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Part 1
“Optimal” statistical data analysis of loophole-free experiments



I present novel statistical analyses of the data of the famous Bell-inequality experiments 
of 2015 and 2016: Delft, NIST, Vienna and Munich. Every statistical analysis relies on 
statistical assumptions. I’ll make the traditional, but questionable, i.i.d. assumptions.  
They justify a novel (?) analysis which is both simple and (close to) optimal. 

It enables us to fairly compare the results of the two main types of experiments: NIST 
and Vienna CH-Eberhard “one-channel” experiment with settings and state chosen to 
optimise the handling of the detection loophole (detector efficiency > 66.7%); Delft and 
Munich CHSH “two channel” experiments based on entanglement swapping, with the 
state and settings which achieve the Tsirelson bound (detector efficiency ≈ 100%). 

One cannot say which type of experiment is better without agreeing on how to 
compromise between the desires to obtain high statistical significance and high physical 
significance. Moreover, robustness to deviations from traditional assumptions is also an 
issue

Yet another statistical analysis of the data of the  
‘loophole free’ experiments of 2015



The local polytope
• The local polytope of a 2x2x2 experiment has exactly 8 

facets, A. Fine (1982).


• They are the 8 one-sided CHSH inequalities


• They are necessary and sufficient for LR.                               
There are no other 2x2x2 inequalities!


• CH, Eberhard, J are therefore *just* different ways                    
to write CHSH !


• Yet with experimental data they give different results !?

The diagram should be imagined as drawn on a plane in a higher dimensional space  
The experimental data is a point close to, but not on, the plane



VIENNA data
Settings

11 12 21 22

Outcomes

dd 141.439 146.831 158.338 8.392
dn 73.391 67.941 425.067 576.445
nd 76.224 326.768 58.742 463.985
nn 875.392.736 874.976.534 875.239.860 874.651.457

Totals 875.683.790 875.518.074 875.882.007 875.700.279

Settings
11 12 21 22

Outcomes

dd 162 168 181 10
dn 84 78 485 658
nd 87 373 67 530
nn 999.668 999.381 999.267 998.802

Totals 1.000.000 1.000.000 1.000.000 1.000.000

Normaliser Normalised
1.000.000 1.000.000 1.000.000 1.000.000 1.000.000

“d” = detection, “n” = no detection

Raw counts

Normalised counts

“One channel” experiment



*Clocked* experiment: outcomes on each side are “+”,”–“, or “0”

“Two channel” experiment (CHSH - Aspect, Weihs, …, Delft, Munich)



“One channel” experiment (Clauser-Horne, Eberhard, Vienna, NIST)

Outcomes on each side are “d” corresponding to “+” and “n” corresponding to “–” or “0”



S = 2 + 4 J 
J = (S – 2)/4

• The experiments in Vienna and at NIST (Boulder, Colorado) do *not* use 
the singlet state


• They exploit the fact that QM *can* violate CHSH from 66% detector 
efficiency


• Clauser-Horne (1974) 


• Philippe H. Eberhard (1993)


• Jan-Åke Larsson and Jason Semitecolos (2001)


• Peter Bierhorst (2016), “Geometric decompositions of Bell 
polytopes with practical applications”, Journal of Physics A: 
Mathematical and Theoretical

Peter Bierhorst

Philippe Eberhard

Proof !!! 
(a very different one)

Experimental mathematics !!!

Proof !!!

Jan-Åke Larsson
Jason Semitecolos
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TABLE II. Extreme conditions for a loophole-free exper-
iment.

100
50—

ri (Fo)
66.7
70
75
80
85
90
95
100

( (%)
0.00
0.02
0.31
1.10
2.48
4.50
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r
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0.465
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0.741
0.871
1.000

cu (deg)
0.0
3.4
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ng —n2 (deg)
2.2
21.4
32.0
37.9
41.5
43.6
44.7
45.0

20—
10

2
1

0.5

ca 0.2
CO

0.01
0.05—

~ 0

IQo~

1
2/1+ rz (31)

A computer program was written to compute the de-
terminant of 8 of Eq. (27), for any given value of the
efficiency rl. The program varied ni —n2, Pi —P2, and (
to find the maximum value of the background ( that kept
the determinant negative. For rl ( s, there is none. For
7f ) 3 there are negative values of the determinant for
small values of (, increasing from 0 to as rl increases

2from s to 1. The maximum value of ( as a function of rl
is gi.. en in Table II. It is plotted in Fig. 1, as well as the
maximum affordable value of ( if the conditions are not
the optimum ones, but those of Eqs. (1)—(5) instead.
The program also recorded the values of aq —o,2 and

Pi —Pq and computed the relevant eigenvector g, i.e. , the
conditions that make Jg of Eq. (26) equal to zero for the
maximum g. There were degeneracies in the solutions.
The two angles ni —n2 and Pi —P2 could always be
taken to be the same, or the opposite of one another, as
can be understood from an analytic study of Eqs. (10)
and (27). The vector @ turned out to be of the form

0.02—
I I i I I I

65 70 75 80 85 90 95 100
Efficiency q (%)

FIG. 1. Maximum a8'ordable background vs efBciency: ~,
optimized conditions; o, conditions of Eqs. (1)—(5).

pi = M/2
respectively, and using the values of r, u, and o.q —o.2
(—:Pi —P2) given in Table II. Note that, for rl = 1, the
vector Qo reduces to the value given by Eq. (1), and the
angles ni, n2, Pi, and Pq reduce to the values given by
Eqs. (2)—(5).
In conclusion, it is possible to perform a loophole-free

experiment if the eKciency g of the photon counters is
higher than 66.7' and the background is less than the
value indicated on Fig. 1 for that value of g. For small
background levels, it is possible to perform a loophole-
free EPR experiment with a less than 82.8% counter ef-
B.ciency.

which can be reached in the two-photon experiment con-
sidered in this paper by first superposing states

I
~I &

and
I I ~& in unequal amounts,

(32)

ni = (~/2) —90', (33)

then rotating the planes of polarization of a and of b in
setup (ni, Pi) by the angles
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Theoretical no-signalling probabilities, × 4 // Observed relative frequencies, × 10^6
Bob Setting 1 Bob Setting 2

Outcomes                 “ d ” “ n “ “ d ” “ n “

Alice Setting 1
“ d ” 1 + a1 + b1 + z11 1 + a1 – b1 – z11 2 + 2 a1 1 + a1 + b2 + z12 1 + a1 – b2 – z12 2 + 2 a1
“ n “ 1 – a1 + b1 – z11 1 – a1 – b1 + z11 2 – 2 a1 1 – a1 + b2 – z12 1 – a1 – b2 + z12 2 – 2 a1

2 + 2 b1 2 – 2 b1 4 2 + 2 b2 2 – 2 b2 4

Alice Setting 2
“ d ” 1 + a2 + b1 + z21 1 + a2 – b1 – z21 2 + 2 a2 1 + a2 + b2 + z22 1 + a2 – b2 – z22 2 + 2 a2
“ n “ 1 – a2 + b1 – z21 1 – a2 – b1 + z21 2 – 2 a2 1 – a2 + b2 – z22 1 – a2 – b2 + z22 2 – 2 a2

2 + 2 b1 2 – 2 b1 4 2 + 2 b2 2 – 2 b2 4

162 84 168 78
87 999668 373 999381

10 ^ 6 * 
VIENNA

181 485 10 658
67 999267 530 998802

J =   27 S = CHSH =   2,000108

4 J = (1 + a1 + b1 + z11) 
          – (1 – a2 + b1 – z21) 
          – (1 + a1 – b2 – z12) 
          – (1 + a2 + b2 + z22)
       = – 2 + (z11 + z21 + z12 – z22)

4 rho 11
     = (2 + 2 z11) – (2 – 2 z11) 
     = 4 z11

4 S = 4 CHSH 
        = 4 (z11 + z12 + z21 – z22)

S = z11 + z12 + z21 – z22 
    = 2 + 4 J

J = (S - 2) / 4
VIENNA



4 rho 11 = (2 + 2 z11) – (2 – 2 z11) = 4 z11

4 S = 4 CHSH = 4 (z11 + z12 + z21 – z22)

4 J = (1 + a1 + b1 + z11) 
     – (1 – a2 + b1 – z21) 
     – (1 + a1 – b2 – z12) 
     – (1 + a2 + b2 + z22)
= – 2 + (z11 + z21 + z12 – z22)

S = z11 + z12 + z21 – z22 = 2 + 4 J
J = (S - 2) / 4

Estimation, standard errors, p-values 

Routine MLE (Sir R.A. Fisher 1921…) 

Log Lik = N(dd|11)log(1 + a1 +b1 +z11) +  
                                                 … [15 more terms] 

Parameters: a1 a2 b1 b2 z11 z12 z21 z22 

Get mle of z11 + z21 + z12 – z22 

Get estimated standard error of z11 + z21 + z12 – z22 
from Fisher information matrix 

Asymptotically optimal 

[Linear constraints?]
Modern approach: 

algebraic geometry, computer algebra

Poor man’s solution: 
two stage, generalised, least squares 
Asymptotically just as good as MLE!

Also possible: amusing hybrid solutions 
*Also* asymptotically optimal



A standard Bell-type experiment with

I two parties,

I two measurement settings per party,

I two possible outcomes per measurement setting per party,

generates a vector of 16 = 4 ⇥ 4 numbers of outcome combinations per setting

combination.

This applies both to the CHSH case (assuming there are no “non detections”) and to the

Eberhard case (after merging two each of three possible outcomes per measurement).

The four sets of four counts can be thought of as four observations each of a

multinomially distributed vector over four categories.

Next ≈6 slides: 
Statistical theory

This can be applied to the two-channel experiments with no “no-shows”,  
and to the one-channel experiments,  

and to the two-channel experiments with “-“ and “no-show” combined 



Write Xij for the number of times outcome combination j was observed, when setting

combination i was in force.

Let ni be the total number of trials with the ith setting combination.

The four random vectors ~Xi = (Xi1,Xi2,Xi3,Xi4), i = 1, 2, 3, 4,

are independent each with a Multinomial(ni ; ~pi ) distribution,

where ~pi = (pi1, pi2, pi3, pi4).



The 16 probabilities pij are estimated by relative frequencies bpij = Xij/ni and have the

following variances and covariances:

var(bpij) = pij(1 � pij)/ni ,

cov(bpij , bpij 0) = �pijpij 0/ni for j 6= j 0,

cov(bpij , bpi 0j 0) = 0 for i 6= i 0.

The variances and covariances can be arranged in a

16 ⇥ 16 block diagonal matrix ⌃ of four 4 ⇥ 4 diagonal blocks of non-zero elements.

Arrange the 16 estimated probabilities and their true values correspondingly in (column)

vectors of length 16.

I will denote these simply by bp and p respectively.

We have E(bp) = p 2 R16
and cov(bp) = ⌃ 2 R16⇥16

.

can be which



We are interested in the value of one particular linear combination of the pij , let us

denote it by ✓ = a>p.

We know that four other particular linear combinations are identically equal to zero: the

so-called no-signalling conditions.

This can be expressed as B>p = 0 where the 16 ⇥ 4 matrix B contains, as its four

columns, the coefficients of the four linear combinations.

We can sensibly estimate ✓ by b✓ = a>bp � c>B>bp where c is any vector of dimension 4.

For whatever choice we make, Ebp = p.

We propose to choose c so as to minimise the variance of the estimator. This

minimization problem is a well-known problem from statistics and linear algebra (“least

squares”).

𝜃 𝜃



Define

var(a>bp) = a>⌃a = ⌃aa,

cov(a>bp,B>bp) = a>⌃B = ⌃aB ,

var(B>bp) = B>⌃B = ⌃BB ;

then the optimal choice for c is

copt = ⌃aB⌃
�1
BB

leading to the optimal variance

⌃aa � ⌃aB⌃
�1
BB⌃Ba.

:

:

:

:



In the experimental situation we do not know p in advance, hence also do not know ⌃
in advance. However we can estimate it in the obvious way (“plug-in”) and for ni ! 1
we will have, just as in the previous section, an asymptotic normal distribution for our

“approximately best” Bell inequality estimate, with an asymptotic variance which can be

estimated by natural “plug-in” procedure, leading again to asymptotic confidence

intervals, estimated standard errors, and so on.

The asymptotic width of these confidence intervals are the smallest possible and

correspondingly the number of standard errors deviation from “local realism” the largest

possible.

The fact that c is not known in advance does not harm these results.

“two stage (generalised) least squares”

this is



table11 <- matrix(c(141439,   73391,   76224,   875392736),  
    2, 2, byrow = TRUE,  
    dimnames = list(Alice = c("d", "n"), Bob = c("d", "n")))  
table12 <- matrix(c(146831,   67941,   326768,   874976534),  
    2, 2, byrow = TRUE,  
    dimnames = list(Alice = c("d", "n"), Bob = c("d", "n")))  
table21 <- matrix(c(158338,   425067,   58742,   875239860),  
    2, 2, byrow = TRUE,  
    dimnames = list(Alice = c("d", "n"), Bob = c("d", "n")))     
table22 <- matrix(c(8392,   576445,   463985,   874651457),  
    2, 2, byrow = TRUE,  
    dimnames = list(X = c("d", "n"), Y = c("d", “n")))

Next ≈10 slides: 
Work in progress: the practice

BobAlice



 
table11 

##      Bob  
## Alice      d         n  
##     d 141439     73391  
##     n  76224 875392736 

table12 

##      Bob  
## Alice      d         n  
##     d 146831     67941  
##     n 326768 874976534 

table21 

##      Bob  
## Alice      d         n  
##     d 158338    425067  
##     n  58742 875239860 

table22 

##    Y  
## X        d         n  
##   d   8392    576445  
##   n 463985 874651457 

tables <- cbind(as.vector(t(table11)), as.vector(t(table12)),  
                as.vector(t(table21)), as.vector(t(table22)))  
tables 

##           [,1]      [,2]      [,3]      [,4] 
## [1,]    141439    146831    158338      8392 
## [2,]     73391     67941    425067    576445 
## [3,]     76224    326768     58742    463985 
## [4,] 875392736 874976534 875239860 874651457 

dimnames(tables) = list(outcomes = c("dd", "dn", "nd", "nn"),  
                      settings = c(11, 12, 21, 22))

table22

Alice
Bob



##    Y  
## X        d         n  
##   d   8392    576445  
##   n 463985 874651457 

tables <- cbind(as.vector(t(table11)), as.vector(t(table12)),  
                as.vector(t(table21)), as.vector(t(table22)))  
tables 

##           [,1]      [,2]      [,3]      [,4] 
## [1,]    141439    146831    158338      8392 
## [2,]     73391     67941    425067    576445 
## [3,]     76224    326768     58742    463985 
## [4,] 875392736 874976534 875239860 874651457 

dimnames(tables) = list(outcomes = c("dd", "dn", "nd", "nn"),  
                      settings = c(11, 12, 21, 22))



 
tables 

##         settings  
## outcomes        11        12        21        22 
##       dd    141439    146831    158338      8392 
##       dn     73391     67941    425067    576445 
##       nd     76224    326768     58742    463985 
##       nn 875392736 874976534 875239860 874651457 

Ns <- apply(tables, 2, sum)  
Ns 

##        11        12        21        22  
## 875683790 875518074 875882007 875700279 

rawProbsMat <- tables / outer(rep(1,4), Ns)  
rawProbsMat 

##         settings  
## outcomes           11           12           21           22 
##       dd 1.615183e-04 1.677076e-04 1.807755e-04 9.583188e-06 
##       dn 8.380993e-05 7.760091e-05 4.853017e-04 6.582675e-04 
##       nd 8.704512e-05 3.732282e-04 6.706611e-05 5.298445e-04 
##       nn 9.996676e-01 9.993815e-01 9.992669e-01 9.988023e-01 



VecNames <- as.vector(t(outer(colnames(rawProbsMat),  
                              rownames(rawProbsMat), paste, sep = "")))  
VecNames 

##  [1] "11dd" "11dn" "11nd" "11nn" "12dd" "12dn" "12nd" "12nn" "21dd" "21dn" 
## [11] "21nd" "21nn" "22dd" "22dn" "22nd" "22nn" 

rawProbsVec <- as.vector(rawProbsMat)  
names(rawProbsVec) <- VecNames  
VecNames 

##  [1] "11dd" "11dn" "11nd" "11nn" "12dd" "12dn" "12nd" "12nn" "21dd" "21dn" 
## [11] "21nd" "21nn" "22dd" "22dn" "22nd" “22nn" 

rawProbsVec 

##         11dd         11dn         11nd         11nn         12dd  
## 1.615183e-04 8.380993e-05 8.704512e-05 9.996676e-01 1.677076e-04  
##         12dn         12nd         12nn         21dd         21dn  
## 7.760091e-05 3.732282e-04 9.993815e-01 1.807755e-04 4.853017e-04  
##         21nd         21nn         22dd         22dn         22nd  
## 6.706611e-05 9.992669e-01 9.583188e-06 6.582675e-04 5.298445e-04  
##         22nn  
## 9.988023e-01 



Aplus <- c(1, 1, 0, 0)  
Aminus <- - Aplus  
Bplus <- c(1, 0, 1, 0)  
Bminus <- - Bplus  
zero <- c(0, 0, 0, 0)  
NSa1 <- c(Aplus, Aminus, zero, zero)  
NSa2 <- c(zero, zero, Aplus, Aminus)  
NSb1 <- c(Bplus, zero, Bminus, zero)  
NSb2 <- c(zero, Bplus, zero, Bminus)  
NS <- cbind(NSa1 = NSa1, NSa2 = NSa2, NSb1 = NSb1, NSb2 = NSb2)  
rownames(NS) <- VecNames



 
NS 

##      NSa1 NSa2 NSb1 NSb2  
## 11dd    1    0    1    0  
## 11dn    1    0    0    0  
## 11nd    0    0    1    0  
## 11nn    0    0    0    0  
## 12dd   -1    0    0    1  
## 12dn   -1    0    0    0  
## 12nd    0    0    0    1  
## 12nn    0    0    0    0  
## 21dd    0    1   -1    0  
## 21dn    0    1    0    0  
## 21nd    0    0   -1    0  
## 21nn    0    0    0    0  
## 22dd    0   -1    0   -1  
## 22dn    0   -1    0    0  
## 22nd    0    0    0   -1  
## 22nn    0    0    0    0



cov11 <- diag(rawProbsMat[ , "11"]) - outer(rawProbsMat[ , "11"], rawProbsMat[ , "11"])  
cov12 <- diag(rawProbsMat[ , "12"]) - outer(rawProbsMat[ , "12"], rawProbsMat[ , "12"])  
cov21 <- diag(rawProbsMat[ , "21"]) - outer(rawProbsMat[ , "21"], rawProbsMat[ , "21"])  
cov22 <- diag(rawProbsMat[ , "22"]) - outer(rawProbsMat[ , "22"], rawProbsMat[ , "22"])  
Cov <- matrix(0, 16, 16)  
rownames(Cov) <- VecNames  
colnames(Cov) <- VecNames  
Cov[1:4, 1:4] <- cov11/Ns["11"]  
Cov[5:8, 5:8] <- cov12/Ns["12"]  
Cov[9:12, 9:12] <- cov21/Ns["21"]  
Cov[13:16, 13:16] <- cov22/Ns["22"]  
 
J <- c(c(1, 0, 0 ,0), - c(0, 1, 0 ,0), - c(0, 0, 1, 0), - c(1, 0, 0, 0))  
names(J) <- VecNames  
sum(J * rawProbsVec) 

## [1] 7.26814e-06 

varJ <- t(J) %*% Cov %*% J  
covNN <- t(NS) %*% Cov %*% NS  
covJN <- t(J) %*% Cov %*% NS  
covNJ <- t(covJN)  
 



## Estimated variance of optimal test based on J 
varJ - covJN %*% solve(covNN) %*% covNJ 

##              [,1]  
## [1,] 1.594636e-13 

## Estimated variance of Eberhard's J  
varJ 

##              [,1]  
## [1,] 3.605539e-13 

sqrt(varJ / (varJ - covJN %*% solve(covNN) %*% covNJ)) 

##          [,1]  
## [1,] 1.503676 

covJN %*% solve(covNN) 

##          NSa1       NSa2      NSb1       NSb2 
## [1,] 0.395483 0.05436871 0.3516065 0.06982674 

Jopt <- J - covJN %*% solve(covNN) %*% t(NS)

> J <- 0.00000726814 
> J 
[1] 7.26814e-06 
> varJ <- 3.605539e-13 
> J / sqrt(varJ) 
[1] 12.10426 
> pnorm(- J / sqrt(varJ)) 
[1] 5.013575e-34



 
Jopt 

##           11dd      11dn       11nd 11nn      12dd      12dn        12nd 
## [1,] 0.2529105 -0.395483 -0.3516065    0 0.3256562 -0.604517 -0.06982674 
##      12nn      21dd        21dn       21nd 21nn       22dd       22dn 
## [1,]    0 0.2972378 -0.05436871 -0.6483935    0 -0.8758045 0.05436871 
##            22nd 22nn  
## [1,] 0.06982674    0



sum(J * rawProbsVec) 

## [1] 7.26814e-06 

sum(Jopt * rawProbsVec) 

## [1] 6.997615e-06 

varJ / (varJ - covJN %*% solve(covNN) %*% covNJ) 

##          [,1]  
## [1,] 2.261042 

(varJ - covJN %*% solve(covNN) %*% covNJ) / varJ 

##          [,1]  
## [1,] 0.442274 

sqrt( (varJ - covJN %*% solve(covNN) %*% covNJ) / varJ ) 

##           [,1]  
## [1,] 0.6650368

> Jhatopt <- 7.26814e-06 
> varJhatopt <- varJ/2.261042 
> Jhatopt / sqrt(varJhatopt) 
[1] 18.20088 
> pnorm(- Jhatopt / sqrt(varJhatopt)) 
[1] 2.539047e-74


