.
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Given a central symmetric convex body C in Rn and a real λ > 0, we define the

dilation of C with factor λ by

λC := {λx : x ∈ C}.

In case that λ > 0, this is again a central symmetric convex body.

Exercise 2.1. Let C be a central symmetric convex body.

(i) Let λ, µ be reals with 0 6 λ 6 µ. Prove that λC ⊆ µC.

(ii) Let x ∈ λC, y ∈ µC where λ, µ > 0. Prove that x + y ∈ (λ+ µ)C.

(iii) Let B be a bounded subset of Rn. Then there is λ > 0 such that B ⊆ λC.

Examples.

(i). Images under linear transformations: If C is a central symmetric convex

body in Rn and φ a linear transformation of Rn (i.e., an invertible linear map from

Rn to itself), then φ(C) is also a central symmetric convex body in Rn.

(ii). Parallelepipeds, ellipsoids and octahedra: Let

Kn = {x ∈ Rn : max
16i6n

|xi| 6 1}, Bn = {x ∈ Rn : x21 + · · ·+ x2n 6 1},

On = {x ∈ Rn : |x1|+ · · ·+ |xn| 6 1}

be the n-dimensional unit cube, Euclidean unit ball, and unit octahedron, respec-

tively, where x = (x1, . . . , xn) ∈ Rn. Then (central) parallelepipeds, ellipsoids and

octahedra in Rn are the images of Kn, Bn and On respectively under linear trans-

formations of Rn. These are all central symmetric convex bodies.

(iii). Unit balls of norms: Recall that a norm on Rn is a function ‖·‖ : Rn → R>0

such that

• ‖λx‖ = |λ| · ‖x‖ for all x ∈ Rn, λ ∈ R;

• ‖x + y‖ 6 ‖x‖+ ‖y‖ for all x,y ∈ Rn;

• ‖x‖ = 0⇐⇒ x = 0.

Then the unit ball B‖·‖ := {x ∈ Rn : ‖x‖ 6 1} is a central symmetric convex body.

Indeed, recall that all norms on Rn induce the same topology, that is that the defi-

nitions of openness, closedness, interior points, boundedness, etc., do not depend on

the choice of the norm. This implies directly that B‖·‖ is closed and bounded and

has 0 as an interior point. The central symmetry and convexity follow easily from

the first and second property of a norm.
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In fact, every central symmetric convex body arises from a norm. Let again C

be a central symmetric convex body in Rn and define for x ∈ Rn,

‖x‖C := min{λ ∈ R>0 : x ∈ λC}.

Lemma 2.3. (i) ‖ · ‖C is well defined.

(ii) ‖ · ‖C defines a norm on Rn.

(iii) λC = {x ∈ Rn : ‖x‖C 6 λ} for λ > 0.

Proof. (i). Clearly, ‖0‖C = 0. Let x ∈ Rn with x 6= 0. Consider the set

S := {λ : λ ∈ R>0, x ∈ λC}.

We have to prove that S is non-empty and that it has a minimum. Our argument

will imply also that this minimum is positive. Let r denote the (Euclidean) length

of x.

First, 0 is an interior point of C which means that there is δ > 0 such that C

contains all vectors in Rn of length at most δ. As a consequence (r/δ)C contains all

vectors of length at most r, so in particular x. Hence S 6= ∅. Thus, the set S has

an infimum, which we denote by µ.

The definition of the infimum implies that x ∈ (µ + ε)C for every ε > 0, hence

(µ + ε)−1x ∈ C for every ε > 0. Since the set C is bounded, this implies µ > 0.

Further, since the set C is closed, it contains the limit of the sequence of points

{(µ + 1/m)−1x : m = 1, 2, . . .}, which is µ−1x. So x ∈ µC, i.e., µ ∈ S. Hence µ is

the minimum of S. This shows that ‖x‖C is well-defined and positive.

(ii). We have shown above that ‖x‖C > 0 if x 6= 0. The proofs of the other two

norm properties are left to the reader.

(iii). Left to the reader.

Exercise 2.2. Prove (ii) and (iii).

2.2 Minkowski’s first convex body theorem

Using Lebesgue theory, one can define an n-dimensional volume vol(S) ∈ R>0∪{∞}
(the so-called Lebesgue measure) for subsets S of Rn from a large class, the so-called

16



measurable subsets of Rn. We do not need the precise definition of Lebesgue mea-

sure or measurable set. What is important to us is that all open sets and all closed

sets are measurable, bounded measurable sets have finite volume, and the empty

set has volume 0. The volume of S is equal to the Riemann integral
∫
S
dx1 · · · dxn

for every set S for which this integral is defined. However, there are measurable

sets S for which the Riemann integral is not defined. We mention some important

properties of the volume:

1. Let S be a measurable subset of Rn. Then every translate a+S := {a+x : x ∈ S}
is also measurable and vol(a + S) = vol(S). Further, if φ is a linear transformation

of Rn, then φ(S) is measurable and vol(φ(S)) = | detφ| · vol(S).

2. Let S ⊂ Rn be measurable. Then Sc := Rn \ S is measurable.

3. Let Sn (n = 1, 2, 3, . . .) be a countable collection of measurable subsets of Rn.

Then S =
⋃∞
n=1 Sn is measurable. Moreover, if the sets Sn are pairwise disjoint,

then vol(S) =
∑∞

n=1 vol(Sn).

Theorem 2.4. (Minkowski’s first convex body theorem, 1896). Let C be a

central symmetric convex body in Rn and L a lattice in Rn of rank n. Suppose that

vol(C) > 2nd(L). Then C contains a point from L \ {0}.

Choose a basis {v1, . . . ,vn} of L. We call

F := {x1v1 + · · ·+ xnvn : xi ∈ R, 0 6 xi < 1 for i = 1, . . . , n}

a fundamental parallelepiped for L. Notice that F has volume d(L) and that the

translates u + F (u ∈ L) are pairwise disjoint and cover Rn, that is,

Rn =
⋃
u∈L

(u + F ).

We present two proofs of Theorem 2.4: one based on computing volumes, and

another one based on a lattice point counting result which is of interest in itself.

First proof of Theorem 2.4. We first assume that vol(C) > 2nd(L). Then the set
1
2
C = {1

2
x : x ∈ C} has volume > d(L). For u ∈ L, define Su := 1

2
C∩(u+F ). Then

the sets Su (u ∈ L) are pairwise disjoint and their union is precisely 1
2
C. Hence∑

u∈L

vol(Su) = vol(1
2
C) > d(L).
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We shift the sets Su into F , that is, we define

S∗u := −u + Su = (−u + 1
2
C) ∩ F for u ∈ L.

Since S∗u has the same volume as Su, we have∑
u∈L

vol(S∗u) =
∑
u∈L

vol(Su) > d(L) = vol(F ).

That is, we have a collection of subsets S∗u (u ∈ L) of F , the sum of whose volumes is

larger than the volume of F . So there are two distinct u,v ∈ L such that S∗u∩S∗v 6= ∅.

Pick a point a ∈ S∗u∩S∗v. Then for certain x,y ∈ 1
2
C we have x−u = y−v = a.

Hence x− y = u− v ∈ L \ {0}.

Now 2x, 2y ∈ C, by the symmetry of C we have −2y ∈ C, and by the convexity

of C we have 1
2
(2x− 2y) = x−y ∈ C. This shows that C contains a non-zero point

from L.

Now assume that vol(C) = 2nd(L). Suppose that C does not contain a non-zero

point from L. Then for every integer m > 1, (1 +m−1)C contains a non-zero point

xm from L since vol((1 + m−1)C) = (1 + m−1)n vol(C) > 2nd(L). All points xm lie

in 2C, and since (2C) ∩ L is finite, there can be only finitely many distinct ones

among them. So there is a non-zero x ∈ L such that x ∈ (1 + m−1)C for infinitely

many m. Hence (1 + m−1)−1x ∈ C for infinitely many m. Taking the limit, using

that C is closed, it follows that x ∈ C.

Exercise 2.3. Prove the following theorem of Blichfeldt. Let S be a measurable, not

necessarily convex, subset of Rn with vol(S) > d(L). Then there are x,y ∈ S with

x 6= y and x− y ∈ L.

Before giving the second proof of Theorem 2.4, we derive a lattice point counting

result. We use Landau’sO-notation: for real functions f, g, h, defined on subintervals

of R, we write

f(x) = g(x) +O(h(x)) as x→∞

if there are real numbers x0 and c such that f, g, h are defined for x > x0, and

|f(x)− g(x)| 6 ch(x) for x > x0. This means that if we approximate f(x) by g(x)

and let x→∞, then asymptotically our error has order of magnitude at most h(x).

For instance, for fixed n, a we have (x+ a)n = xn +O(xn−1) as x→∞.

The cardinality of a set S is denoted by #S.
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Lemma 2.5. Let C be a central symmetric convex body and L a lattice in Rn. Put

α := vol(C)/d(L). Then

#(λC ∩ L) = αλn +O(λn−1) as λ→∞.

Proof. Let N(λ) := #(λC ∩ L). Consider the set S :=
⋃

u∈λC∩L(u + F ). Note that

S is a disjoint union of precisely N(C) parallelepipeds, each of volume d(L). So

S has volume N(λ) · d(L). Further, λC has volume λn vol(C). Suppose that all

parallelepipeds u + F lie either completely inside, or completely outside λC. Then

S = λC, and N(λ) = αλn. But of course, in general some of the parallelepipeds

u + F lie partly inside, partly outside λC. So by approximating N(λ) by αλn we

make an error, which we have to estimate.

Since F is bounded, there is a > 0 such that ‖y‖C 6 a for y ∈ F . We first prove

that

(*) (λ− a)C ⊆ S ⊆ (λ+ a)C for λ > a.

Write x ∈ Rn as u+y, with u ∈ L and y ∈ F . So ‖x−u‖C 6 a. Translating (*) into

norms via Lemma 2.3, what we have to show that ‖x‖C 6 λ− a⇒ ‖u‖C 6 λ, and

‖u‖C 6 λ⇒ ‖x‖C 6 λ+ a. But this follows directly from the triangle inequality.

Taking volumes in (*), we obtain

(λ− a)n vol(C) 6 N(λ) · d(L) 6 (λ+ a)n vol(C),

and this shows that there are c > 0, λ0 > 0 such that |N(λ)− αλn| 6 cλn−1 for all

λ > λ0.

Second proof of Theorem 2.4. We first consider again the case that vol(C) > 2nd(L),

so that α > 2n. Let m be a positive integer. The previous lemma implies that

#(mC∩L) = αmn+O(mn−1) is larger than (2m)n, provided we choose m sufficiently

large.

We divide L into congruence classes modulo 2m by setting x ≡ y(mod 2m) if

(2m)−1(x − y) ∈ L. Thus, if {v1, . . . ,vn} is a basis of L and if we write x =

x1v1 + · · ·+ xnvn, y = y1v1 + · · ·+ ynvn with xi, yi ∈ Z, we have x ≡ y(mod 2m) if

and only if xi ≡ yi(mod 2m) for i = 1, . . . , n. Hence L can be divided into precisely

(2m)n congruence classes modulo 2m.
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Now by the box principle, there are two distinct x,y ∈ mC ∩ L with x ≡
y(mod 2m). So u := 1

2m(x − y) is a non-zero element of L. By the symmetry of

mC, we have −y ∈ mC, and by its convexity, 1
2
(x− y) ∈ mC. Hence u ∈ C. Thus

Theorem 2.4 follows in the case vol(C) > 2nd(L). The case vol(C) = 2nd(L) is

treated in the same way as in the first proof.

Exercise 2.4. Let C,L be a central symmetric convex body and lattice in Rn and r a

positive integer such that vol(C) > r ·2nd(L). Prove that there are u1, . . . ,ur ∈ C∩L
such that ui 6= ±uj for i, j = 1, . . . , r.

Hint. Given distinct points x0, . . . ,xr ∈ Rn, prove that there is i ∈ {1, . . . , r} such

that 2xi 6= xj + xk for all j, k ∈ {1, . . . , r} \ {i}.

We give some consequences of Theorem 2.4.

Corollary 2.6. Let li = αi1X1 + · · ·+αinXn (i = 1, . . . , n) be linear forms with real

coefficients and with det(l1, . . . , ln) 6= 0. Let A1, . . . , An be positive reals with

A1 · · ·An > | det(l1, . . . , ln)| .

Then there is a non-zero x ∈ Zn with

|l1(x)| 6 A1, . . . , |ln(x)| 6 An .

Proof. Recall that

Kn = {y = (y1, . . . , yn) ∈ Rn : |yi| 6 1 for i = 1, . . . , n},

and define the lattice

L := {(A−11 l1(x), . . . , A−1n ln(x)) : x ∈ Zn}.

Clearly, Kn is a central symmetric convex body with volume 2n, while L is a lattice

of determinant | det(l1, . . . , ln)|/A1 · · ·An 6 1. Theorem 2.4 implies that Kn contains

a non-zero point from L. Corollary 2.6 follows.

Exercise 2.5. Prove the following refinement of Corollary 2.6. Let again li =

αi1X1 + · · · + αinXn (i = 1, . . . , n) be linear forms with real coefficients and with

det(l1, . . . , ln) 6= 0, and A1, . . . , An positive reals with

A1 · · ·An > | det(l1, . . . , ln)| .
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Then there is a non-zero x ∈ Zn with

|l1(x)| < A1, . . . , |ln−1(x)| < An−1, |ln(x)| 6 An

(so n− 1 inequalities have a <-sign and one a 6-sign).

Hint. You have to apply Corollary 2.6 to systems of inequalities

|l1(x)| 6 A′1, . . . , |ln−1(x)| 6 A′n−1, |ln(x)| 6 A′n

where A′i < Ai for i = 1, . . . , n−1 and A′n > An and let A′i ↗ Ai for i = 1, . . . , n−1

and A′n ↘ An.

In the introduction we showed that if α is a real irrational number, then there

are infinitely many pairs of integers (x, y) with gcd(x, y) = 1, y > 0 and

(2.4)

∣∣∣∣α− x

y

∣∣∣∣ 6 y−2.

We prove some generalizations.

Corollary 2.7 (Dirichlet, 1842). (i) Let α1, . . . , αn be real numbers, at least one of

which is irrational. Then there are infinitely many tuples of integers (x1, . . . , xn, y)

with gcd(x1, . . . , xn, y) = 1, y > 0 and

(2.5)

∣∣∣∣αi − xi
y

∣∣∣∣ 6 y−1−1/n for i = 1, . . . , n.

(ii) Let α1, . . . , αn be real numbers such that 1, α1, . . . , αn are linearly indepen-

dent over Q. Then there are infinitely many tuples of integers (x, y1, . . . , yn) with

(y1, . . . , yn) 6= (0, . . . , 0) and

|α1y1 + · · ·+ αnyn − x| 6 max(|y1|, . . . , |yn|)−n.

Proof. We prove only (i). We consider instead of (2.5) the system of inequalities

(2.6) |xi − αiy| 6 Q−1/n (i = 1, . . . , n), 0 < y 6 Q, gcd(x1, . . . , xn, y) = 1

for any integer Q > 1, and let Q vary. If (x1, . . . , xn, y) is a tuple of integers satisfying

this system, then it is also a solution of

|xi − αiy| 6 y−1/n for i = 1, . . . , n
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with y > 0, gcd(x1, . . . , xn, y) = 1, and hence a solution of (2.5) with these proper-

ties.

Notice that the system of linear forms X1−α1Xn+1, . . . , Xn−αnXn+1, Xn+1 has

determinant 1. So by Corollary 2.6, for every integer Q > 1 there is a non-zero

tuple of integers (x1, . . . , xn, y) satisfying |xi − αiy| 6 Q−1/n for i = 1, . . . , n and

|y| 6 Q. If y = 0 then x1 = · · · = xn = 0 which is impossible. Hence y 6= 0. By

changing signs and dividing out the gcd of x1, . . . , xn, y if necessary, we obtain a

solution xQ = (x1, . . . , xn, y) of (2.6).

We claim that if we letQ→∞, then xQ runs through an infinite set. Indeed, sup-

pose the contrary. Then there is an infinite sequence of integers Qi →∞ such that

for each Qi the point xQi
is equal to some fixed tuple of integers x = (x1, . . . , xn, y)

independent of i. But then, αi = xi/y ∈ Q for i = 1, . . . , n, against our assumption.

Thus, as observed above, the vectors xQ give infinitely many solutions of (2.5)

with y > 0 and gcd(x1, . . . , xn, y) = 1.

Exercise 2.6. Prove the following common generalization of both (i) and (ii). Let

m,n be positive integers and li = αi1X1 + · · · + αinXn (i = 1, . . . ,m) linear forms

with real coefficients satisfying

{y ∈ Zn : li(y) ∈ Z for i = 1, . . . ,m} = {0}.

Then there are infinitely many tuples (x,y), with x = (x1, . . . , xm) ∈ Zm, y =

(y1, . . . , yn) ∈ Zn, y 6= 0, such that

|li(y)− xi| 6
(

max
16j6n

|yj|
)−n/m

for i = 1, . . . ,m.

Given a real number θ, we denote by ‖θ‖ the distance of θ to the nearest integer,

i.e., ‖θ‖ = min{|θ − m| : m ∈ Z}. Corollary 2.7 implies that for any two real

numbers α1, α2, not both in Q, there are infinitely many positive integers y such

that

‖α1y‖ 6 y−1/2, ‖α2y‖ 6 y−1/2.

This implies that there are infinitely many positive integers y such that

y‖α1y‖ · ‖α2y‖ 6 1.

In fact, this is true also if both α1, α2 ∈ Q, since then, there are infinitely many

integers y with ‖α1y‖ = 0, ‖α2y‖ = 0. The following famous conjecture, due to
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Littlewood, is still open:

Littlewood’s Conjecture. Let α1, α2 be any two real numbers. Then for every

ε > 0 there exists a positive integer y such that

y‖α1y‖ · ‖α2y‖ < ε.

Note that ‖x‖ 6 1
2

for every x ∈ R. So Littlewood’s conjecture would imply also

that for any n > 3 reals α1, . . . , αn, and for any ε > 0 there is a positive integer y

with y‖α1y‖ · · · ‖αny‖ < ε.

Exercise 2.7. Let d be a positive integer that is not a square. Prove that there is a

constant c(d) > 0 such that

y · ‖
√
dy‖ > c(d) for all y ∈ Z>0

(that is, there is no one-dimensional analogue of Littlewood’s Conjecture).

In general, a real, irrational number α for which there exists c > 0 such that

y · ‖αy‖ > c for all positive integers y is called badly approximable. It can be

shown that there are uncountably many badly approximable numbers.

2.3 Minkowski’s second convex body theorem

Let L be a lattice in Rn and C a central symmetric convex body in Rn.

Definition. The n successive minima λ1, . . . , λn of C with respect to L are defined

as follows:

λi is the minimum of all positive reals λ such that λC ∩L contains at least i linearly

independent points.

Lemma 2.8. The successive minima λ1, . . . , λn of C with respect to L are well-

defined, and 0 < λ1 6 · · · 6 λn <∞.

Further, there are linearly independent v1, . . . ,vn ∈ L with vi ∈ λiC for i = 1, . . . , n.

Proof. Let ‖ · ‖C be the norm associated with C, defined by ‖x‖C = min{λ ∈ R>0 :

x ∈ λC}. Recall that λC = {x ∈ Rn : ‖x‖C 6 λ}.
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We can order the points of L as a sequence x0 = 0,x1,x2, . . . such that 0 =

‖x0‖C < ‖x1‖C 6 ‖x2‖C 6 · · · . To see this, consider for each positive integer m

the points x ∈ L with m − 1 < ‖x‖C 6 m, these are the points with x ∈ mC,

x 6∈ (m − 1)C. Since L is discrete and mC is closed and bounded, there are only

finitely many such points and these can be ordered according to their ‖ · ‖C-values.

Define λ1 := ‖x1‖C and put k1 := 1, v1 := x1. For i = 2, . . . , n, let ki be the

first index k such that rank {x1, . . . ,xk} = i, and put λi := ‖xki‖C and vi := xki .

Clearly, 0 < λ1 6 · · · 6 λn <∞, v1, . . . ,vn are linearly independent, and vi ∈ λiC
for i = 1, . . . , n.

It remains to show that λi is the i-th successive minimum of C with respect

to L, for i = 1, . . . , n. Clearly, λiC ∩ L contains the i linearly independent points

v1, . . . ,vi. We have to show that λC ∩ L does not contain i linearly independent

points if 0 < λ < λi. Take such λ. Note that λC ∩ L contains precisely the points

x ∈ L with ‖x‖C 6 λ, i.e., the points x0,x1, . . . ,xk where ‖xk‖C 6 λ < ‖xk+1‖C .

Clearly, k < ki, so there cannot be i linearly independent points among x0, . . . ,xk.

This proves our lemma.

Remark. The vectors v1, . . . ,vn from the above lemma need not form a basis of L.

Exercise 2.8. Prove that L has a basis {v′1, . . . ,v′n} such that

v′i ∈ (λ1 + · · ·+ λi)C for i = 1, . . . , n.

Hint. Use Lemma 2.1.

Minkowski’s second convex body theorem gives an optimal upper and lower

bound for the product of the successive minima of a central symmetric convex body

C with respect to a lattice L.

Theorem 2.9 (Minkowski’s second convex body theorem, 1910). Let L be

a lattice and C a central symmetric convex body, both in Rn, and let λ1, . . . , λn be

the successive minima of C with respect to L. Then

2n

n!
· d(L)

vol(C)
6 λ1 · · ·λn 6 2n · d(L)

vol(C)
.

Remark. Theorem 2.9 is invariant under linear transformations in the following

sense. Let C,L, λ1, . . . , λn be as in Theorem 2.9. Let φ : Rn → Rn be a linear
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transformation. Then φ(C) is a central symmetric convex body, φ(L) is a lattice,

and one easily shows that λ1, . . . , λn are the successive minima of φ(C) with respect

to φ(L). Further,

d(φ(L))

vol(φ(C))
=
| det(φ)| · d(L)

| det(φ)| · vol(C)
=

d(L)

vol(C)
.

For every lattice L of Rn there is a linear transformation φ of Rn such that φ(L) = Zn.

This observation shows that the general Minkowski’s second convex body theorem

with arbitrary lattices L follows from the special case where L = Zn.

We show that Minkowski’s second convex body theorem implies his first.

Second convex body theorem ⇒ First convex body theorem. Minkowski’s second con-

vex body theorem implies that λn1 6 2nd(L)/ vol(C). Assume that vol(C) > 2nd(L);

then λ1 6 1. Now λ1C contains a non-zero point from L and λ1C ⊆ C; hence C

contains a non-zero point from L.

Example 1. Let Bn be the Euclidean ball in Rn, given by x21 + · · · + x2n 6 1. Let

L be a lattice in Rn, and let λ1, . . . , λn be the successive minima of Bn with respect

to L. It is clear that x ∈ λBn if and only if ‖x‖2 6 λ, where ‖x‖2 =
(∑n

j=1 x
2
j

)1/2
is the Euclidean norm. There are linearly independent vectors v1, . . . ,vn ∈ L with

‖vi‖2 = λi for i = 1, . . . , n. In fact, v1 is a (not necessarily unique) shortest non-

zero vector in L, and for i = 2, . . . , n, vi is a shortest vector in L outside the linear

subspace spanned by v1, . . . ,vi−1.

Now Theorem 2.9 implies that

n∏
i=1

‖vi‖2 6 2nV (n)−1d(L),

where V (n) = vol(Bn). Recall that V (1) = 2, V (2) = π, and V (n) = 2π
n V (n − 2)

for n > 3. We mention once more that {v1, . . . ,vn} need not be a basis of L.

Example 2. We prove that the constant 2n in the upper bound of Theorem 2.9 is

best possible, i.e., the theorem becomes false if 2n is replaced by a smaller quantity.

Moreover, we show that every sequence of reals 0 < λ1 6 · · · 6 λn may occur as

successive minima. For the lattice we take Zn. Let e1 = (1, 0, . . . , 0), . . . , en =
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(0, . . . , 0, 1) be the standard basis of Zn. Further, let λ1, . . . , λn be reals with 0 <

λ1 6 · · · 6 λn. Define

C1 :=
{
x = (x1, . . . , xn) ∈ Rn : |xi| 6 λ−1i for i = 1, . . . , n

}
.

Clearly, C1 is a central symmetric convex body with volume 2n(λ1 · · ·λn)−1. Thus,

λ1 · · ·λn = 2nd(Zn) vol(C1)
−1.

We now show that λj is the j-th the successive minima of C1 with respect to Zn,

for j = 1, . . . , n. For λ > 0 we have

λC1 = {x ∈ Rn : |xi| 6 λ/λi for i = 1, . . . , n}.

This implies that λjC1 contains the j linearly independent points e1, . . . , ej. Let

λ < λj and let y = (y1, . . . , yn) ∈ Zn be a point in λC1. Then |yj| < 1, . . . , |yn| < 1,

implying that yj = · · · = yn = 0. So all lattice points in λC1 lie in the (j − 1)-

dimensional space spanned by e1, . . . , ej−1, and this space cannot contain j linearly

independent points. So λj is the j-th successive minimum of C1 with respect to Zn.

Example 3. We prove that the factor 2n/n! in the lower bound of Theorem 2.9 is

best possible. For our lattice we take again Zn. Let

C2 :=

{
x = (x1, . . . , xn) ∈ Rn :

n∑
i=1

λi|xi| 6 1

}
.

Then C2 is a central symmetric convex body of volume 2n

n!
(λ1 · · ·λn)−1 (verify this!).

Hence λ1 · · ·λn = 2n

n!
d(L)/ vol(C2).

Exercise 2.9. Prove that λ1, . . . , λn are the successive minima of C2 with respect

to Zn.

We deduce the lower bound for λ1 · · ·λn in Theorem 2.9. For a proof of the upper

bound, which is much more involved, we refer to the book of Cassels, Chapter 8.

We need a lemma.

Lemma 2.10. Let w1, . . . ,wr ∈ Rn. Then{ r∑
i=1

xiwi : xi ∈ R for i = 1, . . . , n,
r∑
i=1

|xi| 6 1
}
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is the smallest convex subset in Rn, symmetric about 0, that contains w1, . . . ,wr,

that is, the set itself is convex and symmetric about 0, and it is contained in every

other convex set which is symmetric about 0 and contains w1, . . . ,wr.

Exercise 2.10. Prove this lemma.

Proof of the lower bound in Theorem 2.9. Choose linearly independent vectors

v1, . . . ,vn of L such that vi ∈ λiC for i = 1, . . . , n. Then λ−1i vi ∈ C for i = 1, . . . , n.

Consider the set

D :=
{ n∑

i=1

xi · λ−1i vi : xi ∈ R for i = 1, . . . , n,
n∑
i=1

|xi| 6 1
}
.

By Lemma 2.10, this is the smallest symmetric convex set containing the points

λ−1i vi ∈ C (i = 1, . . . , n). Hence D ⊆ C.

Note that D is the image of the n-dimensional octahedron

On :=
{

x = (x1, . . . , xn) ∈ Rn :
n∑
i=1

|xi| 6 1
}

under the linear transformation φ given by φ(ei) = λ−1i vi for i = 1, . . . , n. Hence

vol(D) = | det(φ)| · vol(On) =
| det(v1, . . . ,vn))|

λ1 · · ·λn
· 2n

n!

=
d(M)

λ1 · · ·λn
· 2n

n!
,

where M is the lattice with basis {v1, . . . ,vn}.

Clearly, M is a sublattice of L, therefore, d(M) = |L : M | · d(L) > d(L). By

combining this with what we obtained above, we obtain

vol(C) > vol(D) >
2n

n!
d(L)(λ1 · · ·λn)−1.

This implies the lower bound for λ1 · · ·λn from Theorem 2.9.

We prove a weaker version of the upper bound in the special case that C = Bn

is the n-dimensional Euclidean unit ball. Recall that the associate norm is ‖ · ‖2. In

fact, we prove the following theorem which goes back to Hermite.
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Theorem 2.11. Let L be a lattice in Rn. Then L has a basis {v1, . . . ,vn} with

‖v1‖2 · · · ‖vn‖2 6 (4/3)n(n−1)/4 · d(L).

Corollary 2.12. let λ1, . . . , λn be the successive minima of Bn with respect to L.

Then λ1 · · ·λn 6 (4/3)n(n−1)/4 · d(L).

For suppose that ‖v1‖2 6 · · · 6 ‖vn‖2. Then clearly, λi 6 ‖vi‖2 for i = 1, . . . , n.

Corollary 2.13. Let E be a central ellipsoid in Rn and L a lattice in Rn. Then for

the successive minima λ1, . . . , λn of E with respect to L we have

λ1 · · ·λn 6 (4/3)n(n−1)/4 · V (n) · d(L)

vol(E)
,

where V (n) := vol(Bn).

For this is clearly true for E = Bn, and the assertion for an arbitrary ellipsoid

E follows by taking a linear transformation φ such that E = φ(Bn) and using the

invariance of Corollary 2.13 under linear transformations.

In fact, by applying a theorem from 1949 of the German mathematician Fritz

John, one can proceed further, and prove a weaker version of Minkowski’s theorem

for arbitrary central symmetric convex bodies. For a proof, we refer to Schmidt’s

lecture notes, p. 87 (there called ’Jordan’s Theorem’).

Theorem 2.14. Let C be a central symmetric convex body in Rn. Then there is a

central ellipsoid E such that E ⊆ C ⊆
√
nE.

As has also been explained in Schmidt’s lecture notes (and you should be able to

prove this yourself), together with Corollary 2.13, this implies the following weaker

version of Minkowski’s second convex body theorem:

Corollary 2.15. There is a number c(n) > 0, depending only on n, with the fol-

lowing property. Let C be a central symmetric convex body, and L a lattice in Rn.

Then for the successive minima λ1, . . . , λn of C with respect to L we have

λ1 · · ·λn 6 c(n) · d(L)

vol(C)
.
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Proof of Theorem 2.11. We need some first year linear algebra. We proceed by

induction on n. For n = 1 the assertion is easily verified. Let n > 2 and assume

Theorem 2.11 is true for lattices of dimension n− 1.

The first successive minimum λ1 of Bn with respect to L is the length of a shortest

non-zero vector in L. Exercise 2.8 implies that L has a basis whose first vector v1

has ‖v1‖2 6 λ1. This necessarily shows that ‖v1‖2 = λ1.

Put e1 := λ−11 v1. Then e1 has length 1. From first year linear algebra it follows

that we can augment e1 to an orthonormal basis {e1, . . . , en} of Rn. Then a vector

x ∈ Rn can be expressed uniquely as
∑n

i=1 xiei with xi ∈ R for all i, and ‖x‖2 =(∑n
i=1 x

2
i

)1/2
. We define a linear map

ρ : Rn → Rn−1 :
n∑
i=1

xiei 7→ (x2, . . . , xn).

Define L′ := ρ(L). We need a few lemmas.

Lemma 2.16. L′ is a lattice in Rn−1.

More precisely, if {v1, . . . ,vn} is any basis of L containing v1, then {ρ(v2), . . . , ρ(vn)}
is a basis of L′.

Proof. Left to the reader.

Lemma 2.17. Let {v′2, . . . ,v′n} be a basis of L′ and let vi ∈ L with ρ(vi) = v′i for

i = 2, . . . , n. Then {v1,v2, . . . ,vn} is a basis of L.

Proof. Let x be any element of L. We have to show that x =
∑n

i=1 zivi with zi ∈ Z
for i = 1, . . . , n. Since {v1,v2, . . . ,vn} is a basis of Rn, as can be easily verified,

we know that x can be expressed as such, but with all zi ∈ R. By applying ρ,

we get zi ∈ Z for i = 2, . . . , n. Let m be an integer with |z1 − m| 6 1
2
. Then

(z1 −m)v1 = x −mv1 −
∑n

i=2 zivi ∈ L. Since v1 is a non-zero vector of minimal

length in L, we must have z1 = m ∈ Z.

Lemma 2.18. d(L) = λ1 · d(L′).

Proof. Pick a basis {v1, . . . ,vn} of L. Then v1 = λ1e1 and vi =
∑n

j=1 aijej with
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aij ∈ R for i = 2, . . . , n. Recall that ρ(vi) = (ai2, . . . , ain). Now we get

d(L) = | det(e1, . . . , en)| ·

∣∣∣∣∣∣∣∣∣det


λ1 0 · · · 0

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann


∣∣∣∣∣∣∣∣∣

= λ1 · | det(ρ(v2), . . . , ρ(vn))| = λ1 · d(L′).

Lemma 2.19. Let v′ ∈ L′. Then there is v ∈ L with ρ(v) = v′ and ‖v‖22 6 4
3
·‖v′‖22.

Proof. If v′ = 0 we may take v = 0. Assume v′ 6= 0. Write v′ = (x2, . . . , xn). Take

w ∈ L with ρ(w) = v′. Then w = xe1 +
∑n

i=2 xiei with x ∈ R. Let m be an integer

such that |x −mλ1| 6 1
2
λ1 and put v := w −mv1, x1 := x −mλ1. Then v ∈ L,

ρ(v) = v′ and v =
∑n

i=1 xiei with |x1| 6 1
2
λ1 = 1

2
‖v1‖2. Now using that v1 is a

vector of minimal length in L we get

‖v‖22 = x21 + x22 + · · ·+ x2n = x21 + ‖v′‖2 6 1
4
‖v1‖22 + ‖v′‖22 6 1

4
‖v‖22 + ‖v′‖22.

Hence 3
4
· ‖v‖22 6 ‖v′‖22.

Completion of the induction step. By the induction hypothesis, L′ has a basis

{v′2, . . . ,v′n} such that

n∏
i=2

‖v′i‖2 6 (4/3)(n−1)(n−2)/4 · d(L′).

By Lemma 2.19, for i = 2, . . . , n, there exists vi ∈ L such that ρ(vi) = v′i and

‖vi‖2 6
√

4
3
‖v′i‖2. By Lemma 2.17, {v1, . . . ,vn} is a basis of L. For this basis we

have

n∏
i=1

‖vi‖2 6 (4/3)(n−1)/2‖v1‖2 ·
n∏
i=2

‖v′i‖2

6 (4/3)(n−1)/2+(n−1)(n−2)/4 · λ1 · d(L′) = (4/3)n(n−1)/4d(L),

where in the last step we used Lemma 2.18.
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Exercise 2.11. Prove Hadamard’s inequality: if L is a lattice in Rn with basis

{v1, . . . ,vn}, then ‖v1‖2 · · · ‖vn‖2 > d(L).

Hint. From the Gram-Schmidt orthogonalization process, one computes an or-

thonormal basis {e1, . . . , en} of Rn such that vi =
∑i

j=1 aijej with aij ∈ R for

i = 1, . . . , n, j = 1, . . . , i.

Exercise 2.12. Let li = αi1X1 + · · ·+αinXn (i = 1, . . . , n) be linear forms with real

coefficients and with det(l1, . . . , ln) 6= 0. Let A1, . . . , An be positive reals. Denote by

λ1, . . . , λn the successive minima of the central symmetric convex body

C := {x ∈ Rn : |l1(x)| 6 A1, . . . , |ln(x)| 6 An}

with respect to Zn. Using Theorem 2.11, prove that

λ1 · · ·λn 6 (4/3)n(n−1)/4
| det(l1, . . . , ln)|

A1 · · ·An
.

For many applications, for instance to factorization of polynomials, cryptogra-

phy, determining all solutions of Diophantine equations from certain classes, it is

desirable to have a computationally efficient algorithm, which for a given lattice

computes a basis such as in Theorem 2.11. In 1982, Arjen Lenstra, Hendrik Lenstra

and László Lovász developed a very efficient, fundamental algorithm, now known

as the LLL lattice basis reduction algorithm which, from input an arbitrary basis

of a given lattice L, computes a so-called LLL-reduced basis of L. Such a basis

{v1, . . . ,vn} has various properties, among which

‖v1‖2 · · · ‖vn‖2 6 2n(n−1)/4 · d(L).

So in certain respects it is slightly worse than the one from Theorem 2.11, but

good enough for most purposes. For more information on the LLL-algorithm, see

for instance the paper where it was introduced, A.K. Lenstra, H.W. Lenstra, L.

Lovász, Factoring polynomials with rational coefficients, Mathematische Annalen

261 (1982), 515–534.

2.4 Polar lattices

Henceforth, vectors in Rn will be column vectors, unless otherwise stated. By AT

we denote the transpose of a matrix A. As usual, the standard inner product of
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x = (x1, . . . , xn)T ,y = (y1, . . . , yn)T ∈ Rn is given by 〈x,y〉 =
∑n

i=1 xiyi = xTy. We

denote as before by Bn the n-dimensional Euclidean ball given by ‖x‖2 = 〈x,x〉1/2 6
1. We will need the Cauchy-Schwarz inequality:

|〈x,y〉| 6 ‖x‖2 · ‖y‖2 for x,y ∈ Rn.

Let L be a lattice in Rn The polar (or reciprocal) of L is given by

L∗ := {x ∈ Rn : 〈x,y〉 ∈ Z for all y ∈ L}.

Let {v1, . . . ,vn} be a basis of L, and V the matrix with columns v1, . . . ,vn. Thus,

L = {V z : z ∈ Zn}. Using 〈x, V y〉 = 〈V Tx,y〉 for x,y ∈ Rn, we obtain

L∗ = {x ∈ Rn : 〈x, V z〉 ∈ Z ∀z ∈ Zn}
= {x ∈ Rn : 〈V Tx, z〉 ∈ Z ∀z ∈ Zn}
= {x ∈ Rn : V Tx ∈ Zn} = {(V T )−1w : w ∈ Zn}.

Hence L∗ is a lattice in Rn, with basis the columns v∗1, . . . ,v
∗
n of (V T )−1. Note that

d(L∗) = | det(V T )−1| = | detV |−1 = d(L)−1.

Theorem 2.20. Let L be a lattice in Rn and L∗ its polar. Further, let λ1, . . . , λn be

the successive minima of Bn with respect to L, and λ∗1, . . . , λ
∗
n the successive minima

of Bn with respect to L∗. Then

1 6 λiλ
∗
n+1−i 6 c(n) for i = 1, . . . , n,

where c(n) depends only on n.

Remark. If we use Minkowski’s second convex body theorem, we obtain the above

theorem with c(n) = 4n vol(Bn)−2. If we use instead Theorem 2.11, we can prove

the above theorem with c(n) = (4/3)n(n−1)/2. For the application we have in mind,

the precise value of c(n) doesn’t matter.

Proof. We first deduce the lower bound for λiλ
∗
n+1−i. Let v1, . . . ,vn be linearly

independent vectors from L such that vi ∈ λiBn, i.e., ‖vi‖2 = λi for i = 1, . . . , n.

Likewise, let v∗1, . . . ,v
∗
n be linearly independent vectors from L∗ such that ‖v∗i ‖2 = λ∗i

for i = 1, . . . , n.
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Take i ∈ {1, . . . , n}, and consider the set of vectors

{x ∈ Rn : 〈vk,x〉 = 0 for k = 1, . . . , i}.

Since v1, . . . ,vi are linearly independent, this is a linear subspace of Rn of dimension

n− i. Hence at least one of the vectors v∗1, . . . ,v
∗
n+1−i does not lie in this space. It

follows that there are indices k 6 i, l 6 n+ 1− i, such that 〈vk,v∗l 〉 6= 0.

But 〈vk,v∗l 〉 ∈ Z, since vk ∈ L, v∗l ∈ L∗. Hence |〈vk,v∗l 〉| > 1. Now by the

Cauchy-Schwarz inequality,

1 6 |〈vk,v∗l 〉| 6 ‖vk‖2‖v∗l ‖2 6 λkλ
∗
l 6 λiλ

∗
n+1−i.

This establishes the lower bound. To prove the upper bound, recall that by

Theorem 2.11, we have

λ1 · · ·λn 6 c′(n)d(L), λ∗1 · · ·λ∗n 6 c′(n)d(L∗),

where c′(n) depends on n only. Further, d(L∗) = d(L)−1. Hence

n∏
i=1

(λiλ
∗
n+1−i) 6 c′(n)2d(L)d(L∗) = c′(n)2 =: c(n).

It follows that for i = 1, . . . , n,

λiλ
∗
n+1−i 6

c(n)∏
j 6=i λjλ

∗
n+1−j

6 c(n).

This proves Theorem 2.20.

As an application we show that if the polar lattice L∗ does not have small non-

zero vectors, then every point of Rn can be approximated closely by a point from

L.

Corollary 2.21. Let L be a lattice of Rn and R > 0. Assume that ‖y‖2 > R

for every non-zero y ∈ L∗. Then for every b ∈ Rn there is x ∈ L such that

‖x− b‖2 6 n · c(n)/2R.

Proof. Let λ1, . . . , λn be the successive minima of Bn with respect to L, and let

λ∗1, . . . , λ
∗
n be the successive minima of Bn with respect to L∗. By assumption,
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λ∗1 > R. So by Theorem 2.20, λn 6 c(n)/R. Choose linearly independent vectors

v1, . . . ,vn ∈ L with ‖vi‖2 = λi for i = 1, . . . , n. So ‖vi‖2 6 λn 6 c(n)/R for

i = 1, . . . , n.

Let b ∈ Rn. Then b = ξ1v1+ · · ·+ξnvn with ξ1, . . . , ξn ∈ R. There exist integers

z1, . . . , zn with |zi− ξi| 6 1
2

for i = 1, . . . , n. Put x := z1v1 + · · ·+ znvn. Then x ∈ L
and

‖x− b‖2 = ‖(z1 − ξ1)v1 + · · ·+ (zn − ξn)vn‖2 6 1
2
(‖v1‖2 + · · ·+ ‖vn‖2)

6 n · c(n)/2R.

2.5 Kronecker’s approximation theorem

Recall that by Dirichlet’s Theorem, if α1, . . . , αn are real numbers of which at least

one is irrational, then there are infinitely many tuples of integers x1, . . . , xn, y such

that

|αi − xi/y| 6 y−1−1/n for i = 1, . . . , n, y > 0.

This implies that for every ε > 0, there exists (x1, . . . , xn, y) ∈ Zn+1 such that

|αiy − xi| 6 ε for i = 1, . . . , n, y > 0.

Kronecker’s approximation theorem deals with systems of inhomogeneous inequali-

ties of the shape

(2.7) |αiy − xi − θi| 6 ε (i = 1, . . . , n) in x1, . . . , xn, y ∈ Z

where θ1, . . . , θn are any real numbers.

Theorem 2.22. Let α1, . . . , αn, θ1, . . . , θn be real numbers. Suppose that 1, α1, . . . , αn
are linearly independent over Q. Then for every ε > 0 there are infinitely many

(x1, . . . , xn, y) ∈ Zn+1 with (2.7).

Remark. The condition that 1, α1, . . . , αn be linearly independent over Q can not

be removed. For suppose that 1, α1, . . . , αn are linearly dependent over Q. Then
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there are integers a1, . . . , an, a0, not all 0, such that a1α1 + · · ·+ anαn = a0. In fact,

at least one of a1, . . . , an is non-zero. Choose θ1, . . . , θn ∈ R such that

a1θ1 + · · ·+ anθn 6∈ Z.

Let δ be the distance from a1θ1 + · · · + anθn to the nearest integer. We show that

for sufficiently small ε > 0, (2.7) is not solvable. Indeed, suppose (2.7) is solvable

and let (x1, . . . , xn, y) ∈ Zn+1 be a solution. Then∣∣∣ n∑
i=1

ai(αiy − xi − θi)
∣∣∣ 6 n∑

i=1

|ai| · |αiy − xi − θi| 6 ε

n∑
i=1

|ai|.

But on the other hand,∣∣∣ n∑
i=1

ai(αiy − xi − θi)
∣∣∣ =

∣∣∣a0y − n∑
i=1

aixi −
n∑
i=1

aiθi

∣∣∣ > δ.

Hence (2.7) is unsolvable for ε < δ/
∑n

i=1 |ai|.

Proof of Theorem 2.22. We apply Corollary 2.21 with an astutely chosen lattice.

Let M be a large positive integer, to be chosen later. Consider the lattice in Rn+1,

LM :=
{(
x1 − α1y, . . . , xn − αny,M−1y

)
: x1, . . . , xn, y ∈ Z

}
= {Az : z ∈ Zn+1},

where

A =


1 0 −α1

. . .
...

0 1 −αn
0 0 M−1

 , z =


x1
...

xn
y

 .

Put

b := (θ1, . . . , θn, 2Mε)T .

We want to show for appropriate M that there is u ∈ LM such that ‖u− b‖2 6 ε.

Writing u = Az with z = (x1, . . . , xn, y)T ∈ Zn+1, this translates into

( n∑
i=1

(xi − αiy − θi)2 +M−2(y − 2Mε)2
)1/2

6 ε,

35



and this certainly implies that x1, . . . , xn, y satisfy (2.7) and moreover that |y −
2Mε| 6Mε. The latter implies that y >Mε. If we can choose M arbitrarily large,

then it follows that (2.7) has solutions with arbitrarily large values of y, and thus,

that (2.7) has infinitely many solutions.

By Corollary 2.21, we have to show that we can choose arbitrarily large M in

such a way that every non-zero vector in the polar lattice L∗M has length at least

R := (n+ 1) · c(n+ 1)/2ε.

It is easy to verify that

(AT )−1 =


1 0

. . .
...

1 0

Mα1 . . . Mαn M

 .

Hence

L∗M =
{

(AT )−1z : z ∈ Zn+1
}

=
{(
x1, . . . , xn,M(α1x1 + · · ·+ αnxn + y)

)
: x1, . . . , xn, y ∈ Z

}
.

Let µ be the minimum of all numbers |α1x1 + · · ·+αnxn + y|, taken over all integers

x1, . . . , xn, y such that

|xi| < R for i = 1, . . . , n, |α1x1 + · · ·+ αnxn + y| 6 1,

(x1, . . . , xn, y) 6= 0.

Then µ is the minimum of finitely many real numbers which are all positive, since

1, α1, . . . , αn are linearly independent over Q. Hence µ > 0.

Now let M be any integer with

(2.8) M > max(R/µ, R).

Then for every non-zero u ∈ L∗M we have indeed

‖u‖2 > R

since at least one of the numbers x1, . . . , xn, M(α1x1 + · · ·+αnxn + y) has absolute

value at least R. Further, M can be chosen arbitrarily large. This completes our

proof.
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In fact, Kronecker proved a much more general approximation theorem, of which

Theorem 2.22 is just a special case. As usual, ‖x‖2 denotes the Euclidean norm of

a vector x ∈ Rn.

Theorem 2.23 (Kronecker, 1887). Let A be an m×n-matrix with real entries, and

b ∈ Rm a column vector. Then the following two assertions are equivalent:

(i) For every y ∈ Rm with ATy ∈ Zn we have 〈b,y〉 ∈ Z;

(ii) For every ε > 0 there is z ∈ Zn such that

‖Az− b‖2 6 ε.

For a proof, we refer to Siegel, Chapter II.

Exercise 2.13. a) Prove (ii)=⇒(i).

b) Deduce Theorem 2.22 from Theorem 2.23.

2.6 Further exercises

Exercise 2.14. Let p be a prime number with p ≡ 1 (mod 4).

(i) Prove that there is an integer x0 with x20 ≡ −1 (mod p).

Hint. You may use that the group (Z/pZ)∗ is cyclic. Prove that it has an element

of order 4.

(ii) Let L be the lattice {(x, y) ∈ Z2 : x ≡ x0y (mod p)}. Prove that x2 + y2 ≡
0 (mod p) for (x, y) ∈ L.

(iii) Apply Minkowski’s theorem with C = {(x, y) ∈ R2 : x2 + y2 6 A} for ap-

propriate A and the lattice L from b) and deduce that there is (x, y) ∈ Z2 with

x2 + y2 = p.

Exercise 2.15. (Dirichlet’s theorem for Gaussian numbers). Let ζ be a complex

number not belonging to the field Q(i) = {x + iy : x, y ∈ Q}. Prove that there are

infinitely many pairs (z, w) ∈ Z[i]×Z[i] (where Z[i] = {x+ iy : x, y ∈ Z}) such that

|z − ζw| 6 4

π
|w|−1, w 6= 0.

Hint. Prove that for every integer Q > 2 there are z, w ∈ Z[i] with

|z − ζw| 6 4
π
Q−1, |w| 6 Q, w 6= 0.
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To this end, consider the lattice in R4,{
(Re (z − ζw), Im (z − ζw),Rew, Imw) : z, w ∈ Z[i]

}
and apply Minkowski’s first convex body theorem.

Exercise 2.16. Determine the two successive minima of

C := {x = (x1, x2) ∈ R2 : |x1 −
√

2x2| 6 1, |x1 −
√

3x2| 6 1}

with respect to Z2.

Exercise 2.17. (i) Deduce the following result from Theorem 2.22.

Let α1, . . . , αn be real numbers, linearly independent over Q. Then for every t0 > 0,

ε > 0, θ1, . . . , θn ∈ R, there are t ∈ R with t > t0, and x1, . . . , xn ∈ Z, such that

|α1t− x1 − θ1| < ε, . . . , |αnt− xn − θn| < ε

(so compared with Theorem 2.22, we have weakened the condition that {1, α1, . . . , αn}
be linearly independent over Q to {α1, . . . , αn} linearly independent over Q, but

instead of an unknown y assuming integer values we have an unknown t assuming

real values).

Hint. Write t = (x1 + θ1)/α1 with x1 ∈ Z>0 so that the first inequality is satisfied

and substitute this into the other inequalities.

(ii) A star has n planets, all whose orbits are circular with the star in the center

and lie in the same plane. Each planet has a constant angular velocity with which it

traverses its orbit. Prove that the planets are in almost the same direction infinitely

often (i.e., for every ε > 0 there are arbitrarily large t such that at time t, seen from

the star the directions of the planets are within an angle ε > 0 from each other) in

each of the following two cases:

(a) they once have been in the same direction;

(b) their angular velocities are linearly independent over Q.
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