
Journal of Physics A: Mathematical and Theoretical

PAPER

A comparative study of estimation methods in quantum tomography

To cite this article: Anirudh Acharya et al 2019 J. Phys. A: Math. Theor. 52 234001

 

View the article online for updates and enhancements.

This content was downloaded from IP address 132.229.13.63 on 26/09/2019 at 00:06

https://doi.org/10.1088/1751-8121/ab1958
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/171615850/Middle/IOPP/IOPs-Mid-JPA-pdf/IOPs-Mid-JPA-pdf.jpg/1?


1

Journal of Physics A: Mathematical and Theoretical

A comparative study of estimation methods 
in quantum tomography

Anirudh Acharya, Theodore Kypraios and Mădălin Guţă

School of Mathematical Sciences, University of Nottingham, University Park,  
NG7 2RD Nottingham, United Kingdom

E-mail: madalin.guta@nottingham.ac.uk

Received 6 February 2019, revised 29 March 2019
Accepted for publication 15 April 2019
Published 7 May 2019

Abstract
As quantum tomography is becoming a key component of the quantum 
engineering toolbox, there is a need for a deeper understanding of the 
multitude of estimation methods available. Here we investigate and compare 
several such methods: maximum likelihood, least squares, generalised least 
squares, positive least squares, thresholded least squares and projected least 
squares. The common thread of the analysis is that each estimator projects the 
measurement data onto a parameter space with respect to a specific metric, 
thus allowing us to study the relationships between different estimators.

The asymptotic behaviour of the least squares and the projected 
least squares estimators is studied in detail for the case of the covariant 
measurement and a family of states of varying ranks. This gives insight into 
the rank-dependent risk reduction for the projected estimator, and uncovers 
an interesting non-monotonic behaviour of the Bures risk. These asymptotic 
results complement recent non-asymptotic concentration bounds of Guta et al 
(2018 (arXiv:1809.11162)) which point to strong optimality properties, and 
high computational efficiency of the projected linear estimators.

To illustrate the theoretical methods we present results of an extensive 
simulation study. An app running the different estimators has been made 
available online.

Keywords: quantum tomography, statistical methods, maximum likelihood, 
least squares tomography, projected least squares, low rank states

(Some figures may appear in colour only in the online journal)

A Acharya et al

A comparative study of estimation methods in quantum tomography

Printed in the UK

234001

JPHAC5

© 2019 IOP Publishing Ltd

52

J. Phys. A: Math. Theor.

JPA

1751-8121

10.1088/1751-8121/ab1958

Paper

23

1

36

Journal of Physics A: Mathematical and Theoretical

IOP

2019

1751-8121/19/234001+36$33.00 © 2019 IOP Publishing Ltd Printed in the UK

J. Phys. A: Math. Theor. 52 (2019) 234001 (36pp) https://doi.org/10.1088/1751-8121/ab1958

https://orcid.org/0000-0002-9017-2222
mailto:madalin.guta@nottingham.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1088/1751-8121/ab1958&domain=pdf&date_stamp=2019-05-07
publisher-id
doi
https://doi.org/10.1088/1751-8121/ab1958


2

1. Introduction

The problem of estimating unknown parameters of quantum systems has been at the forefront 
of early investigations into the statistical nature of quantum information [13, 16, 42, 43, 78]. 
Traditionally, key research topics have been the design of optimal measurements and esti-
mation procedures [8, 9, 21, 31, 41, 47, 56, 76], and theoretical aspects of quantum Fisher 
information and asymptotic estimation [6, 11, 28, 30, 41, 45, 57, 61], see also the monographs 
[40, 52, 59].

More recently, quantum tomography has become a crucial validation tool current quant um 
technology applications [29, 38, 58, 66]. The experimental challenges have stimulated 
research in new directions such as compressed sensing [3, 5, 20, 27, 35, 54, 69], estimation 
of permutationally invariant states [72], adaptive and selflearning tomography [26, 34, 39, 55, 
60, 62], incomplete tomography [73], minimax bounds [4, 25], Bayesian estimation [15, 33], 
and confidence regions [7, 18, 24, 53, 70]. Since ‘full tomography’ becomes impossible for 
systems composed of even a moderate number of qubits, research has focused on the estima-
tion of states which belong to smaller dimensional models which nevertheless capture relevant 
physical properties, such as low rank states [17, 36, 37, 48, 49] and matrix product states [12, 
20, 50].

In this paper we analyse and compare several estimation methods for fixed (non-adaptive) 
measurement designs, with a focus on risks (mean errors) for different loss functions, asymp-
totic theory, relationships between estimators and low rank behaviour. The measurement sce-
narios include repeated measurements with respect to Pauli bases (as customary in multiple 
qubits experiments), random bases measurements, and the covariant measurement. The loss 
functions are given by the Frobenius, trace-norm, operator-norm, Bures and Hellinger dis-
tances. Each section deals with one class of estimators and the results of a comparative simu-
lations study are presented at the end of the paper. While most estimators have been previously 
considered in the literature, our aim is to investigate them from a common perspective, as 
projections of data onto the parameter space. Another aim is to understand and quantify the 
reduction in statistical error between an unconstrained estimator such as least squares, and an 
estimator which take into account the physical properties of the parameter space, such as the 
projected least squares estimator. Among the original results, we derive the asymptotic error 
rates of these estimators on a class of low rank states in the covariant measurement scenario. 
Finally, we discuss the computational efficiency of different methods.

Below we summarise the paper using figure  1 for illustration. A measurement M on 
d-dimensional system is a positive affine map from the convex set of states Sd (constrained 
parameter space) onto the space of outcome probabilities Pd ⊂ Rz, where z is the number 
outcomes. The image of the set of trace-one selfadjoint matrices M1

sa(C
d) (unconstrained 

parameter space) is a hyperplane Ld of Rz , which contains Pd. For informationally complete 
measurements the map M is injective and we can identify all matrix estimators (whether posi-
tive or not) with their images in Ld.

In section 3 we review the use of Fisher information in asymptotic normality theory and 
discuss to what extent it is applicable to the study of the maximum likelihood (ML) estima-
tor in quantum tomography [10, 14, 65, 74]. We distinguish between two ML estimators: the 
unconstrained estimator ρ̂uML , and the ‘physical’ estimator ρ̂ML. The former is the maximiser 
of the likelihood, seen as a function over M1

sa(C
d), and may not be a density matrix. The lat-

ter performs the same optimisation but restricted to the physical space of density matrices 
Sd ⊂ M1

sa(C
d). For large sample size, the unconstrained estimator is asymptotically normal, 

while the constrained estimator is equal to its projection onto Sd with respect to the metric 
defined by the classical Fisher information [65].

A Acharya et alJ. Phys. A: Math. Theor. 52 (2019) 234001



3

In section 4 we analyse the least squares (LS) estimator ρ̂LS. This exploits the linear depend-
ence between probabilities and states which translates into a linear regression problem

f = Xβ + ε

where f  denotes the vector of observed frequencies of measurement outcomes, X is a fixed 
measurement design matrix, β is a vectorisation of the unknown state ρ , and ε is the statisti-
cal noise. The LS estimator minimises the prediction error ‖Xβ̂ − f‖2 over all vectors β̂, and 
is the simplest and fastest estimator to compute. However, LS is significantly less accurate 
than ML, especially for low rank states and does not produce a physical state. Nevertheless, 
the LS has been the focus of recent investigations [17, 36, 71] as a first step towards more 
accurate estimators. Here we review some of the non-asymptotic concentration bounds for the 
operator-norm error of the LS estimator. We then study the asymptotic properties of the LS 
estimator in the context of covariant measurements, and rank r states ρr  with equal non-zero 
eigenvalues. By exploiting the symmetry of the measurement we compute the explicit expres-
sion of the risk with respect to the Frobenius distance. Furthermore, we show that for large 
d, the eigenvalues of the ‘error matrix’ ρ̂LS − ρr  are approximately distributed according to 
the Wigner semicircle law on the interval [−2

√
d/N, 2

√
d/N], see figure 2. This provides the 

asymptotic estimates of the operator-norm, and the trace-norm errors of 2
√

d/N  and respec-
tively 8d3/2/(3π

√
N), which complement the non-asymptotic bounds of [36].

In section 5 we discuss the generalised least squares (GLS) estimator. Unlike the LS esti-
mator which minimises the prediction error, the GLS aims to optimise the estimation error, 
e.g. E‖β̂ − β‖2 and needs to take into account the covariance matrix of the multinomial noise 
ε. We show that for large samplesize N, the GLS estimator is asymptotically normal and is 
equivalent to the uML estimator.

Section 6 reviews the thresholded least squares (TLS) estimator proposed in [17]. This 
is obtained by projecting the LS estimator onto the set of states whose non-zero eigenval-
ues are above a certain ‘noise level’ chosen in a data-driven fashion. The projection can be 
computed efficiently in terms of the eigenvalues of the LS estimator, and the truncation leads 

Figure 1. A measurement M maps the set of states Sd onto outcome probabilities 
Pd. Estimators are represented via their images through M, which are obtained by 
projecting the empirical frequencies f  onto the hyperplane Ld = M(M1

sa(C
d)) or 

the convex set Pd with respect to a metric. The uML (1) and ML (2) estimators are 
projections with respect to relative entropy. The GLS (4) and posGLS (6) estimators 
are projections with respect to the covariance metric, and are asymptotically equivalent 
to the uML and ML. The LS (3) and posLS (5) estimators project f  with respect to 
the euclidian distance. The PLS (7) estimator projects LS onto Pd with respect to the 
Frobenius distance inherited from M(Cd).

A Acharya et alJ. Phys. A: Math. Theor. 52 (2019) 234001
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to significant error reduction for low rank states. In practice, an additional improvement is 
achieved by using the GLS estimator as starting point.

Section 7 discusses the positive least squares (posLS) estimator which optimises the pre-
diction error over the physical space of density matrices, rather than over the selfadjoint matri-
ces as is the case for the LS estimator [46]. This leads to higher accuracy, but its computational 
complexity is similar to that of ML. However, in the case of the covariant measurements we 
find that posLS is equivalent to the projected least squares estimator discussed below, which 
can be computed efficiently. By restricting the GLS optimisation over density matrices we 
obtain the positive generalised least squares estimator (posGLS), which is shown to be asymp-
totically equivalent to the ML estimator.

Section 8 deals with the projected least squares (PLS) estimator. This is obtained by pro-
jecting the LS estimator onto the space of density matrices with respect to the Frobenius dis-
tance [36, 71]. It is faster than TLS, and has similar statistical properties. In [36] is was shown 
that the PLS estimator satisfies rank-dependent concentration bounds and its trace-norm error 
scales as O(r2 · d · log d/

√
N) for a broad class of two-design measurements including mutu-

ally unbiased bases, stabiliser states, and symmetric informationally complete measurements, 
and as O(r2 · d1.6 · log d/

√
N) for Pauli bases measurements. In this paper we focus on the 

asymptotic behaviour of the PLS estimator in the case of covariant measurements. Inspired 
by the techniques developed in [65] we show how the random matrix properties of the LS can 
be used to derive the asymptotic Frobenius and Bures risks of the PLS estimator for low rank 
states and large dimension d and samplesize N. In particular we uncover an interesting behav-
iour of the Bures risk which (unlike the Frobenius or the trace norm risks) increases steeply 
with rank for low rank states and then decreases towards full rank, see figure 3.

Section 9 presents the results of a comparative simulations study of the proposed estima-
tors. We simulated data for a range of states of 3 and 4 atoms of different ranks, with dif-
ferent samplesizes, and measurement setups. For each choice we produced 100 datasets in 
order to estimate risks of different estimators. The measurements are chosen to be either Pauli 
bases measurements (as standard in ion trap experiments) or random basis measurements.  
The different estimators and their risks corresponding to Frobenius, Bures, Hellinger, and  
trace-norm distances were computed and the results are illustrated and discussed, see fig-
ures  4–11. A complete set of simulation results available online via an interactive Rshiny 

Figure 2. Left panel: histogram of eigenvalues of the ‘error block’ C/
√

N  versus the 
corresponding Wigner distribution, for a n  =  7 atoms, rank r  =  1 state and N  =  106 
samples. Right: histogram of eigenvalues of error matrix for a rank r  =  128 state.

A Acharya et alJ. Phys. A: Math. Theor. 52 (2019) 234001
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application: https://rudhacharya.shinyapps.io/plots/. We also created an online estimation app 
which computes the key estimators for a range of states of certain characteristics, or user 
uploaded states (https://shiny.maths.nottingham.ac.uk/shiny/qt_dashboard/).

2. Quantum tomography

In quantum tomography, the aim is to estimate an unknown state from outcomes of measure-
ments performed on an ensemble of identical prepared systems. Although a large part of our 
theoretical considerations hold in a general setting, we choose to formulate the tomography 
problem in the specific context of a system consisting of multiple qubits and projective mea-
surements with respect to several bases. This keeps the discussion closer to realistic exper-
imental procedures, and facilitates the understanding of our simulation results.

We consider composite systems consisting of n qubits, with associated Hilbert space Cd , 
where d  =  2n. The state ρ  belongs to the space of d × d density matrices Sd ⊂ M(Cd). In our 
analysis we will distinguish between the constrained parameter space Sd whose elements are 
trace-one positive matrices, and the unconstrained parameter space M1

sa(C
d) consisting of 

a) b)

c) d)

Figure 3. Frobenius and Bures risks for LS (red line) and PLS (blue line) versus the 
asymptotic predictions (black dotted lines). (a) Frobenius risks for n  =  5, N = 5 · 105. 
(b) Frobenius risks for n  =  6, N  =  106. (c) Bures risks for n  =  5, N = 5 · 105. (d) Bures 
risks for n  =  6, N  =  106.
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trace-one selfadjoint matrices. This will allow us to consider procedure which produce con-
strained, or unconstrained estimators.

The measurement strategies consist of performing standard, von Neumann projective 
measurements with respect to a number of orthonormal bases (ONB), which are chosen deter-
ministically or randomly. In particular, we focus on two scenarios: Pauli basis measurements 
and measurements that are drawn randomly from the uniform measure over all ONBs. While 
the former setup is commonly employed in experiments [38], the latter is less restrictive, 
more amenable to theoretical analysis, and can serve as a benchmark for current experiments. 
We also consider covariant measurements in the context of the asymptotic theory of the least 
squares and respectively projected least squares estimators in sections 4.3 and 8.1, and refer 
to these for further details.

In the Pauli bases setup, one measures an arbitrary Pauli observable σx,σy, or σz on each 
of the n qubits simultaneously. Therefore, each measurement is labelled by a sequence 
s = (s1, . . . , sn) ∈ {x, y, z}n, and there are 3n possible measurement bases. Such a measure-
ment produces a ±1 outcome from each ion, and we let o ∈ {+1,−1}n be the full record of 
outcomes from all the n qubits. The probability of obtaining a particular outcome o is given 
by pρ(o|s) := Tr(ρPs

o), where Ps
o is the one-dimensional projection onto the tensor product of 

eigenvectors of Pauli matrices

Ps
o = |es1

o1
〉〈es1

o1
| ⊗ . . .⊗ |esn

on
〉〈esn

on
|, σs|es

o〉 = o|es
o〉.

More generally, the measurement design is defined by a collection S = {s1, . . . , sk} of 
ONBs, which may be chosen deterministically or randomly. For each setting s, independent 
measurements are performed on m identical copies of the state, and the counts N(o|s) are 
recorded, where N(o|s) is the number of times the outcome o is observed when measuring in 
setting s. The total number of quantum samples is therefore N = m × k. The resulting dataset 
D := {N(o|s) : o ∈ {+1,−1}n, s ∈ S } is a 2n × k table whose columns are independent and 
contain all the counts in a given setting. Its probability is given by the product of multinomials

pρ(D|S) =
∏

s

m!∏
o N(o|s)!

∏
o

pρ(o|s)N(o|s). (1)

Our goal is to statistically reconstruct the density matrix ρ  from the counts dataset D. This can 
be seen as a statistical inverse problem of reversing the measurement map

M : M(Cd) → Rd·k

M : ρ �→ pρ(·|S )

in the sense that given a sample D from pρ(·|S), one would like to produce an estimator ρ̂(D) 
which is close to ρ  with respect to some meaningful distance measure. The next section lists 
several figures of merit considered here.

2.1. Error functions

Let us denote the risk or mean error of an estimator ρ̂  as E [D(ρ̂, ρ)], where D(ρ̂, ρ) represents 
a particular error function. In our theoretical analysis and simulations study we estimate the 
risk for several choices of the error function D(ρ̂, ρ), which are tabulated in table 1. Note that 
the Bures distance is defined only over the space of density matrices, and therefore applies 
only in the case where the estimators are density matrices. The classical analogue of the Bures 
distance is the Hellinger distance between two probability distributions. Here we consider the 
Hellinger distance DH(λ̂,λ)2 between the eigenvalues {λ1, . . . ,λd} of the true state and those 

A Acharya et alJ. Phys. A: Math. Theor. 52 (2019) 234001
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of the estimator {λ̂1, . . . , λ̂d}, seen as probability distributions. Later on we will show that the 
behaviour of the Bures distance error is strongly correlated with that of the squared Hellinger 
distance error.

3. Fisher information, asymptotic normality and maximum likelihood

The maximum likelihood (ML) estimator is one of the most commonly used and well under-
stood statistical tools with a universal range of applicability. Before considering its use in 
quantum tomography, we briefly review some of the key concepts and results related to the 
ML estimator and its asymptotic behaviour [51, 77]. Consider the scenario in which we are 
given N independent samples X1, . . . , XN drawn from the same discrete probability distribu-
tion pθ over a countable set Ω; the probability distribution is assumed to depend smoothly 
on an unknown parameter θ which belongs to an open subset Θ of R p . The likelihood of the 

dataset is pθ(X1, . . . , XN) =
∏N

j=1 pθ(Xj). The ML estimator is the point in Θ where the likeli-
hood of the observed data attains its maximum value

θ̂ML := argmax
θ′∈Θ

pθ′(X1, . . . , XN).

The likelihood can be expressed in terms of the empirical distribution of the data f =
∑

j δXj/N , 
where δx denotes the Dirac distribution at x. The empirical distribution collects the frequencies 
of different outcomes in Ω. Indeed the log-likelihood can be written as (see (1))

�θ := log pθ(X1, . . . , XN) = N
∑
i∈Ω

f(i) log pθ(i) + C(f)

= −NK(f‖pθ) + C′(f)

where K(·‖·) relative entropy (Kullback–Leibler divergence), and C, C′  do not depend on θ. 
The ML estimator is thus the closest point to f  with respect to the relative entropy

θ̂ML = argmin
θ′∈Θ

K(f ‖ pθ′)

Asymptotics. The appeal of the ML estimator lies in part in its asymptotic optimality proper-
ties. For large enough sample sizes N, a central limit behaviour emerges and the ML estima-
tor becomes normally distributed around the true parameter, with a variance shrinking at the  
rate 1/N

Table 1. The different error functions used to measure the distance between the 
true state and the estimator. The Bures distance is defined only for states ρ̂, ρ ∈ Sd , 
and its classical analogue the Hellinger distance is defined between two probability 
distributions.

Error function Definition

Frobenius norm squared ‖ρ̂− ρ‖2
2 = Tr

[
(ρ̂− ρ)2

]
Trace norm ‖ρ̂− ρ‖1 = Tr|ρ̂− ρ|
Operator norm ‖ρ− σ‖ = λmax(|ρ̂− ρ|)
Bures distance DB(ρ̂, ρ)2 := 2

(
1 − Tr

[√√
ρρ̂

√
ρ
])

Hellinger distance
DH(λ̂,λ)2 := 2

(
1 −

∑d
i

√
λ̂iλi

)

A Acharya et alJ. Phys. A: Math. Theor. 52 (2019) 234001
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√
N(θ̂ML − θ)

D−→ N(0, I−1(θ)). (2)

The convergence above holds in distribution as N → ∞ and the limit is a centred Gaussian 
distribution with covariance given by the inverse of the Fisher information matrix. The latter 
is a p × p positive matrix

I(θ)i,j = Eθ

[
∂ log pθ(X)

∂θi

∂ log pθ(X)
∂θj

]

which encapsulates how informative a single sample X from pθ is about θ. The limiting cova-
riance I−1(θ) is equal to the lower bound appearing in the the Cramér–Rao inequality for 
unbiased estimators. Estimators which satisfy equation (2) are called efficient and statistical 
theory shows that one cannot improve on their asymptotic accuracy, except on a measure zero 
set of the parameter space [51]. In particular if d(·, ·) is a locally quadratic (positive) loss func-
tion on Θ,

d(θ̂,θ) = (θ̂ − θ)TG(θ)(θ̂ − θ) + o(‖θ̂ − θ‖2)

with G(θ) a positive weight matrix, then the risk of the MLE satisfies

NE[d(θ̂ML,θ)] −→ Tr(G(θ)I−1(θ)).

It is important to note that the asymptotic normality property (2) relies on the smoothness of 
the model and the fact that θ is an interior point of the parameter space Θ. For large N the 
ML estimator lies (with high probability) within in a small neighbourhood of θ of size 1/

√
N , 

and the parameter space looks like R p  for all practical purposes. However, when Θ has a 
boundary, the ML estimator will not be asymptotically normal for parameters θ lying on the 
boundary, and one needs to analyse such models more carefully. This is the case in quantum 
tomography, when the unknown state is not full-rank and therefore lies on the boundary of Sd, 
or is so close to the boundary that the asymptotic theory will kick in only for sample sizes that 
are much larger than those obtained in real experiments.

3.1. The maximum likelihood estimator in quantum tomography

We will now discuss in more detail the properties of the MLE in the specific case of quantum 
tomography. Given the measurement data encoded in the dataset D, the MLE is defined as the 
maximum of pτ (D|S ) over τ ∈ Sd . By passing to log-likelihood and discarding the constant 
factorial terms in (1), we obtain the following form of the estimator

ρ̂ML := argmax
τ∈Sd

∑
o,s

f(o|s) pτ (o|s) = argmin
τ∈Sd

∑
s

K(f(·|s)‖pτ (·|s)) (3)

where f(o|s) = N(o|s)/m are the empirical frequencies of the data. The MLE is commonly 
used in quantum tomography [10, 14, 32, 44], and several implementation methods have been 
proposed including Hradil’s iterative algorithm [63]. Our specific implementation uses the 
CVX package for disciplined convex programming on MATLAB [2]. The general asymptotic 
theory guarantees that the ML estimator is asymptotically normal for full rank states, i.e. the 
interior of Sd. To get more insight into the general asymptotic behaviour for a given state ρ , we 
will choose a local parametrisation defined in terms of the matrix elements of ρ  with respect 
to its eigenbasis. Let λ1 � λ2 . . . ,� λd > 0 be the eigenvalues of a full-rank state ρ . Then any 
neighbouring state can be written as

ρ′ = ρθ = ρ+ δρθ

A Acharya et alJ. Phys. A: Math. Theor. 52 (2019) 234001
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where δρθ is trace zero matrix which is completely parametrised by

θ :=
(
θ(r); θ(i); θ(d)

)

= (Reδρ′1,2, . . . , Reδρ′d−1,d ; Imδρ′1,2, . . . , Imδρ′d−1,d ; δρ′2,2, . . . , δρ′d,d) ∈ Rd2−1.
 (4)

The ML estimator ρ̂ML = ρθ̂ML
 has parameter θ̂ML which is normally distributed around 0 

with covariance I−1(ρ|S )/N  where the Fisher information is the average of the individual 
informations for different sets s ∈ S

I(ρ|S ) =
1
k

∑
s∈S

I(ρ|s), I(ρ|s)a,b :=
∑

o:p(o|s)>0

1
pρ(o|s)

∂pρ(o|s)
∂θa

· ∂pρ(o|s)
∂θb

.

 (5)
In particular, for any locally quadratic loss function d(·, ·) (e.g. Frobenius distance, or Bures 
distance) with weight matrix G(θ), the associated risk has the asymptotic behaviour

NE [d(ρθ , ρ̂ML)] −→ Tr
(
I(ρ|S )−1G(θ)

)
. (6)

Now, let us assume that the unknown state ρ  is on the boundary of Sd, and more precisely 
belongs to the space of rank r states Sd(r) ⊂ M(Cd), for a fixed and known rank r � d. In its 
own eigenbasis, ρ  is the diagonal matrix of eigenvalues Diag(λ1, . . . ,λr, 0, . . . , 0), and any 
sufficiently close state is uniquely determined by its matrix elements in the first r rows (or 
columns). Intuitively this can be understood by noting that any rank-r state ρ′ in the neigh-
bourhood of ρ  can be obtained by perturbing the eigenvalues and performing a small rota-
tion of the eigenbasis; in the first order of approximations these transformation leave the 
(d − r)× (d − r) lower-right corner unchanged so

ρ′ =

(
D 0
0 0

)
+

(
A B
B∗ C

)
, D := Diag(λ1, . . . ,λr) (7)

where C = O(‖A‖2, ‖B‖2). We therefore choose the (local) parametrisation ρ′ = ρθ where 
only the matrix elements of A and B enter the parameter θ. For this model, any rank-r state 
corresponds to an interior point of the parameter space Sd(r), and consequently the ML esti-
mator obeys the asymptotic normality theory described above.

However, if the rank of ρ  is not known in advance, then the diagonal block C of ρ′ needs 
to be included in the model in order to describe neighbouring states of higher rank. As ρ′ is a 
state, the block C is a positive matrix, and therefore its matrix elements are constrained. This 
complicates the analysis of the likelihood function, and invalidates the asymptotic normality 
of the ML estimator.

What should be the theory replacing asymptotic normality? At the moment there is not 
a complete answer to this question, but some important progress has been made in [65]. 
Following this work and [17], it is instructive to study an extended, ‘non-physical’ model 
in which the positivity requirement is dropped and (locally around ρ) the parameter space 
is taken to be that of selfadjoint matrices of trace-one M1

sa(C
d). Therefore, the ‘unphysical’ 

parameter θ consists of the matrix elements of the blocks A, C, B (except one diagonal element 
due to normalisation), with ρ′ = ρθ given by equation (7). We now make the ‘mild’ assump-
tion that pρ(o|s) > 0 for all pairs (o, s); indeed this condition is satisfied for ‘generic’ states 
but fails for states whose support is orthogonal to some of the measurement basis vectors. 
Under this assumption, we find that locally around ρ , we can define a statistical model given 
by bona-fide probability distributions pθ := pρθ

. We can therefore define the unconstrained 
maximum likelihood (uML) estimator as in equation (3) where the optimisation is performed 

A Acharya et alJ. Phys. A: Math. Theor. 52 (2019) 234001
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over the unconstrained local neighbourhood O ⊂ M1
sa(C

d) of ρ , rather than over the space of 
states Sd. Since ρ  is on the boundary of Sd, the probability that ρ̂uML  falls outside the state 
space is significant and does not vanish in the asymptotic limit. In this case, ρ̂uML  does not 
coincide with the ‘constrained’ or regular ML estimator ρ̂ML. In fact, each of them can be seen 
as the projection with respect to the relative entropy distance of the empirical distribution f  
onto the sets of probabilities M(O) and respectively M(Sd), where M : M(Cd) → Rk·d is the 
measurement map.

Asymptotics. Since ρ  corresponds to an interior point of the unconstrained parameter space, 
the general asymptotic normality theory applies again. In particular, the uML estimator is 
normally distributed around θ = 0 with variance (NI(ρ|S ))−1, where I(ρ|S ) is the Fisher 
information (5) computed with respect to the unconstrained parametrisation. Moreover by 
Taylor expanding the log-likelihood function around the θuML, and using the fact the the first 
derivative vanishes at this point, we obtain the second order approximation

�(θ)− �(θuML) ≈ −N
2
(θ − θ̂uML)

TI(ρ|S )(θ − θ̂uML). (8)

This implies tht for large N, the ML estimator ρ̂ML is the projection of ρ̂uML  onto Sd with 
respect to the quadratic distance determined by the Fisher information

dI(ρθ , ρθ′) := (θ − θ′)TI(ρ|S )(θ − θ′). (9)

Moreover, the probability distribution of the MLE is obtained by projecting the Gaussian dis-
tribution corresponding to ρ̂uML , onto Sd. Although the projection can be computed efficiently 
using convex optimisation, finding a general characterisation of the resulting distribution seems 
to be a challenging problem [70]. Nevertheless, [65] shows that the problem is tractable in those 
cases where the metric dI is (approximately) isotropic, so that random matrix results such as the 
emergence of Wigner semicircle law can be used to treat the asymptotic theory. In section 8.1 we 
will use these ideas to study the asymptotic behaviour of the projected least squares estimator.

4. The least squares estimator

The least squares (LS) estimator [17, 62] is based on the observation that the outcome prob-
abilities pρ(o|s) depend linearly on the state ρ . Let

ρ =

d2∑
i=1

βiτi (10)

be the decomposition with respect to an orthonormal basis of M(Cd) consisting of selfadjoint 
matrices {τi : 1 � i � d2}, and β := (β1, . . . ,βd2)T  the corresponding vectorisation. Then the 
probabilities can be expressed as

pρ(o|s) = Tr(ρPs
o) =

∑
i

Xi
(o|s)βi, Xi

(o|s) := Tr(τiPs
o)

where X is a kd × d2 fixed matrix depending on the measurement and the chosen vectorisation. 
In an experimental setup we do not have access to the true probability vector. Instead from the 
d × k  dataset of counts, we can compute the empirical probabilities f (o|s) := N(o|s)/m, whose 
expectations are Ef (o|s) = pρ(o|s). Replacing probabilities vector with empirical frequencies

f = Xβ + ε, (11)
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where ε ∈ Rdk  is a mean zero vector of statistical noise. The noise distribution is irrelevant for 
the definition of the LS estimator, but we will return to this when discussing its error, and the 
generalised least squares estimator.

The least squares solution to the above system of equations is defined as the minimiser of 
the following optimisation problem

β̂LS := argmin
v∈Rd2

‖Xv − f‖2
 (12)

and has the explicit form β̂LS = (XTX)−1 · XT · f . The final estimate ρ̂LS of the density matrix 
is then constructed from the estimated parameter vector β̂LS using equation  (10). We note 
that the least squares estimator produces a state estimate ρ̂LS = ρβLS

 that is not necessarily a 
density matrix.

Least squares as a projection. Let M : M(Cd) → Ck·d be the map associated to the measure-
ment, and let p̂LS := M(ρ̂LS) = Xβ̂LS be the ‘probability distribution’ corresponding to the 
LS estimator. This belongs to the hyperplane Ld = M(M1

sa(C
d)) which contains the convex 

set of probabilities Pd = M(Sd). The LS estimator (12) can then be interpreted as the projec-
tion of the frequency vector f  onto Ld with respect to the Euclidian distance in Rk·d.

4.1. Least squares as inversion of a measure-and-prepare channel

The LS estimator was introduced above by choosing a particular vectorisation of the density 
matrix. While this is useful for numerical implementations, the disadvantage is that one loses 
the physical interpretation of the quantum state and the measurement map. Conceptually, it 
is useful to define the LS estimator in a ‘coordinate free’ way which can be interpreted as 
the inversion of a certain measure-and-prepare map associated to the measurement [36]. Let 
D : M(Cd) → M(Cd) be the quantum channel

D : ρ �→ 1
|S |

∑
o,s

Tr(ρPs
o) · Ps

o

which is the composition P ◦M of the measurement with collection of bases S , and the 
preparation map where the pure state Ps

o is prepared for each outcome o of the measurement 
in basis s. If ρ  is represented in its vectorised form, then the map D is given by the matrix 
XTX/|S |. On the other hand, the preparation map P  has matrix XT, so that the LS estimator 
can be expressed as

ρ̂LS = D−1 ◦ P( f/|S |). (13)

From this expression we see immediately that Tr(ρ̂LS) = 1 as consequence of the fact that 
f/|S | is a probability distribution and D is trace preserving. Additionally, we note the the 
accuracy of the LS estimator is linked to the properties of the channel D. In particular, in the 
case of Pauli measurements the channel is given by a tensor product D = C⊗n of qubit depo-
larising channels [17, 36]

C : ρ �→ 1
3
ρ+

2
3

1
2

.

On the other hand, the measurements corresponding to the class of two-designs (which 
includes covariant measurements, mutually unbiased bases, stabiliser states, symmetric infor-
mationally complete measurements) have associated channel given by [36]
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D : ρ �→ 1
d + 1

ρ+
d

d + 1
1
d

.

4.2. Concentration bounds and asymptotic behaviour of the LS

For more insight into the structure of the LS estimator let us unpack equation (13) and note that 
ρ̂LS can be written as an average of independent, identically distributed matrices A(1), . . . , A(m) 
with E(A(i)) = ρ

ρ̂LS =
1
m

m∑
i=1

Ai =
1
m

m∑
i=1

1
|S |

∑
s∈S

D−1(Ps
oi|s

) (14)

where oi|s are the outcomes of the measurements with respect to setting s.
In this form, the LS estimator is amenable to non-asymptotic matrix concentration tech-

niques, as well as asymptotic normality theory. The following result [36] was obtained by 
applying matrix Bernstein inequalities [75] and provides a non-asymptotic confidence bound 
for LS with respect to the operator norm distance, see also [17].

Theorem 4.1. Let ρ̂LS be the LS estimator of ρ  for a dataset consisting of N = m × k sam-
ples. Then

Pr [‖ρ̂LS − ρ‖ � ε] � de−
3Nε2
8g(d) ε ∈ [0, 1]

where g(d) = 2d for two-design measurements and g(d) � d1.6 for Pauli measurements.

The theorem provides upper bounds for risks with respect to commonly used loss functions 
such as the Frobenius distance (norm-two squared) and the trace-norm distance, see also [71] 
for related results. Indeed using the basic inequalities ‖A‖2

2 � d‖A‖2 and ‖A‖1 � d‖A‖ we 
obtain the upper bounds

E‖ρ− ρ̂LS‖2
2 � c2 log(d)

d2

N
, E‖ρ− ρ̂LS‖1 � c1 log(d)

d
√

d√
N

 (15)

for the two-design measurements and

E‖ρ− ρ̂LS‖2
2 � C2 log(d)

d2.6

N
, E‖ρ− ρ̂LS‖1 � C1 log(d)

d1.8
√

N
 (16)

for the Pauli basis measurement, where c1, c2, C1, C2 are a numerical constants. Moreover, 
in [36] it was shown that the log factor in (15) can be removed when we deal with covariant 
measurements. On the other hand, in section 3 we have shown that for the maximally mixed 
state, the optimal convergence rate for the Frobenius distance is of the order O(d2/N); this 
means that the upper bound (15) cannot be improved, when seen as a uniform bound over all 
states. However, this leaves open the possibility that special classes of states can be estimated 
with higher accuracy that that provided by the LS estimator. Indeed, we will see that simple 
modifications of the LS estimator which take into account the positivity of the unknown state 
can significantly reduce the estimation errors for low rank states.

Asymptotics. Thanks to its simplicity, the LS estimator has a tractable asymptotic theory. As in 
the case of the concentration Theorem 4.1 the key point is that the error ρLS is a sum of inde-
pendent, identically distributed matrices given by equation (14). In the limit of large m each 
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matrix element of ρLS has a Gaussian distribution; in terms of the vectorised form we have the 
Central Limit for m → ∞

√
m
[
β̂LS − β

]
−→ N(0, VLS), VLS = (XTX)−1XTΩX(XTX)−1

where Ω := mCov [ε|S ] is the (renormalised) covariance of the noise ε. Due to the indepen-
dent structure of the measurement settings, the latter has a non-trivial block diagonal form 
with d × d blocks corresponding to the different settings s

[Ωs]ij = Cov [εs]ij = pρ(oi|s)δij − pρ(oi|s) pρ(oj|s). (17)

This allows us in principle to compute the asymptotic risk of an arbitrary quadratic loss func-
tion with weight matrix G (such as the Frobenius distance) as

mE
[
(β̂LS − β)TG(β̂LS − β)

]
−→ Tr(GVLS).

Since f  is a vector of frequencies, it must satisfy k normalisation constraints, which is reflected 
in the fact each block Ωs is singular, with zero eigenvector 1 = (1, . . . , 1)T. Consequently, the 
covariance matrix VLS is singular with the zero eigenvector corresponding to the trace which 
is a fixed parameter. We will come back to this when discussing the generalised least squares 
estimator.

4.3. Asymptotic theory of LS for covariant measurements

While asymptotic normality tells us that the estimator β̂LS lies in an ellipsoid centred at β, it 
treats the estimator as a vector rather that as a matrix. For instance, it does not immediately 
provide an asymptotic theory for the operator norm error ‖ρ̂LS − ρ‖. Random matrix theory 
provides us with other asymptotic results which take into account the matrix structure of the 
estimator. To explore this avenue we will make a simplifying assumption and place ourselves 
in the scenario of covariant measurements. The outcome of such a measurement is a one 
dimensional projection P = |ψ〉〈ψ| and the corresponding positive operator valued measure is

M(dP) := d · P · dP (18)

where dP  is the uniform measure over the space of one dimensional projections; the latter is 
the measure induced by the Haar measure over the unitaries U via the action P �→ UPU∗. An 
alternative way of obtaining a measurement sample is to choose a random basis and perform 
a measurement with respect to the chosen basis.

In this setup, the channel D is given by [36]

D : ρ �→
∫

Tr(ρM(dP))P =

∫
dPTr(ρP)dP =

1
d + 1

(ρ+ 1)

and the LS estimator given by equation (14) can be written as

ρ̂LS =
d + 1

N

N∑
i=1

(
Pi −

1
d + 1

)

where Pi are the independent outcomes of measurements.
We will be particularly interested in the behaviour of the LS estimator for low rank states, 

as well as states close to the maximally mixed one. Due to covariance it suffices to choose 
states which are diagonal in the standard basis {|i〉 : i = 1, . . . , d}, and for simplicity we will 
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restrict ourselves to rank-r states with equal eigenvalues ρr =
∑r

i=1 |i〉〈i|/r. As in section 3.1 
we write the LS estimator as

ρ̂LS =
1
r

(
Ir 0
0 0

)
+

1√
N

(
A B
B∗ C

)
, (19)

where A, B, C  are block matrices of mean zero, and Ir is the r × r  identity block. We will deal 
with each block separately.

Block C. By covariance, the distribution of the block C is invariant under unitary transforma-
tions in Cd−r. As the LS estimator is unbiased, the matrix elements of C are centred. The off-
diagonal elements have real and imaginary parts with variances equal to

Var(ReCij) = Var(ImCij) =
1
2
E|Cij|2 =

vc

2

with

vc = d(d + 1)2
∫
〈Uk|ρr|Uk〉 · |〈i|U|k〉|2 · |〈k|U∗|j〉|2 dU

= d(d + 1)2
∫

U1kUikUjkU∗
k1U∗

kiU
∗
kj dU

=
d(d + 1)2

d(d + 1)(d + 2)
=

d + 1
d + 2

where we have written P = U|k〉〈k|U∗ for r < k �= i, j and replaced the integration over pro-
jections with that over unitaries; the integral was then evaluated using Weingarten formulas 
[19]. Similarly, the variance and covariance of the diagonal elements are

Var(Cii) =
d

d + 2
Cov(Cii, Cjj) = − 1

d + 2

and all off-diagonal elements (of all blocks A, B, C) have zero covariance with other matrix 
elements. By the Central Limit theorem, in the limit of large N, the off-diagonal elements of 
ρ̂LS become normally distributed and independent of all other elements. On the other hand, as 
the covariance of diagonal elements is non-zero, they converge to correlated Gaussian vari-
ables. However, if we also take the limit of large d we find that the covariance of the diago-
nal elements vanishes and the matrix C is distributed approximately as the Gaussian unitary 
ensemble (GUE). Universality results for random matrices [64] imply that the empirical dis-
tribution of the eigenvalues of C/

√
d − r converges weakly to Wigner’s semicircle law on the 

interval [−2, 2], whose probability density is

w(x) =
1

2π

√
4 − x2. (20)

Indeed, panel (a) of figure 2 shows a good match between the histogram of the eigenvalues 
of the error block C/

√
N  for a rank-one state of n  =  7 atoms and N  =  106 samples, and the 

corresponding Wigner distribution.

Block A. Let us consider now block A of equation (19). For the same symmetry reasons, its 
off-diagonal elements (when r  >  1) have real and imaginary parts with variance

Var(ReAij) = Var(ImAij) =
1
2
E|Aij|2 =

va

2
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with

va = d(d + 1)2
∫
〈Uk|ρr|Uk〉 · |〈i|U|k〉|2 · |〈k|U∗|j〉|2 dU

=
2d(d + 1)2

r

∫
UikUikUjkU∗

kiU
∗
kiU

∗
kj dU +

(r − 2)d(d + 1)2

r

∫
UlkUikUjkU∗

kiU
∗
klU

∗
kj dU

=
2d(d + 1)2

r
· 2

d(d + 1)(d + 2)
+

(r − 2)d(d + 1)2

r
· 1

d(d + 1)(d + 2)
=

r + 2
r

· d + 1
d + 2

where all indices i, j, k, l are different. The diagonal elements have variance

Var(Aii) = 2
d + 1
d + 2

r + 2
r

−
(

1 +
1
r

)2

while the covariance of the diagonal elements is

Cov(Aii, Ajj) =
d + 1
d + 2

r + 2
r

−
(

1 +
1
r

)2

.

We note that for small r the diagonal elements do not become independent when N and d are 
large. However, if we also take r to be large, the covariance vanishes, as in the case of the C 
block. By the same argument, the distribution of the eigenvalues of A/

√
r converges to the 

Wigner semicircle law (20). This is illustrated in the right panel of figure 2, for the case of the 
totally mixed state of n  =  7 atoms.

Block B. The elements of block B have variances equal to

Var(ReBij) = Var(ImBij) =
1
2
E|Bij|2 =

vb

2

with i � r < j and

vb = d(d + 1)2
∫
〈Uk|ρr|Uk〉 · |〈i|U|k〉|2 · |〈k|U∗|j〉|2 dU

=
d(d + 1)2

r

∫
UikUikUjkU∗

kiU
∗
kiU

∗
kj dU +

(r − 1)d(d + 1)2

r

∫
UlkUikUjkU∗

k1U∗
klU

∗
kj dU

=
d(d + 1)2

r
· 2

d(d + 1)(d + 2)
+

(r − 1)d(d + 1)2

r
· 1

d(d + 1)(d + 2)
=

r + 1
r

· d + 1
d + 2

.

Eigenvalues distribution of the LS estimator. To better understand the LS estimator, it is 
instructive to study the distribution of its eigenvalues. This will also be used in the study of 
the projected least squares estimator furher on. Assuming N is large, we note that ρ̂LS can be 
written as

ρ̂LS = U
(

Ir

r
+

D√
N

)
U∗ + o(N−1/2) (21)

where

U = exp

(
irB̃√

N

)
, B̃ :=

(
0 iB

−iB∗ 0

)
, D :=

(
A 0
0 C

)
.

This means that in the leading order in N−1/2 the set of eigenvalues of ρ̂LS is the union of those 
of Ir/r + A/

√
N  and C/

√
N . In the case of large N, d and small rank r, the first group of 

eigenvalues are small fluctuations of size r/
√

N  around 1/r; in particular these eigenvalues 
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are positive with high probability; the second group of eigenvalues are distributed according 
to the Wigner law, and have maximum absolute value approximately equal to 2

√
(d − r)/N , 

and roughly half of them will be negative.
We can now evaluate the asymptotic risk of the LS estimator with respect to the chosen 

loss functions.

Frobenius risk. For the Frobenius distance, the asymptotic mean square error is

NE‖ρ̂LS − ρr‖2
2 = E‖A‖2

2 + 2E‖B‖2
2 + E‖C‖2

2

=

r∑
i=1

Var(Aii) + 2
∑

i<j�r

E|Aij|2 + 2
∑

i�r<j

E|Bij|2

+
∑

r<i<j

2E|Cij|2 +
d∑

i=r+1

Var(Cii)

= (r + 1)(r + 2)
d + 1
d + 2

− (r + 1)2

r
+ 2

(r + 1)(d − r)(d + 1)
d + 2

+
(d − r)(d − r − 1)(d + 1)

d + 2
+

(d − r)d
d + 2

.

In particular, the leading contribution to the Frobenius risk is d2/N, and the dependence with 
r is weak. As illustrated in panels (a) and (b) of figure 3 the theoretical prediction match the 
simulation results for 5 and 6 atom states.

Operator norm risk. The operator-norm error of the LS estimator is

‖ρ̂LS − ρr‖ =
1√
N

∥∥∥∥
(

A B
B∗ C

)∥∥∥∥ .

Above we found that the entries of A, B, C  become independent in the limit of large N, except 
for correlations between the diagonal elements which vanish if we additionally take the limit 
of large d. Moreover, the variances of the elements in the B block and the off-diagonal elements 
of A differ from those of the off-diagonal elements of C by factors (r + 2)/r  and respectively 
(r + 1)/r . Therefore, the error block matrix as a whole is not distributed according to GUE 
ensemble. However, the universality of the Wigner semicircle law, the limit holds not only for 
highly symmetric ensembles like GUE but also for ‘small’ perturbations of this ensemble, e.g. 
random matrices with independent entries, whose variances do not deviate too much from a 
fixed value [23]. In particular for low rank r � d, the total size of the blocks A,B,B* is of the 
order rd which is much smaller than than the size (d  −  r)2 of C. Therefore, the asymptotic 
behaviour of the error matrix is determined by that of C and its spectrum converges to the 
Wigner law in the limit of large sample size and large dimension. In particular, the leading 
contribution to the norm error ‖ρ̂LS − ρr‖ for low rank states is 2

√
d/N . A similar situation 

occurs for high rank states r ≈ d where the dominant variances are provided by the block A.
Indeed simulations for a pure and the fully mixed state of n  =  7 atoms with N  =  106 sam-

ples gave norm errors 0.0225 and respectively 0.0221, while the above theoretical prediction 
is 0.0226. Further simulation results for n  =  5 and n  =  6 atoms states of different ranks show 
a good match with the above estimate.

Trace norm risk. As in the case of the operator norm, the trace norm error can be estimated 
thanks to the fact that the eigenvalues of error matrix follow an approximate Wigner semicir-
cle distribution. Using
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1
2π

∫ 2

−2
|x|

√
4 − x2dx =

8
3π

we find that for low rank, or close to full rank states, the leading contribution to E(‖ρ̂LS − ρ‖1) 
is 8d3/2/(3π

√
N). This rate agrees with the upper bound in equation (15), but provides an 

exact asymptotic constant for this rate. Indeed simulations with a pure and maximally mixed 
states of n  =  7 atoms and N  =  106 samples gave norm-one errors of 1.228 and respectively 
1.229 while the theoretical prediction is 1.229.

5. Generalised least squares estimator

Consider the generic linear regression problem

y = Ax + n (22)

with x ∈ Ra and unknown vector, y ∈ Rb a vector of observations and n the ‘noise’ term with 
fixed and known covariance matrix C, which is assumed to be strictly positive. While the LS 
estimator x̂LS is optimal in the sense of minimising the prediction error ‖Ax̂ − y‖, this is not 
the case when considering an estimation error e.g. the mean square error E‖x̂ − x‖2, unless 
the covariance matrix is proportional to the identity. To recover the ‘equal noise’ situation we 
multiply equation (22) from the left by C−1/2, to obtain

y′ = A′x + n′, Cov(n′) = Id.

The LS estimator of the last regression equation has the smallest covariance matrix among 
linear unbiased estimators

x̂GLS = argmin
x′

‖y′ − A′x′‖2 = (ATC−1A)−1ATC−1y.

This is called the generalised least squares (GLS) estimator when the noise distribution is 
Gaussian, the GLS estimator coincides with the MLE. In the i.i.d. setting where m samples are 
available, the GLS estimator is asymptotically normal and efficient

√
m(x̂GLS − x) → N

(
0, (ATC−1A)−1) . (23)

GLS as a projection. Similarly to the LS estimator we consider the image ŷGLS = Ax̂GLS of the 
GLS estimator xGLS. Then ŷGLS is the projection of the data y onto the subspace Ran(A) ⊂ Rb 
with respect to the covariance-dependent metric

dC(y, z) = (y − z)TC−1(y − z).

GLS for tomography. Let us return now to the tomography regression problem of the form 
given by equation (11). While the LS estimator is optimal in the sense of equation (12), in 
general it is not optimal in the estimation sense for any locally quadratic distance function. To 
remedy this we would like to construct a corresponding generalised least square estimator to 
take into account the nontrivial form of the noise covariance matrix Ω given by equation (17). 
However, there are two issues which prevent us from directly applying the GLS methodology 
to the tomography data. The first is that Ω is unknown since it depends on the true probabili-
ties, and therefore on the unknown state ρ . We therefore propose to use an estimate of the 
covariance matrix instead. We describe the computation of this estimate in appendix A.2. The 
second difficulty is that Ω is a singular matrix due the constraint 

∑
o f (o|s) = 1 for each set-

ting s. This means that for each setting s the vector |1s〉 ∈ Cd  is a zero eigenvector for Ωs and 
one should work within the orthogonal complement of |1s〉. This can be achieved by choosing 
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a block-diagonal isometry V : Ck(d−1) → Ck·d such that each block Vs satisfies 〈1s|Vs = 0, 
and defining the new ‘frequencies’ vector f̃  with settings components f̃ s = V∗

s f s. Similarly, 
we can also remove the trace-one constraint for states by choosing the vectorisation (10) 
such that the last basis element is τd2 = 1/

√
d. In this case the state is uniquely determined 

by the free parameters {βi : 1 � i � d2 − 1}. If we denote by J : Cd2−1 → Cd2
 the isometric 

embedding with respect to the standard basis, then β̃ := J∗β is the truncated vector of free 
parameters for ρ .

The regression problem can now be written in terms of the ‘tilde’ vectors and matrices

f̃ = X̃β̃ + ε̃

where X̃ = V∗XJ  and ̃ε has covariance matrix Ω̃ = V∗ΩV  which is non-singular. We can now 
apply the GLS methodology and define the estimator as

β̂GLS = (X̃∗( ˆ̃Ω)−1X̃)−1X̃∗( ˆ̃Ω)−1f̃ ,

where ˆ̃Ω is the (non-singular) estimated covariance matrix. We denote ρ̂GLS as estimate of 
the density matrix constructed from its vectorised form β̂GLS. For future use, let us denote 
M̃ : M1

sa(C
d) → Rk(d−1) the map ρ �→ X̃β̃, so that ˆ̃pGLS = M̃(ρ̂GLS) .

5.1. Asymptotic theory of GLS

What are the asymptotic properties of ρ̂GLS? For large m, the noise distribution becomes 
Gaussian, and the covariance estimator converges to the actual covariance. The estimator β̂GLS 
becomes asymptotically normal as m → ∞

√
m(β̂GLS − β) → N

(
0, (X̃∗Ω̃−1X̃)−1

)
 (24)

which means that the corresponding asymptotic average Fisher information per sample is 
IGLS = X̃∗Ω̃−1X̃/k. In appendix A.1 we show that IGLS coincides with the Fisher informa-
tion I(ρ|S ) defined as in equation (5) for the parametrisation β̃. This equality implies that 
the error rates of the GLS estimator have the same asymptotic behaviour as those of the uML 
estimator, and both estimators satisfy asymptotic normality. In fact one can make the stronger 
statement that the two estimators are asymptotically close to each other.

Equivalence of GLS and uML. As stated above, the GLS can be interpreted as the projection 
of the data f̃  onto the image of X̃  in Rk(d−1) with respect to the metric

d(g, h) = (g − h)T ˆ̃Ω−1(g − h)T .

On the other hand, in section 3.1 we showed that for large N, we can define the uML estimator 
as the projection of f  onto the hyperplane Ld := M(M1

sa(C
d)), with respect to the relative 

entropy distance. Since in the first order of approximation the relative entropy is given by the 
quadratic form Ω̃−1, the two projections become identical in the asymptotic limit.

6. Thresholded least squares estimator

The LS estimator (as well as GLS) suffers from the disadvantage that it does not necessarily 
produce a density matrix, i.e, a positive semi-definite estimate of trace one. While the signifi-
cant eigenvalues can be estimated reasonably well with enough data, the LS estimator will 
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typically have negative eigenvalues corresponding to small or zero eigenvalues of the true 
state. The thresholded least squares estimator (TLS) proposed in [17], improves the LS esti-
mator by selecting the state which is the closest in Frobenius norm to ρ̂LS and whose non-zero 
eigenvalues are above a certain threshold ν � 0, i.e.

ρ̂TLS := argmax
τ∈S(ν)

d

‖ρ̂LS − τ‖2
2

with S(ν)
d  the set of density matrices with spectrum in {0} ∪ {[ν, 1]}. The choice of the statis-

tical noise threshold is informed by the accuracy of the LS estimate, and a theoretical and a 
‘data-driven’ choices for this threshold are detailed in [17], see also [22, 68]. In practice it is 
found that estimator’s performance improves if the threshold is allowed to be ‘data-driven’, by 
using cross-validation to choose the optimal value of the threshold, see appendix A.2.

It turns out that computing ρ̂TLS is very efficient and can be easily implemented. Let

ρ̂LS =

d∑
i=1

λ̂i|ĝi〉〈ĝi|

be the spectral decomposition of ρ̂LS where we assume that the eigenvalues are sorted in 
descending order λ̂1 � . . . � λ̂d. The thresholded estimator

ρ̂TLS =

d∑
i=1

λ̂i(ν)|ĝi〉〈ĝi|

has the same eigenvectors as ρ̂TLS, and its eigenvalues can be computed in terms of λ̂i as sum-
marised in algorithm 1. In words, the algorithm checks if the smallest eigenvalue of ρ̂LS is 
above the noise threshold, and if it is then ρ̂TLS = ρ̂LS (note that by construction Tr(ρ̂LS) = 1, 
so there is no need to renormalise the LS estimator). On the other hand if the smallest eigen-
value is below the threshold, it is set to zero and the remaining eigenvalues are suitably shifted 
accordingly so that their sum is equal to one. The final estimate ρ̂TLS is constructed by replac-
ing the eigenvalues of ρ̂LS with these thresholded eigenvalues λ̂i(ν). The theoretical proper-
ties of the TLS estimator are presented in [17] and are similar to those of the projected least 
squares estimator which is discussed in more detail below.

Algorithm 1. Algorithm to threshold the eigenvalues of the LS estimate.

Input: eigenvalues of LS estimator λ̂1 � . . . � λ̂d, and noise threshold ν

Output: eigenvalues λ̂1(ν) � . . . � λ̂d(ν) of thresholded estimate ρ̂TLS

for p = 1, . . . , d  do

      if λ̂d−p+1 � ν then
        STOP;
      else

        λ̂d−p+1 ← 0;
        for j = 1, ..., d − p do

           λ̂j ← λ̂j +
1

d−p

(
1 −

∑d−p
m=1 λ̂m

)

        end
      end
end
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6.1. Thresholded generalised least squares estimator (TGLS)

This estimator is obtained by using the GLS estimate ρ̂GLS instead of the LS estimate as a start-
ing point for the thresholding procedure. The constant for thresholding is chosen in the same 
way by using cross-validation. The advantage of TGLS is that it starts from a more accurate 
estimator than LS, which leads to smaller errors compared to TLS. The price to pay is that it 
is somewhat more involved computationally, although still faster than ML.

7. Positive least squares estimator

The positive least squares (posLS) estimator is obtained by restricting the minimisation in 
(12) to parameters that correspond to density matrices τ ∈ Sd . Let M : M(Cd) �→ Ckd be the 
measurement map defined as [M(τ)]o,s = Tr [τPs

o] /|S|, Then, similarly to section 4.1 we can 
express the posLS estimator as

ρ̂posLS := argmin
τ∈Sd

‖M(τ)− f‖2. (25)

By comparing with (12) we see that ρ̂posLS is the projection of ρ̂LS with respect to the 
distance on matrices induced by the euclidian distance on measurement probabilities 
dM(ρ, τ) = ‖M(ρ)−M(τ)‖. To our knowledge, with the exception of the results in [46], its 
theoretical properties have not been studied in detail. While its statistical performance greatly 
improves on that of the LS, the posLS estimator has the drawback that it cannot be expressed 
in a closed form, and its computational complexity is comparable to that of the ML estimator.

7.1. Positive least squares estimator for covariant measurements

Let us consider the special case of the covariant measurement defined in equation (18). This 
measurement maps states into probability distributions in an (almost) isometric way [36]

‖M(ρ)−M(τ)‖2 =
d

d + 1
‖ρ− τ‖2

2.

Indeed using Weingarten formulas [19] we get for any traceless X

‖M(X)‖2 = d2
∫

dPTr(PX)2 = d2
∫

dU|〈U1|X|U1〉|2

= d2
∑
ijkl

XijX̄kl

∫
Uj1Uk1U∗

1iU
∗
1l dU =

d
d + 1

‖X‖2
2.

As a corollary, we find that the posLS estimator is the projection of the LS estimator with 
respect to the Frobenius distance. Therefore, for this specific measurement, the posLS estima-
tor coincides with the projected least squares estimator which will be discussed in section 8.

7.2. Positive generalised least squares estimator

This estimator is defined in much the same way as the posLS estimator, by restricting the 
minimisation in (5) to parameters that correspond to density matrices. In keeping with the dis-
cussion in section 5, we consider the truncated frequency vector f̃ . By analogy with the GLS 
estimator, the positive generalised least squares (posGLS) estimator is defined as
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ρ̂posGLS := argmin
τ∈Sd

∥∥∥ ˆ̃Ω−1/2
(
M̃(τ)− f̃

)∥∥∥
2

. (26)

We will show that ρ̂posGLS is asymptotically equivalent to the ML estimator ρ̂ML.

Asymptotic equivalence of posGLS and ML. As in the case of GLS and uML, it is easier to 
work with the images in Ck(d−1) of the different estimators through the (injective) map M̃; we 
denote by ˆ̃pposGLS = M̃(ρ̂posGLS) the probability vector corresponding to the posGLS estima-
tor, and similarly for other estimators. Let us equip the the space of ‘frequencies’ Ck(d−1) with 
the distance

dΩ(p̃, q̃) =
∥∥∥Ω̃−1/2 (p̃ − q̃)

∥∥∥
2
= (p̃ − q̃)T

Ω̃−1 (p̃ − q̃) .

Therefore, ˆ̃pposGLS is the projection with respect to dΩ of f̃ onto the convex set

Pd = M̃(Sd) ⊂ M̃(M1
sa(C

d)) ⊂ Ck(d−1).

On the other hand, the GLS estimator is the projection of f̃ onto the hyperplane M̃(M1
sa(C

d)) 
which contains Pd. Therefore, by properties of projections on convex subsets we find that 
ˆ̃pposGLS is the projection of ˆ̃pGLS onto Pd.

In section 5.1 we showed that the GLS estimator is asymptotically equivalent to the uML, 
as a consequence of the fact asymptotically with m both projections are determined by the 
Fisher information metric. Since posGLS and ML are obtained by applying the same projec-
tions onto the smaller space Pd, they are also asymptotically equivalent. Unfortunately, this 
equivalence does not provide us with general estimation method which is more efficient than 
ML; the projection involved in posGLS does not seem to have closed form expression and 
requires a similar optimisation process as ML.

8. Projected least squares

Recently, it has been shown that the theoretical properties ρ̂TLS are preserved even if the 
threshold ν  is chosen to be zero [36]. The projected least squares (PLS) estimator is defined as

ρ̂PLS := arg inf
τ∈Sd

‖ρ̂LS − τ‖2

where the optimisation is performed over all states τ . As in the case of the TLS estimator, this 
optimisation can be performed efficiently, and it only involves computing the spectral decom-
position of ρ̂LS and applying algorithm 1 with ν = 0. The PLS estimator is therefore faster 
than the data-driven TLS and turns out to have quite similar behaviour to the latter. Note that 
in general PLS is different from posLS , as both can be seen as projections of the LS estima-
tor with respect to different metrics. However, as noted before, the estimators coincide in the 
case of covariant measurements. In the next section we will study this scenario in more detail.

Using the LS concentration bound of theorem 4.1, the following rank dependent norm-one 
bound for the PLS estimator was derived in [36], where the measurement is either a two-
design or the Pauli bases measurement.

Theorem 8.1. Let ρ̂PLS be the PLS estimator of ρ  for a dataset consisting of N = m × k 
samples. Then

Pr [‖ρ̂PLS − ρ‖1 � ε] � de−
Nε2

43g(d)r2 τ ∈ [0, 1]
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where g(d) = 2d for two-design measurements and g(d) � d1.6 for Pauli measurements.

This gives a upper bound of O(r2 · d log d/
√

N) on the convergence rate of norm-one for 
two-design measurements and O(log r2 · d1.6 log d/

√
N) for Pauli measurements. In the first 

case the log d can be removed for covariant measurements and the resulting rate is optimal in 
the sense that it achives general lower bounds from [37].

8.1. The asymptotic behaviour of PLS for covariant measurements

In this section we look in more detail at the PLS estimator in the context of covariant mea-
surements defined in equation (18). We have already seen that theorem 8.1 provides a con-
centration bound on the norm-one risk of the PLS estimator. While such results are very 
valuable thanks to their non-asymptotic nature, it is instructive and useful to also understand 
the asymptotic behaviour for large sample size N and dimension d. Indeed, in section 4.3 we 
showed how central limit and random matrix theory can be used to obtain tighter bounds on 
estimation risks of the LS estimator.

We will be particularly interested in the behaviour of PLS for low rank states. 
Due to covariance it suffices to choose states which are diagonal in the standard basis 
{|i〉 : i = 1, . . . , d}, and for simplicity we will restrict ourselves to rank-r states with equal 
eigenvalues ρr =

∑r
i=1 |i〉〈i|/r. As in section 4.3 we write the PLS estimator as

ρ̂PLS = ρr +
1√
N

(
Ã B̃
B̃∗ C̃

)
, (27)

for some error blocks Ã, B̃, C̃  whose dependence on the A, B, C  blocks of the LS estimator 
needs to be determined.

Our analysis draws on the asymptotic theory of the LS described in section 4.3, and the 
arguments developed in [65] for the analysis of the ML estimator. We know that ρ̂PLS has 
the same eigenbasis as ρ̂LS, and its eigenvalues are obtained from those of ρ̂LS by the trunca-
tion procedure which involves repeatedly setting to zero negative eigenvalues and shifting the 
remaining ones so that they add up to one. The following 3 step procedure aims to identify the 
leading contributions to PLS for low rank states, and N � d � 1.

 1. Diagonalisation. Recall that for large N the LS estimator can be block diagonalised by 
means of a ‘small’ unitary rotation U, see equation (21)

U∗ρ̂LSU =

(
Ir/r + A/

√
N 0

0 C/
√

N

)
+ o(N−1/2).

  Therefore the eigenvalues of ρ̂LS can be grouped in two sets. The first is the set of eigen-
values of the block C/

√
N , which for large d are distributed according to the Wigner 

semicircle law and lie between ±2
√
(d − r)/N . The second set consists of the eigen-

values of the block Ir/r + A/
√

N , which are small fluctuations of order r/
√

N  around 1/r.
 2. Truncation. As long as N � d � 1 and r is small, the second set of eigenvalues is well 

separated from the first and it is very unlikely that any of these eigenvalues will be set to 
zero in the truncation process. Therefore, the cut-off point for the eigenvalues of C/

√
N  

depends only on the sum of the larger eigenvalues

Tr(Ir/r + A/
√

N) = 1 + Tr(A)/
√

N =: 1 + a/
√

N.
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  Moreover, since (d − r) � 1, the eigenvalues of C/
√

N  are (approximately) distributed 
according to the Wigner distribution (20) on the interval [−2

√
(d − r)/N, 2

√
(d − r)/N]. 

Therefore, we can write the cut-off point q as the solution of the following equation [65]

1 = 1 +
a√
N

− rq + (d − r)
∫ 2

√
d−r

N

q
(x − q)

N
2π(d − r)

√
4(d − r)

N
− x2 dx

  where the integral corresponds to the sum of the eigenvalues of the block C/
√

N  above q, 
after being shifted by q. Writing q = 2

√
d − r/Nε with ε = ε(r, d, N, a) < 1, we get the 

following equation for ε

rε− a
2
√

d
=

2(d − r)
π

∫ 1

ε

(y − ε)
√

1 − y2dy. (28)

  As the left side is smaller than r, the integral needs to be smaller than rπ/2(d − r), which 
means that ε is close to 1 for r � d. This agrees with the intuition that a large part of the 
eigenvalues of the lower block will be set to zero by projecting the LS onto states. Further 
details on finding an (approximate) solution to (28) can be found in [65]. In particular, we 
will approximate ε by the deterministic solution of equation (28) in which a = Tr(A) is 
set to zero; indeed, for large d this will have a negligible effect on ε but will allow us to 
compute ε it in terms of r and d deterministically. 

 3. Rotation to original basis. Once the cut-off point q has been computed, the projection of 
the rotated LS estimator U∗ρ̂LSU  onto states can be written as

(
αIr +

A√
N

0

0 C′
√

N

)
+ o

(
1√
N

)
,

  where

α :=
1
r
− 2

√
d − r

N
ε, C′ =

[
C − 2

√
d − rεId−r

]
+

  and [X]+ denotes the positive part of X. The PLS estimator is now obtained by performing 
the inverse rotation

ρ̂PLS = U

(
αIr +

A√
N

0

0 C′
√

N

)
U∗ + o

(
1√
N

)

= ρr +
1√
N

(
A − 2

√
d − rεIr αrB

αrB∗ C′

)
+ o

(
1√
N

)

= ρr +
1√
N

(
Ã B̃
B̃∗ C̃

)
.

 

(29)

  We can now estimate the asymptotic risk of the PLS estimator with respect to the chosen 
loss functions.

Frobenius risk. The mean square error scales as N−1 and its rescaled version is

NE‖ρ̂PLS − ρr‖2
2 = E‖Ã‖2

2 + 2E‖B̃‖2
2 + E‖C̃‖2

2.

The contribution from B̃ is
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2E‖B̃‖2
2 = 2(αr)2E‖B‖2

2 =
2(d + 1)(d − r)(r + 1)

d + 2

(
1 − 2r

√
d − r

N
ε

)2

where the variance of B has been computed as in section 4.3; note that the term 2r
√
(d − r)/Nε 

vanishes for N � d . This error is of the order 2rd and can be seen as stemming from the 
uncertainty in estimating the eigenbasis of ρr . For Ã we write

E‖Ã‖2
2 = E‖A‖2

2 + 4r(d − r)ε2 = (r + 1)(r + 2)
d + 1
d + 2

− (r + 1)2

r
+ 4r(d − r)ε2.

Finally, the term E‖C̃‖2
2 is given by the sum of the squares of the remaining eigenvalues which 

can be approximated using the limit Wigner law as

E‖C̃‖2
2 = N(d − r)

∫ 2
√

d−r
N

q
(x − q)2 N

2π(d − r)

√
4(d − r)

N
− x2 dx

=
8(d − r)2

π

∫ 1

ε

(y − ε)2
√

1 − y2 dy.

Although the last term appears to be of order (d  −  r)2, a careful analysis of the integral [65] 
shows that it is of lower order than rd due to the fact that 1 − ε leading term in a Taylor expan-
sion is proportional to (r/(d  −  r))2/5. Therefore, by adding the three terms, we find that the 
Frobenius risk scales as 6rd/N. This agrees with the non-asymptotic results of [36], and pro-
vides the exact asymptotic constant of the Frobenius rate. By comparing with the lower bound 
to the asymptotic minimax rate of 2r(d − r)/N  derived in [17] we find that PLS is optimal for 
such states, within a constant which is at most 3.

For the n  =  7 atoms state with r  =  10 the Frobenius error is 0.041, compared to the theor-
etical one 0.043. For rank r  =  1 state of 8 atoms with N  =  105 samples, the Frobenius error 
was 0.017, while the theoretical prediction is 0.016. The simulations results for all ranks of 
n  =  5 and n  =  6 atoms are presented in panels (a) and respectively (b) of figure 3.

Operator norm risk. Unlike the case of the LS estimator, the error matrix of PLS does not 
approach a Wigner distribution. For this reason, obtaining the asymptotic operator-norm risk 
seems difficult. However, the following lower bound follows from equation (29)

√
N‖ρ̂PLS − ρr‖ � max(‖Ã‖, ‖C̃‖).

Due to the truncation, the matrix C̃ is positive and the largest eigenvalue is approximtely 
2
√

d − r(1 − ε). On the other hand, Ã is dominated by the term 2
√

d − rεIr  whose norm is 
2
√

d − rε. Since ε ≈ 1 for large d, the lower bound is 2
√

d − rε. This complements the non-
asymptotic upper bound of [36] which has rate O(

√
d). Moreover, the lower bound seems to 

be a good approximation to the actual risk. A simulation with a rank r  =  10 state of n  =  7 
atoms and N  =  106 samples gave an operator-norm error of 0.02 while the lower bound is 
0.01. For rank r  =  1 state of 8 atoms with N  =  105 samples, the operator-norm error was 0.12, 
while the lower bound is 0.08.

Trace-norm risk. As in the case of the norm-error, we could not derive the asymptotic expres-
sion of the trace-norm risk but we can formulate a lower bound based on the pinching inequality

√
N‖ρ̂PLS − ρr‖1 � ‖Ã‖1 + ‖C̃‖1.

A Acharya et alJ. Phys. A: Math. Theor. 52 (2019) 234001



25

Note that Ã = A − 2
√

d − rεIr, and the variance of the elements of A is of the order 1. 
Therefore, for r � d the shift 2

√
d − r dominates the eigenvalues of A and Ã is a negative 

matrix. In first approximation its norm-one is then 2r
√

d − rε. On the other hand, C̃ is positive 
and its trace can be approximated as

E‖C̃‖1 =
√

N(d − r)
∫ 2

√
d−r

N

q
(x − q)

N
2π(d − r)

√
4(d − r)

N
− x2 dx

=
4(d − r)3/2

π

∫ 1

ε

(y − ε)
√

1 − y2 dy

= 2r
√

d − rε

where in last step we used equation (28) with a  =  0. Therefore the lower bound to the trace-
norm error is 4r

√
d − rε. For the n  =  7 atoms state with r  =  10 the trace-norm error was 0.33 

while the lower bound is 0.21. For rank r  =  1 state of 8 atoms with N  =  105 samples, the 
operator-norm error was 0.24, while the lower bound is 0.16.

Bures risk. The Bures distance error can be expressed in terms of the blocks Ã, B̃, C̃  as follows

dB(ρ̂PLS, ρr) = 2
(

1 − Tr
(√√

ρrρ̂PLS
√
ρr

))
= 2

(
1 − 1√

r
Tr

(√
Irρ̂PLSIr

))

= 2
(

1 − 1√
r

Tr
(√

Ir/r + Ã/
√

N
))

= 2
(

1 − 1
r

Tr
(√

Ir + rÃ/
√

N
))

= − 1√
N

Tr(Ã) +
r

4N
Tr(Ã2) + o(N−1)

 (30)

where we used the Taylor expansion in the last step. The leading term of the Bures risk is then

− 1√
N

ETr(Ã) =
2r
√

d − r√
N

ε(r, d)

where we used the fact that the LS block A has centred distribution. The second order term is

r
4N

ETr(Ã2) =
r

4N
(E‖A‖2 + 4r(d − r)ε2)

=
r

4N

(
(r + 1)(r + 2)

d + 1
d + 2

− (r + 1)2

r
+ 4r(d − r)ε2

)
.

The simulation results for all ranks states of n  =  5 and n  =  6 atoms are presented panels (c) 
and respectively (d) of figure 3.

9. Comparative numerical simulations

In this section we detail the methodology and results of a general simulation study which com-
pares the performance of the estimators presented in the previous sections for a set of states 
and against several estimation criteria. The states we consider are rank-r states with a fixed 
spectrum of r equal eigenvalues of magnitude 1/r each, and have randomly generated eigen-
vectors. This choice is motivated by the fact that such states are arguably harder to estimate 
among rank-r states (in analogy to the fact that an unbiased coin is harder to estimate than a 
biased one. Additionally, having such a spectrum allows for a more consistent comparison of 
the estimators across several ranks.
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We generate the above mentioned states for 3 or 4 qubits, and for a particular ‘true state’ 
we simulate a dataset D of counts from which the state is to be reconstructed. The outcome 
statistics depend on a few variables that we may vary, namely the type of measurement design 
(random basis versus Pauli), the number of repetitions per settings m, and in the case of the 
random basis measurements the total number k of measured settings. This allows us to study 
the performance of the estimators across several different combinations of variables: types of 
states, ranks, measurement design, number of repetitions per setting m, the total number of 
settings k and the number of qubits n.

We will present plots of the estimated mean errors E [D(ρ̂, ρ)] of the estimators for the 
equal eigenvalues states. For each given rank r and number of qubits n, we generate a state 
with equal eigenvalues 

( 1
r , . . . , 1

r , 0, . . . , 0
)
 and random eigenbasis. Then for each choice of 

measurement design and values of k and m, the several estimates of the true state are evaluated. 
The error of each resulting estimate is computed using all the error functions listed in table 1, 
and the corresponding mean errors are estimated from 100 different runs of the experiment.

In order to make the results of the simulation study more accessible, we have made all plots 
for 3 and 4 atoms simulation available online via an interactive Rshiny application (https://
rudhacharya.shinyapps.io/plots/), while a selection is presented in the paper.

9.1. Squared Frobenius norm

Figures 4 and 5 show the (estimated) Frobenius risk (mean square error) for states 4 qubits 
measured with the Pauli and the random basis design, respectively. The states are chosen ran-
domly from the family of rank-r states with equal non-zero eigenvalues. In both cases we note 
that the Frobenius risk of the LS estimator has no significant dependence on the rank of the 
true state, and its performance is poor for small rank states. In contrast, the remaining estima-
tors all show a scaling of the Frobenius risk with the rank of the true state. We also note that 
the performance of several of the estimators matches well with the Fisher-predicted risk. This 
is remarkable as the latter (6) was defined for a rank-r parameterisation of states, while none 
of the estimators have any prior knowledge of the rank.

We further note that for relatively small values of N = m × k the TLS, TGLS, posLS, 
posGLS, ML estimators significantly better that LS and GLS at higher ranks, while the errors 
approach each other for larger N, see figures 4(a) and 5(a) versus 4(b) and 5(b). This reflects 

a) b)

Figure 4. The mean squared Frobenius error E
[
‖ρ̂− ρ‖2

2

]
 of the estimators for random 

4 qubit rank-r states of equal eigenvalues, with Pauli measurements. (a) n  =  4, k  =  81 
and m  =  100. (b) n  =  4, k  =  81 and m  =  1000.
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the fact that in the low N case the asymptotic regime has not been reached and constrained 
estimators have an advantage even for full rank states which lie in the interior of the parameter 
space. Indeed for an eigenvalue λ of order 1/d and relatively small values of N, the uncon-
strained estimates λ̂ will have a standard deviation of order 

√
d/N  which may be comparable 

or larger than the magnitude of the eigenvalues themselves. Therefore without the constraint of 
positivity such estimators may produce estimates with λ̂ < 0. In contrast, for the constrained 
estimators the positivity constraint provides additional information when the eigenvalues are 
small. For large values of N however, the uncertainty in the eigenvalues is very small and the 
Fisher risk acts as a lower bound for all of the estimators.

Across both the Pauli and the random measurement designs we note that the performance 
of the posGLS and the ML estimators is very similar, and for large m almost identical. This 
confirms our asymptotic analysis which shows that the posGLS and the ML estimators are 
equivalent in the limit of large m, see section 7.

9.2. Bures and Hellinger distance

As the Bures distance DB(ρ̂, ρ)2 is well defined only over density matrices, we plot the mean 
Bures errors only for the ML, TLS, TGLS, posLS , posGLS estimators. Figures 6 and 7 show 
the mean Bures errors for different sample sizes in the Pauli, and respectively random bases 
measurement design. For comparison, in figures 8 and 9 we also plot the corresponding aver-
age Hellinger errors DH(λ̂,λ)2, see table 1.

We note that the behaviour of the Hellinger errors is very similar to that of the Bures errors, 
with a better match for larger values of N. To give some intuition about this, we look at what 
happens in the case of qubits. The Bures distance between neighbouring qubit states can be 
approximated by the sum of Hellinger distance and a quadratic form in the parameters of the 
unitary connecting the eigenbases of the two states [4]

DB(ρ, ρ̂)2 ≈ DH(λ, λ̂)2 +
1
4

(1 − 2λ)(1 − 2λ̂)√
(1 − λ)(1 − λ̂) +

√
λλ̂

Φ2, (31)

where Φ is the angle between the Bloch vectors of ρ  and ρ̂ . In a non-adaptive measurement 
scenario such as those considered here, the Bloch vector parameters can be estimated at rate 
1/
√

N  which means that the second term on the right side of (31) is always of the order 1/N. 

a) b)

Figure 5. The mean squared Frobenius error E
[
‖ρ̂− ρ‖2

2

]
 of the estimators for 4 qubits 

rank-r states of equal eigenvalues with k  =  100 random bases and different repetition 
numbers. (a) n  =  4, k  =  100 and m  =  100. (b) n  =  4, k  =  100 and m  =  1000.
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a) b)

Figure 6. The mean Bures error E
[
DB(ρ̂, ρ)2

]
 of the estimators for random 4 qubits 

rank-r states of equal eigenvalues, with Pauli measurement design. (a) n  =  4, k  =  81 
and m  =  100. (b) n  =  4, k  =  81 and m  =  1000.

a) b)

Figure 7. The mean Bures error E
[
DB(ρ̂, ρ)2

]
 of the estimators for random rank-r 

states of equal eigenvalues, with random bases measurement design. (a) n  =  4, k  =  100 
and m  =  100. (b) n  =  4, k  =  100 and m  =  1000.

a) b)

Figure 8. The mean Hellinger error E
[
DH(λ̂,λ)2

]
 of the estimated eigenvalues λ̂ for 

random 4 qubits rank-r states of equal eigenvalues, for Pauli measurement design. (a) 

n  =  4, k  =  81 and m  =  100. (b) n  =  4, k  =  81 and m  =  1000.
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However, for states which are very pure (λ ≈ 0) the Hellinger component has the dominant 
contribution to the Bures distance, and is responsible for the ‘non-standard’ scaling of 1/

√
N  

in the minimax risk [4]. The simulation results indicate that a similar phenomenon may occur 
in higher dimensional systems. For full rank states, both the Bures and the Hellinger distance 
have a quadratic expansion, and in this sense a relation similar to (31) can be derived by split-
ting the Bures distance into quadratic contributions coming from changes in the eigenvalues 
and small basis rotations respectively, see also [60]. Alternatively, the block-matrix techniques 
used for analysing the Bures risk in section 8.1 can be extended to rank deficient states of 
arbitrary spectrum to show that the leading 1/

√
N  contribution comes from the Hellinger 

DH(λ, λ̂)2.
Another noticeable feature across both the Pauli and the random bases measurement design 

is that for large N the mean errors are seen to be larger for states of middling ranks than for the 
full rank states, see figures 6(b) and 7(b). This is however not true for smaller values of N, as 
shown in figures 6(a) and 7(a). More precisely, for large N we see a steep increase from pure 
states to low rank states, followed by an almost linear decrease down to the full rank state. 
A similar behaviour has been uncovered in the analysis of the PLS estimator for covariant 
measurements in section 8.1. There, we found that for large d and low rank r, the eigenval-
ues distribution of the error block C of the LS estimator converges to the Wigner distribu-
tion, which allows us to compute the leading orders of the Bures risk of the PLS estimator. 
Since the covariant measurement arises in the large m limit of the random basis measurement 
[3], it is therefore expected that the risks behave similarly in the two cases. Our simulations 
indicate that the mechanism governing the asymptotics of the Bures risk seems to be robust 
with respect to the details of the measurement; although the Pauli basis measurement is not 
expected to produce an LS estimator whose error matrix is Wigner distributed, the Bures and 
Hellinger risks have similar characteristics as those of the covariant measurement. These find-
ings are in line with those of [65], and are worthy of further theoretical investigation.

While the Bures risk for rank deficient states scales as 1/
√

N , for full rank states the Bures 
distance is locally quadratic, and standard asymptotic results imply that the convergence rate 
is in this case 1/N, see section 3.1. In general,

DB(ρθ , ρθ+δθ) = (δθ)TGB(θ)(δθ) + O(‖δθ‖2),

a) b)

Figure 9. The mean Hellinger error E
[
DH(λ̂,λ)2

]
 of the estimated eigenvalues λ̂ for 

random 4 qubits rank-r states of equal eigenvalues, for random bases measurement 

design. (a) n  =  4, k  =  100 and m  =  100. (b) n  =  4, k  =  100 and m  =  1000.
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with weight matrix GB(θ) = F(ρθ)/4, where F(ρθ) is the quantum Fisher information. For 
the maximally mixed state ρr=d, and the parametrisation (4), the latter has two uncorrelated 
blocks [3] corresponding to off-diagonal parameters

Fa,b = 2dδa,b, 1 � a, b � d2 − d

and respectively diagonal parameters

Fa,b = d(1 + δa,b), d2 − d � a, b � d2 − 1.

On the other hand, the classical average Fisher information for random basis measurements is 
given by I = F/(d + 1) [17]. Since the ML estimator is asymptotically normal with variance 
I(θ)−1/N, we have

NE
[
DB(ρ̂ML, ρ)2] → Tr(GBI−1) =

(d2 − 1)(d + 1)
4

.

a) b)

Figure 10. The mean trace-norm error E [‖ρ̂− ρ‖1] for Pauli bases measurements. 
Panels (a) and (b) show the risks for 4 qubits rank-r states of equal eigenvalues with 
different repetition numbers. (a) n  =  4, m  =  100. (b) n  =  4, m  =  1000.

Figure 11. The mean trace-norm error E [‖ρ̂− ρ‖1] for random bases measurements. 
Panels a) and b) show the risks for 4 qubits rank-r states of equal eigenvalues  
with different number of bases and repetition numbers. (a) n  =  4, k  =  100 and m  =  100. 
(b) n  =  4, k  =  200 and m  =  1000.
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For 3 qubits with N = 100 · 1000 samples, and 4 qubits with N = 100 · 1000, the asymptotic 
predictions for Bures errors are 0.0014 and 0.01 which match closely the simulations results 
[1].

9.3. Trace-norm distance

The risks for the trace-norm distance exhibit a similar behaviour to those of the Frobenius dis-
tance, as illustrated in figures 10 and 11. A noticeable feature is that all constrained estimators 
have close risks for large sample sizes in both the Pauli and the random bases setting.

10. Conclusions

In this paper we studied theoretical an practical aspects of quantum tomography methods. The 
unifying theme is that each estimator can be seen as a projection of the data onto a param-
eter space with respect to an appropriate metric. We considered estimators without positiv-
ity constraints (unconstrained maximum likelihood, least squares, generalised least squares) 
and with positivity constraints (maximum likelihood, positive least squares, thresholded least 
squares and projected least squares), and investigated the relationships between different esti-
mators. While no estimator makes use of the state’s rank (which is assumed to be unknown) 
the constrained estimators have significantly lower errors than the unconstrained estimators, 
for low rank states. To better understand this behaviour we derived new asymptotic error rates 
for the least squares estimator and for the projected least squares estimators, for a class of 
given rank states and covariant measurements. These results capture the exact rate dependence 
on rank and dimension and complement non-asymptotic concentration bounds of [17, 36, 71], 
showing that PLS has strong optimality properties; for instance the leading contribution to the 
Frobenius risk is 6rd which is ‘almost optimal’, in that it is only 3 times larger than the mini-
max lower bound established in [17], which assumes that the rank is known. Our analysis has 
uncovered an interesting behaviour of the Bures error, which increases with respect to rank 
for small ranks and then decreases towards full rank states. The extensive simulations study 
shows that this behaviour (as well as the monotonic increase of other errors) is robust with 
respect to the measurement design.

Computationally, maximum likelihood and positive least squares involve an optim isation 
over states and are significantly slower than projected least squares which only requires 
the diagonalisation of the least squares matrix followed by a simple truncation procedure. 
Our results confirm and strengthen those of [36] and show that projected least squares is an 
attractive alternative to maximum likelihood, which is routinely used in practice. Additional 
improvements can be achieved by using generalised least squares as starting point, in a two 
steps procedure.

An interesting and practically relevant open question is whether any of the ‘fast’ estima-
tors analysed here is statistically ‘optimal’ for more realistic measurements such as the Pauli 
bases. More generally, one can ask whether these methods can be adapted to non-informa-
tionally complete measurement scenarios, and other physically motivated lower dimensional 
statistical models.
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Appendix

A.1. Fisher information for GLS

Here we prove the equality I(ρ|S ) = IGLS stated in section 5.1. Note that by definition

I(ρ|S ) =
1
k

X̃∗Diag( p−1
ρ )X̃ =

1
k

J∗X∗Diag( p−1
ρ )XJ

and

IGLS =
1
k

X̃TΩ̃−1X̃ =
1
k

J∗X∗V(V∗ΩV)−1V∗XJ. (A.1)

We will show that

V(V∗ΩV)−1V∗ = Diag( p−1
ρ ) + c|1〉〈1|+ d(|1〉〈 p−1

ρ |+ |p−1
ρ 〉〈1|) (A.2)

where c, d are some constants and |p−1
ρ 〉 ∈ Ck·d is the vector whose entries are the inverses of 

measurement probabilities. Indeed, since J∗X∗|1〉 = 0, equation (A.2) implies (A.1).
Now V(V∗ΩV)−1V∗ is the pseudo-inverse of Ω and since V∗|1〉 = 0, it satisfies

V(V∗ΩV)−1V∗ = (Ω− |1〉〈1|)−1 + |1〉〈1|.

To compute the inverse on the right side we use the definition (17) of Ω and apply the 
Sherman–Morrison formula [67]

(A − |x〉〈x|)−1 = A−1 +
A−1|x〉〈x|A−1

1 − 〈x|A−1|x〉
.

This gives

(Ω− |1〉〈1|)−1 = (Diag( pρ)− |pρ〉〈 pρ| − |1〉〈1|)−1
= B−1 +

B−1|pρ〉〈 pρ|B−1

1 − 〈 pρ|B−1|pρ〉
 (A.3)

where B = Diag( pρ)− |1〉〈1|. By applying the Sherman–Morrison formula again we get

B−1 = Diag( p−1
ρ ) +

|p−1
ρ 〉〈 p−1

ρ |
1 − 〈1|Diag( p−1

ρ )|1〉
= Diag( p−1

ρ ) +
|p−1

ρ 〉〈 p−1
ρ |

1 − q

where q =
∑

o,s p−1
ρ (o|s). Moreover,

B−1|pρ〉 = |1〉+ kd
1 − q

|p−1
ρ 〉, 〈 pρ|B−1|pρ〉 = 1 +

(kd)2

1 − q
.

By plugging the last three expresssions into (A.3) we get

(Ω− |1〉〈1|)−1 = Diag( p−1
ρ ) +

|p−1
ρ 〉〈 p−1

ρ |
1 − q

− 1 − q
(kd)2

(
|1〉〈1|+ kd

1 − q
(|1〉〈 p−1

ρ |+ |p−1
ρ 〉〈1|) + (kd)2

(1 − q)2 |p
−1
ρ 〉〈 p−1

ρ |
)

= Diag( p−1
ρ ) + c|1〉〈1|+ d|1〉〈 p−1

ρ |+ d̄|p−1
ρ 〉〈1|

which concludes the proof of (A.2) and of I(ρ|S ) = IGLS.
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A.2. Implementations of estimators

Here we list certain practical details about the implementation of the estimators described in 
the paper. In particular we discuss how we compute the covariance matrix estimator ˆ̃Ω used in 
the GLS, TGLS, posGLS estimators, and we also describe the cross-validation procedure we 
use to select a constant C for the thresholded in the TLS and TGLS estimators.

 1.  The covariance matrix estimator ˆ̃Ω for the generalised estimators (GLS, TGLS and 
posGLS) is computed as follows. Given a dataset D, we first obtain the LS estimate ρ̂LS 
and then construct the TLS estimate (see algorithm 1) with threshold ν = 0. From this 
we obtain an estimate of the probabilities p̂(o|s) = Tr [ρ̂TLSPs

o]. The matrix ˆ̃Ω is then 
constructed from these estimated probabilities via (17). The generalised estimates (GLS/
TGLS/posGLS) are then evaluated using ˆ̃Ω and the same dataset D.

 2.  As mentioned briefly in section  6, the threshold for the TLS and TGLS estimators is 
selected using cross-validation. We describe this cross-validation method below [17].

 •  For a particular number of repetitions per setting m, we simulate data in 5 independent 
batches m/5 repetitions per setting in each batch and we denote the corresponding 

datasets as D1, . . . ,D5. The total dataset of counts is the sum D =
∑5

i=1 Di .
 •  We choose a vector of constants C forming a mesh over the interval [0, 1]. For each 

value of C, and for each j ∈ {1, . . . , 5} we compute the following estimators. We hold 

out the dataset Dj, and compute the TLS/TGLS estimate ρ̂−j
T(G)LS(C) for the dataset 

D−j =
∑

i �=j Di, with threshold ν = C
√

4
m log 2n+1, cf. [17]. For each Dj the LS esti-

mate ρ̂ j
LS is also evaluated.

 •  For all values of C, the empirical discrepancy is evaluated for a choice of error function 
D(ρ̂, ρ)

CVD(C) =
1
5

5∑
i=1

D
(
ρ̂−j

T(G)LS(C), ρ̂ j
LS

)
.

 •  This function CV(C) is then minimised over all values C

ĈD = argmin
C

CVD(C)

  this gives an estimate for the holding constant, which is then used to evaluate the TLS or 

the TGLS estimators with threshold ν = ĈD

√
4
m log 2n+1 .

Notice that the cross-validation procedure picks different constants for different choices of the 
error function. An important caveat here is that the Bures distance is not defined for the LS 
estimates ρ̂ j

LS, and therefore the procedure above cannot apply. Instead in the simulations we 
estimate the thresholding constant ĈDB using the ML estimate as

ĈDB = argmin
C

DB(ρ̂T(G)LS, ρ̂ML)
2.
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