Chapter 4

Transcendence results

We recall some basic definitions.

We call @ € C transcendental if it is not algebraic, i.e., if it is not a zero of a
non-zero polynomial from Q[X].

We call numbers aq, ..., «a, € C algebraically independent if there is no non-zero
polynomial P € Q[X1, ..., X,] such that P(ay,...,a,) = 0.

A single number a € C is algebraically independent if and only if it is tran-
scendental. Indeed, if « is algebraic then there is a non-zero P € Q[X] such that
P(a) = 0. Hence « is certainly not algebraically independent. Conversely, if « is not
algebraically independent then there is a non-zero P € Q[X] such that P(a) = 0.
But this implies that « is algebraic.

Exercise 4.1. (not needed later) Prove that oy, . ..,«, € C are algebraically inde-
pendent if and only if there is no non-zero P € Q[X1,..., X,] (so with coefficients
in Q instead of Q) such that P(ay,. .., o) = 0.

Given a subset S of C, we define the transcendence degree of S, notation trdeg S,
to be the maximal number ¢ such that S contains ¢ algebraically independent el-
ements. Any algebraically independent subset B C S of cardinality ¢ is called a
transcendence basis of S.

Exercise 4.2. (not needed later) Let S be a subset of C and B = {ay,...,a:} a tran-
scendence basis of S. Prove that every element of S is algebraic over Q(au, . .., ).
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4.1 The transcendence of e

We define as usual e* = Y7 2" /n! for z € C. Further, Q = {a € C: « algebraic over Q}.

Theorem 4.1 (Hermite, 1873). e is transcendental.

We assume that e is algebraic. This means that there are qo, q1,...,q, € Z with
(4.1) Qo+ qe+-+q.e" =0, g #0.

Under this hypothesis, we construct M € Z with M # 0 and |M| < 1 and obtain
a contradiction. We need some auxiliary results. Of course we have to use certain
properties of e. We use that (e*)" = e”.

Let f € C[X] be a polynomial. For z € C we define

(4.2) F(z):= /Z e f(u)du.

0

Here the integration is over the line segment from 0 to z. We may parametrize this
line segment by v =tz, 0 <t < 1. Thus,

F(z) = /01 UV f(2t) 2t

Lemma 4.2. Suppose f has degree m. Then
F(z) =€ (Z f(j)(0)> - ).
=0 J=0

Proof. Repeated integration by parts. m

Corollary 4.3. Let f be as in Lemma 4.2. Then

WEO0) + -+ g F(n) == >3 quf(a).

a=0 j=0
Proof. Clear. m
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Our aim is to show that for a suitable choice of f, the quantity M := ¢oF(0) +
-+ + @, F(n) is a non-zero integer with |M| < 1. Note that Corollary 4.3 gives an
identity with an analytic expression on the left-hand side, and an algebraic expres-
sion on the right-hand side. We prove that M is a non-zero integer by analyzing
the right-hand side, and |M| < 1 by analyzing the left-hand side. For the latter, we
need the following simple estimate, which will also be needed in the proof of a more
general result.

Lemma 4.4. Let f € C[X] be any polynomial and let F' be given by (4.2). Then
for z € C we have

[F) < [z]- el sup  |f(u)].

u€C, ul<|z]

Proof. We have

1 1
| < [ 100z < [ ol et
0 0
< el sup |fu)
u€eC, |ul<|7|

]

Let p be a prime number, which is chosen later to be sufficiently large to make
all estimates work. We take

(43) F(X) = oy X = D)X = 2) - (X —n)}”.

In this case,

n n np+p—1
(4.4) M=) qF@)==> > qfYa).
a=0 a=0 j=0

Lemma 4.5. We have

@) o0 = (1))
(4.6) f9%) =0 fora=0,....,n, j=0,....,p—1, (a,j) # (0,p—1);
(4.7) f9(a) =0 (modp) fora=0,....n, j=p.
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Proof. In general, if ¢ is a polynomial of the shape (X —a)"h with a € C, h € C[X],
then g™ (a) =0 for m =0,...,r —1 and ¢ (a) = r!h(a). This implies (4.5), (4.6).
To prove (4.7), observe that for any ¢ = ¢, X" +--- + ¢y € C[X] and all j > 0 we
have

(4.8) %g(j) =c, (;)erj ey (r;l)erjfl + -+

In particular, since (p — 1)!f € Z[X] and the binomial coefficients are integers, we
have for j > p, a =0,...,n that (p — 1)! /5! € Z[X], and so fU)(a)/p € Z. This
implies at once (4.7). O

Lemma 4.6. Assume that p > |qon|. Then M is a non-zero integer.

Proof. From (4.5) it follows that the term gof®~Y(0) is an integer not divisible by
p, while all other terms ¢, f)(a) in the right-hand side of (4.4) are integers that are
either 0 or divisible by p. Hence M is an integer not divisible by p. O

Lemma 4.7. For p sufficiently large, we have |M| < 1.

Proof. By Lemma 4.4, we have for a =0,...,n,

[Fa)] <a-el-sup |f(u)].

lul<a

For a,b=0,...,n, and u € C with |u| < a we have |u —b| < |u| + |b| < 2n. Hence

(2n)np+p_1 Cp
sup |f(u)| < < ,
s Wl <, —nr < o

say, where ¢ is a constant independent of p, a,b. This implies

n n . Cp
M| <) gaF(a)] < <Z|qa|'@'€>m-
a=0 a=0 ’

For p sufficiently large this is < 1, since for any ¢ > 1, (pi—pl)! — 0 asp— o0. O

Summarizing, our assumption that e is algebraic implies that there is a quantity
M, which is by Lemma 4.6 a non-zero integer, and by Lemma 4.7, of absolute value
< 1. Since this is absurd, e must be transcendental. O
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4.2 The Lindemann-Weierstrass theorem

Lindemann proved in 1882 that e® is transcendental for algebraic o, and Weierstrass
proved in 1885 that if ay, ..., v, are algebraic numbers that are linearly independent
over Q, then e* ... e® are algebraically independent over Q. The following result,
due to A. Baker, is in fact equivalent to the Lindemann-Weierstrass Theorem.

Theorem 4.8. Let ay,...,an, b1, ..., Bn € Q. Suppose that oy, . .., o, are pairwise
distinct, and that By, ...,0, # 0. Then

Bre®t 4 -+ B £ 0.

We deduce some corollaries.

Corollary 4.9. (i) Let a € Q be non-zero. Then e® is transcendental.
(i) 7 is transcendental.

Proof. (i) Suppose that e® =: 3 is algebraic. Then it follows that 1-e* — 3-¢® = 0,
contradicting Theorem 4.8.

(ii) Suppose that 7 is algebraic. Then 7i is algebraic. But €™ = —1 is not transcen-
dental, contradicting (i). O
Corollary 4.10. Let aq,...,a, be algebraic numbers in C that are linearly inde-
pendent over Q. Then e*', ..., e* are algebraically independent.

Proof. Let P be any non-zero polynomial in Q[X1,...,X,]. We can express P as
Z(i1,.4.,in)61 ﬁz’l,...,iﬂ,Xfl .-+ X where I is a non-empty, finite set of tuples of non-
are in Q \ {0}. We have

negative integers, and the 3;, ;

n

ai an\ __ i1a1+tinon

P(e®, ... e") = E Biy...in€ nan,
(ily"'vin)ej

Since aq, ..., q, are linearly independent over QQ, the exponents iya; + - -+ + inay,
are pairwise distinct. So by Theorem 4.8, P(e®,... e*) # 0. O

You will be asked to deduce some further corollaries in the exercise section at
the end of this chapter.

We start with some preliminary comments on the proof of Theorem 4.8.
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Our proof of the transcendence of e was by contradiction: we assumed that go +
qre+- - -+qne” = 0 for certain rational integers qq, . . ., ¢,, and constructed from this
a non-zero integer M with |M| < 1. To prove the Lindemann-Weierstrass Theorem,
we may again proceed by contradiction and assume that Spe® +-- -+ 5,e*» = 0. By
following the transcendence proof of e, but replacing 0,1,,...,n by ay,...,«a, and
qos - --,Gn bY B1,, ..., Bn, we obtain a non-zero algebraic integer M, not necessarily in
Q, such that |M| < 1. As has been observed in Chapter 3, this is not a contradiction.
For instance, (1 — V/5) is an algebraic integer of absolute value < 1. On the other
hand, by Lemma 3.6 from Chapter 3, we do obtain a contradiction if we construct
a non-zero algebraic integer M such that all conjugates of M have absolute value
< 1.

The idea is to derive from the expression > .., f;e* a new expression 22:1 07,
where the ~;,; satisfy certain symmetry conditions. These symmetry conditions
allow to construct, under the hypothesis Z:zl 0;€7 = 0, a non-zero algebraic integer
all whose conjugates have absolute value < 1. Thus, we obtain a weaker version of
the Lindemann-Weierstrass Theorem, which asserts that under the said symmetry
conditions, 22:1 0;€7 #£ 0. But as will be seen, this weaker version implies the
general Lindemann-Weierstrass Theorem.

Theorem 4.11 (“Weak Lindemann-Weierstrass Theorem”). Let L C C be a normal
algebraic number field. Let vi,...,%, 01,...,0; € L such that

Y1, ..., are distinct, 01---0; # 0,

and suppose moreover, that each T € Gal(L/Q) permutes the pairs (71,61), ..., (e, 0¢).
Then
01" 4 -+ 0™ # 0.

We say that 7 permutes the pairs (v1,01), ..., (7, 0¢) if
(T(71),7(01)), -« -, (7(), 7(64)) is a permutation of (y1,d1), ..., (4, ).

We first prove the implication Theorem 4.11=-Theorem 4.8. After that, we
prove Theorem 4.11.

Theorem 4.11 =—> Theorem 4.8. Assume that Theorem 4.8 is false. This means
that there are a1, ..., am, B1, . .., Bn € Q such that, o, ..., o, are distinct, 51, ..., B
are non-zero, and

Gre®t + -+ + Be* = 0.
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We derive from this a contradiction to Theorem 4.11.

Let L be the number field generated by aq,...,ap,, 51, ..., 5, and their conju-
gates. Then L is a normal number field. Let

Gal(L/Q) = {m,..., T4}

Recall that if v € L, then the set {7m1(7),...,74(y)} contains all conjugates of ~.

Clearly,
d

[T (e @) + - + 7i(Ba)em ) = 0.

=1

By expanding the product, we get

(49) Z ZTI ﬁn ' ﬁzd) ’ Tl(all Frotraleny) — 0.

i1=1 1g=1

Each 7 € Gal(L/Q) permutes the pairs (Tl(ozil) + -+ ralay), m(By) - Td(ﬁid)),
since T71,...,TTq is a permutation of 7,..., 74.

The exponents 7y (v, )+ - - +7a(v,) need not be distinct. We group together the

terms with equal exponents. Let 71, ...,7s be the distinct values among 7y (c, ) +

4 1a(ay,) (1 <iy,...,i0 <n),and for k =1,...,s, denote by J; the set of tuples
(i1,...,1q) such that

(g ) + -+ Talag,) = Y-

Then (4.9) becomes

(4.10) D e =0, where by = > Ti(B)--malBi).
k=1 i

Notice that each 7 € Gal(L/Q) permutes the pairs (v1,01), ..., (7s,ds). A priori, all
coefficients 0, might be 0. However, we show that there is a tuple (iy,...,4) such
that 7 (i, ) + - - - + Ta(eu,) is different from all the other exponents. Thus, for some
k, the set Ji has cardinality 1, and d; # 0.

Define a total ordering on C by setting § < ¢ if Ref < Re( or if Ref = Re(
and Im 6 < Im . This ordering has the property that if 6;, (; are complex numbers
with 0; < ¢ fori=1,...,7, then 377 0; <>7°_, (.
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Since ay, . . ., ag were assumed to be distinct, for each 7 € Gal(L/Q), the numbers
(), ..., 7(aq) are distinct. Hence for each k € {1,...,d}, there is an index i such
that 7 () > 7(a;) for j # ij. This implies

mia) + -+ Talaw,) > mi(eg,) + -+ Talay,)

for all tuples (j1,...,Ja) # (i1,...,q), and so 71 (v, ) + - - + 7a(ay,) is distinct from
the other exponents.

Assume without loss of generality that 1, ..., d; are the non-zero numbers among
d1,...,0s. Then (4.10) becomes

t
(4.11) > Gre = 0.
k=1

By construction, the numbers ~q,...,v are distinct algebraic numbers. Further,
d1,...,0; are non-zero. As observed before, each 7 € Gal(L/Q) permutes the pairs
(71,01) -+, (75, 6s) from (4.10). But since 7(0) = 0, 7 permutes also the pairs with
Ok # 0, ie., (71,01), .., (7, 0¢). Now Theorem 4.11 implies that (4.11) cannot hold.

Thus, our assumption that Theorem 4.8 is false leads to a contradiction. O

Proof of Theorem 4.11. We follow the transcendence proof of e, with the necessary
modifications. Before proceeding, we observe that there is no loss of generality to
assume that dy,...,d; are algebraic integers. Indeed, there is a positive m € Z such
that mdy, ..., md; are algebraic integers (e.g, we may take for m the product of the
denominators of d1,...,d;), and clearly, the conditions and conclusion of Theorem
4.11 are unaffected if we replace §; by mo; fori =1,... ¢

Let v1,...,7 be distinct algebraic numbers and 9y, ...,d; non-zero algebraic
integers from the normal number field L, such that each 7 € Gal(L/Q) permutes
the pairs (v1,01), ..., (7, ;). Assume that

(4.12) o1+ 5™ = 0.
Let again p be a prime number. Further, let [ be a positive rational integer such

that ly,...,ly are all algebraic integers (e.g., the product of the denominators of
Yy Y). For k=1,... t, define

~+

Ji(X) 1= g (X = T =)

PN
Tl
ol
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Fi(2) == / e fr(u)du
0
Mk = (51Fk(71) + -+ 5tFk(’Yt)-
We proceed to prove the following:

1) For each 7 € Gal(L/Q) we have 7(M;) € {M, ..., M}, and so all conjugates
of M lie in {M;y,..., M;};

2) for sufficiently large p, M; is a non-zero algebraic integer;

3) |My| < 1for k=1,...,t and sufficiently large p.

The assertions 1) and 3) clearly contradict 2).
Lemma 4.12. (i) We have

t tp—1

SN 6 G fork =11

7j=1 m=0

(ii) For each 7 € Gal(L/Q) we have T7(My) € {M, ..., M;}.

Proof. (i) This follows at once from Lemma 4.2 and our assumption 22:1 9;€% = 0.

(i) Let 7 € Gal(L/Q). Then there is a permutation 7* of 1,...,¢ such that

(T(), 7(0r)) = (%*(k), 57*(1:)) for k=1,...,t

By applying 7 to the coefficients of f;, we obtain

t

(X = 7(y)) [ = 7(0))7 = 1P(X = yre H (X =)’ = (0= Dfr)

j=2
Hence

t tp—1

r(My) = =3 > T ()

7j=1 m=0
t tp—1

= =22 0l Gr) = Mew:

7j=1 m=0
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Given two algebraic numbers «, 8 and a positive integer b € Z, we write a = 3
(mod b) if (a« — B)/b is an algebraic integer.

Lemma 4.13. let k € {1,...,t}. Then

(413)  fF () =17 {H(% - %)} :

k=2
(414)  fPv) =0 form=1,....t,j=0,....p—1, (m,j) # (1,p—1),
(4.15) 1(])(%1) = 0(modp) form=1,...,t, 5 > p.

Proof. The proofs of (4.13) and (4.14) are completely analogous to those of (4.5)
and (4.6) in Lemma 4.5. We prove only (4.15). Let m € {1,...,t} and j > p. Define

t

9(X) = fi(X/1) = Gy - UX = P T = ).

k=2

Then (p — 1)!g has algebraically integral coefficients. Using (4.8), one easily shows
that the coefficients of (p — 1)199) /j! are algebraic integers. Hence for j > p,
g9 (I,,)/p is an algebraic integer, and therefore,

A ) _ Vg9 (lym)
p p

is an algebraic integer. This implies at once (4.15). O

Lemma 4.14. For p sufficiently large, M, is a non-zero algebraic integer.

Proof. An application of Lemma 4.13 gives

¢
M; = -5, AP (modp) with A :=1" H(’yl — Vi)
k=2

Both d;, A are algebraic integers, hence M is an algebraic integer. We prove that
for sufficiently large p, ; AP /p is not an algebraic integer. Then necessarily, M; # 0.

Assume that 6, A?/p is an algebraic integer. Let b = Np,g(01), B = Npg(A).
Then b, B € Z, and the norm Ny q(6;A?/p) = bBP/p® is in Z, where d = [L : QJ.
But this is impossible if p > |[bB]. O

Lemma 4.15. For p sufficiently large we have |My| < 1 for k=1,...,t.
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Exercise 4.3. Prove this lemma.

Thus our assumption that Theorem 4.11 is false implies the Lemmas 4.12, 4.14,
4.15, and these together give a contradiction. O]

4.3 Other transcendence results

We give an overview of some other transcendence results, without proof. As usual,

we define e := ) > 2"/n! for complex numbers z. Given a,3 € C we define

af = eP198@ where log o is any solution of e = a. Recall that the latter equation
has infinitely many solutions; if [y is one solution then the others are given by
lo + 2kmi with k € Z. This gives infinitely many possibilities e?(0+2670) for o8 We
agree that e* will always be the above defined power series.

Theorem 4.16 (Gel'fond, Schneider, 1934). Let o, 5 € Q with o # 0,1, B € Q.
Let log o be any solution of €* = a. Then of := eP1°8 s transcendentall.

Corollary 4.17. Let o € Q with o € Qi. Then €™ is transcendental.

Proof. Choose log(—1) = mi. Then €™ = e~i@l8(=1) = (1)~ O

Corollary 4.18. Let aq,ay be non-zero algebraic numbers. Take any solutions
log aq, logas of € = ay, €* = ag, respectively, and assume that these are linearly
independent over Q. Then for any two non-zero algebraic numbers 51, B2 we have

B log ay + B2 log ay # 0.

Proof. Suppose (;log oy + falogas = 0. Put v := —f5 /5. Then by assumption,
v € Q, and

gy = elogaQ — e'ylogal — OéY,

contradicting Theorem 4.16. [

In 1966, A. Baker proved the following far-reaching generalization.

Theorem 4.19 (A. Baker, 1966). Let aq,...,q, be non-zero algebraic numbers.
Fori=1,...,n let loga; be any solution of €* = «;, and assume that
log ay, . ..,logay, are linearly independent over Q.
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Then for any non-zero algebraic numbers By, ..., By,

Brlogay + - - + By log av, is transcendental.

Definition. We say that non-zero complex numbers «y, ..., o, are multiplicatively
dependent if there are z1,...,x, € Z, not all 0, such that

ajt-oearm =1,
Otherwise, oy, ..., «a, are called multiplicatively independent.

Corollary 4.20. Letn > 1. Let oy, ... ,an, Bi,..., 0, € Q be such that

at,...,a, £0, ay,...,q, are multiplicatively independent,
(517 s 7ﬁn> ¢ Qn

Then of* - - - afr is transcendental. Here o

%

= ePilosi yhere log oy is any solution
of e =ay, fori=1,...,n.

Proof. Suppose that ay,,1 := aj' -+ aPn = efrlosat—+bulogan jg glgebraic. Then we
may choose log o, 11 such that

(4.16) log oy y1 = Prlogaq + -+ + B, log ay,.

By Theorem 4.19, log a1, . . . ,log o, and log o, 11 are linearly dependent over Q, that
is, there are z1,...,2,, T,41 € Z, not all 0, such that

(4.17) x1logay + -+ -+ x,loga, + 21 log a1 = 0.

Eliminating log a;, 11 from (4.16) and (4.17), we get
(xn—l-lﬂl + xl) log a1 + -+ (xn+lﬁn + xn) lOg Oy = 0.

Since (B1,...,0n) & Q" we have x,15; + z; # 0 for at least one i € {1,...,n}.
Applying again Theorem 4.19, we infer that there are yy,...,y, € Z, not all 0, such
that

y1logag + - +y,loga, =0.

Now we get

1

o — eVt logai+-+ynlogan _ 1

oY
Oénn )

contrary to our assumption. O
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There is a far reaching conjecture, due to Schanuel, which implies all results
mentioned before and much more.

Schanuel’s Conjecture. (1960’s) Let xq,...,x, be any (not necessarily algebraic)
complex numbers that are linearly independent over Q. Then

xT X
trdeg(zy, ..., Tp, €%, ...,€"") = n.
Exercise 4.4. Can we weaken the assumption on x1,...,x, in Schanuel’s conjecture
to xq,...,x, distinct, say?

We give some examples of known cases.

Examples. 1. Let x € C*. Then either = is transcendental, or = is algebraic
and then by Lindemann’s Theorem, e” is transcendental. Hence trdeg(x,e”) > 1.
Schanuel’s Conjecture is still open for n > 2.

2. Let aq,...,a, € Q and suppose they are linearly independent over Q. By
Corollary 4.10, the numbers e®*, ..., e* are algebraically independent. Hence we
have trdeg(ay, ..., apn, €%, ..., e*) =n.

We deduce some consequences of Schanuel’s Conjecture which are still wide open.

Conjecture. e and 7 are algebraically independent.

Proof under the assumption of Schanuel’s Conjecture. The transcendence degree of
a set of complex numbers does not change if some algebraic numbers are added to or
removed from it. Moreover, the transcendence degree of this set does not change if we
multiply its elements with non-zero algebraic numbers. So by Schanuel’s conjecture,

trdeg(e, ) = trdeg(e, mi) = trdeg(1, 7i, e, e™) = 2.

Here we used that 1 and m¢ are linearly independent over Q (never forget to verify
this condition!). O

Conjecture. Let oq,...,a, € Q such that oq,...,a, # 0 and logay,. .., logo,
are linearly independent over Q, where again log «; is any solution of e* = «; for
1=1,...,n. Thenloga, ..., loga, are algebraically independent.
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Proof under the assumption of Schanuel’s Conjecture. We have
trdeg(log oy, ..., log o) = trdeg(log aq, . .., log apn, o, . . ., () = .
O

The above conjecture implies that for every non-zero polynomial P € Q[X1, ..., X,,]
we have P(logay,...,loga,) # 0. Baker’s Theorem 4.19 implies that this holds for
linear polynomials P € Q[X1, ..., X,], but even for quadratic polynomials P this is
still open. For instance, the above conjecture implies that log2 - log 3 is transcen-
dental, but as yet not even this very special case could be proved.

In the exercise section at the end of this chapter you are asked to deduce some
further consequences of Schanuel’s conjecture.

4.4 A special case of the Gel’fond-Schneider The-

orem

We prove the following theorem.

Theorem 4.21. Let o, be real algebraic numbers such that a > 0, a # 1 and
B & Q. Then o is transcendental.

Here of = ef1°8@ with the usual natural logarithm for positive real numbers.
The proof in the case that a, § are not both real or a@ < 0 goes along the same lines,
but with additional complications. Gel'fond and Schneider independently proved
the above theorem, in the general case where «, 8 may be complex, with different
proofs. We follow Schneider’s proof.

We assume that v := o is algebraic. Let K := Q(o, 3,7), d := [K : Q]. Let
my, Mg, m3 be the denominators of «, [, v so that mia, mof3, mgy are algebraic
integers, and let m := mymoms. Then ma, mfB, my are algebraic integers.

We need Siegel’s Lemma proved in Chapter 3, which we recall here. Consider
the system of linear equations

ap1ry + .- + AINTN =0
(4.18) :

ayiry + --- + ApNTN =0
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Siegel’s Lemma. Assume that the coefficients of system (4.18) all lie in a number
field K of degree d, let M, N be integers with N > dM > 0, let A be a real > 1, and
suppose that

a;j € Ok, 'a—ijyéA fori=1,.... M, j=1,...,N.
Then system (4.18) has a solution x = (x1,...,xx) € Z™ \ {0} such that

(4.19) max |z;| < (3N A)M/(N=dM)

1<i<N

Let Dy, Dy, L be parameters with values taken from the positive integers, which
will be chosen optimally later. In what follows, ¢y, ¢s, . .. will be constants depending
only on «, 3,7, and will be independent of Dy, Dy, L.

Lemma 4.22. Assume that DiDy > 2dL?. Then there are integers a;; (i =
0,....,D1—1,7=0,...,Dy — 1), not all zero, such that the function

D1—1Dy—1

(4.20) F(2) = Frp,.p,(2) = > Y ayz'e’

i=0 ;=0

has zeros a + bp with a,b=1,...,L, and such that

(4.21)  ay| <exp (ci(DilogL+ DoL)) (i=0,...,D;—1,j=0,...,Dy —1).

Proof. We have to find a;; € Z, not all zero, such that F(a 4+ b3) = 0 for a,b =
1,..., L. Using ot = q4®, this translates into a system of L? linear equations in
the DD, unknowns a;;:

Di1—1D2—1
SN ayla+b8)a¥7¥ =0 (a,b=1,....L).

i=0 j=0

To apply Siegel’s Lemma we want all coefficients of this system of equations to be
algebraic integers. To this end, we multiply the equations with m?1+25P2 and obtain

(4.22) Z Z a;; (mP P2 (a + b8)'a®4%) =0 (a,b=1,...,L).
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Then indeed, the coefficients of system (4.22) are all algebraic integers. We estimate
their houses. Put

H :=1+[al+|8|+[]

Take a typical coefficient of (4.22), say mP1725P2(q 4+ b3)ia%~% . Let o : K < C be
an embedding of K. Then for the image under o of this coefficient we have

M2 (a + bo (8)) o (a) Vo (7))

Dy
< mPFP (L4 [ (B)) P 1+ o) )H2(1 + o))
mD1+2LD2 [ P1 gpD1+2LD2 < exp (C2(D1 log L+ DQL))

N

where the constant ¢y has been chosen large enough in terms of m, d and H. These
parameters are functions of «, § and 7, so ¢ depends only on «a, f and v. Now
clearly the houses of the coefficients of system (4.22) are all bounded above by
exp (02(D1 log L + DQL)). We are now in a position to apply Theorem 3.22 and
conclude that system (4.22) has a solution in integers a;;, not all zero, such that

dL?/(DyD2—dL?)

|az]| < (3D1D2662(D1 10gL+D2L)) < eXp (CI(DI log L + DQL)),

for a sufficiently large constant c¢;, depending only on «, § and . Here we have
used our assumption DDy > 2dL2. O

We now choose the parameters Dy, Do, L such that D; Dy = 2dL? and Dy = D, L
(to make D;log L and DyL about equal), i.e.

(4.23) Dy =V2d-L*?* Dy,=+2d-L'?

(for instance, take L = 2dM?, D; = (2d)?>M?>, Dy = 2dM for some positive integer
M). Then the estimate in Lemma 4.22 becomes

(4.24) la;;| < exp <03L3/2 log L).

We note that F'(z) is a so-called exponential polynomial, i.e., a function of the
shape

E(z) =) m(z)e™,

where the py(z) are non-zero polynomials, and the ~, distinct numbers. We need a
simple result on the number of zeros of such a function.
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Lemma 4.23. Assume that the v, and the coefficients of the py are all reals. Put
M :=>"_(1+degpy). Then E(z) has at most M — 1 zeros in R.

Exercise 4.5. Prove this lemma.

Hint. Proceed by induction on M. Apply Rolle’s Theorem, which asserts that if G
is a differentiable real function and a,b are reals with a < b and G(a) = G(b) = 0,
then there is ¢ with a < ¢ < b and G'(c) = 0.

Notice that we can apply this lemma to our above function F'(z), thanks to our
assumption that «,  are real and a > 0. Thus, this lemma implies that F(z) has
at most Dy Dy = 2dL? zeros. We know already that F(z) has the L? zeros a + b3
(1 <a,b< L). These zeros are all different, since 5 & Q.

We briefly sketch the idea how to derive a contradiction from this. Details are
provided later. Here it is important that we have some freedom to choose the
parameters D, Dy, L introduced above. Thus, we can choose L sufficiently large to
make all estimates work.

Let ¢ := 14[v/2d]. We show that for all sufficiently large L, we have F(a+b8) =0
for all integers a,b with 1 < a,b < c¢L. Thus, F has at least ¢2L? > 2dL? = D, D,
zeros, which contradicts Lemma 4.23.

To prove that F(a + b3) = 0 for all integers a,b with 1 < a,b < cL, we proceed
as follows. Using an argument from complex analysis, we show that |F(a 4 b3)| is
very small. By a trivial estimate we show that if ¢ is an embedding of K different
from the identity, then |o(F'(a + b3))| is not too large. Likewise, we show that the
denominator den(F'(a + bf)) is not too large. From these estimates it will follow
that

| Nijo(den(F(a+b8))F(a+bB))| = |[den(F(a + b8)* [ [ o(Fla+b8))| < 1,

where the product is taken over all embeddings, the identity included. But the
quantity den(F'(a + b3))F(a + bp) is an algebraic integer, hence it must be 0, since
the norm of a non-zero algebraic integer is a non-zero element of Z.

We now work out the details. We first recall the facts from complex analysis

that we use to get the strong estimate for |F'(a+b3)|. Recall that an entire function
flw)—£(2)

w—z
exists for every z € C. The following two lemmas are standard, and their proofs can

is a function f : C — C that is everywhere analytic, i.e., f/'(z) = lim,_,,

be found in any textbook on complex analysis.
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Lemma 4.24. Let f be an entire function and a € C a zero of f. Then there is an
entire function g such that f(z) = g(z) - (z — a) for z € C.

Lemma 4.25 (Maximum Modulus Principle). Let f be an entire function. For
R >0, define

[flr="sup [f(2)].

z€C,|z|=R

Then for every z € C with |z| < R we have |f(2)| < |f|r, i-e., |f(2)| attains its
mazximum on the disk |z| < R on the boundary of that disk.

As a consequence of these two lemmas we obtain the following estimate, which
implies that if an entire function has many zeros in a disk |z| < R, then it is
everywhere small on that disk.

Lemma 4.26. Let f be an entire function and aq,...,a, distinct zeros of f. Let
R, T be reals such that |a;| < R fori=1,...,r and T > 3R. Then

|f(2)| < |flr(BR/T)" for all z € C with || < R

Proof. By Lemma 4.24, there is an entire function g such that

f(z)=g(2)(z—a1) - (2 —a,) for z € C.
Let z € C with |z] < R. On the one hand, by Lemma 4.25,

[F(2)] < 1g(2)] H(!Z\ +lail) < [9(2)|2R)" < lglr(2R)",

on the other hand, we have for w € C with |w| =T,

|/ (w)]

lw—ay|---|w—a,|

lg(w)] = < [f(w)l - (3/2T),

since |w — a;| > |w| —|a;] > T — R > 2T. Hence |g|p < |f|r(3/2T)". Our lemma
follows. O
Lemma 4.27. Let ¢ := 1+ [vV2d] and let a,b be integers with 1 < a,b < cL.

(i) |F(a+bp)| < exp (cal®?log L — L?).

(ii) Let o : K = Q(a, B,7) <= C be an embedding not equal to the identity. Then
o(F(a +b3)| < exp (e log L).

(iti) den(F(a + bB)) < exp (csL*?).
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Proof. (i) We apply Lemma 4.26 with
R:= (14 |B8|)cL, T :=3eR = 3e(l+ |B])cL.

Notice that a + bS5 lies inside the disk |z| < R. A simple application of the triangle
inequality gives

D1—1Dy—1
Flr < ) 0>  aglT* (1 + o)™ < DiDyexp(csL¥?log L) - TP (1 + |af)"=.

i=0 j=0

Here we have used (4.24), i.e., |a;;| < exp(c3L??log L) for all i, j. Using our choices
Dy = V2dL*?, Dy = V2dL'?, T = 3e(1 + |B|)cL, we see that all terms have
exponent of order at most L3/?log L. We thus obtain

|[F|r < exp (04L3/2 log L).

Recall that by its very construction, F' has the L? distinct zeros u + v with u,v =
1,..., L inside the disk |z| < R. So by Lemma 4.26, using that 3R/T = e,

|F(a+b8)| < |Flre™ < exp (C4L3/2 log L — L?).

(ii) Put H :=1+TJal+ W +[7]- Then by the triangle inequality,

D1—1Ds—-1

o(Fla+b8)l < D D laglla+blo(B)) (lo(@)||o ()]

< DiD;-exp (63L3/2 log L) : (CL)DlHD1+2D2-cL
<

exp <C5L3/2 log L).
(iii) It is easy to verify that
TI’LD1+2D2CLF((I + bﬁ) — mD1+2D2¢:L aij(a + bﬁ)i(aayb)j

is an algebraic integer. Hence

den(F(a+bB)) < mPr2P2el Lexp ((\/ﬁ L3 4 232dLY? - cL) - log m>

< exp (06L3/2).
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Completion of the proof of Theorem 4.21. Let again ¢ := 14 [v/2d] and a, b integers
with 1 < a,b < cL. By combining the estimates from Lemma 4.27 we obtain

[Nijo(den(F (a +bB))F(a +b5))| = den(F(a +b3))* [T lo(F(a + b8))|

< exp (C4L3/2 log L — L? 4 (d — 1)05[/3/2 log L + d06L3/2)
< exp (C7L3/2 log L — L2),
say. This estimate is valid for all positive integers L, Dy, Dy with Dy = v/2dL3/?,
Dy = V2dLY? and all integers a,b with 1 < a,b < ¢L. In the course of our
argument, we did not impose any other restrictions on L, Dy, Dy. Now we choose L
large enough, to make L? > ¢;L*?log L. Then [Ny g(den(F(a+bB))F(a+bB))| < 1
for all a,b=1,...,cL. Since the norm of a non-zero algebraic integer is a non-zero
rational integer, this must imply F'(a + b5) =0 for all a,b =1,...,cL. Hence F(z)
has at least c?L? zeros. But this contradicts Lemma 4.23, which gives an upper
bound DD, < c*L? for the number of zeros of F'. Our proof of Theorem 4.21 is
complete. O

4.5 Exercises

Exercise 4.6. Deduce the following from the Lindemann-Weierstrass Theorem:
(i) Let « € Q and o # 0. Then sina, cosa, and tana are transcendental.

(ii) Let o« € Q and o # 0,1. Then log « is transcendental (for any choice of log a,
i.e., any solution z of e = ).

(iii) Let v, ..., ap be algebraic numbers in C. Then
trdeg(e®, ..., e*) = rankg(a, ..., ay).

Here rankg(ay, . .., ap) is the largest integer m such that oy, . .., o, contain m ele-
ments that are linearly independent over Q.

Exercise 4.7. Prove the following polynomial version of the Lindemann- Weierstrass
Theorem.

Let Py,..., P, € R[X] be non-zero polynomials and Q1,...,Q, € R[X] distinct
polynomials with Q;(0) =0 fori=1,... ,r. Show that the function

T

Z Py(2)e? @ s not identically zero on R.
i=1
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Then conclude that the function e® is transcendental, i.e., there are no polynomials
Po, ..., P, € R[X], not all 0, such that 37 _, Pj(x)e’® is identically 0 on R.

Hint. Assume the contrary. Then you may assume w.l.o.g. that QQ, = 0. Take the
derivative. Try some sort of inductive argument.

Exercise 4.8. Let o, ..., an, Pi,...,Bs € Q, and suppose that oy, . .., 0y, # 0. For
1=1,...,n, let log a; be any solution of e = a;.

(i) Assume that Bylogay + - -+ B, loga,, # 0. Prove that fylogaq + -+ -+ B, log oy,
18 transcendental.
Hint. Proceed by induction on n. In the induction step use Theorem 4.19.

(ii) Let ay,..., 0, Bi,...,Bn € Q with ay,...,a, # 0 and let v € Q with v # 0.
Put o == ePlose for i =1, .. n. Prove that e’a/" - - - aP is transcendental.

Exercise 4.9. Deduce the following from Schanuel’s conjecture:

(i) Let o € Q, a € iQ. Then 7 and €™ are algebraically independent.

(ii) Let a, B € Q with a ¢ {0,1} and B of degree d > 2. Then b P P
are algebraically independent. Here o = €718 with log o any solution of e* = a.
(iii) Define the sequence {x,}>>, by x1 = e and x,, = "' forn > 2, i.e., x9 = €°,
x5 = e, etc. Then x1,...,xN are algebraically independent for every N > 1.

(iv) Let o € Q\ {0,1}. Then loga,logloga are algebraically independent (for any
solution log o of €* = a and any solution loglog o of e* = log ).

(v) Let o, B be positive real algebraic numbers with o # 1, f # 1 and %ggg Z Q.
Then {x € R: o and B* are both algebraic} = Q.

Hint. Suppose that v := o”, 0 := % are both algebraic. Then there is an algebraic
relation between log o, log 3, logy, log .

(This is also valid for non-real o, B, x; but this leads to more technical complica-

tions.)

Remark. The following has been proved.

In 1996, Nesterenko proved (among other things), that m,e™ and I'(3) are al-
gebraically independent. Recall that I'(z) = [ ¢" te~'dt for > 0, that ['(n) =
(n — 1)! for every positive integer n, and that I'(3) = /7.

For o, 8 as in (ii), Diaz proved in 1989 that

trdeg(a®, o, ... a®) = [(d+1)/2]
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where [z] is the largest integer < . This settles (ii) for d = 3.

In the 1960’s, Lang and Ramachandra independently proved (among other things)
that if o, 8, v are three non-zero, multiplicatively independent complex numbers and
x an irrational complex number then at least one of the numbers o, 5%, +* is tran-
scendental.

84



