
Statistics for Astronomers and Physicsts:
the Schechter Luminosity Function

Richard D. Gill
Mathematical Institute, University of Leiden, Netherlands

http://www.math.leidenuniv.nl/~gill

11 September, 2012

Abstract

I simulate a sample of luminosities from a population following the Schechter law,
and attempt to recover its two coefficients from the data by curve fitting.

1 Introduction

According to the Schechter luminosity function, the number of stars or galaxies within a
luminosity bin of fixed width at luminosity ` is proportional to `α exp(−`/L∗). A probabilist
or statistician recognises this as an example of the probability density function of the
gamma distribution. The gamma distribution with parameters β and λ has probability
density λβxβ−1 exp(−λx)/Γ(β) on x > 0, where β > 0 and λ > 0. Thus we should simply
make the translation β = α+ 1 and λ = 1/L∗, in order to rewrite the Schechter luminosity
function as a gamma density.

A much cited value of α for field galaxies is α = −1.25 corresponding to β = −0.25 < 0.
Thus the corresponding gamma distribution does not actually exist, since xβ−1 exp(−λx)
integrates to +∞! The problem is the singularity at zero. But galaxies of luminosity close
to zero can’t be observed and possibly they don’t even exist. We don’t really believe the
Schechter law continues to hold at arbitrarily small `, anyway.

In the following simulation experiment I’m going to take the true value of α = −1.25 and
the true value of L∗ = 1. It’s clear that we need to introduce a lower cut-off. I’ll simulate
a random sample of field galaxies with luminosities larger than 0.01L∗, and following the
Schechter law. Now, R knows all about the gamma distribution but of course only for
parameters which do indeed make it a bona fide probability distribution. I’ll use the
following trick to simulate luminosities from a Schechter distribution with−1 < α+1 ≤ −0.
Suppose I draw a random luminosity from the gamma distribution with β = α + 2 and
L∗ = 1. I will discard it immediately if ` < ε = 0.01 (my lower cut-off). Next, I draw a
uniform random number U between 0 and 1, independently of my luminosity. If U < ε/` I

1

http://www.math.leidenuniv.nl/~gill

keep the luminosity, otherwise I discard it. Larger luminosities get downweighted exactly
in proportion to their value!

This way I’ll only keep luminosities which are larger than εL∗, and the relative frequency
with which I observe luminosities in a bin of small fixed width at luminosity value ` will
be proportional to (1/`)× (`β−1 exp(−`/L∗)), just as we want, since I take β − 2 = α.

After generating my sample, I will bin the data and plot log counts against bin mid-
points. According to Schechter, the number of galaxies in each bin is roughly propor-
tional to `α exp(−`/L∗). Thus the log counts are expected to be close to a constant plus
α log `− `/L∗. At very low values of luminosity, the plot of log counts against luminosity
is dominated by the term α log `, but at high values the term −`/L∗ dominates. Back in
terms of frequencies, at small luminosities we see the power law `α, at large luminosities
exponential decay exp(−`/L∗) takes over. The literature says that L∗ is the luminosity
value where the transition occurs between the two behaviours. There is something in that.

The fact that log counts should be close to a constant plus α log `− `/L∗ suggests that
we estimate L∗ and α by doing a multiple linear regression of log counts as linear function
of two predictors: ` and log `. The coefficient of ` gives us −1/L∗, the coefficient of log `
gives us α.

Of course I will actually do a weighted least squares (multiple linear regression) fit in
order to get these coefficients.

We could have tried nonlinear regression, fitting the Schechter function directly to the
observed counts. Perhaps you’ld like to try that, and compare results. Of course again
weighted least squares will be called for, different weights!

Please study the code carefully and check that it does what I say. First of all we make
some data.

> set.seed(20120910)

> eps <- 1/100

> alpha <- -1.25

> beta <- alpha+2

> data <- rgamma(100000,beta)

> data <- data[data>eps & runif(100000) < eps/data]

> N <- length(data); N

[1] 6305

> upper <- round(max(data),1) +0.1

> breaks <- seq(from=0,to=upper,by=0.1)

> nbreaks <- length(breaks)

> LuminosityBinMidpoints<-

+ (breaks[1:(nbreaks-1)]+breaks[2:nbreaks])/2

> Counts <- hist(data,breaks,plot=FALSE)$counts

> Counts

2

[1] 4387 780 370 195 129 100 53 65 36 21 24 22 16 26 9 6 14 6 7

[20] 6 6 3 5 2 1 2 2 3 1 1 1 0 2 0 2 0 0 0

[39] 0 0 1 0 0 0 0 1

> LuminosityBinMidpoints

[1] 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65 1.75 1.85

[20] 1.95 2.05 2.15 2.25 2.35 2.45 2.55 2.65 2.75 2.85 2.95 3.05 3.15 3.25 3.35 3.45 3.55 3.65 3.75

[39] 3.85 3.95 4.05 4.15 4.25 4.35 4.45 4.55

The following picture shows that our simulation appears to be doing the right thing. I
chose the proportionality constant “80” of the true Schechter function by eye.

> xpts<-seq(from=0,to=4,length=1000)

> hist(data,breaks,ylim=c(0,1000),xlim=c(0,2))

> lines(xpts,80*exp(-xpts)*xpts^alpha)

Histogram of data

data

F
re

qu
en

cy

0.0 0.5 1.0 1.5 2.0

0
20

0
40

0
60

0
80

0
10

00

3

2 Fitting the Schechter function

Now let’s get on with the fitting the curve to the data, by weighted least squares after a
logarithmic transformation of the y-axis.

> library(gplots)

> nbins <- min((1:length(Counts))[Counts==0]) -1

> Counts <- Counts[1:nbins]

> LuminosityBinMidpoints <- LuminosityBinMidpoints[1:nbins]

> LogCounts <- log(Counts)

> plotCI(LuminosityBinMidpoints,LogCounts,uiw=1/sqrt(Counts),

+ main=paste("Luminosity function, N=",N),

+ xlab="Luminosity bin midpoints (binwidth=0.1)",

+ ylab="Log bin counts",

+ sub="With fitted Schechter function")

> lm.data<-data.frame(y=LogCounts,

+ x1=log(LuminosityBinMidpoints),

+ x2=LuminosityBinMidpoints,

+ weights=Counts)

> lm.fit <- lm(y~x1+x2,data=lm.data,weights=lm.data$weights)

> lm.fit$coef

(Intercept) x1 x2

3.955781 -1.488366 -0.602138

> xpts <- seq(from=0, to = 3, length=100)

> newdata<-data.frame(x1=log(xpts),x2=xpts)

> lines(xpts,predict.lm(lm.fit,newdata))

> -1/lm.fit$coef["x2"] # estimate of L*

x2

1.660749

> lm.fit$coef["x1"] # estimate of alpha

x1

-1.488366

4

●

●

●

●

●
●

●
●

●

●
● ●

●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

●

● ● ●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
2

4
6

8

Luminosity function, N= 6305

With fitted Schechter function
Luminosity bin midpoints (binwidth=0.1)

Lo
g

bi
n

co
un

ts

●

●

●

●

●
●

●
●

●

●
● ●

●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

●

● ● ●

The fit looks splendid. But the estimates are really bad. Did I do something wrong?
What did I do wrong???

3 Fixing the fit

The data for the regression analysis (which are bin counts!) starts off with a sequence
of really huge numbers. Our weighted least squares regression analysis means that these
initial counts are given truely enormous weights. But for each of those bins, we are using
the Schechter function at the midpoint of the bin as surrogate for its average over the bin.
There is even a lower cut-off which means that the first bin really has different width to
the others! I think that all this introduces a huge bias. How to fix this problem?

An ad hoc solution is to omit the first few counts from the data. Dropping the first
three produced a decent value for α though L∗ was quite far off. Another ad hoc solution
is simply to drop the weights (from the least squares fit)! Take a look at this:

> plotCI(LuminosityBinMidpoints,LogCounts,uiw=1/sqrt(Counts),

+ main=paste("Luminosity function, N=",N),

5

+ xlab="Luminosity bin midpoints (binwidth=0.1)",

+ ylab="Log bin counts",

+ sub="With fitted Schechter function, unweighted least squares")

> lm.data<-data.frame(y=LogCounts,

+ x1=log(LuminosityBinMidpoints),

+ x2=LuminosityBinMidpoints)

> lm.fit <- lm(y~x1+x2,data=lm.data)

> lm.fit$coef

(Intercept) x1 x2

4.1826695 -1.3889046 -0.8516252

> xpts <- seq(from=0, to = 3, length=100)

> newdata<-data.frame(x1=log(xpts),x2=xpts)

> lines(xpts,predict.lm(lm.fit,newdata))

> -1/lm.fit$coef["x2"] # estimate of L*

x2

1.174225

> lm.fit$coef["x1"] # estimate of alpha

x1

-1.388905

6

●

●

●

●

●
●

●
●

●

●
● ●

●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

●

● ● ●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
2

4
6

8

Luminosity function, N= 6305

With fitted Schechter function, unweighted least squares
Luminosity bin midpoints (binwidth=0.1)

Lo
g

bi
n

co
un

ts

●

●

●

●

●
●

●
●

●

●
● ●

●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

●

● ● ●

Not bad!
But maybe (but I don’t think so) we were just unlucky with our sample. We had better

repeat this a few times before drawing any strong conclusions. Be my guest!
Note that in the real world, we do not know the truth. We will easily make beautiful

graphics and convince ourselves that we have got a beautiful fit, when in reality we are far
off.

4 Fixing the fit, second attempt

It is clear that binning and curve fitting is not the right thing to do when there are such
huge differences in counts. If we are going to do binning and curve fitting, we had better
move to log luminosities. But will the density still be linear in (transformations of) the
parameters?

The answer is yes. Linearity is preserved. And this is not a coincidence.
If X has a probability density proportional to xα exp(−x/L∗), then it is easy to check

that Y = log(X) has probability density proportional to ey·(ey)α exp(−ey/L∗) = ey(α+1)−e
y/L∗ .

7

Thus expected log counts in log luminosity bins of equal widths are roughly equal to a con-
stant plus (α + 1)y + (−1/L∗)ey. We just multiply the previous density by the absolute
value of the Jacobian of the inverse transformation, which is a function of the data only. If
the log density of the data can be written as something linear in transformed parameters,
the same is true after any transformation of the data.

Since I had a lower cut-off of 0.01 I’ll take logarithms to base 10 instead of natural log-
arithms. Letting Z = Y/ log(10) the density of Z becomes proportional to 10z(α+1)−10

z/L∗ ,
and the expected log (base 10) counts in log-base-10 luminosity bins of equal widths are
roughly equal to a constant plus z(α + 1)− 10z/L∗.

Thus we should perform linear regression on logarithmic (base 10) counts with regressors
z and 10z, whose coefficients are estimators of α + 1 and −1/L∗ respectively. Take a look
at the results:

> logdata <- log(data)

> log10data<-logdata/log(10)

> counts<-hist(log10data,breaks=seq(from=-2,to=1,by=0.05),plot=FALSE)$counts

> mids<-hist(log10data,breaks=seq(from=-2,to=1,by=0.05),plot=FALSE)$mids

> counts <- counts[1:50]

> mids <- mids[1:50]

> logcounts<-log(counts)

> log10counts <- logcounts/log(10)

> coefs<-lm(log10counts~mids+exp(mids),weights=counts)$coef

> plotCI(mids,log10counts,uiw=1/(sqrt(counts)*log(10)))

> lines(mids,coefs[1]+coefs[2]*mids+coefs[3]*exp(mids))

> coefs

(Intercept) mids exp(mids)

2.48694238 -0.05154688 -0.97563440

> alpha

[1] -1.25

8

●
●●

●●●
●●

●●●
●●●●●

●●●●
●●

●●
●

●●
●●

●●
●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

−2.0 −1.5 −1.0 −0.5 0.0 0.5

0.
5

1.
0

1.
5

2.
0

2.
5

mids

lo
g1

0c
ou

nt
s

●
●●

●●●
●●

●●●
●●●●●

●●●●
●●

●●
●

●●
●●

●●
●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

Not too bad, I suppose. But not too good either. There must be better ways to do
this...

5 Fixing the fit, third attempt

Clearly we should prefer weighted least squares to least squares, but perhaps so far our
choice of weights was unfortunate. The counts themselves are subject to random variation.
If a count is untypically large then we are going to give that same observation larger weight,
and vice versa. Thus we probably are biasing our estimates, making the fitted curve fit
the coincidentally relatively larger values better than the coincidentally relatively smaller
values, to a larger degree than we ought.

A solution is to take the weights for the weighted least squares regression from the
estimated counts from an earlier, e.g., unweighted, fit. Take a look at this.

> logdata <- log(data)

> log10data<-logdata/log(10)

> counts<-hist(log10data,breaks=seq(from=-2,to=1,by=0.05),plot=FALSE)$counts

9

> mids<-hist(log10data,breaks=seq(from=-2,to=1,by=0.05),plot=FALSE)$mids

> counts <- counts[1:50]

> mids <- mids[1:50]

> logcounts<-log(counts)

> log10counts <- logcounts/log(10)

> fits <- lm(log10counts~mids+exp(mids))$fitted

> coefs <- lm(log10counts~mids+exp(mids), weights=10^fits)$coef

> plotCI(mids,log10counts,uiw=1/(sqrt(counts)*log(10)))

> lines(mids,coefs[1]+coefs[2]*mids+coefs[3]*exp(mids))

> coefs

(Intercept) mids exp(mids)

2.53356111 -0.03090173 -1.04646084

> alpha

[1] -1.25

●
●●

●●●
●●

●●●
●●●●●

●●●●
●●

●●
●

●●
●●

●●
●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

−2.0 −1.5 −1.0 −0.5 0.0 0.5

0.
5

1.
0

1.
5

2.
0

2.
5

mids

lo
g1

0c
ou

nt
s

●
●●

●●●
●●

●●●
●●●●●

●●●●
●●

●●
●

●●
●●

●●
●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

10

6 Literature

Chapter 4 of Feigelson and Babu.

Wikipedia article “Luminosity function (astronomy)”.

Note: In the real world, we certainly don’t just go and get a random sample of luminosities
of galaxies. We can’t see very faint objects at all. Moreover, something which seems faint
to us might just be a very bright object, very far away. Varying distances means that to
get actual luminosities we have to convert observed magnitudes according to the distance
of the object concerned. We have to estimate this distance from its redshift. For this we
need to take a lot of assumptions from cosmology and astrophysics.

The way objects are observed means that there certainly are cut-offs and selection
biases. We have to be take them into account in the statistical analysis, and in order to
do this we have to model them.

11

	Introduction
	Fitting the Schechter function
	Fixing the fit
	Fixing the fit, second attempt
	Fixing the fit, third attempt
	Literature

