Chapter 4

Transcendence results

We recall some basic definitions.
We call $\alpha \in \mathbb{C}$ transcendental if it is not algebraic, i.e., if it is not a zero of a non-zero polynomial from $\mathbb{Q}[X]$.

We call numbers $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$ algebraically independent if there is no non-zero polynomial $P \in \overline{\mathbb{Q}}\left[X_{1}, \ldots, X_{n}\right]$ such that $P\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0$.

A single number $\alpha \in \mathbb{C}$ is algebraically independent if and only if it is transcendental. Indeed, if α is algebraic then there is a non-zero $P \in \mathbb{Q}[X]$ such that $P(\alpha)=0$. Hence α is certainly not algebraically independent. Conversely, if α is not algebraically independent then there is a non-zero $P \in \overline{\mathbb{Q}}[X]$ such that $P(\alpha)=0$. But this implies that α is algebraic.

Exercise 4.1. (not needed later) Prove that $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$ are algebraically independent if and only if there is no non-zero $P \in \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$ (so with coefficients in \mathbb{Q} instead of $\overline{\mathbb{Q}})$ such that $P\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0$.

Given a subset S of \mathbb{C}, we define the transcendence degree of S, notation $\operatorname{trdeg} S$, to be the maximal number t such that S contains t algebraically independent elements. Any algebraically independent subset $B \subset S$ of cardinality t is called a transcendence basis of S.

Exercise 4.2. (not needed later) Let S be a subset of \mathbb{C} and $B=\left\{\alpha_{1}, \ldots, \alpha_{t}\right\}$ a transcendence basis of S. Prove that every element of S is algebraic over $\overline{\mathbb{Q}}\left(\alpha_{1}, \ldots, \alpha_{t}\right)$.

4.1 The transcendence of e

We define as usual $e^{z}=\sum_{n=0}^{\infty} z^{n} / n!$ for $z \in \mathbb{C}$. Further, $\overline{\mathbb{Q}}=\{\alpha \in \mathbb{C}: \alpha$ algebraic over $\mathbb{Q}\}$.
Theorem 4.1 (Hermite, 1873). e is transcendental.

We assume that e is algebraic. This means that there are $q_{0}, q_{1}, \ldots, q_{n} \in \mathbb{Z}$ with

$$
\begin{equation*}
q_{0}+q_{1} e+\cdots+q_{n} e^{n}=0, \quad q_{0} \neq 0 . \tag{4.1}
\end{equation*}
$$

Under this hypothesis, we construct $M \in \mathbb{Z}$ with $M \neq 0$ and $|M|<1$ and obtain a contradiction. We need some auxiliary results. Of course we have to use certain properties of e. We use that $\left(e^{z}\right)^{\prime}=e^{z}$.

Let $f \in \mathbb{C}[X]$ be a polynomial. For $z \in \mathbb{C}$ we define

$$
\begin{equation*}
F(z):=\int_{0}^{z} e^{z-u} f(u) d u \tag{4.2}
\end{equation*}
$$

Here the integration is over the line segment from 0 to z. We may parametrize this line segment by $u=t z, 0 \leqslant t \leqslant 1$. Thus,

$$
F(z)=\int_{0}^{1} e^{z(1-t)} f(z t) z d t
$$

Lemma 4.2. Suppose f has degree m. Then

$$
F(z)=e^{z}\left(\sum_{j=0}^{m} f^{(j)}(0)\right)-\sum_{j=0}^{m} f^{(j)}(z) .
$$

Proof. Repeated integration by parts.
Corollary 4.3. Let f be as in Lemma 4.2. Then

$$
q_{0} F(0)+\cdots+q_{n} F(n)=-\sum_{a=0}^{n} \sum_{j=0}^{m} q_{a} f^{(j)}(a)
$$

Proof. Clear.

Our aim is to show that for a suitable choice of f, the quantity $M:=q_{0} F(0)+$ $\cdots+q_{n} F(n)$ is a non-zero integer with $|M|<1$. Note that Corollary 4.3 gives an identity with an analytic expression on the left-hand side, and an algebraic expression on the right-hand side. We prove that M is a non-zero integer by analyzing the right-hand side, and $|M|<1$ by analyzing the left-hand side. For the latter, we need the following simple estimate, which will also be needed in the proof of a more general result.

Lemma 4.4. Let $f \in \mathbb{C}[X]$ be any polynomial and let F be given by (4.2). Then for $z \in \mathbb{C}$ we have

$$
|F(z)| \leqslant|z| \cdot e^{|z|} \cdot \sup _{u \in \mathbb{C},|u| \leqslant|z|}|f(u)|
$$

Proof. We have

$$
\begin{aligned}
|F(z)| & \leqslant \int_{0}^{1}\left|e^{z(1-t)} f(z t) z\right| d t \leqslant \int_{0}^{1} e^{|z|}|z| \cdot|f(z t)| d t \\
& \leqslant|z| \cdot e^{|z|} \cdot \sup _{u \in \mathbb{C},|u| \leqslant|z|}|f(u)| .
\end{aligned}
$$

Let p be a prime number, which is chosen later to be sufficiently large to make all estimates work. We take

$$
\begin{equation*}
f(X):=\frac{1}{(p-1)!} \cdot X^{p-1}\{(X-1)(X-2) \cdots(X-n)\}^{p} . \tag{4.3}
\end{equation*}
$$

In this case,

$$
\begin{equation*}
M=\sum_{a=0}^{n} q_{a} F(a)=-\sum_{a=0}^{n} \sum_{j=0}^{n p+p-1} q_{a} f^{(j)}(a) . \tag{4.4}
\end{equation*}
$$

Lemma 4.5. We have

$$
\begin{align*}
& f^{(p-1)}(0)=\left\{(-1)^{n} n!\right\}^{p} \tag{4.5}\\
& f^{(j)}(a)=0 \text { for } a=0, \ldots, n, j=0, \ldots, p-1, \quad(a, j) \neq(0, p-1) \tag{4.6}\\
& f^{(j)}(a) \equiv 0(\bmod p) \text { for } a=0, \ldots, n, j \geqslant p \tag{4.7}
\end{align*}
$$

Proof. In general, if g is a polynomial of the shape $(X-a)^{r} h$ with $a \in \mathbb{C}, h \in \mathbb{C}[X]$, then $g^{(m)}(a)=0$ for $m=0, \ldots, r-1$ and $g^{(r)}(a)=r!h(a)$. This implies (4.5), (4.6). To prove (4.7), observe that for any $g=c_{r} X^{r}+\cdots+c_{0} \in \mathbb{C}[X]$ and all $j \geqslant 0$ we have

$$
\begin{equation*}
\frac{1}{j!} g^{(j)}=c_{r}\binom{r}{j} X^{r-j}+c_{r-1}\binom{r-1}{j} X^{r-j-1}+\cdots+c_{j} . \tag{4.8}
\end{equation*}
$$

In particular, since $(p-1)!f \in \mathbb{Z}[X]$ and the binomial coefficients are integers, we have for $j \geqslant p, a=0, \ldots, n$ that $(p-1)!f^{(j)} / j!\in \mathbb{Z}[X]$, and so $f^{(j)}(a) / p \in \mathbb{Z}$. This implies at once (4.7).

Lemma 4.6. Assume that $p>\left|q_{0} n\right|$. Then M is a non-zero integer.
Proof. From (4.5) it follows that the term $q_{0} f^{(p-1)}(0)$ is an integer not divisible by p, while all other terms $q_{a} f^{(j)}(a)$ in the right-hand side of (4.4) are integers that are either 0 or divisible by p. Hence M is an integer not divisible by p.

Lemma 4.7. For p sufficiently large, we have $|M|<1$.

Proof. By Lemma 4.4, we have for $a=0, \ldots, n$,

$$
|F(a)| \leqslant a \cdot e^{|a|} \cdot \sup _{|u| \leqslant a}|f(u)| .
$$

For $a, b=0, \ldots, n$, and $u \in \mathbb{C}$ with $|u| \leqslant a$ we have $|u-b| \leqslant|u|+|b| \leqslant 2 n$. Hence

$$
\sup _{|u| \leqslant a}|f(u)| \leqslant \frac{(2 n)^{n p+p-1}}{(p-1)!} \leqslant \frac{c^{p}}{(p-1)!},
$$

say, where c is a constant independent of p, a, b. This implies

$$
|M| \leqslant \sum_{a=0}^{n}\left|q_{a} F(a)\right| \leqslant\left(\sum_{a=0}^{n}\left|q_{a}\right| \cdot a \cdot e^{a}\right) \frac{c^{p}}{(p-1)!} .
$$

For p sufficiently large this is <1, since for any $c>1, \frac{c^{p}}{(p-1)!} \rightarrow 0$ as $p \rightarrow \infty$.
Summarizing, our assumption that e is algebraic implies that there is a quantity M, which is by Lemma 4.6 a non-zero integer, and by Lemma 4.7, of absolute value <1. Since this is absurd, e must be transcendental.

4.2 The Lindemann-Weierstrass theorem

Lindemann proved in 1882 that e^{α} is transcendental for algebraic α, and Weierstrass proved in 1885 that if $\alpha_{1}, \ldots, \alpha_{n}$ are algebraic numbers that are linearly independent over \mathbb{Q}, then $e^{\alpha_{1}}, \ldots, e^{\alpha_{n}}$ are algebraically independent over \mathbb{Q}. The following result, due to A. Baker, is in fact equivalent to the Lindemann-Weierstrass Theorem.

Theorem 4.8. Let $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n} \in \overline{\mathbb{Q}}$. Suppose that $\alpha_{1}, \ldots, \alpha_{n}$ are pairwise distinct, and that $\beta_{1}, \ldots, \beta_{n} \neq 0$. Then

$$
\beta_{1} e^{\alpha_{1}}+\cdots+\beta_{n} e^{\alpha_{n}} \neq 0
$$

We deduce some corollaries.
Corollary 4.9. (i) Let $\alpha \in \overline{\mathbb{Q}}$ be non-zero. Then e^{α} is transcendental. (ii) π is transcendental.

Proof. (i) Suppose that $e^{\alpha}=: \beta$ is algebraic. Then it follows that $1 \cdot e^{\alpha}-\beta \cdot e^{0}=0$, contradicting Theorem 4.8.
(ii) Suppose that π is algebraic. Then πi is algebraic. But $e^{\pi i}=-1$ is not transcendental, contradicting (i).

Corollary 4.10. Let $\alpha_{1}, \ldots, \alpha_{n}$ be algebraic numbers in \mathbb{C} that are linearly independent over \mathbb{Q}. Then $e^{\alpha_{1}}, \ldots, e^{\alpha_{n}}$ are algebraically independent.

Proof. Let P be any non-zero polynomial in $\overline{\mathbb{Q}}\left[X_{1}, \ldots, X_{n}\right]$. We can express P as $\sum_{\left(i_{1}, \ldots, i_{n}\right) \in I} \beta_{i_{1}, \ldots, i_{n}} X_{1}^{i_{1}} \cdots X_{n}^{i_{n}}$, where I is a non-empty, finite set of tuples of nonnegative integers, and the $\beta_{i_{1}, \ldots, i_{n}}$ are in $\overline{\mathbb{Q}} \backslash\{0\}$. We have

$$
P\left(e^{\alpha_{1}}, \ldots, e^{\alpha_{n}}\right)=\sum_{\left(i_{1}, \ldots, i_{n}\right) \in I} \beta_{i_{1}, \ldots, i_{n}} e^{i_{1} \alpha_{1}+\cdots+i_{n} \alpha_{n}}
$$

Since $\alpha_{1}, \ldots, \alpha_{n}$ are linearly independent over \mathbb{Q}, the exponents $i_{1} \alpha_{1}+\cdots+i_{n} \alpha_{n}$ are pairwise distinct. So by Theorem 4.8, $P\left(e^{\alpha_{1}}, \ldots, e^{\alpha_{n}}\right) \neq 0$.

You will be asked to deduce some further corollaries in the exercise section at the end of this chapter.

We start with some preliminary comments on the proof of Theorem 4.8.

Our proof of the transcendence of e was by contradiction: we assumed that $q_{0}+$ $q_{1} e+\cdots+q_{n} e^{n}=0$ for certain rational integers q_{0}, \ldots, q_{n}, and constructed from this a non-zero integer M with $|M|<1$. To prove the Lindemann-Weierstrass Theorem, we may again proceed by contradiction and assume that $\beta_{0} e^{\alpha_{0}}+\cdots+\beta_{n} e^{\alpha_{n}}=0$. By following the transcendence proof of e, but replacing $0,1, \ldots, n$ by $\alpha_{1}, \ldots, \alpha_{n}$ and q_{0}, \ldots, q_{n} by $\beta_{1}, \ldots, \beta_{n}$, we obtain a non-zero algebraic integer M, not necessarily in \mathbb{Q}, such that $|M|<1$. As has been observed in Chapter 3, this is not a contradiction. For instance, $\frac{1}{2}(1-\sqrt{5})$ is an algebraic integer of absolute value <1. On the other hand, by Lemma 3.6 from Chapter 3, we do obtain a contradiction if we construct a non-zero algebraic integer M such that all conjugates of M have absolute value <1.

The idea is to derive from the expression $\sum_{i=1}^{n} \beta_{i} e^{\alpha_{i}}$ a new expression $\sum_{i=1}^{t} \delta_{i} e^{\gamma_{i}}$, where the γ_{i}, δ_{i} satisfy certain symmetry conditions. These symmetry conditions allow to construct, under the hypothesis $\sum_{i=1}^{t} \delta_{i} e^{\gamma_{i}}=0$, a non-zero algebraic integer all whose conjugates have absolute value <1. Thus, we obtain a weaker version of the Lindemann-Weierstrass Theorem, which asserts that under the said symmetry conditions, $\sum_{i=1}^{t} \delta_{i} e^{\gamma_{i}} \neq 0$. But as will be seen, this weaker version implies the general Lindemann-Weierstrass Theorem.

Theorem 4.11 ("Weak Lindemann-Weierstrass Theorem"). Let $L \subset \mathbb{C}$ be a normal algebraic number field. Let $\gamma_{1}, \ldots, \gamma_{t}, \delta_{1}, \ldots, \delta_{t} \in L$ such that

$$
\gamma_{1}, \ldots, \gamma_{t} \text { are distinct, } \quad \delta_{1} \cdots \delta_{t} \neq 0
$$

and suppose moreover, that each $\tau \in \operatorname{Gal}(L / \mathbb{Q})$ permutes the pairs $\left(\gamma_{1}, \delta_{1}\right), \ldots,\left(\gamma_{t}, \delta_{t}\right)$. Then

$$
\delta_{1} e^{\gamma_{1}}+\cdots+\delta_{t} e^{\gamma_{t}} \neq 0
$$

We say that τ permutes the pairs $\left(\gamma_{1}, \delta_{1}\right), \ldots,\left(\gamma_{t}, \delta_{t}\right)$ if $\left(\tau\left(\gamma_{1}\right), \tau\left(\delta_{1}\right)\right), \ldots,\left(\tau\left(\gamma_{t}\right), \tau\left(\delta_{t}\right)\right)$ is a permutation of $\left(\gamma_{1}, \delta_{1}\right), \ldots,\left(\gamma_{t}, \delta_{t}\right)$.

We first prove the implication Theorem $4.11 \Longrightarrow$ Theorem 4.8. After that, we prove Theorem 4.11.

Theorem $4.11 \Longrightarrow$ Theorem 4.8. Assume that Theorem 4.8 is false. This means that there are $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n} \in \overline{\mathbb{Q}}$ such that, $\alpha_{1}, \ldots, \alpha_{n}$ are distinct, $\beta_{1}, \ldots, \beta_{n}$ are non-zero, and

$$
\beta_{1} e^{\alpha_{1}}+\cdots+\beta_{n} e^{\alpha_{n}}=0
$$

We derive from this a contradiction to Theorem 4.11.
Let L be the number field generated by $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n}$ and their conjugates. Then L is a normal number field. Let

$$
\operatorname{Gal}(L / \mathbb{Q})=\left\{\tau_{1}, \ldots, \tau_{d}\right\}
$$

Recall that if $\gamma \in L$, then the set $\left\{\tau_{1}(\gamma), \ldots, \tau_{d}(\gamma)\right\}$ contains all conjugates of γ. Clearly,

$$
\prod_{i=1}^{d}\left(\tau_{i}\left(\beta_{1}\right) e^{\tau_{i}\left(\alpha_{1}\right)}+\cdots+\tau_{i}\left(\beta_{n}\right) e^{\tau_{i}\left(\alpha_{n}\right)}\right)=0
$$

By expanding the product, we get

$$
\begin{equation*}
\sum_{i_{1}=1}^{n} \cdots \sum_{i_{d}=1}^{n} \tau_{1}\left(\beta_{i_{1}}\right) \cdots \tau_{d}\left(\beta_{i_{d}}\right) \cdot e^{\tau_{1}\left(\alpha_{i_{1}}\right)+\cdots+\tau_{d}\left(\alpha_{i_{d}}\right)}=0 \tag{4.9}
\end{equation*}
$$

Each $\tau \in \operatorname{Gal}(L / \mathbb{Q})$ permutes the pairs $\left(\tau_{1}\left(\alpha_{i_{1}}\right)+\cdots+\tau_{d}\left(\alpha_{i_{d}}\right), \tau_{1}\left(\beta_{i_{1}}\right) \cdots \tau_{d}\left(\beta_{i_{d}}\right)\right)$, since $\tau \tau_{1}, \ldots, \tau \tau_{d}$ is a permutation of $\tau_{1}, \ldots, \tau_{d}$.

The exponents $\tau_{1}\left(\alpha_{i_{1}}\right)+\cdots+\tau_{d}\left(\alpha_{i_{d}}\right)$ need not be distinct. We group together the terms with equal exponents. Let $\gamma_{1}, \ldots, \gamma_{s}$ be the distinct values among $\tau_{1}\left(\alpha_{i_{1}}\right)+$ $\cdots+\tau_{d}\left(\alpha_{i_{d}}\right)\left(1 \leqslant i_{1}, \ldots, i_{d} \leqslant n\right)$, and for $k=1, \ldots, s$, denote by J_{k} the set of tuples $\left(i_{1}, \ldots, i_{d}\right)$ such that

$$
\tau_{1}\left(\alpha_{i_{1}}\right)+\cdots+\tau_{d}\left(\alpha_{i_{d}}\right)=\gamma_{k} .
$$

Then (4.9) becomes

$$
\begin{equation*}
\sum_{k=1}^{s} \delta_{k} e^{\gamma_{k}}=0, \quad \text { where } \delta_{k}=\sum_{\left(i_{1}, \ldots, i_{k}\right) \in J_{k}} \tau_{1}\left(\beta_{i_{1}}\right) \cdots \tau_{d}\left(\beta_{i_{d}}\right) . \tag{4.10}
\end{equation*}
$$

Notice that each $\tau \in \operatorname{Gal}(L / \mathbb{Q})$ permutes the pairs $\left(\gamma_{1}, \delta_{1}\right), \ldots,\left(\gamma_{s}, \delta_{s}\right)$. A priori, all coefficients δ_{k} might be 0 . However, we show that there is a tuple $\left(i_{1}, \ldots, i_{k}\right)$ such that $\tau_{1}\left(\alpha_{i_{1}}\right)+\cdots+\tau_{d}\left(\alpha_{i_{d}}\right)$ is different from all the other exponents. Thus, for some k, the set J_{k} has cardinality 1 , and $\delta_{k} \neq 0$.

Define a total ordering on \mathbb{C} by setting $\theta<\zeta$ if $\operatorname{Re} \theta<\operatorname{Re} \zeta$ or if $\operatorname{Re} \theta=\operatorname{Re} \zeta$ and $\operatorname{Im} \theta<\operatorname{Im} \zeta$. This ordering has the property that if θ_{i}, ζ_{i} are complex numbers with $\theta_{i}<\zeta_{i}$ for $i=1, \ldots, r$, then $\sum_{j=1}^{r} \theta_{j}<\sum_{j=1}^{r} \zeta_{j}$.

Since $\alpha_{1}, \ldots, \alpha_{d}$ were assumed to be distinct, for each $\tau \in \operatorname{Gal}(L / \mathbb{Q})$, the numbers $\tau\left(\alpha_{1}\right), \ldots, \tau\left(\alpha_{d}\right)$ are distinct. Hence for each $k \in\{1, \ldots, d\}$, there is an index i_{k} such that $\tau_{k}\left(\alpha_{i_{k}}\right)>\tau_{k}\left(\alpha_{j}\right)$ for $j \neq i_{k}$. This implies

$$
\tau_{1}\left(\alpha_{i_{1}}\right)+\cdots+\tau_{d}\left(\alpha_{i_{d}}\right)>\tau_{1}\left(\alpha_{j_{1}}\right)+\cdots+\tau_{d}\left(\alpha_{j_{d}}\right)
$$

for all tuples $\left(j_{1}, \ldots, j_{d}\right) \neq\left(i_{1}, \ldots, i_{d}\right)$, and so $\tau_{1}\left(\alpha_{i_{1}}\right)+\cdots+\tau_{d}\left(\alpha_{i_{d}}\right)$ is distinct from the other exponents.

Assume without loss of generality that $\delta_{1}, \ldots, \delta_{t}$ are the non-zero numbers among $\delta_{1}, \ldots, \delta_{s}$. Then (4.10) becomes

$$
\begin{equation*}
\sum_{k=1}^{t} \delta_{k} e^{\gamma_{k}}=0 \tag{4.11}
\end{equation*}
$$

By construction, the numbers $\gamma_{1}, \ldots, \gamma_{t}$ are distinct algebraic numbers. Further, $\delta_{1}, \ldots, \delta_{t}$ are non-zero. As observed before, each $\tau \in \operatorname{Gal}(L / \mathbb{Q})$ permutes the pairs $\left(\gamma_{1}, \delta_{1}\right), \ldots,\left(\gamma_{s}, \delta_{s}\right)$ from (4.10). But since $\tau(0)=0, \tau$ permutes also the pairs with $\delta_{k} \neq 0$, i.e., $\left(\gamma_{1}, \delta_{1}\right), \ldots,\left(\gamma_{t}, \delta_{t}\right)$. Now Theorem 4.11 implies that (4.11) cannot hold.

Thus, our assumption that Theorem 4.8 is false leads to a contradiction.
Proof of Theorem 4.11. We follow the transcendence proof of e, with the necessary modifications. Before proceeding, we observe that there is no loss of generality to assume that $\delta_{1}, \ldots, \delta_{t}$ are algebraic integers. Indeed, there is a positive $m \in \mathbb{Z}$ such that $m \delta_{1}, \ldots, m \delta_{t}$ are algebraic integers (e.g, we may take for m the product of the denominators of $\delta_{1}, \ldots, \delta_{t}$), and clearly, the conditions and conclusion of Theorem 4.11 are unaffected if we replace δ_{i} by $m \delta_{i}$ for $i=1, \ldots, t$.

Let $\gamma_{1}, \ldots, \gamma_{t}$ be distinct algebraic numbers and $\delta_{1}, \ldots, \delta_{t}$ non-zero algebraic integers from the normal number field L, such that each $\tau \in \operatorname{Gal}(L / \mathbb{Q})$ permutes the pairs $\left(\gamma_{1}, \delta_{1}\right), \ldots,\left(\gamma_{t}, \delta_{t}\right)$. Assume that

$$
\begin{equation*}
\delta_{1} e^{\gamma_{1}}+\cdots+\delta_{t} e^{\gamma_{t}}=0 \tag{4.12}
\end{equation*}
$$

Let again p be a prime number. Further, let l be a positive rational integer such that $l \gamma_{1}, \ldots, l \gamma_{t}$ are all algebraic integers (e.g., the product of the denominators of $\left.\gamma_{1}, \ldots, \gamma_{t}\right)$. For $k=1, \ldots, t$, define

$$
f_{k}(X):=\frac{1}{(p-1)!} \cdot l^{t p}\left(X-\gamma_{k}\right)^{p-1} \prod_{\substack{j=1 \\ j \neq k}}^{t}\left(X-\gamma_{j}\right)^{p},
$$

$$
\begin{gathered}
F_{k}(z):=\int_{0}^{z} e^{z-u} f_{k}(u) d u \\
M_{k}:=\delta_{1} F_{k}\left(\gamma_{1}\right)+\cdots+\delta_{t} F_{k}\left(\gamma_{t}\right)
\end{gathered}
$$

We proceed to prove the following:

1) For each $\tau \in \operatorname{Gal}(L / \mathbb{Q})$ we have $\tau\left(M_{1}\right) \in\left\{M_{1}, \ldots, M_{t}\right\}$, and so all conjugates of M_{1} lie in $\left\{M_{1}, \ldots, M_{t}\right\}$;
2) for sufficiently large p, M_{1} is a non-zero algebraic integer;
3) $\left|M_{k}\right|<1$ for $k=1, \ldots, t$ and sufficiently large p.

The assertions 1) and 3) clearly contradict 2).
Lemma 4.12. (i) We have

$$
M_{k}=-\sum_{j=1}^{t} \sum_{m=0}^{t p-1} \delta_{j} f_{k}^{(m)}\left(\gamma_{j}\right) \text { for } k=1, \ldots, t
$$

(ii) For each $\tau \in \operatorname{Gal}(L / \mathbb{Q})$ we have $\tau\left(M_{1}\right) \in\left\{M_{1}, \ldots, M_{t}\right\}$.

Proof. (i) This follows at once from Lemma 4.2 and our assumption $\sum_{j=1}^{t} \delta_{j} e^{\gamma_{j}}=0$.
(ii) Let $\tau \in \operatorname{Gal}(L / \mathbb{Q})$. Then there is a permutation τ^{*} of $1, \ldots, t$ such that

$$
\left(\tau\left(\gamma_{k}\right), \tau\left(\delta_{k}\right)\right)=\left(\gamma_{\tau^{*}(k)}, \delta_{\tau^{*}(k)}\right) \text { for } k=1, \ldots, t
$$

By applying τ to the coefficients of f_{1}, we obtain
$l^{t p}\left(X-\tau\left(\gamma_{1}\right)\right)^{p-1} \prod_{j=2}^{t}\left(X-\tau\left(\gamma_{j}\right)\right)^{p}=l^{t p}\left(X-\gamma_{\tau^{*}(1)}\right) \prod_{j=2}^{t}\left(X-\gamma_{\tau^{*}(j)}\right)^{p}=(p-1)!f_{\tau^{*}(1)}$.
Hence

$$
\begin{aligned}
\tau\left(M_{1}\right) & =-\sum_{j=1}^{t} \sum_{m=0}^{t p-1} \tau\left(\delta_{j}\right) f_{\tau^{*}(1)}^{(m)}\left(\tau\left(\gamma_{j}\right)\right) \\
& =-\sum_{j=1}^{t} \sum_{m=0}^{t p-1} \delta_{\tau^{*}(j)} f_{\tau^{*}(1)}^{(m)}\left(\gamma_{\tau^{*}(j)}\right)=M_{\tau^{*}(1)}
\end{aligned}
$$

Given two algebraic numbers α, β and a positive integer $b \in \mathbb{Z}$, we write $\alpha \equiv \beta$ $(\bmod b)$ if $(\alpha-\beta) / b$ is an algebraic integer.
Lemma 4.13. let $k \in\{1, \ldots, t\}$. Then

$$
\begin{align*}
& f_{1}^{(p-1)}\left(\gamma_{1}\right)=l^{t p}\left\{\prod_{k=2}^{t}\left(\gamma_{1}-\gamma_{k}\right)\right\}^{p} \tag{4.13}\\
& f_{1}^{(j)}\left(\gamma_{m}\right)=0 \quad \text { for } m=1, \ldots, t, j=0, \ldots, p-1,(m, j) \neq(1, p-1) \tag{4.14}\\
& f_{1}^{(j)}\left(\gamma_{m}\right) \equiv 0(\bmod p) \text { for } m=1, \ldots, t, j \geqslant p \tag{4.15}
\end{align*}
$$

Proof. The proofs of (4.13) and (4.14) are completely analogous to those of (4.5) and (4.6) in Lemma 4.5. We prove only (4.15). Let $m \in\{1, \ldots, t\}$ and $j \geqslant p$. Define

$$
g(X):=f_{1}(X / l)=\frac{1}{(p-1)!} \cdot l\left(X-l \gamma_{1}\right)^{p-1} \prod_{k=2}^{t}\left(X-l \gamma_{k}\right)^{p}
$$

Then $(p-1)!g$ has algebraically integral coefficients. Using (4.8), one easily shows that the coefficients of $(p-1)!g_{1}^{(j)} / j$! are algebraic integers. Hence for $j \geqslant p$, $g^{(j)}\left(l \gamma_{m}\right) / p$ is an algebraic integer, and therefore,

$$
\frac{f_{1}^{(j)}\left(\gamma_{m}\right)}{p}=\frac{l^{j} g^{(j)}\left(l \gamma_{m}\right)}{p}
$$

is an algebraic integer. This implies at once (4.15).
Lemma 4.14. For p sufficiently large, M_{1} is a non-zero algebraic integer.
Proof. An application of Lemma 4.13 gives

$$
M_{1} \equiv-\delta_{1} A^{p}(\bmod p) \quad \text { with } A:=l^{t} \prod_{k=2}^{t}\left(\gamma_{1}-\gamma_{k}\right)
$$

Both δ_{1}, A are algebraic integers, hence M_{1} is an algebraic integer. We prove that for sufficiently large $p, \delta_{1} A^{p} / p$ is not an algebraic integer. Then necessarily, $M_{1} \neq 0$.

Assume that $\delta_{1} A^{p} / p$ is an algebraic integer. Let $b=N_{L / \mathbb{Q}}\left(\delta_{1}\right), B=N_{L / \mathbb{Q}}(A)$. Then $b, B \in \mathbb{Z}$, and the norm $N_{L / \mathbb{Q}}\left(\delta_{1} A^{p} / p\right)=b B^{p} / p^{d}$ is in \mathbb{Z}, where $d=[L: \mathbb{Q}]$. But this is impossible if $p>|b B|$.

Lemma 4.15. For p sufficiently large we have $\left|M_{k}\right|<1$ for $k=1, \ldots, t$.

Exercise 4.3. Prove this lemma.
Thus our assumption that Theorem 4.11 is false implies the Lemmas 4.12, 4.14, 4.15 , and these together give a contradiction.

4.3 Other transcendence results

We give an overview of some other transcendence results, without proof. As usual, we define $e^{z}:=\sum_{n=0}^{\infty} z^{n} / n$! for complex numbers z. Given $\alpha, \beta \in \mathbb{C}$ we define $\alpha^{\beta}:=e^{\beta \log \alpha}$ where $\log \alpha$ is any solution of $e^{z}=\alpha$. Recall that the latter equation has infinitely many solutions; if l_{0} is one solution then the others are given by $l_{0}+2 k \pi i$ with $k \in \mathbb{Z}$. This gives infinitely many possibilities $e^{\beta\left(l_{0}+2 k \pi i\right)}$ for α^{β}. We agree that e^{z} will always be the above defined power series.

Theorem 4.16 (Gel'fond, Schneider, 1934). Let $\alpha, \beta \in \overline{\mathbb{Q}}$ with $\alpha \neq 0,1, \beta \notin \mathbb{Q}$. Let $\log \alpha$ be any solution of $e^{z}=\alpha$. Then $\alpha^{\beta}:=e^{\beta \log \alpha}$ is transcendental.

Corollary 4.17. Let $\alpha \in \overline{\mathbb{Q}}$ with $\alpha \notin \mathbb{Q} i$. Then $e^{\pi \alpha}$ is transcendental.

Proof. Choose $\log (-1)=\pi i$. Then $e^{\pi \alpha}=e^{-i \alpha \log (-1)}=(-1)^{-i \alpha}$.
Corollary 4.18. Let α_{1}, α_{2} be non-zero algebraic numbers. Take any solutions $\log \alpha_{1}, \log \alpha_{2}$ of $e^{z}=\alpha_{1}, e^{z}=\alpha_{2}$, respectively, and assume that these are linearly independent over \mathbb{Q}. Then for any two non-zero algebraic numbers β_{1}, β_{2} we have

$$
\beta_{1} \log \alpha_{1}+\beta_{2} \log \alpha_{2} \neq 0
$$

Proof. Suppose $\beta_{1} \log \alpha_{1}+\beta_{2} \log \alpha_{2}=0$. Put $\gamma:=-\beta_{2} / \beta_{1}$. Then by assumption, $\gamma \notin \mathbb{Q}$, and

$$
\alpha_{2}=e^{\log \alpha_{2}}=e^{\gamma \log \alpha_{1}}=\alpha_{1}^{\gamma},
$$

contradicting Theorem 4.16.
In 1966, A. Baker proved the following far-reaching generalization.
Theorem 4.19 (A. Baker, 1966). Let $\alpha_{1}, \ldots, \alpha_{n}$ be non-zero algebraic numbers. For $i=1, \ldots, n$ let $\log \alpha_{i}$ be any solution of $e^{z}=\alpha_{i}$, and assume that

$$
\log \alpha_{1}, \ldots, \log \alpha_{n} \text { are linearly independent over } \mathbb{Q} .
$$

Then for any non-zero algebraic numbers $\beta_{1}, \ldots, \beta_{n}$,

$$
\beta_{1} \log \alpha_{1}+\cdots+\beta_{n} \log \alpha_{n} \text { is transcendental. }
$$

Definition. We say that non-zero complex numbers $\alpha_{1}, \ldots, \alpha_{n}$ are multiplicatively dependent if there are $x_{1}, \ldots, x_{n} \in \mathbb{Z}$, not all 0 , such that

$$
\alpha_{1}^{x_{1}} \cdots \alpha_{n}^{x_{n}}=1 .
$$

Otherwise, $\alpha_{1}, \ldots, \alpha_{n}$ are called multiplicatively independent.
Corollary 4.20. Let $n \geqslant 1$. Let $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n} \in \overline{\mathbb{Q}}$ be such that
$\alpha_{1}, \ldots, \alpha_{n} \neq 0, \quad \alpha_{1}, \ldots, \alpha_{n}$ are multiplicatively independent, $\left(\beta_{1}, \ldots, \beta_{n}\right) \notin \mathbb{Q}^{n}$.

Then $\alpha_{1}^{\beta_{1}} \cdots \alpha_{n}^{\beta_{n}}$ is transcendental. Here $\alpha_{i}^{\beta_{i}}:=e^{\beta_{i} \log \alpha_{i}}$ where $\log \alpha_{i}$ is any solution of $e^{z}=\alpha_{i}$, for $i=1, \ldots, n$.

Proof. Suppose that $\alpha_{n+1}:=\alpha_{1}^{\beta_{1}} \cdots \alpha_{n}^{\beta_{n}}=e^{\beta_{1} \log \alpha_{1}+\cdots+\beta_{n} \log \alpha_{n}}$ is algebraic. Then we may choose $\log \alpha_{n+1}$ such that

$$
\begin{equation*}
\log \alpha_{n+1}=\beta_{1} \log \alpha_{1}+\cdots+\beta_{n} \log \alpha_{n} . \tag{4.16}
\end{equation*}
$$

By Theorem 4.19, $\log \alpha_{1}, \ldots, \log \alpha_{n}$ and $\log \alpha_{n+1}$ are linearly dependent over \mathbb{Q}, that is, there are $x_{1}, \ldots, x_{n}, x_{n+1} \in \mathbb{Z}$, not all 0 , such that

$$
\begin{equation*}
x_{1} \log \alpha_{1}+\cdots+x_{n} \log \alpha_{n}+x_{n+1} \log \alpha_{n+1}=0 \tag{4.17}
\end{equation*}
$$

Eliminating $\log \alpha_{n+1}$ from (4.16) and (4.17), we get

$$
\left(x_{n+1} \beta_{1}+x_{1}\right) \log \alpha_{1}+\cdots+\left(x_{n+1} \beta_{n}+x_{n}\right) \log \alpha_{n}=0 .
$$

Since $\left(\beta_{1}, \ldots, \beta_{n}\right) \notin \mathbb{Q}^{n}$ we have $x_{n+1} \beta_{i}+x_{i} \neq 0$ for at least one $i \in\{1, \ldots, n\}$. Applying again Theorem 4.19, we infer that there are $y_{1}, \ldots, y_{n} \in \mathbb{Z}$, not all 0 , such that

$$
y_{1} \log \alpha_{1}+\cdots+y_{n} \log \alpha_{n}=0
$$

Now we get

$$
\alpha_{1}^{y_{1}} \cdots \alpha_{n}^{y_{n}}=e^{y_{1} \log \alpha_{1}+\cdots+y_{n} \log \alpha_{n}}=1,
$$

contrary to our assumption.

There is a far reaching conjecture, due to Schanuel, which implies all results mentioned before and much more.

Schanuel's Conjecture. (1960's) Let x_{1}, \ldots, x_{n} be any (not necessarily algebraic) complex numbers that are linearly independent over \mathbb{Q}. Then

$$
\operatorname{trdeg}\left(x_{1}, \ldots, x_{n}, e^{x_{1}}, \ldots, e^{x_{n}}\right) \geqslant n
$$

Exercise 4.4. Can we weaken the assumption on x_{1}, \ldots, x_{n} in Schanuel's conjecture to x_{1}, \ldots, x_{n} distinct, say?

We give some examples of known cases.
Examples. 1. Let $x \in \mathbb{C}^{*}$. Then either x is transcendental, or x is algebraic and then by Lindemann's Theorem, e^{x} is transcendental. Hence $\operatorname{trdeg}\left(x, e^{x}\right) \geqslant 1$. Schanuel's Conjecture is still open for $n \geqslant 2$.
2. Let $\alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}$ and suppose they are linearly independent over \mathbb{Q}. By Corollary 4.10, the numbers $e^{\alpha_{1}}, \ldots, e^{\alpha_{n}}$ are algebraically independent. Hence we have $\operatorname{trdeg}\left(\alpha_{1}, \ldots, \alpha_{n}, e^{\alpha_{1}}, \ldots, e^{\alpha_{n}}\right)=n$.

We deduce some consequences of Schanuel's Conjecture which are still wide open.
Conjecture. e and π are algebraically independent.

Proof under the assumption of Schanuel's Conjecture. The transcendence degree of a set of complex numbers does not change if some algebraic numbers are added to or removed from it. Moreover, the transcendence degree of this set does not change if we multiply its elements with non-zero algebraic numbers. So by Schanuel's conjecture,

$$
\operatorname{trdeg}(e, \pi)=\operatorname{trdeg}(e, \pi i)=\operatorname{trdeg}\left(1, \pi i, e, e^{\pi i}\right)=2
$$

Here we used that 1 and πi are linearly independent over \mathbb{Q} (never forget to verify this condition!).

Conjecture. Let $\alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}$ such that $\alpha_{1}, \ldots, \alpha_{n} \neq 0$ and $\log \alpha_{1}, \ldots, \log \alpha_{n}$ are linearly independent over \mathbb{Q}, where again $\log \alpha_{i}$ is any solution of $e^{z}=\alpha_{i}$ for $i=1, \ldots, n$. Then $\log \alpha_{1}, \ldots, \log \alpha_{n}$ are algebraically independent.

Proof under the assumption of Schanuel's Conjecture. We have

$$
\operatorname{trdeg}\left(\log \alpha_{1}, \ldots, \log \alpha_{n}\right)=\operatorname{trdeg}\left(\log \alpha_{1}, \ldots, \log \alpha_{n}, \alpha_{1}, \ldots, \alpha_{n}\right)=n
$$

The above conjecture implies that for every non-zero polynomial $P \in \overline{\mathbb{Q}}\left[X_{1}, \ldots, X_{n}\right]$ we have $P\left(\log \alpha_{1}, \ldots, \log \alpha_{n}\right) \neq 0$. Baker's Theorem 4.19 implies that this holds for linear polynomials $P \in \overline{\mathbb{Q}}\left[X_{1}, \ldots, X_{n}\right]$, but even for quadratic polynomials P this is still open. For instance, the above conjecture implies that $\log 2 \cdot \log 3$ is transcendental, but as yet not even this very special case could be proved.

In the exercise section at the end of this chapter you are asked to deduce some further consequences of Schanuel's conjecture.

4.4 A special case of the Gel'fond-Schneider Theorem

We prove the following theorem.
Theorem 4.21. Let α, β be real algebraic numbers such that $\alpha>0, \alpha \neq 1$ and $\beta \notin \mathbb{Q}$. Then α^{β} is transcendental.

Here $\alpha^{\beta}=e^{\beta \log \alpha}$ with the usual natural logarithm for positive real numbers. The proof in the case that α, β are not both real or $\alpha<0$ goes along the same lines, but with additional complications. Gel'fond and Schneider independently proved the above theorem, in the general case where α, β may be complex, with different proofs. We follow Schneider's proof.

We assume that $\gamma:=\alpha^{\beta}$ is algebraic. Let $K:=\mathbb{Q}(\alpha, \beta, \gamma), d:=[K: \mathbb{Q}]$. Let m_{1}, m_{2}, m_{3} be the denominators of α, β, γ so that $m_{1} \alpha, m_{2} \beta, m_{3} \gamma$ are algebraic integers, and let $m:=m_{1} m_{2} m_{3}$. Then $m \alpha, m \beta, m \gamma$ are algebraic integers.

We need Siegel's Lemma proved in Chapter 3, which we recall here. Consider the system of linear equations

$$
\left\{\begin{align*}
a_{11} x_{1}+\cdots+a_{1 N} x_{N} & =0 \tag{4.18}\\
\vdots & \\
a_{M 1} x_{1}+\cdots+a_{M N} x_{N} & =0
\end{align*}\right.
$$

Siegel's Lemma. Assume that the coefficients of system (4.18) all lie in a number field K of degree d, let M, N be integers with $N>d M>0$, let A be a real $\geqslant 1$, and suppose that

$$
a_{i j} \in O_{K}, \quad \mid a_{i j} \leqslant A \text { for } i=1, \ldots, M, j=1, \ldots, N .
$$

Then system (4.18) has a solution $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{Z}^{N} \backslash\{\mathbf{0}\}$ such that

$$
\begin{equation*}
\max _{1 \leqslant i \leqslant N}\left|x_{i}\right| \leqslant(3 N A)^{d M /(N-d M)} . \tag{4.19}
\end{equation*}
$$

Let D_{1}, D_{2}, L be parameters with values taken from the positive integers, which will be chosen optimally later. In what follows, c_{1}, c_{2}, \ldots will be constants depending only on α, β, γ, and will be independent of D_{1}, D_{2}, L.

Lemma 4.22. Assume that $D_{1} D_{2} \geqslant 2 d L^{2}$. Then there are integers $a_{i j}(i=$ $\left.0, \ldots, D_{1}-1, j=0, \ldots, D_{2}-1\right)$, not all zero, such that the function

$$
\begin{equation*}
F(z)=F_{L, D_{1}, D_{2}}(z)=\sum_{i=0}^{D_{1}-1} \sum_{j=0}^{D_{2}-1} a_{i j} z^{i} \alpha^{j z} \tag{4.20}
\end{equation*}
$$

has zeros $a+b \beta$ with $a, b=1, \ldots, L$, and such that

$$
\begin{equation*}
\left|a_{i j}\right| \leqslant \exp \left(c_{1}\left(D_{1} \log L+D_{2} L\right)\right) \quad\left(i=0, \ldots, D_{1}-1, j=0, \ldots, D_{2}-1\right) \tag{4.21}
\end{equation*}
$$

Proof. We have to find $a_{i j} \in \mathbb{Z}$, not all zero, such that $F(a+b \beta)=0$ for $a, b=$ $1, \ldots, L$. Using $\alpha^{a+b \beta}=\alpha^{a} \gamma^{b}$, this translates into a system of L^{2} linear equations in the $D_{1} D_{2}$ unknowns $a_{i j}$:

$$
\sum_{i=0}^{D_{1}-1} \sum_{j=0}^{D_{2}-1} a_{i j}(a+b \beta)^{i} \alpha^{a j} \gamma^{b j}=0 \quad(a, b=1, \ldots, L) .
$$

To apply Siegel's Lemma we want all coefficients of this system of equations to be algebraic integers. To this end, we multiply the equations with $m^{D_{1}+2 L D_{2}}$ and obtain

$$
\begin{equation*}
\sum_{i=0}^{D_{1}-1} \sum_{j=0}^{D_{2}-1} a_{i j}\left(m^{D_{1}+2 L D_{2}}(a+b \beta)^{i} \alpha^{a j} \gamma^{b j}\right)=0 \quad(a, b=1, \ldots, L) . \tag{4.22}
\end{equation*}
$$

Then indeed, the coefficients of system (4.22) are all algebraic integers. We estimate their houses. Put

$$
H:=1+|\alpha|+|\beta|+\mid \gamma .
$$

Take a typical coefficient of (4.22), say $m^{D_{1}+2 L D_{2}}(a+b \beta)^{i} \alpha^{a j} \gamma^{b j}$. Let $\sigma: K \hookrightarrow \mathbb{C}$ be an embedding of K. Then for the image under σ of this coefficient we have

$$
\begin{aligned}
& \left|m^{D_{1}+2 L D_{2}}(a+b \sigma(\beta))^{i} \sigma(\alpha)^{a j} \sigma(\gamma)^{b j}\right| \\
& \quad \leqslant m^{D_{1}+2 L D_{2}}(L(1+|\sigma(\beta)|))^{D_{1}}(1+|\sigma(\alpha)|)^{L D_{2}}(1+|\sigma(\gamma)|)^{L D_{2}} \\
& \quad \leqslant m^{D_{1}+2 L D_{2}} L^{D_{1}} H^{D_{1}+2 L D_{2}} \leqslant \exp \left(c_{2}\left(D_{1} \log L+D_{2} L\right)\right)
\end{aligned}
$$

where the constant c_{2} has been chosen large enough in terms of m, d and H. These parameters are functions of α, β and γ, so c_{2} depends only on α, β and γ. Now clearly the houses of the coefficients of system (4.22) are all bounded above by $\exp \left(c_{2}\left(D_{1} \log L+D_{2} L\right)\right)$. We are now in a position to apply Theorem 3.22 and conclude that system (4.22) has a solution in integers $a_{i j}$, not all zero, such that

$$
\left|a_{i j}\right| \leqslant\left(3 D_{1} D_{2} e^{c_{2}\left(D_{1} \log L+D_{2} L\right)}\right)^{d L^{2} /\left(D_{1} D_{2}-d L^{2}\right)} \leqslant \exp \left(c_{1}\left(D_{1} \log L+D_{2} L\right)\right)
$$

for a sufficiently large constant c_{1}, depending only on α, β and γ. Here we have used our assumption $D_{1} D_{2} \geqslant 2 d L^{2}$.

We now choose the parameters D_{1}, D_{2}, L such that $D_{1} D_{2}=2 d L^{2}$ and $D_{1}=D_{2} L$ (to make $D_{1} \log L$ and $D_{2} L$ about equal), i.e.

$$
\begin{equation*}
D_{1}=\sqrt{2 d} \cdot L^{3 / 2}, \quad D_{2}=\sqrt{2 d} \cdot L^{1 / 2} \tag{4.23}
\end{equation*}
$$

(for instance, take $L=2 d M^{2}, D_{1}=(2 d)^{2} M^{3}, D_{2}=2 d M$ for some positive integer $M)$. Then the estimate in Lemma 4.22 becomes

$$
\begin{equation*}
\left|a_{i j}\right| \leqslant \exp \left(c_{3} L^{3 / 2} \log L\right) . \tag{4.24}
\end{equation*}
$$

We note that $F(z)$ is a so-called exponential polynomial, i.e., a function of the shape

$$
E(z)=\sum_{k=1}^{r} p_{k}(z) e^{\gamma_{k} z}
$$

where the $p_{k}(z)$ are non-zero polynomials, and the γ_{k} distinct numbers. We need a simple result on the number of zeros of such a function.

Lemma 4.23. Assume that the γ_{k} and the coefficients of the p_{k} are all reals. Put $M:=\sum_{k=1}^{r}\left(1+\operatorname{deg} p_{k}\right)$. Then $E(z)$ has at most $M-1$ zeros in \mathbb{R}.
Exercise 4.5. Prove this lemma.
Hint. Proceed by induction on M. Apply Rolle's Theorem, which asserts that if G is a differentiable real function and a, b are reals with $a<b$ and $G(a)=G(b)=0$, then there is c with $a<c<b$ and $G^{\prime}(c)=0$.

Notice that we can apply this lemma to our above function $F(z)$, thanks to our assumption that α, β are real and $\alpha>0$. Thus, this lemma implies that $F(z)$ has at most $D_{1} D_{2}=2 d L^{2}$ zeros. We know already that $F(z)$ has the L^{2} zeros $a+b \beta$ $(1 \leqslant a, b \leqslant L)$. These zeros are all different, since $\beta \notin \mathbb{Q}$.

We briefly sketch the idea how to derive a contradiction from this. Details are provided later. Here it is important that we have some freedom to choose the parameters D_{1}, D_{2}, L introduced above. Thus, we can choose L sufficiently large to make all estimates work.

Let $c:=1+[\sqrt{2 d}]$. We show that for all sufficiently large L, we have $F(a+b \beta)=0$ for all integers a, b with $1 \leqslant a, b \leqslant c L$. Thus, F has at least $c^{2} L^{2}>2 d L^{2}=D_{1} D_{2}$ zeros, which contradicts Lemma 4.23.

To prove that $F(a+b \beta)=0$ for all integers a, b with $1 \leqslant a, b \leqslant c L$, we proceed as follows. Using an argument from complex analysis, we show that $|F(a+b \beta)|$ is very small. By a trivial estimate we show that if σ is an embedding of K different from the identity, then $|\sigma(F(a+b \beta))|$ is not too large. Likewise, we show that the denominator $\operatorname{den}(F(a+b \beta))$ is not too large. From these estimates it will follow that

$$
\left|N_{K / \mathbb{Q}}(\operatorname{den}(F(a+b \beta)) F(a+b \beta))\right|=\mid \operatorname{den}\left(F(a+b \beta)^{d} \prod_{\sigma} \sigma(F(a+b \beta)) \mid<1,\right.
$$

where the product is taken over all embeddings, the identity included. But the quantity $\operatorname{den}(F(a+b \beta)) F(a+b \beta)$ is an algebraic integer, hence it must be 0 , since the norm of a non-zero algebraic integer is a non-zero element of \mathbb{Z}.

We now work out the details. We first recall the facts from complex analysis that we use to get the strong estimate for $|F(a+b \beta)|$. Recall that an entire function is a function $f: \mathbb{C} \rightarrow \mathbb{C}$ that is everywhere analytic, i.e., $f^{\prime}(z)=\lim _{w \rightarrow z} \frac{f(w)-f(z)}{w-z}$ exists for every $z \in \mathbb{C}$. The following two lemmas are standard, and their proofs can be found in any textbook on complex analysis.

Lemma 4.24. Let f be an entire function and $a \in \mathbb{C}$ a zero of f. Then there is an entire function g such that $f(z)=g(z) \cdot(z-a)$ for $z \in \mathbb{C}$.
Lemma 4.25 (Maximum Modulus Principle). Let f be an entire function. For $R>0$, define

$$
|f|_{R}:=\sup _{z \in \mathbb{C},|z|=R}|f(z)| .
$$

Then for every $z \in \mathbb{C}$ with $|z| \leqslant R$ we have $|f(z)| \leqslant|f|_{R}$, i.e., $|f(z)|$ attains its maximum on the disk $|z| \leqslant R$ on the boundary of that disk.

As a consequence of these two lemmas we obtain the following estimate, which implies that if an entire function has many zeros in a disk $|z| \leqslant R$, then it is everywhere small on that disk.

Lemma 4.26. Let f be an entire function and a_{1}, \ldots, a_{r} distinct zeros of f. Let R, T be reals such that $\left|a_{i}\right| \leqslant R$ for $i=1, \ldots, r$ and $T \geqslant 3 R$. Then

$$
|f(z)| \leqslant|f|_{T}(3 R / T)^{r} \quad \text { for all } z \in \mathbb{C} \text { with }|z| \leqslant R
$$

Proof. By Lemma 4.24, there is an entire function g such that

$$
f(z)=g(z)\left(z-a_{1}\right) \cdots\left(z-a_{r}\right) \text { for } z \in \mathbb{C} .
$$

Let $z \in \mathbb{C}$ with $|z| \leqslant R$. On the one hand, by Lemma 4.25 ,

$$
|f(z)| \leqslant|g(z)| \prod_{i=1}^{r}\left(|z|+\left|a_{i}\right|\right) \leqslant|g(z)|(2 R)^{r} \leqslant|g|_{T}(2 R)^{r}
$$

on the other hand, we have for $w \in \mathbb{C}$ with $|w|=T$,

$$
|g(w)|=\frac{|f(w)|}{\left|w-a_{1}\right| \cdots\left|w-a_{r}\right|} \leqslant|f(w)| \cdot(3 / 2 T)^{r}
$$

since $\left|w-a_{i}\right| \geqslant|w|-\left|a_{i}\right| \geqslant T-R \geqslant \frac{2}{3} T$. Hence $|g|_{T} \leqslant|f|_{T}(3 / 2 T)^{r}$. Our lemma follows.

Lemma 4.27. Let $c:=1+[\sqrt{2 d}]$ and let a, b be integers with $1 \leqslant a, b \leqslant c L$.
(i) $|F(a+b \beta)| \leqslant \exp \left(c_{4} L^{3 / 2} \log L-L^{2}\right)$.
(ii) Let $\sigma: K=\mathbb{Q}(\alpha, \beta, \gamma) \hookrightarrow \mathbb{C}$ be an embedding not equal to the identity. Then $|\sigma(F(a+b \beta))| \leqslant \exp \left(c_{5} L^{3 / 2} \log L\right)$.
(iii) $\operatorname{den}(F(a+b \beta)) \leqslant \exp \left(c_{6} L^{3 / 2}\right)$.

Proof. (i) We apply Lemma 4.26 with

$$
R:=(1+|\beta|) c L, \quad T:=3 e R=3 e(1+|\beta|) c L
$$

Notice that $a+b \beta$ lies inside the disk $|z| \leqslant R$. A simple application of the triangle inequality gives

$$
|F|_{T} \leqslant \sum_{i=0}^{D_{1}-1} \sum_{j=0}^{D_{2}-1}\left|a_{i j}\right| T^{i} \mid(1+|\alpha|)^{T j} \leqslant D_{1} D_{2} \exp \left(c_{3} L^{3 / 2} \log L\right) \cdot T^{D_{1}}(1+|\alpha|)^{T D_{2}} .
$$

Here we have used (4.24), i.e., $\left|a_{i j}\right| \leqslant \exp \left(c_{3} L^{3 / 2} \log L\right)$ for all i, j. Using our choices $D_{1}=\sqrt{2 d} L^{3 / 2}, D_{2}=\sqrt{2 d} L^{1 / 2}, T=3 e(1+|\beta|) c L$, we see that all terms have exponent of order at most $L^{3 / 2} \log L$. We thus obtain

$$
|F|_{T} \leqslant \exp \left(c_{4} L^{3 / 2} \log L\right)
$$

Recall that by its very construction, F has the L^{2} distinct zeros $u+v \beta$ with $u, v=$ $1, \ldots, L$ inside the disk $|z| \leqslant R$. So by Lemma 4.26, using that $3 R / T=e^{-1}$,

$$
|F(a+b \beta)| \leqslant|F|_{T} e^{-L^{2}} \leqslant \exp \left(c_{4} L^{3 / 2} \log L-L^{2}\right)
$$

(ii) Put $H:=1+|\alpha|+|\beta|+\mid \gamma$. Then by the triangle inequality,

$$
\begin{aligned}
|\sigma(F(a+b \beta))| & \leqslant \sum_{i=0}^{D_{1}-1} \sum_{j=0}^{D_{2}-1}\left|a_{i j}\right|(a+b|\sigma(\beta)|)^{i}\left(|\sigma(\alpha)|^{a}|\sigma(\gamma)|^{b}\right)^{j} \\
& \leqslant D_{1} D_{2} \cdot \exp \left(c_{3} L^{3 / 2} \log L\right) \cdot(c L)^{D_{1}} H^{D_{1}+2 D_{2} \cdot c L} \\
& \leqslant \exp \left(c_{5} L^{3 / 2} \log L\right)
\end{aligned}
$$

(iii) It is easy to verify that

$$
m^{D_{1}+2 D_{2} c L} F(a+b \beta)=m^{D_{1}+2 D_{2} c L} \sum_{i=0}^{D_{1}-1} \sum_{j=0}^{D_{2}-1} a_{i j}(a+b \beta)^{i}\left(\alpha^{a} \gamma^{b}\right)^{j}
$$

is an algebraic integer. Hence

$$
\begin{aligned}
\operatorname{den}(F(a+b \beta)) & \leqslant m^{D_{1}+2 D_{2} c L} \leqslant \exp \left(\left(\sqrt{2 d} \cdot L^{3 / 2}+2 \sqrt{2 d} L^{1 / 2} \cdot c L\right) \cdot \log m\right) \\
& \leqslant \exp \left(c_{6} L^{3 / 2}\right)
\end{aligned}
$$

Completion of the proof of Theorem 4.21. Let again $c:=1+[\sqrt{2 d}]$ and a, b integers with $1 \leqslant a, b \leqslant c L$. By combining the estimates from Lemma 4.27 we obtain

$$
\begin{aligned}
& \left|N_{K / \mathbb{Q}}(\operatorname{den}(F(a+b \beta)) F(a+b \beta))\right|=\operatorname{den}(F(a+b \beta))^{d} \prod_{\sigma}|\sigma(F(a+b \beta))| \\
& \quad \leqslant \exp \left(c_{4} L^{3 / 2} \log L-L^{2}+(d-1) c_{5} L^{3 / 2} \log L+d c_{6} L^{3 / 2}\right) \\
& \quad \leqslant \exp \left(c_{7} L^{3 / 2} \log L-L^{2}\right)
\end{aligned}
$$

say. This estimate is valid for all positive integers L, D_{1}, D_{2} with $D_{1}=\sqrt{2 d} L^{3 / 2}$, $D_{2}=\sqrt{2 d} L^{1 / 2}$ and all integers a, b with $1 \leqslant a, b \leqslant c L$. In the course of our argument, we did not impose any other restrictions on L, D_{1}, D_{2}. Now we choose L large enough, to make $L^{2}>c_{7} L^{3 / 2} \log L$. Then $\left|N_{K / \mathbb{Q}}(\operatorname{den}(F(a+b \beta)) F(a+b \beta))\right|<1$ for all $a, b=1, \ldots, c L$. Since the norm of a non-zero algebraic integer is a non-zero rational integer, this must imply $F(a+b \beta)=0$ for all $a, b=1, \ldots, c L$. Hence $F(z)$ has at least $c^{2} L^{2}$ zeros. But this contradicts Lemma 4.23, which gives an upper bound $D_{1} D_{2}<c^{2} L^{2}$ for the number of zeros of F. Our proof of Theorem 4.21 is complete.

4.5 Exercises

Exercise 4.6. Deduce the following from the Lindemann-Weierstrass Theorem:
(i) Let $\alpha \in \overline{\mathbb{Q}}$ and $\alpha \neq 0$. Then $\sin \alpha, \cos \alpha$, and $\tan \alpha$ are transcendental.
(ii) Let $\alpha \in \overline{\mathbb{Q}}$ and $\alpha \neq 0,1$. Then $\log \alpha$ is transcendental (for any choice of $\log \alpha$, i.e., any solution z of $e^{z}=\alpha$).
(iii) Let $\alpha_{1}, \ldots, \alpha_{n}$ be algebraic numbers in \mathbb{C}. Then

$$
\operatorname{trdeg}\left(e^{\alpha_{1}}, \ldots, e^{\alpha_{n}}\right)=\operatorname{rank}_{\mathbb{Q}}\left(\alpha_{1}, \ldots, \alpha_{n}\right)
$$

Here $\operatorname{rank}_{\mathbb{Q}}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is the largest integer m such that $\alpha_{1}, \ldots, \alpha_{n}$ contain m elements that are linearly independent over \mathbb{Q}.
Exercise 4.7. Prove the following polynomial version of the Lindemann-Weierstrass Theorem.
Let $P_{1}, \ldots, P_{r} \in \mathbb{R}[X]$ be non-zero polynomials and $Q_{1}, \ldots, Q_{r} \in \mathbb{R}[X]$ distinct polynomials with $Q_{i}(0)=0$ for $i=1, \ldots, r$. Show that the function

$$
\sum_{i=1}^{r} P_{i}(x) e^{Q_{i}(x)} \text { is not identically zero on } \mathbb{R} .
$$

Then conclude that the function e^{x} is transcendental, i.e., there are no polynomials $P_{0}, \ldots, P_{r} \in \mathbb{R}[X]$, not all 0 , such that $\sum_{j=0}^{r} P_{j}(x) e^{j x}$ is identically 0 on \mathbb{R}.
Hint. Assume the contrary. Then you may assume w.l.o.g. that $Q_{r}=0$. Take the derivative. Try some sort of inductive argument.

Exercise 4.8. Let $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n} \in \overline{\mathbb{Q}}$, and suppose that $\alpha_{1}, \ldots, \alpha_{n} \neq 0$. For $i=1, \ldots, n$, let $\log \alpha_{i}$ be any solution of $e^{z}=\alpha_{i}$.
(i) Assume that $\beta_{1} \log \alpha_{1}+\cdots+\beta_{n} \log \alpha_{n} \neq 0$. Prove that $\beta_{1} \log \alpha_{1}+\cdots+\beta_{n} \log \alpha_{n}$ is transcendental.
Hint. Proceed by induction on n. In the induction step use Theorem 4.19.
(ii) Let $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n} \in \overline{\mathbb{Q}}$ with $\alpha_{1}, \ldots, \alpha_{n} \neq 0$ and let $\gamma \in \overline{\mathbb{Q}}$ with $\gamma \neq 0$. Put $\alpha_{i}^{\beta_{i}}:=e^{\beta_{i} \log \alpha_{i}}$ for $i=1, \ldots, n$. Prove that $e^{\gamma} \alpha_{1}^{\beta_{1}} \cdots \alpha_{n}^{\beta_{n}}$ is transcendental.

Exercise 4.9. Deduce the following from Schanuel's conjecture:
(i) Let $\alpha \in \overline{\mathbb{Q}}, \alpha \notin i \mathbb{Q}$. Then π and $e^{\pi \alpha}$ are algebraically independent.
(ii) Let $\alpha, \beta \in \overline{\mathbb{Q}}$ with $\alpha \notin\{0,1\}$ and β of degree $d \geqslant 2$. Then $\alpha^{\beta}, \alpha^{\beta^{2}}, \ldots, \alpha^{\beta^{d-1}}$ are algebraically independent. Here $\alpha^{\beta^{j}}=e^{\beta^{j} \log \alpha}$ with $\log \alpha$ any solution of $e^{z}=\alpha$.
(iii) Define the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ by $x_{1}=e$ and $x_{n}=e^{x_{n-1}}$ for $n \geqslant 2$, i.e., $x_{2}=e^{e}$, $x_{3}=e^{e^{e}}$, etc. Then x_{1}, \ldots, x_{N} are algebraically independent for every $N \geqslant 1$.
(iv) Let $\alpha \in \overline{\mathbb{Q}} \backslash\{0,1\}$. Then $\log \alpha, \log \log \alpha$ are algebraically independent (for any solution $\log \alpha$ of $e^{z}=\alpha$ and any solution $\log \log \alpha$ of $e^{z}=\log \alpha$).
(v) Let α, β be positive real algebraic numbers with $\alpha \neq 1, \beta \neq 1$ and $\frac{\log \alpha}{\log \beta} \notin \mathbb{Q}$. Then $\left\{x \in \mathbb{R}: \alpha^{x}\right.$ and β^{x} are both algebraic $\}=\mathbb{Q}$.
Hint. Suppose that $\gamma:=\alpha^{x}, \delta:=\beta^{x}$ are both algebraic. Then there is an algebraic relation between $\log \alpha, \log \beta, \log \gamma, \log \delta$.
(This is also valid for non-real α, β, x; but this leads to more technical complications.)

Remark. The following has been proved.
In 1996, Nesterenko proved (among other things), that π, e^{π} and $\Gamma\left(\frac{1}{4}\right)$ are algebraically independent. Recall that $\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t$ for $x>0$, that $\Gamma(n)=$ $(n-1)$! for every positive integer n, and that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.

For α, β as in (ii), Diaz proved in 1989 that

$$
\operatorname{trdeg}\left(\alpha^{\beta}, \alpha^{\beta^{2}}, \ldots, \alpha^{\beta^{d-1}}\right) \geqslant[(d+1) / 2]
$$

where $[x]$ is the largest integer $\leqslant x$. This settles (ii) for $d=3$.
In the 1960's, Lang and Ramachandra independently proved (among other things) that if α, β, γ are three non-zero, multiplicatively independent complex numbers and x an irrational complex number then at least one of the numbers $\alpha^{x}, \beta^{x}, \gamma^{x}$ is transcendental.

