
Chapter 8

The p-adic Subspace Theorem

Literature:

B. Edixhoven, J.-H. Evertse (eds.), Diophantine Approximation and Abelian Varieties, Introduc-

tory Lectures, Lecture Notes in Mathematics 1566, Springer 1993, Chap.IV

J. Neukirch, Algebraic Number Theory, Springer 1999, Chaps. II, III

The p-adic Subspace Theorem deals with Diophantine inequalities in which sev-

eral different absolute values occur (e.g., the ordinary absolute value and extensions

to number fields of the p-adic value |·|p various primes p). Before we are able to state

the p-adic Subspace theorem we have to recall some facts about absolute values on

number fields. We give only a brief outline. For more details we refer to Chapters

II and III of Neukirch’s book mentioned above.

8.1 Absolute values on algebraic number fields

8.1.1 Generalities

The standard absolute value | · | on C has certain important properties, namely, that

it is positive for non-zero complex numbers, that the absolute value of the product

of two complex numbers is the product of their absolute values, and that it satisfies

the triangle inequality. There is a general concept of absolute values, which can be

defined on any field.

Let K be a field. An absolute value (or valuation) on K is a function | · |∗ : K →
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R>0 with the following properties:

(AV1) |0|∗ = 0 and |x|∗ > 0 for x ∈ K∗;
(AV2) |xy|∗ = |x|∗ · |y|∗ for x, y ∈ K;

(AV3) |x+ y|∗ 6 |x|∗ + |y|∗ for x, y ∈ K (triangle inequality).

Notice that (AV1)–(AV3) imply that |1|∗ = 1.

Examples. 1. The trivial absolute value, given by |0|∗ = 0 and |x|∗ = 1 for x ∈ K∗.
2. The standard absolute value | · | on any subfield of C.

3. Let K := k(X) be the field of rational functions over a field k. We define the

degree of a rational function f/g with f, g ∈ k[X] by deg(f/g) := deg f − deg g.

Then | · |deg, given by |x|deg := edeg x for x ∈ K∗ and |0|deg := 0 defines an absolute

value on K. Notice that it satisfies something stronger than (AV3), i.e., |x+ y|deg 6
max(|x|deg, |y|deg) for x, y ∈ K (verify this).

An absolute value | · |∗ on a field K is called non-archimedean if instead of (AV3)

it satisfies the strong triangle inequality or ultrametric inequality

(AV3’) |x+ y|∗ 6 max(|x|∗, |y|∗) for x, y ∈ K.

If | · |∗ does not satisfy (AV3’) it is called archimedean.

Two absolute values | · |∗, | · |∗∗ on K are called equivalent if there is c > 0 such

that

|x|∗∗ = |x|c∗ for all x ∈ K.

An absolute value | · |∗ on K defines a topology on K as follows: the open sets are

those subsets U of K with the property that for every a ∈ U there is δ > 0 such

that {x ∈ K : |x − a|∗ < δ} ⊆ U . It can be shown that two absolute values on K

define the same topology on K if and only if they are equivalent.

Let K be a field, L an extension of K, and | · |∗ an absolute value on K. A

continuation of K to L is an absolute value | · |∗∗ on L whose restriction to K is

| · |∗, i.e., |x|∗∗ = |x|∗ for all x ∈ K. We mention here that such a continuation, if it

exists, need not be unique.

Below, we first describe the absolute values on Q, and subsequently their con-

tinuations to a number field.
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8.1.2 Absolute values on Q

Of course, we have on Q the standard absolute value, given by

|x| := max(x,−x) for x ∈ Q.

Further, for every prime number p there is an associated p-adic absolute value, which

is defined as follows. First we put |0|p := 0. If x is a non-zero rational number, then

we can write x = pka/b where k is an integer and a, b are integers coprime with p,

and we put

|x|p := p−k.

Verify yourself that | · |p defines a non-archimedean absolute value on Q.

It will be convenient to denote the standard absolute value on Q by | · |∞ and

write

MQ := {∞} ∪ {prime numbers}.

Then the absolute values defined above satisfy the product formula

(8.1)
∏
p∈MQ

|x|p = 1 for x ∈ Q∗.

Indeed, every non-zero rational number x has a unique factorization as a product of

prime powers

x = ±pk11 · · · pktt
where k1, . . . , kt are non-zero integers and p1, . . . , pt distinct prime numbers. We

have |x|∞ = pk11 · · · pktt , |x|pi = p−kii for i = 1, . . . , t, and |x|p = 1 for every prime p

outside {p1, . . . , pt}.

We state without proof the following

Theorem 8.1 (Ostrowski). The absolute values | · |p (p ∈MQ) are pairwise inequiv-

alent, and every non-trivial absolute value on Q is equivalent to one of them.

8.1.3 Absolute values on number fields

Let K be an algebraic number field. Each of the absolute values | · |p (p ∈ MQ)

defined above has a continuation (and in general more than one) to K. In most

157



applications, we only need to know that such continuations exist and not how they

are defined, but for the interested reader we describe these continuations.

We first describe the continuations of the standard absolute value | · |∞ = | · | to

K. Let d := [K : Q]. Recall that K has precisely d embeddings K ↪→ C. We order

these embeddings as

σ1, . . . , σr1 , σr1+1, . . . , σr1+r2 , σr1+r2+1 = σr1+1, . . . , σr1+2r2 = σr1+r2 ,

where d = r1 + 2r2, σi (i = 1, . . . , r1) are the embeddings with image contained in

R, σi (i = r1 + 1, . . . , d) are the embeddings with images not contained in R, and

σ(x) := σ(x) for x ∈ K. Denote by | · | the standard absolute value on C. Then

| · |σi := |σi(·)| (i = 1, . . . , d)

define archimedean absolute values on K, which are clearly continuations of | · |∞
to K. In fact, we only have to concider these absolute values for i = 1, . . . , r1 + r2,

since

| · |σr2+j
= |σr2+j(·)| = |σj(·) | = |σj(·)| = | · |σj for j = r1 + 1, . . . , r1 + r2.

Fact. The absolute values | · |σi (i = 1, . . . , r1 + r2) are pairwise inequivalent, and

they are precisely the continuations of | · |∞ to K.

In order to define the continuations of | · |p (p prime number) to K, we have to

recall some facts about prime ideal decompositions of fractional ideals of K.

Denote by OK the ring of integers of K. A fractional ideal of K is a set a 6= 0

with the following properties:

(i) if x, y ∈ a, then x− y ∈ a;

(ii) if x ∈ a, α ∈ OK , then αx ∈ a;

(iii) there is α ∈ K∗ such that αa := {αx : x ∈ a} ⊆ OK .

In particular OK itself and the non-zero ideals of OK are fractional ideals of K, and

in fact, any fractional ideal of K contained in OK is a non-zero ideal of OK . Further,

for α ∈ K∗, αOK := {αx : x ∈ OK} is a fractional ideal of K.

We define the product of two fractional ideals a, b of K by

a · b :=
{∑

finite

xiyi : xi ∈ a, yi ∈ b
}
.
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Further, we define the inverse of a fractional ideal a of K by

a−1 := {x ∈ K : xa ⊆ OK}.

The following are standard facts from algebraic number theory, which we recall

without proof.

Theorem 8.2. The product of two fractional ideals of K and the inverse of a frac-

tional ideal of K are again fractional ideals of K. With this product and inverse,

the fractional ideals of K form an abelian group, with unit element OK.

Corollary 8.3. Let a, b be fractional ideals of K. Then a ⊆ b if and only if there

is a non-zero ideal c of OK such that a = b · c.

Proof. We have the chain of equivalences

a ⊆ b ⇐⇒ a · b−1 ⊆ b · b−1 = OK ⇐⇒ ab−1 = c for some non-zero ideal c of OK

⇐⇒ a = b · c for some non-zero ideal c of OK .

A prime ideal of OK is an ideal p with the property that whenever a product αβ

with α, β ∈ OK belongs to p, then at least one of α, β belongs to p. Clearly {0} is a

prime ideal of OK . It is known that every non-zero prime ideal of OK is a maximal

ideal of OK .

Theorem 8.4. (i) Every non-zero ideal of OK can be expressed uniquely as a product

pk11 · · · pktt , where p1, . . . , pt are distinct non-zero prime ideals of OK and k1, . . . , kt
positive integers.

(ii) Every fractional ideal of K can be expressed uniquely as a product pk11 · · · pktt ,

where p1, . . . , pt are distinct non-zero prime ideals of OK and k1, . . . , kt non-zero

integers.

Now let p be a prime number. Then

pOK = p
e(p1)
1 · · · pe(pg)

g ,

where p1, . . . , pg are distinct prime ideals of OK , called the prime ideals dividing p,

and e(p1), . . . , e(pg) are positive integers, called the ramification indices of p1, . . . , pg.
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We notice that a prime ideal p of OK cannot divide two different primes p, q. For

otherwise, p, q ∈ p which would imply 1 = gcd(p, q) ∈ p which is impossible.

Every x ∈ K∗ gives rise to a unique prime ideal decomposition

(8.2) xOK = pk11 · · · pkgg · a

where k1, . . . , kg are integers and a is a fractional ideal of K composed of prime

ideals other than p1, . . . , pg, and for i = 1, . . . , g we set

|x|pi := p−ki/e(pi).

Further, we define |0|pi := 0 for i = 1, . . . , g.

Lemma 8.5. Each | · |pi (i = 1, . . . , g) defines a non-archimedean absolute value on

K, and is a continuation of | · |p to K.

Proof. We first show that | · |pi (i = 1, . . . , g) are continuations of | · |p to K. Let x ∈
Q∗; then x = ±pkql11 · · · qlss with k, l1, . . . , ls integers and q1, . . . , qs primes different

from p. Thus,

xOK = (p
e(p1)
1 · · · pe(pg)

g )ka

where a is composed of prime ideals of OK dividing q1, . . . , qs, and so of prime ideals

other than p1, . . . , pg. Hence |x|pi = p−ke(pi)/e(pi) = p−k = |x|p for i = 1, . . . , g,

We now show that | · |pi (i = 1, . . . , g) define non-archimedean absolute values

on K. Let p ∈ {p1, . . . , pg}. We have to prove that |xy|p = |x|p · |y|p, |x + y|p 6
max(|x|p, |y|p) for x, y ∈ K. This is clear if one of x, y, x+ y is 0. Assume that these

numbers are all non-zero. Then |x|p = p−k/e(p), |y|p = p−l/e(p) for certain integers

k, l, which means that

(8.3) xOK = pka, yOK = plb

for certain fractional ideals a, b composed of prime ideals other than p. Clearly,

xyOK = pk+lab and ab is also composed only of prime ideals different from p. So

|xy|p = p−(k+l)/e(p) = |x|p · |y|p.

We now prove the inequality for x+y. For the moment we assume that x, y ∈ OK .

Then (8.3) holds with k, l > 0 and a, b ideals of OK . We assume without loss of

generality that |y|p 6 |x|p, or equivalently, k 6 l. By Corollary 8.3 we have

x ∈ pka ⊆ pk, y ∈ plb ⊆ pk,
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hence x + y ∈ pk. Again from Corollary 8.3 we deduce that (x + y)OK = pkc for

some non-zero ideal c of OK . We can write c = pmd where m is a non-negative

integer and d is composed of prime ideals other than p, so (x+y)OK = pk+md. This

leads to

|x+ y|p = p−(k+m)/e(p) 6 p−k/e(p) = |x|p = max(|x|p, |y|p).

In case that x, y are not both in OK choose a positive integer α such that αx, αy ∈
OK . Then |αx+αy|p 6 max(|αx|p, |αy|p), and by dividing by |α|p we obtain |x+y|p 6
max(|x|p, |y|p).

Fact. The absolute values | · |pi (i = 1, . . . , g) are pairwise inequivalent, and they

are precisely the continuations of | · |p to K.

8.2 The p-adic Subspace Theorem and some ap-

plications

Recall that | · |∞ denotes the standard absolute value on Q, and for each prime

number p, | · |p denotes the p-adic absolute value as defined above. In this section,

the following notation is used:

(8.4)


K is a number field, p1, . . . , ps are distinct prime numbers,

for each p ∈ {∞, p1, . . . , ps} we choose a continuation of | · |p to K

which we denote also by | · |p.


We start with a generalization of Roth’s Theorem. Recall that if ξ = x/y with

x, y coprime integers, then H(ξ) = max(|x|, |y|).

Theorem 8.6. (p-adic Roth’s Theorem). Let κ > 2, C > 0. Further, for each

p ∈ {∞, p1, . . . , ps} let αp ∈ K. Then the inequality

(8.5) |α∞ − ξ|∞ · |αp1 − ξ|p1 · · · |αps − ξ|ps 6 C ·H(ξ)−κ in ξ ∈ Q

has only finitely many solutions.

Example. Let α be a real, irrational algebraic number, and p a prime number. We

show that for every ε > 0, C > 0 there are only finitely many pairs of integers (u, y)
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such that u > 0, y is coprime with p and

(8.6)

∣∣∣∣α− pu

y

∣∣∣∣ 6 C · (max(pu, |y|))−1−ε

or equivalently

|α− ξ| 6 C ·H(ξ)−1−ε,

where ξ = pu/y. Notice that Roth’s Theorem from Theorem 6 gives only the

finiteness for the number of solutions ξ = pu/y if we replace the exponent on H(ξ)

by something smaller than −2; so if we restrict ourselves to solutions ξ = pu/y we

get a significant improvement.

We first observe that if (u, y) is a solution with |pu/y| < |1
2
α|, then 0 < |1

2
α| <

C ·(max(pu, |y|))−1−ε. So there are only finitely many such pairs (u, y). Now consider

the solutions (u, y) with |pu/y| > |1
2
α|, i.e., |y| 6 | 2α | · p

u. Then we get

|α− ξ| · |ξ|p = |α− ξ| · p−u 6 Cp−u max(pu, |y|)−1−ε 6 C ′max(pu, |y|)−2−ε

6 C ′H(ξ)−2−ε

for some constant C ′ > 0. We apply Theorem 8.6 with K = Q(α) ⊂ R, with the

single prime p, with | · |∞ the restriction to K of the absolute value | · | on R, with

any continuation of | · |p to K (which one doesn’t matter), with α∞ = α and with

αp = 0. It follows that the latter inequality, and hence (8.6), has only finitely many

solutions.

We now formulate the p-adic Subspace Theorem. We keep notation (8.4). The

p-adic Subspace Theorem involves for each | · |p with p ∈ {∞, p1, . . . , ps} a system

of n linearly independent linear forms in X1, . . . , Xn with coefficients in K.

Theorem 8.7. (p-adic Subspace Theorem, Schlickewei, 1976). Let n > 2,

ε > 0, C > 0, and for each p ∈ {∞, p1, . . . , ps} let L1,p, . . . , Ln,p be linearly indepen-

dent linear forms in X1, . . . , Xn with coefficients in K. Consider the inequality

(8.7) |L1,∞(x) · · ·Ln,∞(x)|∞ ·
s∏
j=1

|L1,pj(x) · · ·Ln,pj(x)|pj 6 C · ‖x‖−ε in x ∈ Zn .

There are a finite number of proper linear subspaces T1, . . . , Tt of Qn such that all

solutions of (8.7) lie in T1 ∪ · · · ∪ Tt.
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Remark. Similarly as for the Subspace Theorem from Chapter 7, the only available

proofs of Theorem 8.7 are ineffective, that is that they do not provide a method to

determine the subspaces T1, . . . , Tt.

Theorem 8.7 =⇒ Theorem 8.6. Let ξ be a solution of (8.5). Write ξ = x/y with

x, y ∈ Z, gcd(x, y) = 1. Multiply (8.5) with A :=
(
|y| · |y|p1 · · · |y|ps

)2
. Notice that

|y|pj 6 1 for j = 1, . . . , s. Hence A 6 y2 6 H(ξ)2. Let ε = κ− 2. Then (8.5) implies

|(x− α∞y)y|∞ ·
s∏
j=1

|(x− αpjy)y|pj 6 C ·max(|x|, |y|)−ε.

The solutions (x, y) ∈ Z2 of the latter lie in only finitely many proper one-dimensional

linear subspaces of Q2, and each of these gives rise to a single fraction ξ = x/y. So

(8.5) has only finitely many solutions.

Remark. In many applications of Theorem 8.7, we let K ⊂ C, we choose | · |∞
to be the restriction to K of the standard absolute value | · | on C, and for p ∈
{p1, . . . , ps} we let Li,p be linear forms with coefficients in Q so that it is irrelevant

which continuation of | · |p to K we choose.

Example. Let ε > 0. We show that the inequality

(8.8) |2u + 3v − 5w| 6 max(|2u|, |3v|, |5w|)1−ε

has only finitely many solutions in non-negative integers u, v, w. We apply the p-

adic Subspace theorem with K = Q and with the primes 2, 3, 5. Write x1 = 2u,

x2 = 3v, x3 = 5w, x = (x1, x2, x3). We first show that the set of solutions x lies in

the union of finitely many proper linear subspaces of Q3. Consider for the moment

those solutions for which ‖x‖ = |x3|. Notice that

|x1x2x3|2 · |x1x2x3|3 · |x1x2x3|5 = 2−u3−v5−w = |x1x2x3|−1.

In combination with (8.8), this gives

|(x1 + x2 − x3)x1x2| · |x1x2x3|2 · |x1x2x3|3 · |x1x2x3|5 6 |x3|−1‖x‖1−ε 6 ‖x‖−ε.

By Theorem 8.7 with K = Q, the solutions of the latter inequality lie in the union of

finitely many proper linear subspaces of Q3. So the solutions of (8.8) with ‖x‖ = |x3|
lie in finitely many proper linear subspaces of Q3. In a similar way one proves that
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the solutions with ‖x‖ = |x1| or with ‖x‖ = |x2| lie in finitely many proper linear

subspaces of Q3.

It is left as an exercise to prove that if T is a two-dimensional linear subspace of

Q3 then T contains only finitely many solutions of (8.8).

Similarly as for the basic Subspace Theorem discussed in Chapter 7, there is a

version with linear forms in general position. We keep again notation (8.4).

Theorem 8.8. Let ε > 0, C > 0, and for p ∈ {∞, p1, . . . , ps} let L1,p, . . . , Lrp,p
(rp > n) be linear forms in X1, . . . , Xn in general position with coefficients in K.

Consider the inequality

|L1,∞(x) · · ·Lr∞,∞(x)|∞ ·
s∏
j=1

|L1,pj(x) · · ·Lrj ,pj(x)|pj 6 C · ‖x‖r∞−n−ε(8.9)

in x ∈ Zn with gcd(x1, . . . , xn) = 1.

Then there are a finite number of proper linear subspaces T1, . . . , Tt of Qn such that

all solutions of (8.9) lie in T1 ∪ · · · ∪ Tt.

Lemma 8.9. Let L be a field and | · |∗ an absolute value on L. Let M1, . . . ,Mn be

linearly independent linear forms in X1, . . . , Xn with coefficients in L. Then there

is a constant C ′ > 0 such that for x = (x1, . . . , xn) ∈ Ln we have

max
16k6n

|xk|∗ 6 C ′ max
16j6n

|Mj(x)|∗.

Proof. The same as that of Lemma 7.4 (verify this).

Proof of Theorem 8.8. For every solution x ∈ Zn of (8.9) and p ∈ {∞, p1, . . . , ps},
we choose a permutation σp of 1, . . . , rp such that |Lσp(1),p(x)|p 6 · · · 6 |Lσp(rp),p(x)|p.
It clearly suffices to show that the solutions x corresponding to given permutations

σp lie in finitely many proper linear subspaces of Qn.

Consider for instance the solutions x ∈ Zn of (8.9) such that

|L1,p(x)|p 6 · · · 6 |Lrp,p(x)|p for p ∈ {∞, p1, . . . , ps}.

Since L1,p, . . . , Ln−1,p, Li,p are linearly independent, by Lemma 8.9 there is a constant

Ci,p depending only on the coefficients of the linear forms Lj,p (j = 1, . . . , n − 1, i)

such that

max
k
|xk|p 6 Ci,p|Li,p(x)|p.
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If p =∞, then maxk |xk|p = ‖x‖. If p is one of p1, . . . , ps, then since gcd(x1, . . . , xn) =

1 at least one of x1, . . . , xn is not divisible by p, which implies maxk |xk|p = 1. So

we have

‖x‖ 6 Ci,∞|Li,∞(x)|∞ for i = n+ 1, . . . , r∞,

1 6 Ci,pj |Li,pj(x)|pj for j = 1, . . . , s, i = n+ 1, . . . , rpj .

By combining these inequalities with (8.9), we obtain

|L1,∞(x) · · ·Ln,∞(x)|∞ ·
s∏
j=1

|L1,pj(x) · · ·Ln,pj(x)|pj 6 C ′′‖x‖−ε

for some constant C ′′ > 0. Now apply Theorem 8.7 to the latter.

Let F (X, Y ) ∈ Z[X, Y ] be a square-free binary form of degree n > 3 and

p1, . . . , ps distinct prime numbers. We consider the so-called Thue-Mahler equation

(8.10) |F (x, y)| = pz11 · · · pzss in x, y, z1, . . . , zs ∈ Z with gcd(x, y) = 1.

Notice that if we drop the condition gcd(x, y) = 1 it is possible to construct infinitely

many solutions from a given solution. We prove the following.

Theorem 8.10. (Mahler, 1933). Equation (8.10) has only finitely many solu-

tions.

We use the following important fact.

Lemma 8.11. Let u ∈ Q. Then u = ±pw1
1 · · · pws

s for certain integers w1, . . . , ws if

and only if |u| · |u|p1 · · · |u|ps = 1.

Proof. Trivial.

Proof of Theorem 8.10. We can factor F as a0(X−α1Y ) · · · (X−αnY ) with α1, . . . , αn
distinct if F (1, 0) 6= 0, and as a0Y (X − α1Y ) · · · (X − αn−1Y ) with α1, . . . , αn−1

distinct if F (1, 0) = 0. So in both cases we have F (X, Y ) =
∏n

i=1(βiX − γiY )

where the linear forms βiX − γiY (i = 1, . . . , n) are in general position. Let

K = Q(β1, γ1, . . . , βn, γn) and keep notation (8.4). Take ε with 0 < ε < n − 2.

Then by Lemma 8.11 we have for any solution (x, y, z1, . . . , zs) of (8.10),

|F (x, y)| ·
s∏
j=1

|F (x, y)|pj = 1 6 max(|x|, |y|)n−2−ε,

165



hence

|(β1x−γ1y) · · · (βnx−γny)|∞ ·
s∏
j=1

|(β1x−γ1y) · · · (βnx−γny)|pj 6 max(|x|, |y|)n−2−ε.

By Theorem 8.8, the set of solutions (x, y) ∈ Z2 of this inequality lies in the union of

finitely many one-dimensional linear subspaces of Q2. Each such subspace contains

only two solutions with gcd(x, y) = 1. This proves that (8.10) has only finitely many

solutions.

Remark. The above proof of the finiteness of the number of solutions of the Thue-

Mahler equation is based on the p-adic Subspace Theorem and is therefore ineffec-

tive. There is however an alternative, effective proof of Theorem 8.10. There are

effective lower bounds for the p-adic absolute value of linear forms in p-adic loga-

rithms of algebraic numbers, similar to those mentioned in Chapter 5. Then one can

prove Theorem 8.10, with an effective upper bound for max(|x|, |y|), by combining

estimates for linear forms in ‘ordinary logarithms’ with estimates for linear forms in

pj-adic logarithms for j = 1, . . . , s.

Recall that in Chapter 5, we considered the unit equation ax+ by = 1 where the

unknowns x, y are taken from the unit group O∗K of the ring of integers OK of an

algebraic number field K. It was proved that this equation has only finitely many

solutions. By Dirichlet’s Unit Theorem, the group O∗K is finitely generated, and we

have

O∗K
∼= W × Zr

where W is the group of roots of unity in K (which is finite), and where r is the

unit rank. Recall that r = r1 + r2−1 where r1 is the number of embeddings K → R
and r2 the number of complex conjugate pairs of embeddings σ, σ : K → C, where

σ is the composition of σ and complex conjugation.

We consider a much more general situation where x, y are taken from an arbitrary

finitely generated multiplicative group in an arbitrary field of characteristic 0. For

such a finitely generated group Γ we have Γ ∼= Γtors×Zr where Γtors is the (necessarily

finite) torsion subgroup of Γ, consisting of roots of unity. Thus,

(8.11) Γ = {ζgu11 · · · gurr : ζ ∈ Γtors, u1, . . . , ur ∈ Z}

for certain generators g1, . . . , gr.
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Theorem 8.12. (Lang, 1960). Let K be any field of characteristic 0, let a, b be

non-zero elements from K, and let Γ be a finitely generated subgroup of the multi-

plicative group K∗ of K. Then the equation

(8.12) ax+ by = 1 in x, y ∈ Γ

has only finitely many solutions.

Lang’s proof is ineffective.

From Theorem 5.17, that we proved in Chapter 5, one can derive an effective

proof of the above theorem in the special case that Γ is a subgroup of Q∗ and that

a, b are non-zero elements of Q∗. We now give another, but ineffective proof of this

result. Let g1, . . . , gr be a set of generators of Γ as in (8.11). Let p1, . . . , ps be

primes such that the numerators and denominators of a, b, g1, . . . , gr are composed

of primes from p1, . . . , ps. Write ax = u/w, by = v/w, where u, v, w are integers,

necessarily composed of primes from p1, . . . , ps, with gcd(u, v, w) = 1 and u+v = w.

Now clearly, we have

|uv(u+ v)| = pz11 · · · pzss , gcd(u, v) = 1

for certain non-negative integers z1, . . . , zs. This is a Thue-Mahler equation. There-

fore there are only finitely many possibilities for the pair (u, v), hence for (u, v, w),

hence for (x, y).

Remark. In case that the group Γ is contained in an algebraic number field K,

it is possible to give an effective proof of Theorem 8.12, see Theorem 5.18. If the

degree of K and the number of generators of Γ are not too large, there is a practical

algorithm to determine all solutions.

Example. Let Γ be the multiplicative group generated by 2, 3, 5, 7, 11, 13 and con-

sider the equation

(8.13) x+ y = 1 in x, y ∈ Γ with x 6 y.

We give some solutions:(1

2
,
1

2

)
,
(3

7
,
4

7

)
,
( 2

13
,
11

13

)
,
( 3993

20800
,
16807

20800

)
=
( 3 · 113

26 · 52 · 13
,

75

26 · 52 · 13

)
.

In his PhD-thesis of 1988, de Weger determined all 545 solutions of (8.13).
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8.3 Linear equations in several unknowns

We consider higher dimensional generalizations of equation (8.12). Let K be a field

of characteristic 0 and Γ a finitely generated subgroup of K∗. Further, let n > 2

and α1, . . . , αn ∈ K∗. We consider the equation

(8.14) α1x1 + · · ·+ αnxn = 1 in x1, . . . , xn ∈ Γ.

If n > 3 this equation may have infinitely many solutions. For instance, consider

the equation

2u − 2v + 3w = 1 in u, v, w ∈ Z.

This may be viewed as a special case of (8.14), with Γ the group generated by 2

and 3. This equation has infinitely many solutions with u = v and w = 0. More

generally, let 2 6 m < n and suppose (8.14) has a solution (x1, . . . , xn) with

α1x1 + · · ·+ αmxm = 1, αm+1xm+1 + · · ·+ αnxn = 0 .

Then for every u ∈ Γ, the tuple (x1, . . . , xm, uxm+1, . . . , uxn) is also a solution of

(8.14). Assuming the group Γ is infinite, we obtain in this way infinitely many

solutions of (8.14). More generally, we can construct infinitely many solutions from

a given solution (x1, . . . , xn) with a vanishing subsum
∑

i∈I αixi = 0 for some non-

empty subset I of {1, . . . , n}.

To make such easy constructions of infinite sets of solutions impossible, we con-

sider only solutions without vanishing subsums.

Definition. A solution (x1, . . . , xn) of (8.14) is called non-degenerate if∑
i∈I

αixi 6= 0 for each non-empty subset I of {1, . . . , n}.

Theorem 8.13. (van der Poorten, Schlickewei, Laurent, E., 1980’s) Equa-

tion (8.14) has only finitely many non-degenerate solutions.

Roughly speaking, the proof consists of two steps. In the first step one makes

a reduction from the general case that K is an arbitrary field of characteristic 0

to the special case that K is an algebraic number field by using techniques from

algebraic geometry. To treat the case that Γ is contained in an algebraic number

field one has to apply the ‘p-adic Subspace Theorem over number fields,’ which is
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a generalization of the p-adic Subspace Theorem which involves absolute values on

an algebraic number field and in which the unknowns are algebraic integers of that

number field.

The presently known proofs of Theorem 8.13 are all ineffective. For equations

(8.14) in two unknowns there is an effectice proof which provides an algorithm to

determine all solutions in principle. For equations (8.14) in more than two unknowns

no such effective proof is known.

It should be mentioned that there are quantitative versions of Theorem 8.13,

giving an explicit upper bound for the number of non-degenerate solutions. Suppose

Γ has rank r, i.e., there are g1, . . . , gr such that

Γ = {ζgu11 · · · gurr : ζ ∈ Γtors, u1, . . . , ur ∈ Z}.

In 2002, E., Schlickewei, and Schmidt proved that (8.14) has at most c(n, r) :=

exp
(
(6n)4n(r+1)

)
non-degenerate solutions. One of the tools in the proof is a much

refined, quantitative version of the p-adic Subspace Theorem over number fields,

giving an explicit estimate for the number of subspaces containing the solutions. In

2009, Amoroso and Viada improved this bound to c′(n, r) := exp
(
5n5 log(8n)(r+1)

)
.

The importance of the bounds of ESS and AV is that they depend only on the number

of unknowns n and the rank r. So whatever group Γ of rank r and coefficients

α1, . . . , αn we take, we always get an upper bound c′(n, r) for the number of non-

degenerate solutions. But it should be mentioned that this upper bound is probably

much too large, and one may hope that with better techniques one can improve it

further.

Since in these notes we have only the p-adic Subspace Theorem over Q at our

disposal, we assume henceforth

Γ ⊂ Q∗, α1, . . . , αn ∈ Q∗

and prove Theorem 8.13 in this special case. It will be convenient to consider instead

of (8.14) the homogeneous equation

(8.15) α0x0 + · · ·+ αnxn = 0 in x0, . . . , xn ∈ Γ,

where α0, . . . , αn are non-zero rational numbers. Solutions (x0, . . . , xn) of (8.15) will

be called non-degenerate if
∑

i∈I αixi 6= 0 for each proper, non-empty subset I of

{0, . . . , n}. We prove the following.
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Theorem 8.14. There is a finite set U such that xi/xj ∈ U for each non-degenerate

solution (x0, . . . , xn) of (8.15) and each pair of indices i, j ∈ {0, . . . , n}.

By taking α0 = −1 and considering solutions of (8.15) with x0 = 1 we obtain

Theorem 8.13 in the case Γ ⊂ Q∗.

Let H be the linear subspace of Qn+1 given by α0x0 + · · ·+ αnxn = 0.

Lemma 8.15. There are finitely many proper linear subspaces T1, . . . , Tt of H such

that the set of solutions (x0, . . . , xn) of (8.14) (non-degenerate or not) lies in T1 ∪
· · · ∪ Tt.

Proof. We use the ‘general position version’ of the p-adic Subspace Theorem. We

start with some preparations.

There are g1, . . . , gr of Q∗ such that every element of Γ can be expressed as

±gu11 · · · gurr with u1, . . . , ur ∈ Z. Let p1, . . . , ps be the prime numbers occurring in

the numerators and denominators of α1, . . . , αn, g1, . . . , gr. Let ϕ be the bijective

linear map from H to Qn given by (x0, . . . , xn) 7→ (α1x1, . . . , αnxn).

Take a solution x = (x0, . . . , xn) of (8.15). Let w be a positive rational number

such that

yi := wαixi ∈ Z for i = 1, . . . , n, gcd(y1, . . . , yn) = 1

and put y = (y1, . . . , yn). Thus, y = ϕ(wx). Further, y1 + · · · + yn = −wα0x0.

Clearly, y1, . . . , yn and y1 + · · · + yn are composed of primes from p1, . . . , ps. This

implies that for any ε with 0 < ε < 1,

(8.16) |y1 · · · yn(y1 + · · ·+ yn)| ·
s∏
j=1

|y1 · · · yn(y1 + · · ·+ yn)|pj = 1 6 ‖y‖(n+1)−n−ε.

The linear forms y1, . . . , yn, y1 + · · · + yn are in general position. So by the ‘gen-

eral position-version’ of the p-adic Subspace Theorem, the set of solutions y =

(y1, . . . , yn) ∈ Zn of (8.16) with gcd(y1, . . . , yn) = 1 lies in a union S1 ∪ · · · ∪ St of

proper linear subspaces of Qn. Hence the corresponding solutions x = (x0, . . . , xn)

of (8.15) lie in T1 ∪ · · · ∪ Tt, where Ti := ϕ−1(Si) is a proper linear subspace of H,

for i = 1, . . . , t. This proves the lemma.

Lemma 8.16. There is a finite set U ′ ⊂ Q∗ such that for every solution (x1, . . . , xn)

of (8.15) (non-degenerate or not) there are distinct i, j ∈ {0, . . . , n} with xi/xj ∈ U ′.
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Proof. We proceed by induction on n. If n = 1 we have an equation α0x0 +α1x1 = 0

and the lemma is obvious.

Now let n > 2 and assume that the lemma is true for equations of type (8.15) in

fewer than n+1 unknowns. By the previous lemma, there are proper linear subspaces

T1, . . . , Tt of H such that the solutions of (8.15) lie in T1 ∪ · · · ∪ Tt. Consider the

solutions in T ∈ {T1, . . . , Tt}. The points x = (x0, . . . , xn) ∈ T satisfy, apart from

the defining equation α0x0 + · · ·+αnxn = 0 for H, a second equation that is linearly

independent of it, say γ0x0 + · · · + γnxn = 0. By subtracting γn/αn times the first

equation from the second, we get an equation

(8.17) β0x0 + · · ·+ βn−1xn−1 = 0

valid for all x ∈ T , where at least one of β0, . . . , βn−1 is non-zero.

By the induction hypothesis, applied to (8.17) with the terms with βi = 0 re-

moved, there is a finite set UT such that for every solution (x0, . . . , xn) of (8.15)

lying in T there are distinct indices i, j ∈ {0, . . . , n− 1} such that xi/xj ∈ UT .

Now the lemma holds with U ′ = UT1 ∪ · · · ∪ UTt .

Proof of Theorem 8.14. We proceed again by induction on n. For n = 1 Theorem

8.14 is trivial. Let n > 2 and suppose Theorem 8.14 is true for equations in fewer

than n+ 1 unknowns.

Suppose the set U ′ from the previous lemma is {β1, . . . , βm}. Then the non-

degenerate solutions (x1, . . . , xn) of (8.15) can be divided into finitely many sets

Spqr (p, q = 0, . . . , n, p 6= q, r = 1, . . . ,m), where Spqr is the set of solutions with

xp/xq = βr.

Consider for instance the non-degenerate solutions in Sn,n−1,1, i.e., with xn =

β1xn−1. These solutions satisfy

α0x0 + · · ·+ (αn−1 + β1αn)xn−1 = 0.

Each non-empty subsum of the left-hand side is non-zero, since (x0, . . . , xn) is non-

degenerate. By the induction hypothesis, there is a finite set Un,n−1,1 such that

xi/xj ∈ Un,n−1,1 for all solutions (x0, . . . , xn) of (8.15) in Sn,n−1,1 and all i, j ∈
{0, . . . , n− 1}. Using xn/xn−1 = β1 we can enlarge Un,n−1,1 such that it contains all

quotients xi/xj with i = n or j = n as well. We get a similar set Upqr for each other

triple of indices p, q, r. Now Theorem 8.14 is satisfied with U equal to the union of

the sets Upqr with p, q = 0, . . . , n, p 6= q and r = 1, . . . ,m.

171



8.4 Linear recurrence sequences

A linear recurrence sequence (in C) is a sequence U = {uh}∞h=0 with terms in C
given by a linear recurrence

(8.18) uh = c1uh−1 + · · ·+ ckuh−k for h > k,

where c1, . . . , ck are constants in C and ck 6= 0, and by initial values u0, . . . , uk−1.

Given a linear recurrence sequence U , there are various linear recurrences which

it may satisfy but there is a unique one with minimal length k (exercise). This k is

called the order of the linear recurrence sequence U , and the polynomial

fU(X) := Xk − c1X
k−1 − · · · − ck

the companion polynomial of U .

Theorem 8.17. Let U = {uh}∞h=0 be a linear recurrence sequence in C with com-

panion polynomial fU(X) = Xk − c1X
k−1 − · · · − ck. Write

fU(X) = (X − θ1)e1 · · · (X − θm)em ,

where θ1, . . . , θm are distinct complex numbers and e1, . . . , em positive integers. Then

there are polynomials g1, . . . , gm ∈ C[X] of degrees at most e1 − 1, . . . , em − 1, re-

spectively, such that

(8.19) uh = g1(h)θh1 + · · ·+ gm(h)θhm for h > 0.

Conversely, any sequence satisfying (8.19) is a linear recurrence sequence.

Proof. Consider the power series

y(z) =
∞∑
h=0

uh
h!
zh.

One proves easily by induction on h that there is a constant C > 0 such that

|uh| 6 Ch for all h > 0. Hence y(z) converges for all z ∈ C, and thus it defines

a function that is everywhere analytic on C. Using that the sequence U satisfies

recurrence relation (8.18), it follows easily that y satisfies the linear differential

equation

y(k) = c1y
(k−1) + · · ·+ ck−1y

′ + cky .
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By the theory of linear differential equations, the set of solutions of the latter equa-

tion is a complex vector space with basis {zjeθiz : i = 1, . . . ,m, j = 0, . . . , ei − 1}.
Hence there are cij ∈ C such that

y(z) =
m∑
i=1

ei−1∑
j=0

cijz
jeθiz =

m∑
i=1

ei−1∑
j=0

cij

∞∑
l=0

θli
zj+l

l!

=
∞∑
h=0

(
m∑
i=1

{
ei−1∑
j=0

cijh(h− 1) · · · (h− j + 1)θ−ji

}
θhi

)
zh

h!
.

This implies that {uh}∞h=0 satisfies (8.19). Conversely, if {uh}∞h=0 satisfies (8.19) then

by reversing the above argument one shows that y(z) =
∑∞

h=0(uh/h!)zh satisfies a

linear differential equation with constant coefficients, and subsequently that {uh}∞h=0

is a linear recurrence sequence.

Example. Let U = {uh}∞h=0 be given by

uh = 10uh−1 − 31uh−2 + 30uh−3 (h > 3), u0 = 1, u1 = 0, u2 = −12.

The companion polynomial of U is given by

fU(X) = X3 − 10X2 + 31X − 30 = (X − 2)(X − 3)(X − 5).

By Theorem 8.17 there are constants c1, c2, c3 such that uh = c12h + c23h + c35h.

Substituting h = 0, 1, 2 one obtains c1 = 1, c2 = 0, c2 = −12 and

uh = 2h + 3h − 5h.

The zero set of a linear recurrence sequence U = {uh}∞h=0 is defined by

ZU := {h ∈ Z>0 : uh = 0}

and the zero multiplicity of U is NU := #ZU . With the notation from Theorem

8.17, the set ZU is the set of solutions of

(8.20) g1(h)θh1 + · · ·+ gm(h)θhm = 0 in h ∈ Z>0.

This is called an exponential-polynomial equation.

A linear recurrence sequence U = {uh}∞h=0 is called non-degenerate if the zeros

of its companion polynomial θ1, . . . , θm are such that none of the quotients θi/θj
(1 6 i < j 6 m) is a root of unity.

173



Theorem 8.18. (Skolem-Mahler-Lech, 1953) Let U be a non-degenerate linear

recurrence sequence. Then its zero set is finite.

Stated equivalently, if θ1, . . . , θm are non-zero complex numbers such that none of

the quotients θi/θj (1 6 i, j 6 m, i 6= j) is a root of unity and if g1(X), . . . , gm(X)

are polynomials in C[X], not all equal to 0, then Eq. (8.20) has only finitely many

solutions.

There are two very different proofs.

In the first proof, which was the one given by Skolem, Mahler and Lech, one

‘maps’ the linear recurrence sequence to a sequence with terms in the field Qp of

p-adic numbers for some suitable prime p, and then uses techniques from p-adic

analysis.

The field Qp is some sort of analogue of the field R of real numbers. Recall

that R is the completion of Q, that is the smallest extension of Q in which every

Cauchy sequence has a limit. The elements of the field R are obtained by taking

the collection of Cauchy sequences in Q and identifying two such sequences if their

difference converges to 0. Given a prime number p, one obtains in a similar manner

the field of p-adic numbers Qp, by mimicking the arguments in the construction of

R, but replacing everywhere the standard absolute value by | · |p. Several aspects

of real analysis such as continuity, differentiability, convergent series, etc., can be

carried over to Qp and this leads to p-adic analysis. For more information on this we

refer to N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, Springer

Graduate Texts in Mathematics.

In the second proof, one ‘maps’ the linear recurrence sequence to a sequence with

terms in an algebraic number field, and then applies the p-adic Subspace Theorem

over number fields.

Here we prove Theorem 8.18 in the special case that the companion polynomial

fU of U = {uh}∞h=0 does not have multiple zeros, i.e., in Theorem 8.17 we have e1 =

· · · = em = 1. Then the polynomials gi(h) in (8.19) have degree 0, so uh =
∑m

i=1 giθ
h
i

for h > 0 where the gi are constants. That is, we have to show that the equation

g1θ
h
1 + · · ·+ gmθ

h
m = 0

has finitely many solutions in h ∈ Z>0.

We proceed by induction on m. For m = 1 there are no solutions and we are
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done. Let m > 2 and suppose the theorem is true if we have fewer than m terms.

Let ai := −gi/gm, βi := θi/θm. Then the equation reduces to

(8.21) a1β
h
1 + · · ·+ am−1β

h
m−1 = 1.

Further, none of the numbers βi, nor any of the quotients βi/βj (i 6= j) is a root of

unity.

We apply Theorem 8.13 with the group Γ generated by β1, . . . , βm−1. It follows

that there are only finitely many integers h which satisfy (8.21) and for which none

of the subsums of the left-hand side of (8.21) vanishes, i.e.,∑
i∈I

aiβ
h
i 6= 0 for each non-empty subset I of {1, . . . ,m}.

But by the induction hypothesis, each equation
∑

i∈I aiβ
h
i = 0 has only finitely many

solutions h. So altogether, (8.21) has only finitely many solutions h.

Remark. Using a quantitative version of the p-adic Subspace over number fields,

giving an explicit upper bound for the number of subspaces containg the solutions,

Schmidt proved the following:

Theorem 8.19. (Schmidt, 2000). Let U be a non-degenerate linear recurrence

sequence with terms in C of order k. Then for its zero multipicity we have

NU 6 exp exp exp 20k.

This has been improved by Amoroso and Viada (2011) to NU 6 exp exp 70k.

Bavencoffe and Bézivin (Une Famille Remarquable de Suites Récurrentes Linéaires,

Monatshefte für Mathematik 120 (1995), 189–203) found examples of non-degenerate

linear recurrence sequences U of arbitrarily large order k, having NU > 1
2
k2− 1

2
k+1;

no linear recurrence sequences of order k with larger zero multiplicity are known.

In fact, let

Pk(X) :=
Xk+1 + (−2)k−1X + (−2)k

X + 2
;

verify that Pk(X) ∈ Z[X]. Let U = {un}∞n=0 be the linear recurrence sequence

with companion polynomial Pk and initial values u0 = · · · = uk−2 = 0, uk−1 = 1.

Bavencoffe and Bézivin proved that U is non-degenerate, and moreover, that un = 0

for

n = l(k + 1) + q with l > 0, q > 0, l + q 6 k − 2,

n = j(2k + 1) with 1 6 j 6 k − 1.
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8.5 Expansions of algebraic numbers

Literature:

Y. Bugeaud, Distribution modulo one and Diophantine approximation, Cambridge tracts in math-

ematics 193, Cambridge University Press, 2012.

Let b be an integer > 2. Every real number α with 0 < α < 1 has a b-ary expansion

(8.22) α =
∞∑
k=1

ck · b−k = 0.c1c2 · · · with ck ∈ {0, . . . , b− 1} for all k > 1.

Recall that in general this expansion is unique, except for numbers of the shape

0.c1 · · · cm00 . . . = 0.c1 · · · cm−1(cm−1)(b−1)(b−1) . . .. We exclude those expansions

where from some point onwards all digits are b− 1. Then every real number in the

open interval (0, 1) has a unique b-ary expansion. We call [α]b := c1c2 · · · the word

associated with α.

Given α with b-ary expansion (8.22) and a positive integer n, consider all blocks

of n consecutive digits in the b-ary expansion of α,

(8.23) c1 · · · cn, c2 · · · cn+1, c3 · · · cn+2 . . . , ck · · · ck+n−1, . . .

We call α normal with respect to base b if for every n > 1, all blocks of n digits

from {0, . . . , b− 1} occur with the same frequency among the blocks in (8.23), more

precisely, if for every n > 1 and every block a1 · · · an with a1, . . . , an ∈ {0, . . . , b−1},

lim
N→∞

#{k 6 N : ck · · · ck+n−1 = a1 · · · an}
N

= b−n.

Example. Let b = 10. The Champernowne number 0.123456789101112 · · · is

normal with respect to base 10.

Exercise 8.1. Verify this.

The foundations of the theory of normal numbers were laid by Émile Borel,

who proved the following theorem. Recall that a property is said to hold for almost

every real number, if the set of real numbers for which it does not hold has Lebesgue

measure 0.

Theorem 8.20. (É. Borel, 1909). Almost every real number α with 0 < α < 1 is

normal with respect to every base b > 2.
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A proof can be found in Chapter 4 of Bugeaud’s book mentioned above. We should

mention that in spite of Theorem 8.20, of no number ’occurring in nature’ (e.g., e,

π, algebraic numbers) it is known whether it is normal with respect to any base b.

Borel made the following bold conjecture, a proof of which seems to be out of reach.

Conjecture 8.21. (É. Borel, 1909). Let α be a real, irrational algebraic number

with 0 < α < 1. Then α is normal with respect to every base b > 2.

Given a real number α with 0 < α < 1 and with b-ary expansion (8.22), we

denote by p(n, α, b) the block complexity of length n of α with respect to base b, that

is the number of distinct blocks that occur among ckck+1 · · · ck+n−1 (k = 1, 2, . . .).

Notice that if we fix α, b, then p(n, α, b) is non-decreasing in n. An immediate

consequence of Conjecture 8.21 is the following:

Conjecture 8.22. Let α be a real, irrational algebraic number with 0 < α < 1 and

b an integer > 2. Then p(n, α, b) = bn for all n > 1.

Conjecture 8.22 asserts that for every n, every block of length n occurs at least once

among the blocks ck · · · ck+n−1 (k = 1, 2, . . .). So it is much weaker than Conjecture

8.21 which asserts that all blocks of length n occur with the same frequency. How-

ever, also for Conjecture 8.22 there is no clue how to prove it, and what people are

interested in at the moment is to get as good as possible lower bounds for p(n, α, b).

We start with a simple result.

Lemma 8.23. Let α be a real, irrational number with 0 < α < 1 and b an integer

> 2. Then p(n, α, b) > n for all n > 1.

Proof. Let the b-ary expansion of α be given by (8.22). Suppose there is an integer

n with p(n, α, b) 6 n, and take such n minimal. If n = 1 then clearly, α = 0.ccc · · ·
with a single digit c, and thus, α is rational. Suppose that n > 2. Then by the

minimality of n we have p(n − 1, α, b) > n, and so p(n, α, b) = p(n − 1, α, b) = n

since p(n, α, b) > p(n − 1, α, b). It follows that any block of n consecutive digits

in the b-ary expansion of α is determined by the first n − 1 digits in this block.

That is, if ck · · · ck+n−2 is any block of length n− 1 occurring in the b-ary expansion

of α, then ck+n−1 is uniquely determined by ck · · · ck+n−2. But likewise, ck+n is

uniquely determined by ck+1 · · · ck+n−1, etc. So in fact, a block ck · · · ck+n−2 uniquely

determines all the subsequent digits ck+n−1, ck+n, ck+n+1, . . .. Now clearly, there are
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k, l with k < l such that ck · · · ck+n−1 = cl · · · cl+n−1. So in fact, cm+l−k = cm for all

m > k. It follows that the b-ary expansion of α is ultimately periodic, hence that α

is rational.

Remark. There exist irrational so-called Sturmian numbers α whose binary expan-

sion satisfies p(n, α, 2) = n+ 1 for all n > 1. For more information on this we refer

to Bugeaud’s book mentioned at the beginning of this section.

Adamczewski and Bugeaud obtained the following remarkable result, implying

that for irrational real algebraic numbers, p(n, α, b) grows faster than any linear

function in n as n tends to ∞. Their proof uses in an essential way the p-adic

Subspace Theorem.

Theorem 8.24. (Adamczewski, Bugeaud, 2005). Let α be a real, irrational

algebraic number with 0 < α < 1 and b an integer > 2. Then

lim
n→∞

p(n, α, b)

n
=∞.

Theorem 8.24 is equivalent to the assertion that for every positive integer r there

are only finitely many integers n with p(n, α, b) 6 rn. The idea is that from such

n we construct a good rational approximant to α of a very special form, and then

show, using the p-adic Subspace Theorem, that there are only finitely many such

approximants. We cannot apply Roth’s Theorem on the approximation of algebraic

numbers by rationals, since the approximants we construct are good, but not good

enough to apply Roth’s Theorem. The fact that these approximants are of this

special form will help us, and it was the insight of Adamczewski and Bugeaud that

the p-adic Subspace Theorem can be used.

Before entering the proof we start with some initial comments. Fix r, and let n

be an integer with p(n, α, b) 6 rn. Let as before

(8.22) α =
∞∑
k=1

ck · b−k = 0.c1c2 · · · with ck ∈ {0, . . . , b− 1} for all k > 1.

We consider the block of the first (r + 1)n digits of α,

c1 · · · c(r+1)n.
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By the box principle, at least two among the blocks of length n,

c1 · · · cn, c2 · · · cn+1, . . . , crn+1 · · · c(r+1)n

must be equal, say

ck · · · ck+n−1 = cl · · · cl+n−1 with 1 6 k < l 6 rn+ 1.

For the proof to proceed, we need that these blocks do not overlap, i.e., l > k + n,

but we cannot know a priori if this is true. To handle this, we need a lemma on the

combinatorics of words. We first introduce some notation.

Denote by Σ∗ the collection of finite words in the alphabet Σ = {0, . . . , b − 1},
i.e., the collection consisting of the empty word Λ and of all finite strings s1 · · · sq
with q > 1 and s1, . . . , sq ∈ Σ. The length q of a word A = s1 · · · sq is denoted

by |A|. We denote by AB the concatenation of A,B ∈ Σ∗, i.e., if A = s1 · · · su,
B = t1 · · · tv, then AB = s1 · · · sut1 · · · tv. More generally, A1 · · ·Am denotes the

concatenation of A1, . . . , Am ∈ Σ∗, and we denote by Am the concatenation A · · ·A
repeated m times. Given A,B ∈ Σ∗ we call B a prefix of A if there is C ∈ Σ∗ such

that A = BC; a suffix of A if there is C ∈ Σ∗ with A = CB; and a subword of A if

there are C,D ∈ Σ∗ such that A = CBD.

Lemma 8.25. Suppose a word A ∈ Σ∗ has two equal, possibly overlapping subwords

of length n > 1. Then A has two equal, non-overlapping subwords of length at least

n/2.

Remark. This result is optimal. For let B ∈ Σ∗ have length m, let n = 2m and

take A = BBB. Both the first and second block B, and the second and third

block B provide equal, overlapping subwords BB of A of length n, while any two

blocks B provide two non-overlapping equal subwords of A of length n/2. You may

verify yourself that A does not have two non-overlapping equal subwords of length

larger than n/2 if the cyclic shifts of B are all distinct, i.e., if B = s1 · · · sm with

s1, . . . , sm ∈ Σ, then s1 · · · sm, s2 · · · sms1, . . . , sms1 · · · sm−1 are distinct.

Proof of Lemma 8.25. Capital letters always indicate elements of Σ∗. If A has two

non-overlapping equal subwords of length n we are already done. Suppose that A

has two overlapping equal subwords of length n. That is, A = CBD = EBF where

|B| = n, |C| < |E| < |C| + |B|, and |F | < |D| < |B| + |F |. In fact, we may write
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E = CG, D = HF , and obtain A = CBHF = CGBF . So BH = GB. Since

|E| < |C|+ |B| we have |G| < |B|, hence G is a prefix of B. That is, B = GI = IH.

Let m be the largest non-negative integer such that Gm is a prefix of I; so m = 0 if

G is not a prefix of I, which is the case if |I| < |G|. Then I = GmJ , where G is not

a prefix of J . This gives B = Gm+1J = GmJH and so GJ = JH. If |G| 6 |J | then

G would be a prefix of J which is impossible. So |J | < |G| and J is a prefix of G,

that is, G = JK. This leads to

I = (JK)mJ, B = GI = (JK)m+1J, H = KJ, BH = GB = (JK)m+2J.

Thus, (JK)m+2J is a subword of A.

We consider two cases. First assume that m is even, and let L := (JK)(m+2)/2.

Then (JK)m+2J = LLJ , hence A has two non-overlapping subwords L, and we have

|L|
|B|

=
1
2
(m+ 2)|J |+ 1

2
(m+ 2)|K|

(m+ 2)|J |+ (m+ 1)|K|
>

1

2
.

Next assume that m is odd, and let L := (JK)(m+1)/2J . Then (JK)m+2J = LKL,

hence again A has two non-overlapping subwords L, and

|L|
|B|

=
1
2
(m+ 3)|J |+ 1

2
(m+ 1)|K|

(m+ 2)|J |+ (m+ 1)|K|
>

1

2
.

So in both cases, |L| > n/2. This proves our lemma.

The next lemma produces the good approximants to α mentioned before.

Lemma 8.26. Let r be a positive integer, and n a positive integer such that p(n, α, b) 6
rn. Then there are integers x, k, h such that

h > 1
2
n, k > 0, 0 6 x < bh+k

and

(8.24)

∣∣∣∣α− x

bk(bh − 1)

∣∣∣∣ 6 (bh+k)−1−1/(2r+1).

Proof. As mentioned before, the block A = c1 · · · c(r+1)n has two equal, possibly over-

lapping subwords of length n. Lemma 8.25 implies that A has two non-overlapping
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equal subwords of length at least n/2, i.e., A = CBDBE with |B| > n/2. So the

infinite word [α]b = c1c2 · · · consisting of all digits of α is equal to

[α]b = CBDBF,

for some infinite word F . We approximate α by the rational number ξ with corre-

sponding ultimately periodic word

[ξ]b = CBDBDBD · · ·

(so we replace F by DBDBD · · · ). Suppose |C| = k, |B| = l, |D| = m. Then

ξ =
k∑
i=1

ci · b−i +
( k+l+m∑
i=k+1

cib
−i) · ∞∑

j=0

b−(l+m)j(8.25)

=
y

bk
+

z

bk+l+m(1− b−l−m)
=

x

bk(bl+m − 1)

for certain non-negative integers y, z, x. Here 0 6 x < bk+l+m since 0 6 ξ 6 1.

Recall that both the expansions of α and ξ start with CBDB, that is, their

expansions are equal up to the first k + 2l + m digits. Further, the digits of the

expansions of α and ξ from the (k + 2l+m+ 1)-th place onwards differ by at most

b− 1 in absolute value. Thus, we have

|α− ξ| 6 (b− 1)(b−k−2l−m−1 + b−k−2l−m−2 + · · · ) 6 b−k−2l−m.(8.26)

Observe that k + 2l + m 6 (r + 1)m since CBDB is a prefix of A = c1 · · · c(r+1)n,

and recall that l = |B| > 1
2
n. Hence

k + 2l +m

k + l +m
= 1 +

l

(k + 2l +m)− l
> 1 +

1
2
n

(r + 1)n− 1
2
n

= 1 +
1

2r + 1
.

Now writing h := l + m, and combining (8.25) and (8.26), we arrive at (8.24). As

mentioned before, we have 0 6 x < bk+l+m = bk+h, while h > l > n/2.

The next lemma shows that for every positive integer r, inequality (8.24) has

only finitely many solutions (x, k, h). Together with Lemma 8.26, and h > n/2, this

implies that for every positive integer r there are only finitely many positive integers

n such that p(n, α, b) 6 rn. This implies Theorem 8.24.
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Lemma 8.27. Let r be any positive integer. Then inequality (8.24) has only finitely

many solutions in integers x, k, h with h > 0, k > 0, and 0 6 x < bh+k.

Proof. We apply the p-adic Subspace Theorem with p1, . . . , ps the distinct primes

dividing b.

Let (x, h, k) be a solution of (8.24) with the specified properties, and put y =

bh+k, z = bk, x = (x, y, z). With these choices for y, z we have

|yz| · |yz|p1 · · · |yz|ps = 1.

Now on multiplying (8.24) with the quantity bk(bh − 1) and then with |x|p1 · · · |x|ps
which is 6 1 since x is an integer, we obtain the inequality

|(αy − αz − x)yz| · |xyz|p1 · · · |xyz|ps 6 (bh+k)−1/(2r+1) = ‖x‖−1/(2r+1).

We apply the p-adic Subspace Theorem with K = Q(α), taking for | · |∞ the re-

striction to K of the standard absolute value on R, and choose any continuations

of the | · |pi to K; which ones we choose are irrelevant. It follows that the set

of vectors x = (x, y, z) = (x, bh+k, bk) lie in a union T1 ∪ · · · ∪ Tt of proper lin-

ear subspaces of Q3. We have to prove that each Ti contains only finitely many

triples x. Let T ∈ {T1, . . . , Tt}, and consider the triples x lying in T . Suppose that

a1x + a2y + a3z = 0 identically on T , where a1, a2, a3 are rational numbers, not

all zero. We distinguish between the cases a1 6= 0 and a1 = 0. First assume that

a1 6= 0. Then for x = (x, bh+k, bk) ∈ T we have x = b1b
h+k + b2b

k with b1 = −a2/a1,

b2 = −a3/a1. Substituting this into (8.24), and noting that x
bk(bh−1) = b1 + b1+b2

bh−1 ,

we get

A(h) :=

∣∣∣∣α− b1 −
b1 + b2

bh − 1

∣∣∣∣ 6 (bh+k)−1−1/(2r+1).

Recall that α is irrational, so A(h) > 0 for all h. There is h0 such that

A(h) > 1
2
|α− b1| > 0 for h > h0.

So

A(h) > min
(

1
2
|α− b1|, A(1), . . . , A(h0)

)
=: C > 0 for all h > 1.

Hence C 6 (bh+k)−1−1/(2r+1) for all x ∈ T . This allows only finitely many possibilities

for h, k, hence for x. So T contains only finitely many triples x = (x, bh+k, bk).
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Now assume that a1 = 0. Then for x ∈ T we have bh = −a3/a2, and on

substituting this into (8.24), we get

(8.27)
∣∣∣α− x

c · bk
∣∣∣ 6 (bh+k)−1−1/(2r+1),

where c = (−a3/a2) − 1. Similarly as (8.24), we can transform (8.27) into an

inequality to which the two-dimensional case of the p-adic Subspace Theorem is

applicable, with solution vectors (x, bk). The details are left to the reader. This

yields that the pairs (x, bk) with (x, bh+k, bk) ∈ T lie in finitely many one-dimensional

linear subspaces of Q2, and so that there are only finitely many possibilities for the

fraction x/bk. Since α is irrational, this implies that the left-hand side of (8.27) is

bounded below by a positive number independent of x and k. But then we infer

again that there are only finitely many possibilities for h and k, hence for x.

So in all cases, the subspace T contains only finitely many triples x = (x, bh+k, bk).

This completes the proof of Lemma 8.27, and thus, the proof of Theorem 8.24.

8.6 Exercises

Exercise 8.2. Prove that the Thue-Mahler equation (8.10) has only finitely many

solutions in the following two cases:

(i) F (1, 0) 6= 0 and F (X, 1) has at least three distinct zeros in C;

(ii) F (X, Y ) = Y kG(X, Y ), where k is a positive integer and G is a binary form

such that G(1, 0) 6= 0 and G(X, 1) has at least two distinct zeros in C.

Exercise 8.3. For a finite set of primes S = {p1, . . . , ps}, denote by US the set of

integers of the shape ±pu11 · · · puss : u1, . . . , us ∈ Z>0.

Let S0, . . . ,Sn be pairwise disjoint sets of prime numbers, and a0, . . . , an non-zero

integers. Prove that the equation

a0x0 + · · ·+ anxn = 0 in x0 ∈ US0 , . . . , xn ∈ USn

has only finitely many solutions.

Exercise 8.4. Let p1, . . . , ps be distinct prime numbers, A1, . . . , As non-zero inte-

gers, and C > 0, ε > 0. Prove that the inequality

|A1p
u1
1 + · · ·+ Asp

us
s | 6 C ·

(
max(pu11 , , . . . , , p

us
s )
)1−ε
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has only finitely many solutions in non-negative integers u1, . . . , us.

Hint. Proceed by induction on s, starting with s = 1. In the induction step, apply

the p-adic Subspace Theorem with x = (x1, . . . , xs) = (pu11 , . . . , p
us
s ).

Exercise 8.5. Let f(X) = a0X
n + a1X

n−1 + · · · + an ∈ Z[X] be a square-free

polynomial, i.e., without multiple zeros, and let p1, . . . , ps be distinct prime numbers.

We consider the equation

(8.28) |f(ξ)| = pz11 · · · pzss in ξ ∈ Q, z1, . . . , zs ∈ Z .

(i) Let (ξ, z1, . . . , zs) be a solution of (8.28). Prove that |ξ|p 6 1 for every prime p

with p 6∈ {p1, . . . , ps}, p - a0.

(ii) Let n > 2. Prove that (8.28) has only finitely many solutions. What if n = 1?

Hint. Write ξ = x/y with x, y ∈ Z, gcd(x, y) = 1 and reduce (8.28) to a Thue-

Mahler equation.

Exercise 8.6. let S = {p1, . . . , ps} be a set of prime numbers, α a real, irrational

algebraic number and ε > 0. Let US denote the set from Exercise 8.3.

(i) Prove that the inequality∣∣∣∣α− x

y

∣∣∣∣ 6 max(|x|, |y|)−1−ε

has only finitely many solutions in integers x, y with y ∈ US .

(ii) Prove that the inequality ∣∣∣∣α− x

y

∣∣∣∣ 6 max(|x|, |y|)−ε

has only finitely many solutions in integers x, y with x, y ∈ US .

(iii) Let c be a non-zero integer. Prove that the inequality∣∣∣∣α− x

y − c

∣∣∣∣ 6 max(|x|, |y|)−1−ε

has only finitely many solutions in integers x, y with y ∈ US , y 6= c.

(iv) Let c, d be integers. Prove that the inequality∣∣∣∣α− x− d
y − c

∣∣∣∣ 6 max(|x|, |y|)−ε

has only finitely many solutions in integers x, y with x, y ∈ US , y 6= c.
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Exercise 8.7. Let ε > 0. Prove that the inequality∣∣∣∣(3

2

)n
− u
∣∣∣∣ 6 e−εn

has only finitely many solutions in non-negative integers n, u.

Hint. Let x = 3n, y = u2n and apply in an appropriate way the p-adic Subspace

Theorem.

Exercise 8.8. Let U = {uh}∞h=0 be a linear recurrence sequence with terms in C.

(i) Prove that the following two assertions are equivalent:

(a) uh = c1uh−1 + · · ·+ ckuh−k for all h > k;

(b)
∑∞

h=0 uhX
h = g(X)/h(X), where h(X) = 1 − c1X − · · · − ckXk and g(X) is a

polynomial of degree at most k − 1.

(ii) Let IU be the set of all polynomials d0X
m+· · ·+dm ∈ C[X] (m > 0, d0, . . . , dm ∈

C) such that d0uh + d1uh−1 + · · ·+ dmuh−m = 0 for all h > m. Prove that IU is an

ideal of the ring C[X], generated by the companion polynomial of U .

(iii) Give a necessary and sufficient condition, in terms of the companion polynomial

of U , such that U is periodic (i.e., there is m > 0 such that uh+m = uh for all h > 0).

(iv) Give an example of a non-periodic linear recurrence sequence U = {uh}∞h=0 such

that ZU = {h ∈ Z>0 : uh = 0} is infinite.

Exercise 8.9. An arithmetic progression is a sequence a, a+d, a+2d, . . . where a, d

are integers with d > 0.

Let U = {uh}∞h=0 be a linear recurrence sequence with terms in C. We do not assume

that U is non-degenerate. Assuming the Skolem-Mahler-Lech Theorem, prove that

either ZU is finite, or ZU is the union of a finite set and a finite number of arithmetic

progressions.

Hint. Assume that U is degenerate and let θ1, . . . , θm be the roots of the companion

polynomial of U . Let N be a positive integer such that all roots of unity among

the quotients θi/θj have order dividing N . Consider the sequences {uhN+i}∞h=0 (i =

0, . . . , N − 1).

Exercise 8.10. A linear recurrence sequence U = {uh}∞h=0 is called strongly non-

degenerate if for the zeros θ1, . . . , θm of the companion polynomial of U , neither any

of the numbers θi (i = 1, . . . ,m), nor any of the quotients θi/θj (1 6 i, j 6 mi 6= j)

is a root of unity.
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(i) Let U be a strongly non-degenerate linear recurrence sequence with terms in C.

Prove that for every a ∈ C, the set ZU(a) := {h ∈ Z>0 : uh = a} is finite.

(ii) Let U = {uh}∞h=0 be a linear recurrence sequence with companion polynomial

f(X) = (X − θ1)(X − θ2) where none of θ1, θ2, θ1/θ2 is a root of unity. Prove that

the set

TU := {(h, l) ∈ Z2 : uh = ul, 0 < h < l}

is finite.

Hint. Use Theorem 8.13.

Remark. One can show that TU is finite for every strongly non-degenerate linear

recurrence sequence U .
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