FuncAn 2007 HW 2

Homework Voortgezette Analyse - Functional Analysis Series 2

Deadline: Thursday 4 October, 2007

- 1. Prove that two norms on a vector space are equivalent if and only if they have the same associated metric topology (i.e., that the associated metrics define the same open sets).
- 2. For $1 \le p < \infty$ the *p*-norm on C[0,1] is defined by

$$||f||_p = \left\{ \int_0^1 |f(x)|^p dx \right\}^{\frac{1}{p}} \quad (f \in C[0,1]).$$

For each such finite p, the space C[0,1] is not a Banach space in the p-norm (in contrast of course to the case $p=\infty$). Show this. (Hint: consider piecewise linear functions which are equal to zero from 0 to slightly below $\frac{1}{2}$ and equal to one from slightly above $\frac{1}{2}$ to 1.)

3. Consider the following statement:

Suppose that X is a normed vector space, Y is a linear subspace of X such that $Y \neq X$ and $\epsilon > 0$. Then there exists $x_{\epsilon} \in X$ such that $||x_{\epsilon}|| = 1$ and $d(x_{\epsilon}, Y) = \inf_{y \in Y} ||x_{\epsilon} - y|| > 1 - \epsilon$.

Is this "Riesz' Lemma without the subspace necessarily being closed" true? Proof? Counterexample?

4. Let X be a normed space and suppose $L \subset X$ is a finite dimensional subspace. Then for each x in X the distance d(x, L) of x to L, defined as

$$d(x,L) = \inf_{l \in L} ||x - l||,$$

is realized by an element of L, i.e, there exists $l_x \in L$ such that $d(x, L) = ||x - l_x||$. Prove this. (Hint: you will need something like the Heine-Borel or Bolzano-Weierstraß theorem in L).

5. Let X be a normed space. Suppose that X has the property that a series $\sum_{n=1}^{\infty} x_n$ is convergent in X whenever $\sum_{n=1}^{\infty} ||x_n||$ is convergent in \mathbb{R} (i.e., that every absolutely convergent series is convergent). Then X is a Banach space. Prove this converse to R&Y 2.30.