FuncAn 2007 HW 4

Homework Voortgezette Analyse - Functional Analysis Series 4

Deadline: Thursday November 22, 2004

1. Let X and Y be normed spaces and suppose $T \in B(X,Y)$. Show that

$$\inf\{k \geq 0 \mid \|Tx\| \leq k \|x\| \ \forall x \in X\} = \sup_{\|x\| \leq 1} \|Tx\|$$

and that the infimum in the left hand side is in fact a minimum. Show in addition that, if $X \neq 0$, these numbers are also both equal to

$$\sup_{x \in X, x \neq 0} \frac{\|Tx\|}{\|x\|}.$$

- 2. (a) Let X be a normed space and suppose L is a closed linear subspace. Prove that the canonical map $\pi: X \mapsto X/L$ is bounded. What is its norm if $L \neq X$? What is its norm if L = X?
 - (b) Let X and Y be normed spaces and suppose $T \in B(X,Y)$. If $\pi: X \mapsto X/\operatorname{Ker} T$ is the canonical map, then by standard linear algebra there is a unique linear map $\overline{T}: X/\operatorname{Ker} T \mapsto Y$ such that $T = \overline{T} \circ \pi$. Show that $\overline{T} \in B(X/L,Y)$ and that $\|\overline{T}\| = \|T\|$.
- 3. (a) Let X be a normed space, suppose $L \neq X$ is a closed linear subspace and that $x \in X$ is not in L. Prove that there exists $f \in X'$ such that ||f|| = 1, f(L) = 0 and f(x) = d(x, L). (Hint: in X/L one has ||[x]|| = d(x, L). Can you use a corollary of the Hahn-Banach theorem in this context?)
 - (b) As a corollary of the previous part, prove the following basic theorem: Let X be a normed space and suppose L is a linear subspace. Then L is dense in X if and only if $\{f \in X' \mid f(L) = 0\} = 0$.
- 4. (a) Two normed spaces are called *linearly homeomorphic* if there exists a bounded linear bijection between them which is boundedly invertible. If X and Y are Banach spaces and $T \in B(X,Y)$ is surjective, then $X/\operatorname{Ker} T$ and Y are linearly homeomorphic. Prove this; you may use the results of exercise 2. (Note the analogy with isomorphism theorems in algebra).

- (b) Give an example of a normed linear space X and an operator $T \in B(X)$ which is injective and surjective, so that T is invertible as a linear map T^{-1} , but where T^{-1} is not bounded.
- 5. Let $n \geq 1$ be an integer and suppose we are given fixed continuous functions p_0, \ldots, p_{n-1} on [a, b] and a fixed point $c \in [a, b]$. It is a standard result from the theory of ordinary differential equations that, given $q \in C[a, b]$ and $\alpha_0, \ldots, \alpha_{n-1} \in \mathbb{C}$, there exists precisely one $y \in C^n[a, b]$ which solves the initial value problem

$$\begin{cases} y^{(n)} + p_{n-1}y^{(n-1)} + \dots + p_1y' + p_0y = q; \\ y^{(k)}(c) = \alpha_k \quad (k = 0, \dots, n-1). \end{cases}$$

If one accepts this existence theorem and also the fact that $C^n[a,b]$ is a Banach space under the norm

$$||f|| = \sum_{k=0}^{n} ||f^{(k)}||_{\infty} \quad (f \in C^{n}[a, b]),$$

then it is easy to give a functional analytic proof of the fact that y depends continuously (in an appropriate fashion) on q and the initial values α_k ($k = 0, \ldots, n$). How does this work? (Of course, one also obtains this continuous dependence as a spin-off from the existence proof.)