Advanced Statistical Computing
Week 6: Numerical Integration, Convex Optimization

Aad van der Vaart

Fall 2012
Numerical Integration
Convex Optimization
Linear programming
Quadratic programming
Numerical Integration
For a known function f we wish to find a good approximation to

$$
\int_{a}^{b} f(x) \, dx.
$$

Stochastic optimization, possibly by *importance sampling*, is often easy to implement, but has the disadvantage that the error is random.

Numerical integration is deterministic, and often comes with an error estimate.

- Trapezium rule
- Simpson’s rule
- Gaussian quadrature
- ... many refinements, variants, acceleration methods,....
For $x_0 = a, x_1 = a + h, x_2 = a + 2h, \ldots, x_n = a + nh = b$:

$$\int_a^b f(x) \, dx \approx h \left(\frac{1}{2} f(a) + f(x_1) + f(x_2) \cdots + f(x_{n-1}) + f(b)/2 \right).$$

```r
> f=function(u) -sin(1+u^2)^2*u^2/(0.5+u^3)-0.2*u^2+u+0.2
> u=seq(0,1,by=0.25); n=length(u)
> 0.25*(f(u[1])/2+sum(f(u[-c(1,n)]))+f(u[n])/2)
[1] 0.2966339
> for (n in c(10,100, 1000,10000, 100000,1000000)) {
+   u=seq(0,1,by=1/n)
+   print((1/n)*(f(u[1])/2+sum(f(u[-c(1,n)]))+f(u[n])/2))
+ }
[1] 0.3005307
[1] 0.2934621
[1] 0.2933787
[1] 0.2933779
[1] 0.2933778
[1] 0.2933778
```
Simpson’s rule

For \(x_0 = a, x_1 = a + h, x_2 = a + 2h, \ldots, x_{2n} = a + 2nh = b, \):

\[
\int_a^b f(x) \, dx \approx \frac{h}{3} \left(f(a) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \cdots + 4f(x_{2n-1}) + f(b) \right).
\]

```r
> f=function(u) -sin(1+u^2)^2*u^2/(0.5+u^3)-0.2*u^2+u+0.2
> u=seq(0,1,by=0.25); n=length(u)
> 0.25/6*(f(u[1])+f(u[n])+4*sum(f((u[-n]+u[-1])/2))+2*sum(f(u[-c(1,n)])))
[1] 0.2933571
> for (n in c(10,100, 1000,10000, 100000,1000000)){u=seq(0,1,by=1/n)
+ print(1/(n * 6) * (f(u[1])+f(u[n])+4*sum(f((u[-n]+u[-1])/2))+2*sum(f(u[-c(1,n)])))))
[1] 0.3005023
[1] 0.2934574
[1] 0.2933786
[1] 0.2933779
[1] 0.2933778
[1] 0.2933778
```
Gauss quadrature also gives an approximation of the form

\[\int_{a}^{b} f(x) \, dx \approx \sum_{i=1}^{n} v_i f(x_i). \]

However, the \(x_i \) are not a regular grid, but zeros of the \(n \)th Hermite polynomial. The weights \(v_i \) are chosen to make the approximation exact for all \(f \) such that \(f(x)e^{x^2} \) is a polynomial of degree \(\leq 2n - 1 \).

The \texttt{R} function \texttt{integrate} implements a variant, \textit{Gauss-Kronrod}, for which the points \(x_i \) for different \(n \) are nested.

\begin{verbatim}
> f=function(u) -sin(1+u^2)^2*u^2/(0.5+u^3)-0.2*u^2+u+0.2
> integrate(f,0,1)
0.2933778 with absolute error < 2.5e-11
\end{verbatim}
Convex Optimization
Convex domains and functions

A subset $\Omega \subset \mathbb{R}^n$ is convex if $\lambda x + (1 - \lambda)y \in \Omega$ whenever $x, y \in \Omega$ and $0 \leq \lambda \leq 1$.

A function $f: \Omega \to \mathbb{R}$ is convex if the area above its graph is convex, or more technically

$$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y), \quad \forall x, y \in \Omega.$$

A function is strictly convex if the inequality is strict.

EXAMPLES: $x \mapsto x, x \mapsto x^2, x \mapsto -\log x, (x, y) \mapsto x^2 + y^2, x \mapsto x^T Q x$ for $Q \succeq 0$.

[A twice continuously differentiable function is convex iff the Hessian $D^2 f$ is nonnegative-definite.]
THEOREM
If \(f \) is convex with a \textit{local} minimum at \(x_0 \), then \(f \) has a \textit{global} minimum at \(x_0 \). Furthermore, the set of points of minimum is convex, and consists of at most one point if \(f \) is strictly convex.

CONSEQUENCE
Convex criterium functions are nice for \textit{minimization}.
Optimizing a convex function: local is global

THEOREM

If f is convex with a *local* minimum at x_0, then f has a *global* minimum at x_0. Furthermore, the set of points of minimum is convex, and consists of at most one point if f is strictly convex.

CONSEQUENCE

Convex criterium functions are nice for *minimization*.

PROOF

If $f(x) < f(x_0)$, then $f(\lambda x + (1 - \lambda)x_0) \leq \lambda f(x) + (1 - \lambda)f(x_0) < f(x_0)$, for any $0 \leq \lambda \leq 1$. But for $\lambda \approx 0$ the point $\lambda x + (1 - \lambda)x_0$ is near x_0, contradicting that x_0 is a local minimum.

[More precise statement: if $f: \Omega \to \mathbb{R}$ is convex on the convex domain Ω and $f(x_0) \leq f(x)$ for every $x \in \Omega$ with $\|x - x_0\| < r$ for some $r > 0$, then $f(x_0) \leq f(x)$ for all $x \in \Omega$.]
Example — sparsity

If in linear regression $Y = X \beta + e$ it is known that many β_i are zero, then it is reasonable to estimate β not by OLS, but by

$$\hat{\beta} = \arg\min_{\beta} \left[\|Y - X\beta\|^2 + \lambda \left(\#(i: \beta_i \neq 0) \right) \right]. \quad (1)$$

Unfortunately, this is not convex in β and difficult to compute in high dimensions. An alternative is

$$\arg\min_{\beta} \left[\|Y - X\beta\|^2 + \lambda \sum_{i=1}^{p} |\beta_i|^\gamma \right]. \quad (2)$$

For $\gamma \downarrow 0$ this approaches (1). For $\gamma \geq 1$ this is convex.

[For $\lambda = 2\sigma^2$ criterion (1) is a version of AIC. For $\gamma = 1$ criterion (2) is the LASSO; for $\gamma = 2$ ridge regression.]
For given convex $f, g_1, \ldots, g_m : \Omega \to \mathbb{R}$

$$\min \left\{ f(x) : x \in \Omega, \quad g_i(x) \leq 0, \quad i = 1, 2, \ldots, m \right\}.$$

ALGORITHMS

- Linear
- Quadratic
- Many other, general purpose and for special subproblems
For given convex \(f, g_1, \ldots, g_m : \Omega \to \mathbb{R} \),

\[
V := \min \left\{ f(x) : x \in \Omega, \quad g_i(x) \leq 0, \quad i = 1, 2, \ldots, m \right\}.
\]

THEOREM

If \(V > -\infty \) and there exists \(x \in \Omega \) with \(g_i(x) < 0 \ \forall \ i \), then

\[
\inf_{x \in \Omega : g(x) \leq 0} f(x) = \sup_{\lambda \geq 0} \inf_{x \in \Omega} \left(f(x) + \lambda^T g(x) \right). \tag{L}
\]

CONSEQUENCE

- Determine, for given \(\lambda \geq 0 \): \(x_\lambda : = \arg\min_{x \in \Omega} \left(f(x) + \lambda^T g(x) \right) \).
- Insert \(x_\lambda \) in Lagrangian and determine \(\lambda^* : = \arg\max_{\lambda \geq 0} (f(x_\lambda) + \lambda^T g(x_\lambda)) \).

Then \(x^* : = x_{\lambda^*} \) solves original problem.

[Right side of (1) is always bigger than left (show!). Equality needs existence of \(x \in \Omega \) such that \(g(x) < 0 \).

The *complementary slackness* condition says that, either \(\lambda_i^* = 0 \) or the \(i \)th constraint is true with equality:

\[
\lambda_i^* g_i(x^*) = 0, \quad \text{for every } i = 1, \ldots, p.
\]
The **Lagrangian** is the function \(L : \Omega \times [0, \infty)^m \to \mathbb{R} : \)

\[
L(x, \lambda) = f(x) + \lambda^T g(x), \quad g = (g_1, \ldots, g_m).
\]

The Kuhn-Tucker theorem shows that the constraints \(g(x) \leq 0 \) can be removed after replacing \(f \) by the Lagrangian.

If the unconstrained minimization \(\inf_x L(x, \lambda) \) can be solved analytically, then one can next focus on the **dual problem**

\[
\max_{\lambda \geq 0} L(x_\lambda, \lambda).
\]

This is **concave problem** and sometimes easier.
A function $f : \Omega \to \mathbb{R}$ is \textit{concave} if $-f$ is convex.

Concave functions are nice for \textit{maximization}.
Linear programming
For given \(c \in \mathbb{R}^n \), \((m \times n)\) matrix \(A \) and \(b \in \mathbb{R}^m \):

\[
\max \left\{ c^T x : \quad x \in \mathbb{R}^n, \quad x \geq 0, \quad Ax \leq b \right\}.
\]

If finite, the maximum is taken in a vertex of the polygon.

An equality constraint \(Ax = b \) can be inserted as two inequality constraints \(Ax \leq b \) and \((−A)x \leq −b\) (or directly).

[Inequalities are to be interpreted coordinate-wise: \(x \geq 0 \) means \(x_i \geq 0 \) for all \(i \), and \(Ax \leq b \) means \(\sum_{j=1}^{n} A_{i,j}x_j \leq b_i \) for every \(i \).]
For given $c \in \mathbb{R}^n$, $(m \times n)$ matrix A and $b \in \mathbb{R}^m$:

$$\max \left\{ c^T x : x \in \mathbb{R}^n, \quad x \geq 0, \quad Ax \leq b \right\}.$$

ALGORITHMS (many! popular in OR)
- Simplex method
- Interior point methods
> library(linprog)
> c=c(1,1)
> A=rbind(c(2,1),c(-1,3),c(1,-1))
> b=c(3.5,6,1)
> solveLP(c,b,A,TRUE)
Objective function (Maximum): 2.85714
 opt
1 0.642857
2 2.214286
--- Some output deleted-----
> lp("max",c,A,rep("<=",length(b)),b)$solution # Equivalent (more stable?)
[1] 0.6428571 2.2142857
Given \(y \in \mathbb{R}^n \) and \((n \times p)\) matrix \(X \) find

\[
\hat{\beta} = \arg\min_{\beta \in \mathbb{R}^p} \sum_{i=1}^{n} |y_i - (X\beta)_i|.
\]
Given $y \in \mathbb{R}^n$ and $(n \times p)$ matrix X find

$$\hat{\beta} = \arg\min_{\beta \in \mathbb{R}^p} \sum_{i=1}^{n} |y_i - (X\beta)_i|.$$

Write $y - X\beta = \mu - \nu$ for $\mu_i = (y_i - (X\beta)_i)^+$ and $\nu_i = (y_i - (X\beta)_i)^-$ and solve

$$\min\left\{ \sum_{i=1}^{n} \mu_i + \sum_{i=1}^{n} \nu_i : \mu \geq 0, \nu \geq 0, y - X\beta = \mu - \nu \right\}.$$
Example — median regression

Given $y \in \mathbb{R}^n$ and $(n \times p)$ matrix X find

$$\hat{\beta} = \arg\min_{\beta \in \mathbb{R}^p} \sum_{i=1}^n |y_i - (X\beta)_i|.$$

Write $y - X\beta = \mu - \nu$ for $\mu_i = (y_i - (X\beta)_i)^+$ and $\nu_i = (y_i - (X\beta)_i)^-$ and solve

$$\min \left\{ \sum_{i=1}^n \mu_i + \sum_{i=1}^n \nu_i : \mu \geq 0, \nu \geq 0, y - X\beta = \mu - \nu \right\}.$$

Rewrite further with $\beta = \beta_+ - \beta_-$ as

$$\min \left\{ \sum_{i=1}^n \mu_i + \sum_{i=1}^n \nu_i : \beta_+ \geq 0, \beta_- \geq 0, \mu \geq 0, \nu \geq 0, X\beta_+ - X\beta_- + \mu - \nu = y \right\}.$$

This is a linear program for $c^T x$ with equality constraints $Ax = b$ for

$$c = \begin{pmatrix} 0_p \\ 0_p \\ 1_n \\ 1_n \end{pmatrix}, \quad x = \begin{pmatrix} \beta_+ \\ \beta_- \\ \mu \\ \nu \end{pmatrix}, \quad A = \begin{pmatrix} X & -X & I_n & -I_n \end{pmatrix}, \quad b = y.$$
For any number u we have

$$u = u^+ - u^-,$$
$$|u| = u^+ + u^-,$$

for the plus and minus parts defined by

$$u^+ = \begin{cases}
 u & \text{if } u \geq 0 \\
 0 & \text{if } u < 0
\end{cases}, \quad u^- = \begin{cases}
 0 & \text{if } u \geq 0 \\
 -u & \text{if } u < 0
\end{cases}.$$

The decomposition $u = u^+ - u^-$ is the decomposition of u as $u = a - b$ for nonnegative a, b with the minimal value of $a + b$.
Median regression through linear programming — R

```r
> n=5; beta=1; x=runif(n); X=matrix(x,n,1); p=dim(X)[2]
> sigma=sample(c(1,3),n,replace=TRUE,prob=c(0.90,0.1)); y=beta*x+rnorm(n,0,sigma)
> library(quantreg); rq(y~x-1)

> c=c(rep(0,2*p),rep(1,2*n))
> A=cbind(X,-X,diag(rep(1,n)),diag(rep(-1,n)))
> b=y
> round(cbind(A,b),1)[1,] 0.6 -0.6 1 0 0 0 0 -1 0 0 0 0 -1.1
[2,] 0.3 -0.3 0 1 0 0 0 0 -1 0 0 0 -1.3
[3,] 0.8 -0.8 0 0 1 0 0 0 0 -1 0 0 1.3
[4,] 0.0 0.0 0 0 0 1 0 0 0 -1 0 -0.3
[5,] 0.8 -0.8 0 0 0 0 1 0 0 0 -1 0.9
> solveLP(c,b,A,const.dir=rep("=",n),lpSolve=TRUE)
Objective function (Minimum): 4.09239
opt
1  1.029661
2  0.000000
3  0.000000
4  0.000000
5  0.402486
6  0.000000
7  0.000000
8  1.713898
9  1.605126
10 0.000000
11 0.370885
12 0.000000
--- Some output deleted-----
> lp("min",c,A,rep("-",n),b)$solution  # Equivalent (more stable?) function
  [1] 1.0296614 0.0000000 0.0000000 0.0000000 0.4024862 0.0000000 0.0000000 1.7138977 1.6051259 0.0000000
[11] 0.3708847 0.0000000

[ Alternative to equality constraints: AA=rbind(A,-A); bb=c(y,-y) and now
solveLP(c,bb,AA,FALSE,lpSolve=TRUE) . Careful: without lpSolve=TRUE it does not work (bug!).]
```
Quadratic programming
For given positive-definite $n \times n$ matrix D, $d \in \mathbb{R}^n$, $(n \times m)$ matrix A and $b \in \mathbb{R}^m$:

$$\min \left\{ \frac{1}{2} x^T D x - d^T x : \quad x \in \mathbb{R}^n, \quad A^T x \geq b \right\}.$$

An equality constraint $Ax = b$ can be inserted as two inequality constraints $Ax \leq b$ and $(-A)x \leq -b$ (or directly).

The criterion function is convex and strictly convex if D is nonsingular.

ALGORITHMS:

- Many

[D positive-defined means that $x^T D x \geq 0$ for all x.]
> library(quadprog)
> c=c(1,1)
> A=rbind(c(2,1),c(-1,3),c(1,-1))
> b=c(3.5,6,1)
> lp("max",c,A,rep("<=",length(b)),b)$solution
[1] 0.6428571 2.2142857
> AQ=cbind(-t(A),diag(c(1,1))); bQ=c(-b,c(0,0))
> D=diag(0.000001*c(1,1))
> solve.QP(D,c,AQ,bQ)
$solution
[1] 0.6428571 2.2142857
$value
[1] -2.85714

[The function solve.QP expects $D > 0$ (strict), constraints $Ax \geq b$, and does not impose $x \geq 0$.]
Example — LASSO

In linear regression problem $Y = X\beta + e$ estimate β by

$$\arg\min_{\beta} \left[\|Y - X\beta\|^2 + \lambda \sum_{i=1}^{p} |\beta_i| \right].$$

Rewrite as

$$Y^T Y - 2Y^T X (\beta_+ - \beta_-) + (\beta_+ - \beta_-)^T X^T X (\beta_+ - \beta_-) + \lambda_1^T (\beta_+ + \beta_-)$$

$$= (\beta_+^T, \beta_-^T) \begin{pmatrix} X^T X & -X^T X \\ -X^T X & X^T X \end{pmatrix} \begin{pmatrix} \beta_+ \\ \beta_- \end{pmatrix} + (-2X^T Y + \lambda_1)^T \beta_+ + (2X^T Y + \lambda_1)^T \beta_-.$$

Quadratic program with constraints $\beta_+ \geq 0$ and $\beta_- \geq 0$.

[The LARS algorithm is written especially for this problem, and is preferable over general purpose QP algorithms]
This is a classification algorithm using a hyperplane: given training data
\((x_1, y_1), \ldots, (x_n, y_n)\) with \(y_i \in \{-1, 1\}\) it predicts the label \(y\) for a new \(x\) based on which side of the hyperplane \(x\) falls.

The hyperplane is determined to maximize the minimum distance of the training data to the hyperplane. It is calculated by a quadratic program.