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1 Bayes estimators; Generalized likelihood ratio test

1.1 Bayes.

Cf. Feigelson and Babu, Section 3.8.

Suppose θ ∈ (0, 1) is an unknown probability. Suppose we are prepared to summarize
our prior knowledge about θ by the statement that a priori, θ has a beta distribution with
parameters α and β, for some α > 0 and β > 0.

Suppose that a priori, we think that the following three possibilities have equal proba-
bility 1/3: θ < 0.25, 0.25 ≤ θ ≤ 0.5, and θ > 0.5. Use R to determine α and β such that
the corresponding beta distribution reproduces these three prior probabilities.

We now observe a single realisation X = x of a binomial random variable X: the number
of successes in n independent trials each with success probability θ. In particular, suppose
n = 1000 and x = 645. In the light of this information, what should be now believe about θ?

Use R to compute the shortest possible interval of values of the unknown parameter θ
having posterior probability 95% given our data x.

1.2 Generalized likelihood ratio test

Cf. Feigelson and Babu, Section 3.7.2.

Suppose that we have data X (possibly a random vector or matrix) and two compet-
ing theories about the probability law which generated X. Suppose that according to one
theory P , X ∼ p(x, θ) while according to the other theory Q, X ∼ q(x, φ). In the first
theory, θ is a vector of unknown parameters and in the second theory φ is another vector
of unknown parameters.
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The two models are called nested if one is a special case of the other. In the example
above, if for every φ there is a θ such that q(x, φ) = p(x, θ) for all x, then the second model
is nested in the first model; we also say then: the second model is a sub-model of the other.

Such a situation arises when, for instance, the model Q arises from the model P by
imposing some functional relationships between the components of the parameter vector
θ. In such a situation, the dimension of the parameter φ is smaller than that of θ.

A powerful method of testing the null-hypothesis that Q is true, against the hypothesis
that Q is not true but P is, is based on the generalised log likelihood ratio test: compute
the maximum likelihood estimates of θ under model P and of φ under model Q. Define
the generalised likelihood ratio Λ = likQ(φ̂MLE)/likQ(φ̂MLE). Then compare −2 log(Λ) to a
chi-square distribution with degrees of freedom equal to the difference in the dimensions
of θ and φ (or equivalently, the number of independent constraints on the components of
θ which are needed to force the distribution of X to be a member of model Q. To be
more precise, we reject the null hypothesis that Q is true if −2 log(Λ) is larger than the
(1− α)-quantile of that chi-squared distribution, in order to obtain a test of approximate
size α (= 0.05 for instance).

According to a theorem of Wilks, this procedure is approximately correct if we have
a large amount of data, smooth models (implying “expected” large sample behaviour of
maximum likelihood estimates), and the “small model” is actually true with parameter φ
in the interior of the corresponding parameter space. The corresponding approximate test
based on −2 log Λ is called the Wilks generalised likelihood ratio test.

Explain why the following statement is true: the quantity Λ is always smaller than 1 and,
intuitively, the smaller it is, the less plausible is the model Q within the “background”
assumption that P is true.

Suppose the data is a single observation X from a normal distribution. Suppose that
according to model P , X has variance 1 and unknown mean µ, while according to Q, the
same is true with µ = 0. Show that under the null-hypothesis that µ = 1, −2 log Λ is
exactly chi-squared distributed with 1 degree of freedom.

Suppose I take a sample of size n from a gamma distribution with rate parameter λ and
shape parameter ν. Let λ̂, ν̂ denote the maximum likelihood estimators of λ and ν. Ex-
plain why {(λ, ν) : log lik(λ, ν) > log lik(λ̂, ν̂)−0.5×(χ22)

−1(0.95)} is an approximately 95%
confidence region for (λ, ν) by arguing that the region so defined contains the true value
(λ0, ν0) if and only if the level α = 5% Wilks’ test of the null hypothesis (λ, ν) = (λ0, ν0)
against the alternative (λ, ν) 6= (λ0, ν0) accepts the null.

Use R to graphically represent this confidence region given a sample of size 100 from your
favourite gamma distribution. Hint: use the function contour() for the graphics, and
fitdistr() (from library MASS) for the estimation.
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